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ABSTRACT

Time-series forecasting finds broad applications in real-world scenarios. Due to
the dynamic nature of time series data, it is crucial for time-series forecasting
models to produce robust predictions under potential distribution shifts. In this
paper, we initially identify two types of distribution shifts in time series: concept
drift and temporal shift. We acknowledge that while existing studies primarily
focus on addressing temporal shift issues in time series, designing proper concept
drift methods for time series data received comparatively less attention.
Motivated by the need to mitigate potential concept drift issues in time-series
forecasting, this work proposes a novel soft attention mechanism that effectively
leverages and ensemble information from the horizon time series. Furthermore,
recognizing that both concept drift and temporal shift could occur concurrently
in time-series forecasting scenarios while an integrated solution remains missing,
this paper introduces ShifTS, a model-agnostic framework seamlessly addressing
both concept drift and temporal shift issues in time-series forecasting. Extensive
experiments demonstrate the efficacy of ShifTS in consistently enhancing the
forecasting accuracy of agnostic models across multiple datasets, and consistently
outperforming existing concept drift, temporal shift, and combined baselines.

1 INTRODUCTION

Time-series forecasting finds applications in various real-world scenarios such as economics, urban
computing, and epidemiology (Zhu & Shasha, 2002; Zheng et al., 2014; Deb et al., 2017; Mathis et al.,
2024). These applications involve predicting future trends or events based on historical time-series
data. For example, economists use forecasts to make financial and marketing plans, while sociologists
use them to allocate resources and formulate policies for traffic or disease control.

The recent advent of deep learning has revolutionized time-series forecasting, resulting in series of
advanced forecasting models (Lai et al., 2018; Torres et al., 2021; Salinas et al., 2020; Nie et al.,
2023; Zhou et al., 2021). However, despite these success, time-series forecasting faces certain
challenges from distribution shifts due to the dynamic and complex nature of time series data. The
distribution shifts in time series can be categorized into two types (Granger, 2003). First, the data
distributions of the time series data themselves can change over time, including shifts in mean,
variance, and autocorrelation structure, which is referred to as non-stationarity or temporal drift
issues in time-series forecasting (Shimodaira, 2000; Du et al., 2021). For example, in influenza-like
illness (ILI) forecasting, the distribution of influenza cases varies between summer and winter, with
higher infection rates typically observed during the winter seasons. Second, time-series forecasting is
compounded by unforeseen exogenous factors, which shifts the distribution of target time series. A
prominent example is the COVID-19 pandemic, which led to an abnormal excess of influenza cases
than normal years. These types of phenomena, categorized as concept drift problems in time-series
forecasting (Gama et al., 2014; Lu et al., 2018), make it even more challenging.

While prior research has investigated strategies to mitigate temporal shifts (Liu et al., 2022; Kim et al.,
2021; Fan et al., 2023), addressing concept drift issues in time-series forecasting has been largely
overlooked. Although concept drift is a well-studied problem in general machine learning (Sagawa
et al., 2019; Arjovsky et al., 2019; Ahuja et al., 2021), adapting these solutions to time-series
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forecasting is challenging. Many of these methods require environment labels, which are typically
unavailable in time-series datasets (Liu et al., 2024a). Indeed, the few concept drift approaches
developed for time-series data are designed exclusively for online settings (Guo et al., 2021), limiting
their generalizability to standard time-series forecasting tasks. Moreover, while both concept drift
and temporal shift can simultaneously impact time-series forecasting, as shown in the previous ILI
forecasting example, few existing researches or practical solutions address both issues together.

We aim to close this gap in the literature in this paper - this study aims to design an integrated
framework that effectively addresses both concept drift, which has not been studied well by itself,
and temporal shift. Our method involves ensembling time series across multiple horizon time steps
to enhance generalization and mitigate concept drift, with seamless integration with normalization
strategies to address temporal shift. The contributions of this paper are:

1. Concept Drift for Time-Series: We introduce soft attention masking (SAM) designed to
mitigate concept drift issues by effectively using exogenous information from the horizon
window. The soft attention allows the time-series forecasting models to weigh the ensemble
of the time series at multiple horizon time steps to enhance the generalization ability.

2. Integrated Framework: We propose ShifTS, a practical and model-agnostic framework
that tackles both concept drift and temporal shift in time-series forecasting tasks. ShifTS
seamlessly integrates the proposed soft attention mechanism with established temporal shift
mitigation techniques, facilitating enhanced forecasting accuracy.

3. Comprehensive Evaluations: We conduct extensive experiments on various time series
datasets with multiple advanced time-series forecasting models. The proposed ShifTS
demonstrates effectiveness by consistent performance improvements to agnostic forecasting
models, as well as outperforming distribution shift baselines in better forecasting accuracy.

2 RELATED WORKS

Time-Series Forecasting. Classical statistical time-series forecasting models, such as ARIMA (Hyn-
dman & Athanasopoulos, 2018), often face limitations in capturing complicated patterns and depen-
dencies due to inherent model constraints (Nadaraya, 1964; Williams & Rasmussen, 1995; Smola &
Schölkopf, 2004). Recent works in deep learning have achieved notable achievements in time-series
forecasting, such as RNNs, LSTNet, N-BEATS (Sherstinsky, 2020; Lai et al., 2018; Oreshkin et al.,
2020). State-of-the-art models build upon the successes of self-attention mechanisms (Vaswani et al.,
2017) with transformer-based architectures and significantly improve forecasting accuracy, such as
Informer, Autoformer, Fedformer, PatchTST, and iTransformer (Zhou et al., 2021; Wu et al., 2021;
Zhou et al., 2022; Nie et al., 2023; Liu et al., 2024b). However, these advanced models primarily rely
on empirical risk minimization (ERM) with IID assumptions, i.e., train and test dataset follows the
same data distribution, which exhibits limitations when potential distribution shifts in time series.

