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Abstract

Multi-table data integrate various entities and attributes, with potential interconnec-
tions between them. However, existing tabular learning methods often struggle to
describe and leverage the underlying complementarity across distinct tables. To
address this limitation, we propose the first unified paradigm for multi-table learn-
ing that systematically quantifies and integrates complementary information across
tables. Specifically, we introduce a metric called complementarity strength (CS),
which captures inter-table complementarity by incorporating relevance, similarity,
and informativeness. For the first time, we systematically formulate the paradigm
towards multi-table learning by establishing formal definitions of tasks and loss
functions. Correspondingly, we present a network for multi-table learning that
combines Adaptive Table encoder and Cross table Attention mechanism (ATCA-
Net), achieving the simultaneous integration of complementary information from
distinct tables. Experiments show that ATCA-Net effectively leverages comple-
mentary information and that the CS metric accurately quantifies the richness of
complementarity across multiple tables. To the best of our knowledge, this is the
first work to establish theoretical and practical foundations for multi-table learning.

1 Introduction

Multiple tables often exhibit inherent connections due to the interrelated nature of the entities they
describe, which can yield valuable complementary information when such associations exist [[15}36].
These data have widespread applications across various domains, such as finance [19}37], healthcare
[29] 26] and geography [32,|39]. However, most existing table learning methods [38}, 20} 21} 4]
are limited to utilizing information from single or pairwise tables to accomplish tasks such as table
completion [21} 26]] or entity matching [23, [28]]. There is a notable lack of methodologies to analysis
and learn from multiple tables [18} 42]].

Current approaches for analyzing inter-table relationships predominantly depend on similarity metrics
[15} 136,125,116, 130]. However, these methods face significant challenges in quantifying meaningful
complementary information between tables: (1) High similarity scores may originate from redundant
tables (i.e., duplicated schemas) that provide negligible complementary value, while (2) completely
unrelated tables inherently lack meaningful information complementarity. This distinction highlights
the need for a new metric that quantifies complementarity by effectively balancing table similarity
and relevance, thereby enabling a more comprehensive evaluation for multiple tables. On the other
hand, to effectively harness the complementary information across multiple tables, two critical
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technical barriers must be addressed. First, the inherent intra-table heterogeneity (divergent attribute
semantics within tables) and inter-table heterogeneity (schema mismatch across tables) demand
unified representation learning that preserves both table-specific characteristics and cross-table
consistency. While modern single-table encoders [21} [38]] excel at isolated table processing, they
fundamentally lack cross-table alignment mechanisms. Second, current cross-table information
fusion techniques either rely on explicit relational graphs [8, [18 [17] or employ computationally
intensive full-table encoding via language models [32], neither of which efficiently captures latent
complementary patterns. These challenges, including the inability to effectively describe and quantify
multiple tables complementarity, as well as the difficulty in learning a unified representation and
integrating complementary information across tables, underscore the necessity for a novel multiple
tables learning paradigm that specifically designed to address these limitations.

To address these challenges in learning multiple tables, we propose a comprehensive paradigm that
systematically quantifies and integrates complementary information. Specifically, we propose a novel
metric termed complementarity strength (CS), which balances the statistical correlations and semantic
similarities to quantify the complementarity between tables. A higher CS score indicates stronger
inter-table correlation with minimal redundancy, overcoming the limitation of existing methods
that exclusively prioritize similarity [36} 30] while neglecting complementarity. We develop the
systematic, formal definitions for multiple tables learning tasks and their corresponding loss functions,
offering clear guidance for model design and training processes. Furthermore, we propose a novel
network for learning multiple tables, which consist of the adaptive table encoders and cross-tabular
attention layers (ATCA-Net), effectively integrating complementary information from multiple tables.
Extensive experiments demonstrate that CS effectively quantifies complementarity, while ATCA-Net
efficiently integrates complementary information across tables. Our work provides both a solid
theoretical foundation and practical guidelines for multiple table learning. The main contributions
are summarized as follows:

* To the best of our knowledge, we are the first to define the complementarity strength (CS) metric,
which quantifies the complementary information between multiple tables.

* We present the first comprehensive, systematically formalized definitions for multi-table learning
tasks and their corresponding loss functions.

* We propose the new architecture, ATCA-Net, which efficiently processes multiple tables and
integrates complementary information across tables.

2 Related work

Tabular Representation Learning. Previous methods for learning tabular data mainly rely on
information from a single table [9, (10} [11} 12} |13} [14]]. Multi-table learning confronts substantial
challenges in achieving semantic alignment and effectively extracting and integrating information
across tables. These challenges encompass tackling schema heterogeneity [26} 43]], resolving column-
level semantic inconsistencies [2]], and developing robust representations for tabular data [38} [37, [35].
Techniques such as learnable cell-level semantic encoding [21] and BERT-based embeddings [24]
have facilitated column alignment,while table pretraining strategies [34], reconstruction tasks [35],
and mutual information learning [38]] underpin the development of table learning encoders. Despite
these advancements, the extraction of complementary information across diverse tables remains an
unresolved challenge. BERT-based approaches [32] have explored transforming tables into textual
formats, and GNN methods [17] have enabled information exchange through foreign key linkages.
In multimodal learning contexts [41]], mechanisms such as cross-attention [[1] or learnable query
modules [27] are utilized for information fusion.However, these methods have not fully explored the
information fusion in multiple tables settings.

