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Abstract

Fine-tuning has been demonstrated to be an001
effective method to improve the domain perfor-002
mance of large language models (LLMs). How-003
ever, LLMs might fit the dataset bias and short-004
cuts for prediction, leading to poor generation005
performance. Previous works have proven that006
LLMs are prone to exhibit position bias, i.e.,007
leveraging information positioned at the begin-008
ning or end, or specific positional cues within009
the input. Existing debiasing methods for010
LLMs require external bias knowledge or anno-011
tated non-biased samples, which is lacking for012
position debiasing and impractical in reality. In013
this work, we propose a zero-shot position de-014
biasing (ZOE) framework to mitigate position015
bias for LLMs. ZOE leverages unsupervised016
responses from pre-trained LLMs for debiasing017
without relying on any external knowledge. To018
improve the quality of unsupervised responses,019
we propose a MSA module to prune these re-020
sponses. Experiments on eight datasets and five021
tasks show that ZOE consistently outperforms022
existing methods in mitigating three types of023
position biases. Besides, ZOE achieves this024
by sacrificing only a small performance on bi-025
ased samples, which is general and effective.026
To facilitate the reproducibility of the results,027
we share the code of all methods and datasets028
on https://anonymous.4open.science/029
r/ZOE-F06B.030

1 Introduction031

Although large language models (LLMs) have032

demonstrated remarkable unsupervised ability in033

various tasks (Kojima et al., 2022), fine-tuning still034

overtakes it under the task-specific setting (Ding035

et al., 2023). However, fine-tuned LLMs might036

rely on the dataset biases and artifacts as shortcuts037

for prediction, as the fine-tuning datasets are some-038

times skewed due to budget constraints (Du et al.,039

2022). This results in poor generalization perfor-040

mance when applying fine-tuned LLMs to unseen041
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Figure 1: Question answering performance of FlanT5-
large (T5) and fine-tuned FlanT5-large (FT) over dif-
ferent relative positions in CANARD. Relative position
means the distance of grounded utterances between the
last turn answer and the current turn answer.

test data and these models are vulnerable to various 042

types of adversarial attacks (Meade et al., 2022). 043

Position bias has been demonstrated to exist 044

across various fine-tuned LLMs (Liu et al., 2023). 045

Specially, the well-known LLMs, e.g., GPT-3.51, 046

longchat-13B2, are skilled when the relevant in- 047

formation occurs at the beginning or end of the 048

input context, while the performance significantly 049

degrades when LLMs need to find relevant infor- 050

mation in the middle of the context. Analysis of 051

conversational question answering (CQA) on CA- 052

NARD (Elgohary et al., 2019) dataset further con- 053

firms the existence of position bias. As shown in 054

Fig. 1, 80% of the performance improvement after 055

fine-tuning is attributed to fitting bias on relative po- 056

sitions 0-2. This encourages researchers to engage 057

in position debiasing (Meade et al., 2022). 058

Early works mainly focus on mitigating position 059

bias on extractive tasks before the emergence of 060

LLMs (Ko et al., 2020; Karimi Mahabadi et al., 061

1https://openai.com/blog/
gpt-3-5-turbo-fine-tuning-and-api-updates

2https://lmsys.org/blog/
2023-06-29-longchat
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2020). A prominent debiasing method is Product-062