Distribution Shift in Time-Series Forecasting. In recent decades, learning under non-stationary
distributions, where the target distribution over instances changes with time, has attracted attention
within learning theory (Kuh et al., 1990; Bartlett, 1992). In the context of time series, the distribution
shift can be categorized into concept drift and temporal shifts.

General concept drift methods (Arjovsky et al., 2019; Ahuja et al., 2021; Krueger et al., 2021;
Pezeshki et al., 2021; Sagawa et al., 2019) assume instances sampled from various environments and
propose to identify and utilize invariant predictors across these environments. However, when applied
to time-series forecasting, these methods encounter limitations. Additional methods specifically
tailored for time series data also encounter certain constraints: DIVERSITY (Lu et al., 2023) is
designed for time series classification and detection only. OneNet (Wen et al., 2024) is tailored
solely for online forecasting scenarios using online ensembling. PeTS (Zhao et al., 2023) focuses on
distribution shifts induced by the specific phenomenon of performativity.

Other works specifically crafted for time-series forecasting aim to address temporal shift issues (Kim
et al., 2021; Liu et al., 2022; Fan et al., 2023; Liu et al., 2023). These approaches implement carefully
crafted normalization strategies to ensure that both the lookback and horizon of a univariate time
series adhere to normalized distributions. This alignment helps alleviate potential temporal shifts,
where the statistical properties of the lookback and horizon time series may differ, over time.
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3 PROBLEM FORMULATION

3.1 TIME-SERIES FORECASTING

Time-series forecasting involves predicting future values of one or more dependent time series
based on historical data, potentially augmented with exogenous covariate features. Let denote the
target time series as Y and its associated exogenous covariate features as X. At any time step t,
time-series forecasting aims to predict YH

t = [yt+ 1, yt+2, . . . , yt+H ] ∈ Y using historical data
(XL

t ,Y
L
t ), where L represents the length of the historical data window, known as the lookback

window, and H denotes the forecasting time steps, known as the horizon window. Here, XL
t =

[xt−L+1, xt−L+2, . . . , xt] ∈ X and YL
t = [yt−L+1, yt−L+2, . . . , yt] ∈ Y. For simplicity, we denote

YH = {YH
t } for ∀t as the collection of horizon time-series of all time steps, and similar for YL and

XL. Conventional approaches to time-series forecasting involve learning a model parameterized by θ
through empirical risk minimization (ERM) to obtain fθ : (XL,YL)→ YH for all time steps t.

In this study, we focus on univariate time-series forecasting with exogenous features, where dY = 1
and dX ≥ 1. Our methodology and this setup can be extended to multivariate time-series forecasting
by employing multiple univariate forecastings (Lim & Zohren, 2021; Gruver et al., 2024).

3.2 DISTRIBUTION SHIFT IN TIME SERIES

Given the time-series forecasting setups, a time-series forecasting model aims to predict the target
distribution P(YH) = P(YH |YL)P(YL)P(YH |XL)P(XL), which should be generalizable for
both training and testing time steps. However, due to the dynamic nature of time-series data,
forecasting faces challenges from distribution shifts, categorized into two types: temporal shift and
concept drift. These two types of distribution shifts are defined as follows:

Definition 3.1 (Temporal Shift (Shimodaira, 2000; Du et al., 2021)) Temporal shift (also known
as virtual shift (Tsymbal, 2004)) refers to the marginal probability distributions can change over time,
and the conditional distributions are the same.

Definition 3.2 (Concept Drift (Gama et al., 2014; Lu et al., 2018)) Concept drift refers to the con-
ditional distributions can change over time, and the marginal probability distributions are the same.

Intuitively, a temporal shift indicates unstable marginal distributions (e.g. P(YH) ̸= P(YL)),
while a concept drift indicates unstable conditional distributions (P(YH

i |X
L
i ) ̸= P(YH

j |X
L
j ) for

some i, j ∈ t). Existing methods for distribution shifts in time-series forecasting typically focus on
mitigating temporal shifts through normalization, ensuring P(YH) = P(YL) by both normalizing
to standard 0-1 distributions (Kim et al., 2021; Liu et al., 2022; Fan et al., 2023).

Nevertheless, in addition to temporal shift, time-series forecasting also faces challenges from concept
drift: The correlations between X and Y can change over time, making the conditional distributions
P(YH |XL) unstable and less predictable. Moreover, XL may not fully explain or determine YH ,
meaning that modeling the relationship solely through P(YH |XL) may fail to capture the true
correlations between X and Y. A demonstration visualizing the differences and relationships
between temporal shift and concept drift is provided in Appendix A.

While the concept drift issue has received considerable attention in existing studies on general machine
learning, applying existing methods to time-series forecasting tasks presents certain challenges.
Firstly, these methods typically rely on explicit environment labels as input (e.g., labeled rotation or
noisy images in image classification), which are not readily available in time series datasets. Secondly,
existing concept drift methods often require leveraging all correlated exogenous features to the target
variable (Liu et al., 2024a), which may not be adequately captured in time series datasets (e.g.,
weather conditions affecting ILI forecasting, but not included in the current ILI dataset). Additionally,
while both temporal shift and concept drift can manifest simultaneously in time-series forecasting
(e.g., when both P(YH) ̸= P(YL) and P(YH |XL) are unstable), few existing solutions effectively
addresses both issues in the context of time-series forecasting.
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4 METHODOLOGY

4.1 METHODOLOGY OVERVIEW

The high-level idea of our methodology lies in effectively harnessing information from the horizon
window through soft attention masking SAM to mitigate concept drift in time-series forecasting.
Moreover, acknowledging the absence of an integrated framework capable of addressing both
temporal shift and concept drift within a single solution, we introduce a model-agnostic framework
ShifTS tailored to tackle both challenges in time-series forecasting.