Multiple Tables Measurements. Quantifying the strength of complementarity among multiple
tables is crucial for advancing multi-table learning.Present research primarily focuses on similarity
measurements, such as through column-level similarity evaluations to ascertain whether tables
share analogous schemas [36} 40, [30]. Column-level similarity is typically assessed through the
overlap of column names and values [31} 25]] or via the matching of learned column embeddings
[L5]. For numerical columns, comparing whether they originate from similar distributions is an
optional approach [3 33]]. These methodologies are extensively employed in applications like table
augmentation [6]] and dataset discovery within data lakes [S]]. However, similarity metrics fail to reflect



the complementarity strength across tables,as identical tables, despite exhibiting maximum similarity,
offer redundant information, while completely unrelated tables contribute minimally to the learning
process. Consequently, the development of a novel metric for quantifying the complementarity of
multiple tables is imperative.

3 Complementarity Strength

When tables exhibit relevance, they may provide complementary information that has the potential to
enhance learning performance in multi-table integration. In contrast, unrelated tables tend to yield
fragmented information that inherently lacks synergistic capacity. Beyond relevance alone, the degree
of complementarity is also influenced by two additional factors: the informativeness of each table and
the similarity between them. On the one hand, richer table content contributes more complementary
information. On the other hand, higher similarity implies greater redundancy—when two tables
are identical, despite their strong relevance, they offer no additional complementary benefit. Taken
together, these analyses suggest that complementary information should be positively associated
with both relevance and informativeness, but inversely associated with similarity. In this section,
we formally define three key metrics: relevance, similarity, and informativeness, and derive a
composite measure of inter-table complementarity strength.

3.1 Definition of Complementarity Strength

A multi-table collection is defined as D := {T*,T?, ..., TX}, where the k-th table is given by
Tk .= [Ufj]iE[A/jk],je[Nk] , k € [K], with M} (resp. Ny) denoting the number of rows (resp. columns)
in table T},. Here, vfj represents the value of the (4, j)-th cell in table 7. We denote the 4-th row and
j-th column of T* as r¥ = {Ufj}je[m}s hf = {vfj}ie[Mk].

We begin by defining the column-level similarity between two tables. Each table T is encoded by a
pretrained model [15]], producing a vector representation zf for each column hé’?. EI Given two column
embeddings z¥ and z}, from tables T* and T", their similarity is computed as the cosine similarity:

ko ijzé
Se(2F 2y = |—1 %9 | < 0,1], 1
<55 20) = Iy | € 01 M

where || -|| denotes the Euclidean (L) norm. A similarity score of 1 indicates that the two columns are
directionally aligned (i.e., linearly dependent), whereas a score of 0 indicates complete orthogonality,
implying no semantic overlap.

Table-level relevance between two tables 7% and 7" is defined as the maximum similarity between
any pair of columns across the two tables. Formally, the relevance score is computed as:

Ry(T*,T") = max;e(n,), geivi) {Se (2], 24)} € 0,1]. )

A high relevance score indicates that at least one column pair is semantically similar, suggesting a
possible relationship between the tables. Conversely, a low score implies that all column pairs are
dissimilar, and the tables are considered unrelated.

Table-level similarity between two tables is computed by identifying the optimal bipartite matching
[15] that maximizes the sum of column similarities. Each column from one table can be paired with
at most one column from the other table or remain unpaired. Formally, table-level similarity between
two tables 7% and 7" is defined as:

St(Tk7Tl) = maxyey {Z SC(Z_;C>Zé)} S [Oamln(Nkal)] ) (3)

(4,9)€U

where U represents the set of all possible matchings between columns of 7% and T*.

We define the metric informativeness to quantify the richness of information within a table. A table is
considered more informative when its columns convey diverse and non-redundant semantics, and less

3We adopt the pretrained model [13], which is trained on a large-scale corpus of S50M tables to learn
generalizable column representations.



informative when its columns are similar. Formally, the informativeness of a table 7% is computed as:

1
ky = E - E k ook
Info(T") = . <1 N T 2iein Se(2;, 2; )) € [0, N, “4)

where S, (z¥, zf) denotes the similarity between the i-th and j-th columns of 7"%. The inner summa-
tion quantifies how similar each column is to the rest of the table. By subtracting this value from
1, we obtain a measure of the uniqueness of the column. The overall Info(T*) score aggregates
these uniqueness values in all columns, reflecting the total amount of distinct information the table
contains.