4.2 MITIGATING CONCEPT DRIFT

As defined in Definition 3.2, concept drift in time-series refers to the changing correlations between
X and Y over time (P (YH

i |X
L
i ) ̸= P (YH

j |X
L
j ) for i, j ∈ t), which introduces instability when

when modeling conditional distribution P (YH |XL). This instability in time-series forecasting arises
from the insufficient information in XL to fully determine YH . Conventional concept drift methods
necessarily assume that the inputs contain sufficient information to predict the output (Sagawa et al.,
2019; Arjovsky et al., 2019), which may not always be valid in this context.

For example, an influenza-like illness (ILI) outbreak can be caused by multiple factors, including either
extremely cold winter or hot summer weather (Nielsen et al., 2011; Jaakkola et al., 2014). In such
cases, the stable conditional distribution to predict a winter ILI outbreak is P (YH= outbreak|XL=
hot, or XH= cold). However, without considering XH , modeling P (YH |XL) can become unstable,
as XL alone may not sufficiently determine YH . That is, both P (YH = outbreak |XL = hot) and
P (YH = outbreak |XL ̸= hot) are possible, causing unstable conditional distributions over years.

Figure 1: Comparison between conventional
time-series forecasting and SAM. SAM aggre-
gates both lookback and horizon information
into XSUR to identify stable aggregated condi-
tional distributions and mitigate concept drift.

To address unstable conditional distributions
over time, we propose SAM, which mitigates
concept drift by employing a weighted ensemble
of multiple conditional distributions across the
horizon. The intuition behind SAM is twofold: (1)
Given that XL alone cannot sufficiently determine
YH , SAM incorporates both lookback and horizon
information from exogenous features to improve
target prediction. This enables modeling multiple
conditional distributions with inputs containing suf-
ficient information to determine YH , specifically
[P (YH

t |X
L
t ), P (YH

t |X
L
t+1), · · · , P (YH

t |X
L
t+H)]

at each time step t. (2) Once sufficient determi-
nation is achieved through multiple conditional
distributions, SAM uses soft attention masking to
identify and aggregate those distributions that remain stable over time. Conditional distributions
exhibiting variant patterns are learned with lower attention weights during empirical risk minimization
and can be filtered via sparsity regularization, while those with high attention weights are recognized
as invariant patterns, which remain unchanged during test time steps. Figure 1 illustrates the
difference between SAM and conventional time-series forecasting from a causal perspective.

SAM operates through the following steps: First, it concatenates [XL,XH ] to form an entire time
series of length L +H . Second, it slices the entire time series using a sliding window of size H ,
resulting in L+1 slices (candidates). Next, it applies a learnable soft attention maskM to weigh and
ensemble all slices, producing the ensembled time series XSUR, which is the surrogate exogenous
time series that sufficiently supports and predicts the target series YH . We denote this process as
SAM ([XL,XH ]), and can be mathematically described as:

XSUR = SAM([XL,XH ]) =
∑
L+1

M(Slice([XL,XH ])) (1)
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Figure 2: Diagram of the ShifTS framework. ShifTS addresses both concept drift and temporal
shift within an integrated framework. Concept drift is mitigated at the normalized data distribution.

where Slice(·) denotes the sliding window process (i.e., slicing the time series [L + H, dX] →
[H,L+ 1, dX]), andM∈ RL+1×dX is the learnable soft attention mask with sparsity regularization:

Softmax : Mj = Softmax(Mj)

Sparsity : Mij =Mij · 1(Mij−µ(Mj))≥0

Normalize : Mj =
Mj

|Mj |

(2)

where i, j are the first and second dimensions ofM. The intuition behind sparsity regularization is to
filter out variant conditional distributions with learned attention weights, leaving only invariant ones,
which are to be unchanged during testing. In practice, XSUR may include horizon information that
is unavailable during testing. Therefore, SAM estimates the surrogate features X̂SUR with agnostic
forecasting models. The surrogate loss that aims to estimate X̂SUR is defined as:

LSUR = MSE(XSUR, X̂SUR) (3)

4.3 MITIGATING TEMPORAL SHIFT

Mitigating temporal shifts (referred to as ‘non-stationary’ problems in related literature) has received
significant attention in the time-series forecasting community. The core intuition behind popular
methods for addressing temporal shifts is to normalize data distributions before processing by the
model and to denormalize the outputs afterward. This approach allows the normalized sequences
to maintain more consistent mean and variance between the inputs and outputs of the forecasting
model, i.e., P (XL

Norm) ≈ P (XH
Norm) ∼ Dist(0, 1) and P (YL

Norm) ≈ P (YH
Norm) ∼ Dist(0, 1),

thus mitigating temporal shifts (i.e., marginal distribution shifts over time).

While various model agnostic temporal shift methods can be employed, we here leverage one of
the most prominent approaches Reversible Instance Normalization (RevIN) (Kim et al., 2021). To
transform time series into a standardized distribution before the forecasting model, RevIN applies:

[XL
Norm,Y

L
Norm] = γ

(
[XL,YL]− µ([XL,YL])

σ([XL,YL])

)
+ β (4)

where µ(·) computes the mean, σ(·) computes the standard deviation, γ, β ∈ RdX+dY are learnable
affine parameter vectors, and [·] denotes the concatenation operation. The model processes the
transformed normalized data to forecast future values. Subsequently, a denormalization step then
restores the model outputs to the original time-series values, following:

[X̂H , ŶH ] = σ([XL,YL])
[X̂H

Norm, Ŷ
H
Norm]− β

γ
+ µ([XL,YL]) (5)

where [X̂H
Norm, Ŷ

H
Norm] are normalized model outputs and [X̂H , ŶH ] are the final forecasted targets.

4.4 SHIFTS: THE INTEGRATED FRAMEWORK

By integrating SAM to mitigate concept drift and RevIN to address temporal shift, we propose
ShifTS, a comprehensive framework that addresses both challenges in time-series forecasting.

5
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ShifTS is also model-agnostic, as it processes to identify stable conditional distributions, which can
be learned by any time-series forecasting model. The workflow of ShifTS is illustrated in Figure 2
and consists of the following steps: (1) Normalize the input time series; (2) Forecast exogenous
features X̂SUR that sufficiently support the target series, as determined by SAM; (3) Aggregate the
exogenous features to support the target time series using an MLP, denoted as Agg(X̂SUR

Norm); (4)
Denormalize the output time series. Conceptually, steps 1 and 4 mitigate the temporal shift, step 2
addresses concept drift, and step 3 performs weighted aggregation of exogenous features to support
the target series. The optimization objective of ShifTS is described as follows:

L = LSUR(X
SUR, X̂SUR) + LTS(Y

H , ŶH) (6)

Here, LSUR is the surrogate loss that encourages learning to forecast exogenous features that suffi-
ciently support the target series, and LTS is the MSE loss used in conventional time-series forecasting.
The pseudo-code for training and testing ShifTS is provided in Algorithm 1.

Algorithm 1 ShifTS

1: Training: Require: Training data XL, XH , YL, YH ; Initial parameters f0, M0, Agg0;
Output: Model parameter f ,M, Agg

2: For i in range (E):
3: Normalization: [XL

Norm,Y
L
Norm] = Norm([XL, YL])

4: Time-series forecasting: [X̂SUR
Norm, Ŷ

H
Norm] = fi([X

L
Norm,Y

L
Norm])

5: Exogenous feature aggregation: ŶH
Norm = ŶH

Norm +Aggi(X̂
SUR
Norm)

6: Denormalization: [X̂SUR, ŶH ] = Denorm([X̂SUR
Norm, Ŷ

H
Norm])

7: Obtain sufficient ex-features: XSUR = SAM([XL,XH ])

8: Compute loss: L = LSUR(X
SUR, X̂SUR) + LTS(Y

H , ŶH)

9: Update model parameter: fi+1 ← fi,Mi+1 ←Mi, Aggi+1 ← Aggi
10: Final model parameters: f ← fE ,M←ME , Agg← AggE

11: Testing: Require: Test data XL, YL, Output: Forecast target ŶH

12: Normalization: [XL
Norm,Y

L
Norm] = Norm([XL, YL])

13: Time-series forecasting: [X̂SUR
Norm, Ŷ

H
Norm] = f([XL

Norm,Y
L
Norm])

14: Exogenous feature aggregation: ŶH
Norm = ŶH

Norm +Agg(X̂SUR
Norm)

15: Denormalization: [X̂SUR, ŶH ] = Denorm([X̂SUR
Norm, Ŷ

H
Norm])

5 EXPERIMENTS

5.1 SETUP

Datasets. We conduct experiments using six time-series datasets as leveraged in Liu et al. (2024a):
The daily reported currency exchange rates (Exchange) (Lai et al., 2018); The weekly reported
influenza-like illness patients (ILI) (Kamarthi et al., 2021); Two-hourly/minutely reported electricity
transformer temperature (ETTh1/ETTh2 and ETTm1/ETTm2, respectively) (Zhou et al., 2021).
We follow the established experimental setups and target variable selections in previous works(Wu
et al., 2021; 2022; Nie et al., 2023; Liu et al., 2024b). Datasets such as Traffic (PeMS) (Zhao et al.,
2017) and Weather (Wu et al., 2021) are excluded from our evaluations, as their time series exhibit
near-stationary behavior, with only moderate distribution shift issues. Further details on the dataset
differences are discussed in Appendix B.1.

Baselines. We include two types of baselines for comprehensive evaluation on ShifTS:

Forecasting Model Baselines: ShifTS is model-agnostic, we include six time-series forecast-
ing models (referred to as ‘Model’ in Table 1 and 4), including: Informer (Zhou et al., 2021),
Pyraformer (Liu et al., 2021), Crossformer (Zhang & Yan, 2022), PatchTST (Nie et al., 2023),

6
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Model Crossformer (ICLR’23) PatchTST (ICLR’23) iTransformer (ICLR’24)
Method ERM ShifTS ERM ShifTS ERM ShifTS
Dataset MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

IL
I

24 3.409 1.604 0.674 0.590 0.772 0.634 0.656 0.618 0.824 0.653 0.799 0.642
36 4.001 1.772 0.687 0.617 0.763 0.649 0.694 0.602 0.917 0.738 0.690 0.640
48 3.720 1.724 0.652 0.611 0.753 0.692 0.654 0.630 0.772 0.699 0.680 0.665
60 3.689 1.715 0.658 0.633 0.761 0.724 0.680 0.656 0.729 0.710 0.672 0.667

IMP. 81.9% 64.0% 12.0% 7.1% 13.8% 6.5%

E
xc

ha
ng

e 96 0.338 0.475 0.102 0.237 0.130 0.265 0.102 0.236 0.135 0.272 0.115 0.255
192 0.566 0.622 0.203 0.338 0.247 0.394 0.194 0.332 0.250 0.376 0.209 0.343
336 1.078 0.867 0.407 0.484 0.522 0.557 0.388 0.477 0.450 0.503 0.426 0.495
720 1.292 0.963 1.165 0.813 1.171 0.824 0.995 0.747 1.501 0.941 1.138 0.827
IMP. 53.5% 38.9% 20.9% 12.6% 15.2% 6.9%

E
T

T
h1

96 0.145 0.312 0.055 0.180 0.064 0.193 0.056 0.181 0.061 0.190 0.056 0.181
192 0.240 0.420 0.072 0.206 0.085 0.222 0.073 0.209 0.076 0.219 0.072 0.205
336 0.240 0.424 0.084 0.228 0.096 0.244 0.089 0.235 0.086 0.227 0.083 0.225
720 0.391 0.553 0.095 0.244 0.128 0.282 0.097 0.245 0.085 0.232 0.082 0.230
IMP. 68.2% 48.8% 14.5% 7.2% 5.1% 3.3%