Based on the above defined metrics, relevance (Ry), similarity (S;) and informativeness (Info), we
introduce the metric of complementarity strength (CS), which quantifies how much novel and
relevant information table 7 contributes to T". It balances relevance against redundancy, and is
formally defined as:

a R(TH T - (1= &8T5, 1)

Tk TY = Info(T*) -
CS¢(T", 1) nfo(7") 1+Nilst(Tk,Tl)

€ [0, Ng], 5)

In our experiments, we set both « and v to 1. This formulation encourages high relevance and
source table informativeness while penalizing redundancy by suppressing similarity. Notably, the
complementarity is asymmetric, i.e., CS(T*, T") # CS(T", T*). For example, if all columns in 7"
are already present in T, then T" contributes little new information to 7%. Conversely, since T*
contains information not present in 7", it can still provide complementary information to 7".

Given a group of tables D = {T1, T2, ..., TK}, the aggregate complementarity strength from all
other tables D \ T" to table T" is computed as follows:

CSg(D\T",T") =) CSy(T*, T" {O,Zf_lm} .

TkeD\T!

3.2 Discussion of Complementarity Strength

Table [T] shows how the complementarity strength obtained for the same target table T varies across
five distinct groups of synthesized tables. All tables are randomly sampled by columns from the
blastchar dataset from the OpenML Repository, with each table containing 5 columns. The i-th group

is denoted as GP; = {T°, Tia(] ) }jeq3)» including the target table 7 and three auxiliary tables Tia(j ),
Each group features a different column overlap ratio between 7 and its auxiliary tables, ranging
from 0 to 1 across groups GP; to GP5. As anticipated, when the overlap is zero, the auxiliary tables
struggle to form meaningful associations with the target table 7, resulting in low relevance (R;) and
complementarity strength (CS). Conversely, when the overlap is high, the auxiliary tables become
largely redundant, leading to increased similarity (S;) but diminished complementarity. In cases of
moderate overlap, the auxiliary tables establish some relevant associations with 7°°, while maintaining
relatively low redundancy, thus preserving a higher level of complementarity. The metrics we propose
effectively capture and reflect these patterns.

Table 1: Complementarity Strength for target table 7' across five table groups sampled from the
blastchar dataset. Each group GP; has a different column-overlap ratio (0.0-1.0) between 7 and

three auxiliary tables 7’ i“(j ) The metrics St, Ry, Info, and CS; report the mean =+ standard deviation
across the three auxiliary tables.

Metric 0.0(GP;) 02(GPy) 05(GPs)  0.8(GPy) 1.0 (GPs)
Sy (T T°) 2814017 2964008 3.15+0.13 3.15+0.21 3.5840.34
Ry(T*9), T°) 0.784£0.05 0.8240.02 0.89+0.01 0.91+0.03 0.95+0.04
Info(T"9)) 2104034 1874011 2134050 2.02+0.31 1.90+0.03
CS(TP) ) 0.26+0.08 0284002 0354004 0.2940.07 0.10+0.08
CS,(GP,\T°,T°) 0.73 0.83 1.03 0.87 0.35




4 Formulations of Multi-Table Learning

Traditional table learning paradigms were limited to utilizing information from a single table. In
contrast, multi-table learning involves the integration of information from multiple tables. When
complementary information exists between these tables, multi-table learning can leverage this
complementarity to achieve performance improvements. In this section, we provide a formal definition
of multi-table tasks along with the corresponding loss functions.

LetT := [vij]ie[ M1,je[n] denote a table with M rows (entities) and NV columns (attributes), where
the ¢-th row and j-th column are represented by 7; and h;, respectively. In single-table learning, the
objective is to minimize Zf\il L(f7(rs),y:), where f;(-) is the prediction function for the single-
table task, y; represents the ground truth, and £ the loss function. In contrast, multi-table learning
can leverage information from multiple tables. Let D = {7, T ,Ta(k)} denote a group of
tables, where 7 is the target table and 7¢(1), ... T%(%) are auxiliary tables. The multi-table learning
task can be formulated as:

ming (ZiE[MC] L (fg(rf, T T“(k)), yz‘)) , 6)

where fp(+) is the prediction function that integrates information from the target table 7 and the
auxiliary tables T, ..., T,

In equation (6), f¢ implicitly learns the alignment and integration of complementary information
across multiple tables. Consequently, we divide multi-table learning into two stages: pretraining for
cross-table alignment, followed by training for the integration of complementary information
across tables. The two pretraining tasks, multi-table reconstruction and cross-table correlation
prediction, focus on learning the associations between attributes and entities, respectively, effectively
aligning the complementary information across tables.