E
T

T
h2

96 0.255 0.408 0.137 0.286 0.154 0.309 0.139 0.287 0.141 0.292 0.137 0.288
192 1.257 1.034 0.182 0.338 0.204 0.374 0.191 0.345 0.194 0.347 0.184 0.339
336 0.783 0.771 0.234 0.388 0.252 0.406 0.222 0.381 0.229 0.383 0.225 0.381
720 1.455 1.100 0.234 0.389 0.259 0.411 0.236 0.390 0.266 0.413 0.235 0.390
IMP. 71.4% 52.9% 9.2% 6.5% 5.4% 2.5%

E
T

T
m

1

96 0.050 0.174 0.028 0.126 0.031 0.135 0.029 0.128 0.030 0.131 0.030 0.131
192 0.271 0.454 0.043 0.158 0.048 0.166 0.044 0.161 0.049 0.171 0.046 0.165
336 0.731 0.805 0.057 0.184 0.058 0.190 0.058 0.186 0.066 0.199 0.059 0.188
720 0.829 0.849 0.083 0.219 0.083 0.223 0.080 0.219 0.082 0.219 0.079 0.217
IMP. 77.3% 61.0% 4.6% 3.0% 5.1% 2.5%

E
T

T
m

2

96 0.153 0.315 0.069 0.190 0.078 0.206 0.067 0.188 0.073 0.200 0.073 0.195
192 0.408 0.526 0.105 0.242 0.113 0.246 0.101 0.237 0.119 0.251 0.108 0.248
336 0.428 0.504 0.146 0.289 0.176 0.320 0.134 0.278 0.157 0.302 0.144 0.291
720 1.965 1.205 0.191 0.342 0.220 0.368 0.185 0.334 0.196 0.347 0.193 0.344
IMP. 71.3% 52.0% 15.9% 8.6% 4.8% 2.1%

Table 1: Performance comparison on forecasting errors without (ERM) and with ShifTS. Employing
ShifTS shows consistent performance gains agnostic to forecasting models. The top-performing
method is in bold. ‘IMP.’ denotes the average improvements over all horizons of ShifTS vs ERM.

TimeMixer (Wang et al., 2024) and iTransformer (Liu et al., 2024b), which of the last two are
the state-of-the-art (SOTA) forecasting model. These models are used to demonstrate that ShifTS
consistently enhances forecasting accuracy across various models, including SOTA.

Distribution Shift Baselines: We compare ShifTS with various distribution shift methods (referred
to as ‘Method’ in Table 2): (1) Three non-stationary methods for addressing temporal distribution
shifts in time-series forecasting N-S Trans. (Liu et al., 2022), RevIN (Kim et al., 2021), and SAN (Liu
et al., 2023). We omit Dish-TS (Fan et al., 2023) and SIN (Han et al., 2024) from the main text due to
their instability on univariate targets. (2) Four concept drift methods, including GroupDRO (Sagawa
et al., 2019), IRM (Arjovsky et al., 2019), VREx (Krueger et al., 2021), and EIIL (Creager et al.,
2021), which are primarily designed for general applications. (3) Three combined methods for both
temporal distribution shifts and concept drift: IRM+RevIN, EIIL+RevIN, and SOTA time-series
distribution shift method FOIL (Liu et al., 2024a). These comparisons aim to highlight the advantages
of ShifTS in distribution shift generalization over existing distribution shift approaches.

Evaluation. We measure the forecasting errors using mean squared error (MSE) and mean absolute
error (MAE). The formula of the metrics are: MSE = 1

n

∑n
i=1(y−ŷ)2 and MSE = 1

n

∑n
i=1 |y−ŷ|.

The proposed ShifTS does not introduce any additional hyperparameter beyond those inherent in
the forecasting models. Therefore, we omit the hyperparameter sensitivity study in our experiments.

Reproducibility. All models are trained on NVIDIA Tesla V100 32GB GPUs. All training data and
code are anonymously available at: https://anonymous.4open.science/r/shifts_
iclr-56A0. More experiment details are presented in Appendix B.2.

5.2 PERFORMANCE IMPROVEMENT ACROSS BASE FORECASTING MODELS

To showcase the effectiveness of ShifTS in reducing forecasting errors, we conduct experiments to
compare performance with and without the inclusion of ShifTS across various time series datasets
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Dataset ILI Exchange ETTh1 ETTh2
Method MSE MAE MSE MAE MSE MAE MSE MAE

Base ERM 3.705 1.704 0.819 0.732 0.254 0.427 0.937 0.828

Concept
Drift

Method

GroupDRO 2.285 1.287 0.821 0.751 0.278 0.453 1.150 0.936
IRM 2.248 1.237 0.846 0.754 0.201 0.367 0.878 0.792

VREx 2.285 1.286 0.821 0.742 0.314 0.486 1.142 0.938
EIIL 2.036 1.159 0.822 0.749 0.212 0.433 1.122 0.930

Temporal
Shift

Method

RevIN 0.815 0.708 0.475 0.476 0.085 0.224 0.205 0.358
N-S Trans. 0.781 0.688 0.484 0.481 0.086 0.226 0.203 0.355

SAN 0.757 0.715 0.415 0.453 0.088 0.225 0.199 0.348

Combined
Method

IRM+RevIN 0.809 0.711 0.481 0.476 0.089 0.231 0.202 0.362
EIIL+RevIN 0.799 0.706 0.483 0.485 0.085 0.225 0.218 0.380

FOIL 0.735 0.651 0.497 0.481 0.081 0.219 0.206 0.357
ShifTS (Ours) 0.668 0.613 0.470 0.468 0.076 0.214 0.194 0.348

Table 2: Averaged performance comparison between ShifTS and distribution shift baselines with
Crossformer. ShifTS achieves the best and second-best performance in 6 and 2 out of 8 evaluations.
The best results are highlighted in bold and the second-best results are underlined.

and forecasting horizons, utilizing five transformer-based forecasting models. Evaluation results for
Crossformer, PatchTST, and iTransformer are presented in Table 1. Additional evaluations for older
models, including Informer, Pyraformer, and TimeMixer, are provided in Table 4 in Appendix C.1.