Multi-table reconstruction pretraining involves recovering the corrupted cells in tables. Given the
corrupted tables D= {Tl, TQ, ceey TK }, the learning target is to recovering the complement tables
D = {T',T?,...,TX}. By constructing D randomly, this task enables self-supervised training.
We suppose that 7%\ (T* N T*) = {0%}; ;;con for the corrupted index set OF C R* x C*. This
learning task can be formalized as:

ming Zke[K] Z(i,j)eok L (fg <17f], ﬁ) ,vfj) ) @)

Cross-table correlation prediction pretraining involves predicting the correlation between entities
across different tables. For each pair of rows 7% from table 7" and ré- from table 7", the label yl’-“jl
represents the correlation between these two rows. The objective is to minimize the following loss:

. “k =l kl
ming Y o £(fole 75 ),y ®)

Typically, the labels y*! are constructed using pseudo-labeling techniques. Row sampling is performed
on the vertical partition [37]] of table, resulting in partial row 7; C 7;. When the sampled rows 7; and
7; originate from the same row, the label yfjl is set to 1; otherwise, the label is assigned a value of 0.

After pretraining with the tasks of multi-table reconstruction and cross-table correlation prediction,
the model gains the ability to align complementary information across tables. Building on this, the
model integrates complementary information from multiple tables through the process defined in
Equation (6)). In Section[5} we propose a network architecture designed to implement this two-stage
learning process, facilitating effective multi-table learning.

5 Architecture for Multi-table Learning

Multi-table learning involves aligning and integrating complementary information across tables; to
achieve this, we introduce ATCA-Net, which combines an Adaptive Table encoder and a Cross-Table
Attention mechanism. To align the complementary information, we introduce the adaptive table
encoder, which enables adaptation to various table schemas. Through the multi-table pretraining
strategy, we project distinct tables into a unified representation space and model the correlations
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Figure 1: ATCA-Net operates in two stages: cross-table alignment stage and complementary informa-
tion integration stage. In the first stage, the adaptive table encoder &y is pretrained using Equation (9).
In the second stage, the cross-table attention mechanism A, extracts complementary information
between tables and the fusion module U/, integrates the complementary information for prediction.

between cross-table attributes and entities. To integrate the complementary information, we propose
a cross-table attention mechanism, which computes aggregation weights for auxiliary tables based
on the target table’s entities, ultimately achieving the fusion of complementary information across
multiple tables.

5.1 Cross-table Alignment

We propose an adaptive table encoder with BERT-based [24] cell-level representation to handle
various table schemas. Through multi-table reconstruction (Equation (7)) and cross-table correla-
tion prediction (Equation (8)) pretraining, data from different tables are projected into a unified
representation space, ensuring alignment of complementary information across tables.

Cell-level representations are obtained using a pretrained BERT model [24] to promote semantic
consistency across heterogeneous attributes in multiple tables. Specifically, for each categorical
cell, we concatenate the category value vc,t With its attribute name acat as “veat_acat” and feed this
string into BERT to produce a cell-level embedding. For each numerical cell, we encode the attribute
name a,, With BERT and scale the resulting embedding by the normalized cell value to obtain the
cell-level embedding. Finally, to standardize dimensionality, we apply average pooling to project
each cell embedding to R?. Thus, an input table 7" with M rows and N columns is represented as a
tensor X € RM*Nxd To enable row-level representations, we prepend a special [CLS] column to
the table; the resulting tensor has shape X € RM*(N+1)xd Notably, we adopt mini-batch training,
where each batch consists of an input sub-table sampled from the complete table with a fixed number
of rows (e.g., M = 64).

Building upon these cell-level representations, the adaptive encoder &y is designed to encode various
tables using a two-dimensional Transformer [24] that captures dependencies along both the row and
column axes. The encoder stacks Transformer layers that model contextual relationships in both
dimensions. For table embeddings {x;;}M, jV: +11 with x;; € R?, we apply a standard multi-head
self-attention layer to the row sequence (X;1,...,X;(n+1)) to obtain contextualized row outputs
(204, ... ,ZZT(NH)); likewise, we apply the same operation to the column sequence (X1, . ..,Xaz;) to
obtain column outputs (z{;, ..., 2z4,;). The output representation of cell (4, j) is the average of the

two directional outputs, z;; = % (zgj + zfj), which integrates context from both rows and columns.
We introduce two multi-table pretraining strategies for the adaptive encoder £y: multi-table recon-
struction and cross-table correlation prediction. These strategies enable the encoder to align table

representations across different tables. In the multi-table reconstruction pretraining, misalignment
and masking [34] corruption strategies are randomly applied to various positions within the tables.

Training pairs {(7;,T;) }icr are randomly generated from the multiple tables D, where T; € D is a
original table and 7; is the corrupted version. Let T; represent the reconstructed table based on the
encoded representation Ey(7;). The corresponding loss function for Equation (7) can be rewritten as:

Liee = Zie[l] ()\num Zﬁef;‘“m Hf} - UH% + Aais GeTe /H('E, U)) )



where v € Ti”“m orv e Tfls denotes the values of numerical or categorical types, respectively. The
term H represents the cross-entropy loss, and v € T is the ground truth of .

In the pretraining task of cross-table correlation prediction, we randomly sample pairs of tables T’
and T'' from the dataset D during each iteration i € [I]. These tables are then vertically partitioned
into sub-tables P and PT[37]. Let 7 and 7' represent rows from P and P, respectively. The goal
of the cross-table correlation prediction task is to predict the correlation between rows in P and PT.
The corresponding loss function for Equation (8] can be rewritten as:

1
— E E 7 7Y o
Lcor = ‘I‘ ieln] FEP@,FTEPJ H (1/)(7"77“ )7?/1) ;

where (7, 71) denotes the cosine similarity between the [CLS] embeddings of rows 7 and 7, and
y; = 1 if they correspond to the same entity (otherwise y; = 0). Let A, and Aq,r denote the
combination weights. The total pretraining loss is

‘Cpre = )\rec »Crec + )\COI‘ ﬁCOI" (9)

5.2 Complementary Information Integration

Let D = {T¢, 70, 742 T denote a collection of tables, where T is the target table

and 7% ... T*5) are auxiliary tables. The adaptive encoder &y is first pretrained across all tables
in D through the objective defined in Equation (9). We subsequently introduce the multi-table fusion
module F¢ to integrate complementary information across tables.

During the training of F¢, each iteration involves sampling a row from the target table 7 as the
query instance, while constructing contextual sub-tables {7%(*)} ke([k) by randomly selecting M,

rows from each auxiliary table 7¢(%) to ensure computational tractability. The fusion process can be
represented as

7 (T {fg(k)}ke[KLseMa) =4 (ff’A“ (T {fg(k)}ke[K],seM)) (10

where 7{ € RWVet1)xd denotes the encoded embedding of the i-th entity in target table , f‘;(k) €

RVe+1)xd represents the s-th entity embedding of k-th auxiliary sub-table,while A, and Uy denoting
the cross-table attention module and the fusion module.

A, leverages cross-table attention to extract and integrate complementary information. To enable
effective interaction, adaptive pooling is first employed to project the row-level representations
from different tables into a unified feature space. Let 7} = {0}, 0%,..., 0 } represent the

encoded embedding of the i-th entity in table T*, where NN}, is the number of columns in table
T*. Through adaptive pooling, the entity ¥ € R™x*4 is transformed into a vector zF € R% by :

2k = Zje[Nk] ﬁfj/(l + e_<W”7§3'>), where W € R is the learnable weights.

Through aligning the row-level information from different tables into the d-dimensional space, we are
able to further extract the complementary information between the 7¢ and auxiliary tables. Denote c¥

as the complementary information from table 7¢(%) to 7¢. It can be fomulated as follows:

k
e('Zf’ZJ‘ )

]_<: = AIS“ PR NkXd
C; E 1 TJ M, (z:,z’;) €R :

Zg:al €

The complementary information from all auxiliary tables is concatenated and fed into the fusioner
Uy to produce the final prediction: 3 = Uy (7 || ¢} || ¢ || -+ || ¢&) . Here, the fusioner U, is
implemented as a stack of standard Transformer layers. The learnable parameters £ of F¢ comprise
the parameters w of A,, and the parameters ¢ of U,; all parameters are optimized according to the
objective in Equation (6).

6 Experiment

In this section, we demonstrate ATCA-Net’s ability to integrate complementary information across
multiple tables and show that the CS metric effectively measures inter-table complementarity. We



Table 2: Statistics of real-world datasets, organized into three groups for multiple tables setting.

Group Name Datapoints Categorical Numerical Positive Ratio
credit-g (CG) 1,000 13 7 0.70
Group 1 adult (AD) 48,842 12 2 0.24
P blastchar (BL) 7,043 16 3 0.27
1995-income (IC) 32,561 8 6 0.24
employee churn(EC) 1543 6 3 0.57
Group 2 banking churn(BC) 28382 4 15 0.18
p churn modeling(CM) 10000 5 8 0.20
customer churn(CC) 64374 3 4 0.47
support (SP) 9106 14 29 0.68
Group3  diabetes (DI) 10000 19 3 0.13

evaluate performance on classification tasks and report the mean over five runs. Specifically, we
construct three groups of real-world multi-table datasets (as shown in Table 2)) and four groups of
synthesized datasets; detailed settings for the datasets are provided in Appendix A.1.