The results highlight the effectiveness of ShifTS in consistent performance improvements over
agnostic forecasting models. articularly remarkable is its ability to consistently enhance performance,
even when incorporated with advanced models like iTransformer, yielding reductions of up to 15% in
forecasting errors. Moreover, ShifTS demonstrates heightened effectiveness when applied to other
non-state-of-the-art forecasting models, such as Informer and PatchTST.

In addition to the observed performance improvements, our results reveal two further insights:

The effectiveness of ShifTS relies on the insights provided by the horizon data. The performance
enhancements exhibit variations across different datasets. For instance, the application of ShifTS
on ILI and Exchange datasets yields greater performance improvements compared to ETT datasets
overall. To interpret the phenomenon and determine the conditions under which ShifTS could
be most effective in practical scenarios, we quantify the mutual information I(XH ;YH) shared
between XH and YH (detailed setup provided in Appendix B.2). We plot the relationship between
I(XH ;YH) and performance gains in Figure 3(a). The scatter plot illustrates a positive linear
correlation between I(XH ;YH) and performance gains, supported by a p-value p = 0.012 ≤ 0.05.
This observation suggests that the greater the amount of useful information from exogenous features
within the horizon window, the more substantial the performance gains achieved by ShifTS. This
insight aligns with the innovation of ShifTS, which is to comprehensively exploit and leverage
information from the horizon window, which has been overlooked by existing methodologies.

The extent of quantitative performance gains achieved by ShifTS depends on the underlying
forecasting model. Notably, the extent of performance enhancements achieved by ShifTS varies
across different forecasting models. For example, the performance gains on the simpler Informer
model by ShifTS is more significant than the SOTA iTransformer model. Importantly, we emphasize
two key observations: Firstly, even when applied to the iTransformer model, ShifTS demonstrates
a notable performance boost of approximately 15% on both ILI and Exchange datasets, consistent
with the aforehead intuition. Secondly, integrating ShifTS into forecasting processes should, at the
very least, maintain or improve the performance of standalone forecasting models, as evidenced by
consistent performance enhancements observed across all datasets with iTransformer model.

5.3 COMPARISON WITH DISTRIBUTION SHIFT METHODS

To illustrate the advantages of ShifTS over other model-agnostic methods for addressing distri-
bution shifts, we conduct experiments to compare performance across distribution shift baselines
following Liu et al. (2024a), where the evaluations on minutely ETT datasets were omitted, as their
data characteristics and forecasting quality generally align with those of hourly ETT datasets. We use
Crossformer as the forecasting model. The averaged results are summarized in Table 2.
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Horizon ShifTS SAN ShifTS+SAN
96 0.102 0.091 0.089

192 0.207 0.195 0.187
336 0.407 0.373 0.372
720 1.165 1.001 0.981
Avg. 0.470 0.415 0.407

Table 3: MSE comparison between ShifTS, SAN, and
ShifTS+SAN on Exchange dataset. ShifTS+SAN
achieves the best performance on all evaluations.

The results highlight the advantages of
ShifTS over existing distribution shift
methods, achieving the highest average
forecasting accuracy in 6 out of 8 evalua-
tions, with the remaining 2 evaluations
ranking second. Notably, as discussed
in Section 4.3, ShifTS is flexible in in-
tegrating other advanced temporal shift
methods to enhance performance. For in-
stance, in the Exchange dataset, where
SAN outperforms ShifTS, ShifTS can
further improve its accuracy by incorporating SAN in place of RevIN. Detailed MSE values are
provided in Table 3. Additionally, the results illustrate the further benefits of addressing concept drift
using SAM when temporal shift is effectively managed.

5.4 ABLATION STUDY

To demonstrate the effectiveness of each module in ShifTS, we conducted an ablation study using
two modified versions: ShifTS\TS and ShifTS\CD. ShifTS\TS excludes the temporal shift
adjustment via RevIN, while ShifTS\CD excludes the concept drift handling via SAM. Additionally,
conventional forecasting models that do not address either concept drift or temporal shift are denoted
as ‘Base’. We performed experiments on the Exchange datasets using previous three baseline
forecasting models, with a fixed forecasting horizon of 96. The results are visualized in Figure 3(b).
The visualization reveals the following observations:

Figure 3: Left (a): The performance gains of ShifTS versus the mutual information shared between
XH and YH . Greater mutual information in XH compared to YH correlates with more significant
performance gains achieved by ShifTS. Right (b): Ablation Study. Addressing either concept drift
or temporal shift individually provides certain benefits in reducing forecasting error, but ShifTS,
which tackles both, achieves the lowest forecasting error.

First, addressing both temporal shift and concept drift together, as implemented in ShifTS, yields
lower forecasting errors than addressing only one type of distribution shift (ShifTS\TS and
ShifTS\CD) or not considering any distribution shift adjustments (Base). This suggests that
temporal shift and concept drift are likely interrelated and co-existed in time series data, and address-
ing both provides significant benefits.

Second, for forecasting models that inherently address temporal shift, such as PatchTST and iTrans-
former that incorporate norm/denorm, the performance gains from mitigating concept drift are more
significant than those from additionally mitigating temporal shift using RevIN. In contrast, for models
without any temporal shift mitigation, such as Crossformer, tackling temporal shift leads to a greater
performance improvement than addressing concept drift. This distinction highlights the coexistence of
both concept drift and temporal shift in time-series forecasting tasks. While handling temporal shifts
is a fundamental challenge that has already received considerable attention, once resolved, mitigating
concept drift—an issue largely overlooked in current research and a unique key contribution of our
work—can lead to promising improvements in forecasting accuracy.
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6 CONCLUSION

In this paper, we identify that both concept drift and temporal shift issues can coexist in time series
forecasting. While mitigating temporal shifts has received significant attention from the time-series
forecasting community, concept drift issues have been largely neglected. To address this gap, we first
propose a soft attention mechanism, SAM, which effectively mitigates concept drift in time-series
forecasting by incorporating horizon information of exogenous features to enhance generalization
ability. We then introduce ShifTS, a model-agnostic framework that tackles both concept drift and
temporal shift issues. Our comprehensive evaluations demonstrate the effectiveness of ShifTS, and
the benefit of SAM is further illustrated through an ablation study.
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A APPENDIX A: TEMPORAL SHIFT AND CONCEPT DRIFT

To highlight the differences between concept drift and temporal shift, we provide visualizations of
both phenomena. Figure 4 illustrates temporal shift, while Figure 5 demonstrates concept drift1.

Temporal shift refers to changes in the statistical properties of a univariate time series data, such as
mean, variance, and autocorrelation structures, over time. For instance, the mean and variance of the
given time series shift between lookback window and horizon window, as depicted in Figure 4. This
issue is inherent in time series forecasting and can occur on any given time series data, regardless of
whether the data pertains to the target series or exogenous features.

In contrast, concept drift describes to changes in the correlations between exogenous features and the
target series over time. Figure 5 illustrates this phenomenon, where increases in exogenous features
at earlier time steps lead to increases in the target series, while increases at later time steps result in
decreases. Unlike temporal shift, concept drift involves multiple correlated time series and is not an
inherent issue in univariate time series analysis.

Figure 4: Demonstration of temporal shift phenomenon within time series data, showcasing the varia-
tions in statistical properties, including mean and variance, over time as the emergence of temporal
shift (Red: ground truth; Yellow: N-BEATS prediction; Blue: N-BEATS+RevIN prediction).

B APPENDIX B: ADDITIONAL EXPERIMENT DETAILS

B.1 DATASETS

We conduct experiments on six real-world datasets, which are commonly used as benchmark datasets:

• ILI. The ILI dataset collects data on influenza-like illness patients weekly, with eight
variables.

1Figures adapted from: https://github.com/ts-kim/RevIN
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Figure 5: Demonstration of concept drift phenomenon within time series data, showcasing the
variations in correlation structures between arget series Y and exogenous feature X over time
as the emergence of concept drift (Red: ground truth; Yellow: N-BEATS prediction; Blue: N-
BEATS+RevIN prediction).

• Exchange. The Exchange dataset records the daily exchange rate of eight currencies.

• ETT. The ETT dataset contains four sub-datasets: ETTh1, ETTh2, ETTm1, ETTm2. The
datasets record electricity transformer temperatures from two separate counties in China
(distinguished by ‘1’ and ‘2’), with two granularities: minutely and hourly (distinguished by
‘m’ and ‘h’). All sub-datasets have seven variables/features.

We follow Wu et al. (2022); Nie et al. (2023); Liu et al. (2024b) to preprocess data, which guides
splitting datasets into train/validation/test sets and selecting the target variables. All datasets are
preprocessed using the zero-mean normalization method.

Additional popular time-series datasets, such as Traffic (which records road occupancy rates from
various sensors on San Francisco freeways), Electricity (which tracks hourly electricity consumption
for 321 customers), and Weather (which collects 21 meteorological indicators in Germany, such
as humidity and air temperature), are omitted from our evaluations. These datasets exhibit strong
periodic signals and display near-stationary properties, making distribution shift issues less prevalent.
A visualization comparison between the ETTh1 and Traffic datasets, shown in Figure 6, further
supports this observation.

Figure 6: Distribution shift issues across datasets: Left (a): ETT. Both temporal shift and concept
drift are present. The target series shows varying statistics over time (e.g., lower variance in earlier
periods and higher variance later), causing temporal shift. The correlation between X and Y is unclear
and unstable, causing concept drift. Right (b): Traffic. Both temporal shift and concept drift are
moderate. The target series exhibits near-periodicity, making the temporal shift moderate. Moreover,
the correlation between X and Y remains stable (e.g., both increase or decrease simultaneously),
making concept drift moderate.
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B.2 BASELINE IMPLEMENTATION

We follow the commonly adopted setup for defining the forecasting horizon window length, as
outlined in prior works Wu et al. (2022); Nie et al. (2023); Liu et al. (2024b). Specifically, for datasets
such as ETT and Exchange, the forecasting horizon windows are chosen from the set [96, 192, 336,
720], with a fixed lookback window size of 96 and a consistent label window size of 48 for the
decoder (if required). Similarly, for the weekly reported ILI dataset, we employ forecasting horizon
windows from [24, 36, 48, 60], with a fixed lookback window size of 36 and a constant label window
size of 18 for the decoder (if required).

In the context of concept drift baselines, several baselines like GroupDRO, IRM, and VREx require
environment labels, which are typically absent in time series datasets. To address this, we partition
the training set into k equal-length time segments to serve as predefined environment labels.

For baseline time-series forecasting models, we follow implementations and suggested hyperparam-
eters (with additional tuning) sourced from the Time Series Library2. For concept drift baselines,
we utilize implementations and hyperparameter tuning strategies recommended by DomainBed3.
For temporal shift baselines, we adopt implementations and hyperparameter configurations outlined
in their respective papers. Additionally, we add an additional MLP layer to the end PatchTST to
effectively utilize exogenous features, following Liu et al. (2024a).

In the ablation study, for the implementation of PatchTST and iTransformer, we follow the original
approach by applying norm and denorm operations to the ‘Base’ model. To clarify our notation,
ShifTS\TS refers to the model with standard norm/denorm operations and SAM, while ShifTS\CD
denotes the version where the regular norm/denorm is replaced with RevIN.