To compute the complementarity coefficient across multiple tables, we set the hyper parameters
a = 1 and v = 1 in Equation @ We set the Ly combination weights Aec = 1, and A¢or = 1
in Equation (9). During training stage, we randomly sample sub-tables from the original tables by
selecting rows and columns, with the number of rows fixed at 64 and the number of columns varying
between 2 and the maximum number of columns. The sub-tables is firstly embedded by BERT, where
each cell is represented as a 768-dimensional vector, which is then reduced to 192 dimensions via a
fully connected layer to support larger table inputs. These embeddings are subsequently processed
by a shared-weight adaptive encoder. Additional experimental details and supplementary results are
provided in Appendix B.

6.1 Baselines

We include the following baselines for comparison: the methods learning from single table, in-
cluding Logistic Regression (LR), XGBoost [7], Multilayer Perceptron (MLP), Saint [34], and
FT-Transformer (FT-Trans) [21]]; and the method learning from multiple tables TransTab [37]. To
further validate the effectiveness of our approach, we extend FT-Transformer and Saint to multiple
tables learning settings, through single-table encoder pretraining and multiple tables fusion to further
validate the effectiveness of our approach.

6.2 Results

Performance on real-world datasets We evaluate ATCA-Net’s performance on classification tasks
across three groups of tables, with AUC scores reported in Table [3] Most baseline methods [22}
211134, [7] are trained and tested on single tables. ATCA-Net and TransTab [37]] employ cross-table
collaborative training across grouped tables, The results demonstrate that ATCA-Net achieves state-
of-the-art performance, outperforming all comparative methods. ATCA-Net (S) denotes the model
variant trained and tested solely on single-table representations without any fusion or pretraining
processes. ATCA-Net (M) represents the complete multi-table training pipeline with all fusion
mechanisms. This set of comparisons also demonstrates the effectiveness of multi-table alignment
pretraining and the integration mechanism of complementary information.

Performance on synthetic datasets To further demonstrate the effectiveness of our approach in
multiple tables learning tasks, we design the variants learned on multiple tables based on SAINT [34]
and FT-Transformer [21]]. Specifically, we train independent encoders on each table using SAINT
and FT-Transformer, followed by a fusion network incorporating the cross-table attention mechanism
described in Section Furthermore, we evaluated TransTab [37/]], which employs a collaborative
training mechanism in related tables to facilitate transfer learning. Furthermore, we implement an
AdaBoost ensemble, where base decision tree learners are trained separately on individual tables.



Table 3: AUC performance on the real-world datsets. Except for ATCA-Net and Trans-tab trained on
multiple tables, all methods are trained and tested on single table.

Group 1 Group 2 Group 3
Model AD BL IC CG EC BC CM CC SP DI
LR 0.851 0.801 0.869 0.720 | 0.805 0.768 0.734 0.736 | 0.830 0.827
XGBoost [7] 0912 0.821 0925 0.726 | 0.786 0.817 0.837 0.792 | 0.851 0.832
MLP 0.904 0.832 0.892 0.643 | 0.769 0.776 0.692 0.782 | 0.773 0.754

TabPFN v2 [22] | 0.878 0.837 0.888 0.718 | 0.753 0.809 0.817 0.756 | 0.820 0.828
FT-Trans[21] 0.827 0.756 0.832 0.674 | 0.714 0.758 0.713 0.738 | 0.769 0.678
Saint[34] 0.859 0.792 0.855 0.701 | 0.816 0.671 0.826 0.795 | 0.763 0.862
Trans-tab[37] 0.881 0.825 0.893 0.707 | 0.798 0.751 0.814 0.764 | 0.841 0.822
ATCA-Net (S) 0911 0.825 0911 0.617 | 0.812 0.724 0.836 0.757 | 0.801 0.805
ATCA-Net M) | 0913 0.846 0918 0.796 | 0.862 0.758 0.879 0.803 | 0.828 0.918

Table 4: AUC performance for the same target table on the blastchar synthetic dataset, trained
with five different table groups. CS denotes the complementarity strength, indicating the degree of
complementarity offered by each group.

Methods GP1 GP2 GP3 GP4 GPS
CS 0.73  0.83 1.03 087 035
Saint(S) 0.653 0.653 0.653 0.653 0.653

FT-Trans(S) 0.557 0.557 0.557 0.557 0.557
TransTab(S) 0.599 0.599 0.599 0.599 0.599
ATCA-Net(S) 0.625 0.625 0.625 0.625 0.625

Adaboost(M)  0.613 0.601 0.617 0.609 0.620
Saint(M) 0.620 0.608 0.607 0.606 0.617
FT-Trans(M) 0.557 0.501 0.550 0.523 0.633
TransTab(M) 0.603 0.599 0.606 0.606 0.595
ATCA-Net(M) 0.657 0.654 0.661 0.663 0.625

The results across five multiple tables groups are present in Table[] Our method consistently achieves
the best performance. It is worth noting that, since the evaluation is conducted on the target table, the
methods with single-table setting produce the same experimental results across all groups. Notably,
apart from ATCA-Net, other multiple tables methods exhibited varying degrees of performance
degradation compared to their single-table counterparts. This suggests that the introduction of noise
makes it difficult to extract complementary information, likely due to the absence of a cross-table
representation alignment mechanism. Our method, leveraging a two-stage framework for multiple
tables representation learning and fusion, achieved the best results, with performance improving as
the complementarity strength increases. We present additional experimental results on other synthetic
datasets in the Appendix B.