B.3 MUTUAL INFORMATION VISUALIZATION

For a given time series dataset, we compute the mutual information I(XH ;YH) for each training
time step and each exogenous feature dimension individually, following:

I(XH ;YH) =
∑

x∈XH

∑
y∈YH

P (x, y) log
P (x, y)

P (x)P (y)
(7)

We then average the mutual information across all time steps for each exogenous feature dimension
and identify the maximum averaged mutual information over all feature dimensions. This process
allows us to assess the information content of each feature dimension in relation to the target series.

We visualize the maximum averaged mutual information plotted against the corresponding perfor-
mance gain in Figure 3(a). This visualization provides insights into how the information content
of different feature dimensions relates to the performance improvement achieved in the forecasting
model.

C APPENDIX C: ADDITIONAL RESULTS

C.1 EVALUATIONS ON AGNOSTIC PERFORMANCE GAINS

To further demonstrate the benefit of ShifTS in improving the forecasting accuracy over agnostic
forecasting models, we additionally evaluate the performance differences without and with ShifTS
on Informer, Pyraformer, and TimeMixer. The detailed results are presented in Table 4. The additional
evaluations again show consistent performance improvements on these models. Moreover, compared
to the results in Table 1, the performance gains on these older models are even more significant.
This observation highlight the needs of mitigating both concept drift and temporal shift in time-
series forecasting, as such problem are rarely considered in these models, but the later models (e.g.,
PatchTST and iTransformer are compounded with normalizaiton/denormalizaiton processes).

2https://github.com/thuml/Time-Series-Library
3https://github.com/facebookresearch/DomainBed
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Model Informer (AAAI’21) Pyraformer (ICLR’21) TimeMixer (ICLR’24)
Method ERM ShifTS ERM ShifTS ERM ShifTS
Dataset MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

IL
I

24 5.032 1.935 1.030 0.812 4.692 1.898 0.979 0.749 0.853 0.733 0.789 0.702
36 4.475 1.876 1.046 0.850 4.814 1.950 0.866 0.740 0.721 0.676 0.697 0.665
48 4.506 1.879 0.918 0.818 4.109 1.801 0.789 0.732 0.737 0.692 0.741 0.711
60 4.313 1.850 0.957 0.839 4.483 1.850 0.723 0.698 0.788 0.723 0.670 0.659

IMP. 78.4% 56.0% 81.5% 61.1% 6.3% 3.0%

E
xc

ha
ng

e 96 0.839 0.746 0.137 0.277 0.410 0.525 0.145 0.275 0.127 0.268 0.098 0.234
192 0.862 0.773 0.210 0.346 0.529 0.610 0.300 0.404 0.229 0.355 0.214 0.352
336 1.597 1.063 0.378 0.485 0.851 0.778 0.440 0.506 0.553 0.560 0.440 0.491
720 4.358 1.935 0.760 0.655 1.558 1.067 1.509 0.963 1.173 0.834 0.962 0.747
IMP. 79.5% 59.7% 39.8% 31.5% 16.9% 9.1%

E
T

T
h1

96 0.891 0.863 0.095 0.231 0.653 0.748 0.065 0.197 0.059 0.184 0.059 0.187
192 1.027 0.958 0.096 0.237 0.853 0.828 0.075 0.210 0.099 0.247 0.077 0.211
336 1.055 0.961 0.092 0.237 0.705 0.797 0.092 0.238 0.121 0.279 0.098 0.246
720 1.077 0.969 0.100 0.252 0.562 0.695 0.126 0.279 0.139 0.299 0.099 0.252
IMP. 90.7% 74.5% 86.4% 69.6% 23.3% 10.1%

E
T

T
h2

96 3.195 1.651 0.232 0.381 1.598 1.127 0.156 0.307 0.152 0.303 0.146 0.299
192 3.569 1.778 0.334 0.464 3.314 1.599 0.217 0.367 0.195 0.349 0.185 0.343
336 2.556 1.468 0.400 0.512 2.571 1.489 0.245 0.398 0.238 0.392 0.230 0.381
720 2.723 1.532 0.489 0.579 2.294 1.409 0.261 0.410 0.273 0.421 0.249 0.397
IMP. 82.0% 69.5% 90.6% 73.5% 5.3% 2.9%

E
T

T
m

1

96 0.320 0.433 0.055 0.175 0.130 0.298 0.028 0.125 0.030 0.128 0.029 0.126
192 0.459 0.582 0.079 0.211 0.240 0.4112 0.045 0.162 0.047 0.165 0.047 0.164
336 0.457 0.556 0.104 0.243 0.359 0.512 0.062 0.192 0.063 0.191 0.060 0.189
720 0.735 0.760 0.148 0.294 0.657 0.750 0.091 0.231 0.083 0.223 0.081 0.220
IMP. 80.7% 60.3% 82.2% 62.6% 2.3% 1.1%

E
T

T
m

2

96 0.191 0.345 0.154 0.298 0.275 0.422 0.075 0.200 0.079 0.205 0.075 0.201
192 0.458 0.556 0.243 0.378 0.484 0.552 0.107 0.248 0.121 0.259 0.111 0.250
336 0.606 0.624 0.515 0.539 1.138 0.909 0.146 0.293 0.150 0.295 0.148 0.294
720 1.175 0.879 0.564 0.592 2.920 1.537 0.196 0.347 0.246 0.387 0.198 0.346
IMP. 33.4% 23.0% 82.8% 63.2% 8.5% 4.1%

Table 4: Performance comparison on forecasting errors without (ERM) and with ShifTS on Informer,
Pyraformer, and TimeMixer. Employing ShifTS again shows near-consistent performance gains
agnostic to forecasting models. The top-performing method is in bold. ‘IMP.’ denotes the average
improvements over all horizons of ShifTS vs ERM.
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