6.3 Analysis of Complementarity Strength

In Section (3.2)), we provided an initial discussion on the performance of complementary strength.
Here, we further analyze it in detail. Using the same setup as Section (3.2)), we constructed 4 synthetic
table datasets. The details of the synthetic dataset and the complementary strength analysis are
reported in Appendix B. Figure [2] presents the performance of the proposed multi-table learning
method, ATCA-Net, along with the correlation analysis of complementary strength, showing the
results across four datasets. The x-axis represents the complementarity strength, and the y-axis repre-
sents the AUC or ACC performance. A consistent trend is observed across all four datasets, where
the performance of ATCA-Net gradually improves as the complementary strength increases. This
demonstrates that the CS metric accurately measures the degree of complementarity between tables,
while also validating the ability of ATCA-Net to extract and integrate complementary information
from multiple tables.
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Figure 2: Experimental results on the four synthetic datasets demonstrate that multi-table approaches
consistently outperform single-table methods across all datasets. Notably, ATCA-Net exhibits
progressively enhanced performance with increasing complementary strength between tables. The
corresponding table coverage metrics are annotated adjacent to each point.

7 Conclusion

In summary, to address the limitation of existing table learning methods in capturing and utilizing the
interrelationship among multiple tables, we systematically propose a novel paradigm for learning
from multiple tables, which quantifies and integrates complementary information between tables.
We introduce the metric complementarity strength to measure how a set of tables can contribute to a
target table. Furthermore, we provide a formal definition for multiple table learning tasks, along with
corresponding loss functions. We then present ATCA-Net, which incorporates a unified representation
learning stage for multiple tables and a complementary integration stage, facilitating the integration
of complementarity from multiple tables. Experiments on multiple tables entity prediction tasks
demonstrate the effectiveness of our approach for learning multiple tables. This work explores the
learning of multiple tables from both theoretical and practical perspectives, providing a significant
foundation for the advancement of the field.
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A Datasets and Implement Details

Real-World Datasets In our experiments, we examine three distinct groups of datasets. As shown
in Table |2} the first group includes four credit-related tables, encompassing data for tasks such as
credit card risk prediction and adult income estimation. The second group consists of four tables
focused on predicting both bank customer churn and employee attrition. The third group contains
two tables centered on disease prediction, based on health indicators and lifestyle habits. In the same
group of tables, there are no explicit entity links, but potential associations exist due to the shared
similar attributes and entities.

Synthetic Datasets The synthetic datasets were derived from the OpenML repository, including
blastchar, airline, diabetes, and covertype, with details provided in Table@ Each synthetic dataset was
randomly partitioned by columns into multiple groups of tables; each group contains a shared target
table and several auxiliary tables. Across groups, both the overlap ratio and the complementarity
strength vary. The synthesis procedure is described in Appendix B.

Table 5: Statistics of synthetic datasets

Name Datapoints Categorical Numerical Positive Ratio
blastchar (BL) 7,043 16 3 0.27
diabetes (DI) 10,000 19 3 0.13
airline (AIR) 129,880 17 4 0.55
covertype (COV) 81,013 44 10 -

B Additional Results

Synthetic dataset on airline Airline dataset has been used to construct five groups of tables by
randomly sampling its columns. Each group contains 4 tables, and each table contains N = 5

columns. The i-th group is denoted as GP; = {7, Tia(j )} je[3]> including the target table T and

three auxiliary tables Tia(j ). Each group features a different column overlap ratio between 7 and its
auxiliary tables, ranging from 0 to 1 across groups GP; to GPs.

Table [6] reports the correlation between CS and the column-overlap ratio on the airline synthetic
dataset, exhibiting the same trend as in Section[3.2] Using the synthetic dataset on airline, we further
report the performance of the same target table 7 across different groups, as shown in Table
As CS increases, the proposed ATCA-Net consistently achieves better performance, a trend also
illustrated in Figure 2(b).

Table 6: The correlation between CS and the overlap rate of the synthetic dataset on airline. Values
are reported as mean + standard deviation across the three auxiliary tables for each group.

Metric 0.0(GP)) 02(GP,) 05(GPs) 08(GPy)  1.0(GPs)

Se(T20)T7) 1.704+0.10 2.034+0.19 2.48+0.07 3.48+0.24 3.82+0.07
R (T0)T%) 0.37+£0.02 0.48+0.04 0.65+0.04 0.8340.07 0.8840.01
Info(T"Y)) 1414028 1.97+0.13 2544027 3.08+0.13 2.31+0.03
CS(T™ 0.26£0.05 0.4040.03 0.56+0.06 0.45=+0.05 0.19+0.02
CS(GP,\ T, T°) 0.78 1.19 1.67 1.35 0.56

Synthetic dataset on covertype All tables are randomly sampled by columns from the covertype
dataset from the OpenML Repository, with each table containing 10 columns. The i-th group is
denoted as GP; = {T°, Tf(j )} je[3]> including the target table 7' and three auxiliary tables Tia(] ),
Each group features a different column overlap ratio between 7 and its auxiliary tables, ranging
from O to 1 across groups GP; to GP5. An analysis of the correlation between overlap rate and CS
metrics presented in Table 8] The corresponding performance metrics are provided in Table [9]
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Table 7: AUC performance of synthetic dataset on airline

Methods 0.0(GP) 02(GP) 04(GP;) 08(GPy) 1.0(GPs)
CS 0.78 1.19 1.67 1.35 0.56
Tabptn (S) 0.753 0.753 0.753 0.753 0.753
FT-Trans (S) 0.691 0.691 0.691 0.691 0.691
Saint (S) 0.753 0.753 0.753 0.753 0.753
TransTab (S) 0.760 0.760 0.760 0.760 0.760
ATCA-Net (S) 0.742 0.742 0.742 0.742 0.742
Adaboost (M) 0.713 0.714 0.710 0.711 0.711
TransTab (M) 0.760 0.760 0.759 0.760 0.762
ATCA-Net (M) 0.767 0.772 0.787 0.765 0.745

Table 8: The correlation between CS and the overlap rate of the synthetic dataset on covertype. Values
are reported as mean + standard deviation across the three auxiliary tables for each group.

Metric 0.0(GP) 02(GP) 05(GP;) 08(GP) 1.0 (GPs)
SN ) 2004009 3754015 6.02+0.12 7.87+0.05 9.53+0.11
Re(T*9, T°) 0.27+0.02 0.66+0.02 0.86+0.04 0.92+0.02 0.98+0.00
Info(T"9)) 3894045 5.044+0.09 560+£015 5.06=+024 3.47+0.03
CSy (1Y), 1°) 0.704+0.11 1.5240.07 1.214+0.08 0.554+0.02 0.08+0.03
CS,(GP,\T¢,T°) 211 157 361 1.67 0.25

Table 9: ACC performance of covertype dataset

Methods 0.0(GP) 02(GP,) 05(GP;) 08GPy) 1.0(GPs)
CS 211 4.57 3.61 1.67 0.25
TabPFN V2 (S) 72.65 72.65 72.65 72.65 72.65
FT-Trans (S) 78.39 78.39 78.39 78.39 78.39
Saint (S) 77.85 77.85 77.85 77.85 77.85
ATCA-Net(S) 78.73 78.73 78.73 78.73 78.73
Adaboost (M) 72.46 72.94 72.20 73.03 72.86
ATCA-Net M)  80.73 82.39 83.40 79.67 78.75

C Limitations

To our knowledge, we are the first to quantify complementarity across multiple tables and to introduce
an architecture that extracts and integrates it. Several limitations remain: (i) CS depends on column
representations from large-scale pretraining, making its accuracy sensitive to representation quality;
(ii) CS is defined via column-level similarity and may not align with task-specific gains, motivating
task-oriented measures of complementarity; and (iii) although CS correlates positively with predictive
performance on real and synthetic data, the gains are modest, underscoring the need for architectures
that more effectively exploit complementarity.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We conduct a detailed analysis of the limitations of the framework in appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides comprehensive information necessary to reproduce the
main experimental results, ensuring transparency and replicability of the findings.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:
Justification: We will release the code following publication.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We specify all the training and test details in Section[6]and appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars suitably and correctly defined or other appropriate infor-
mation about the statistical significance of the experiments in this paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the information on the computer resources in appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper strictly adheres to the NeurIPS Code of
Ethics. We ensured that all data used in our study was obtained with proper consent, and we
adhered to principles of fairness, transparency, and accountability. The research does not
involve any form of discrimination or harm to individuals or groups, and we made sure to
conduct the study with full respect for privacy and confidentiality.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses the potential positive societal impacts of the work per-
formed, highlighting the benefits and advancements it can bring to the field and society at
large.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper presents no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have appropriately credited and cited the creators or original owners of all

assets, including code, data, and papers, used in our work. Additionally, the licenses and
terms of use for these assets have been explicitly stated and fully respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not introduce any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research involving human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related work
	Complementarity Strength
	Definition of Complementarity Strength
	Discussion of Complementarity Strength

	Formulations of Multi-Table Learning
	Architecture for Multi-table Learning
	Cross-table Alignment
	Complementary Information Integration

	Experiment
	Baselines
	Results
	Analysis of Complementarity Strength

	Conclusion
	Datasets and Implement Details
	Additional Results
	Limitations