of-Expert (PoE), which discourages the extractive063

model from learning position bias picked up by the064

fixed biased model (Du et al., 2021; Shinoda et al.,065

2022). Recently, more and more works focus on066

debiasing for generative models, e.g., LLMs (Guo067

et al., 2022; Li et al., 2023). They adopt either in-068

context learning (ICL) to guide the generation of069

LLM (Meade et al., 2023) or prompt tuning (PT)070

to fine-tune prompts for LLMs (Li et al., 2023).071

However, these works mostly focus on mitigating072

social bias (Kasneci et al., 2023), e.g., gender bias073

and racial bias, leaving position debiasing unex-074

plored. Besides, these works cannot be transferred075

to mitigate position bias, as they require manually076

annotated non-biased samples for ICL or external077

bias knowledge for PT, which are lacking for posi-078

tion debiasing.079

To deal with this challenge, we propose to080

leverage the low position bias characteristics of081

pre-trained LLMs. Previous studies have shown082

that pre-trained LLMs are more robust to position083

bias (Utama et al., 2021). This is due to the random-084

ness of knowledge utilization in generation during085

pre-training. As shown in Fig. 1, the ROUGE-L086

score of pre-trained T5 fluctuates within the range087

of 0.2 to 0.4 across almost all relative positions,088

demonstrating its robustness against position bias.089

In this paper, we propose a zero-shot position de-090

biasing (ZOE) framework to mitigate position bias091

for LLMs. First, we use a low-bias inference mod-092

ule to collect unsupervised responses with low posi-093

tion bias by applying various prompting strategies.094

Then, we propose a master-slave alignment (MSA)095

module to prune the unsupervised responses, as096

low-quality responses will undermine model per-097

formance on non-biased samples. Finally, we use098

a multi-objective optimization module to leverage099

these unsupervised responses for fine-tuning. The100

whole process does not require any external bias101

knowledge or non-biased samples, which is zero-102

shot and general.103

To verify the effectiveness of ZOE, we conduct104

experiments on eight datasets covering five tasks.105

Experimental results show that the ZOE achieves106

superior performance in mitigating three types of107

position bias significantly, including lead bias, rel-108

ative position bias, and lexical bias. The main109

contributions of this work are as follows.110

• We propose to mitigate position bias for LLMs111

in a zero-shot setting, i.e., without any external112

knowledge or annotated samples. 113

• We propose a ZOE framework for position debi- 114

asing with a MSA module to prune low-quality 115

unsupervised responses for fine-tuning. 116

• Experiments show that ZOE can mitigate various 117

types of position biases by sacrificing only small 118

performance on biased samples, demonstrating 119

its effectiveness and generality. 120

2 Preliminary 121

2.1 Task Definition 122

Given a biased dataset D for the target task, our 123

position debiasing task aims to improve the model 124

robustness against position bias when fine-tuning 125

on target tasks, i.e., to achieve superior perfor- 126

mance on non-biased samples by retaining the per- 127

formance on biased samples. Here, the biased sam- 128

ples exhibit similar position bias as training sam- 129

ples, and the non-biased samples do not contain 130

these position clues. The target task for fine-tuning 131

can be any natural language processing (NLP) tasks 132

exhibiting position bias. In this paper, we focus on 133

five target tasks: conversational question answering 134

(CQA), conversational question generation (CQG), 135

knowledge-based conversation (KGC), summariza- 136

tion and natural language inference (NLI). 137

2.2 Large Language Model 138

LLMs have attracted much attention and become 139

state-of-the-art due to their remarkable ability of 140

language generation. They formulate all NLP tasks 141

as language generation tasks with different task 142

prompts: 143

p(y) = p(y|prompt, x)

=
∏
t

p(yt+1|prompt, x, y1, y2, ..., yt),
(1) 144

where x, y and prompt are task input, output, and 145

task prompt, respectively. yi denotes the i-th token 146

in y. Task prompt prompt consists of the task 147

instruction and demonstrations to tell the LLMs 148

the definition of the task and how it works. The 149

introduction of task prompt enables LLMs to utilize 150

all available data for training and improve their 151

generalization ability on unseen tasks. 152

3 Method 153

We propose a zero-shot position debiasing (ZOE) 154

framework to mitigate position bias for genera- 155

tive LLMs. As shown in Fig. 2, ZOE consists of 156
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LLM 
(Pre-trained)  

 - On October 1, 1938, Skelton replaced Red Foley as
the host of Avalon Time on NBC. 
 - The Skeltons worked on Avalon Time until late 1939. 
 - Skelton's work in films led to a new regular radio
show offer. 
 - A radio advertising agent ... and recommended
Skelton to one of his clients.

 
 - User: Was Red Skelton on the radio? 
 - Answer: Yes.

Inference output 1:  
Where did Red Skelton perform?

Unsupervised response 2 
Red Skelton worked on the radio.

Target response  
Did Red Skelton do ads on radio or shows?

Dialogue context

Passage

 
Generate a question based on the dialogue context and
passage 

Instruction

LLM 
(Fine-tuned)

Unsupervised response 3 
What is the title of the passage?

Unsupervised response 4 
When was Red Skelton advertising? Incoherent

Dull

Noncompliant

Good

1 Low-bias inference 2 Master-slave alignment 3 Multi-objective optimization

Unsupervised response 1 
Where did Red Skelton perform?

Figure 2: Overview of our proposed zero-shot position debiasing (ZOE) framework (taking CQG as the example).
First, the low-bias inference module collects multiple unsupervised questions from LLMs. Then, the master-slave
alignment module aligns these questions with the target question. Finally, these aligned questions are utilized for
fine-tuning within the multi-objective optimization module.

three modules: low-bias inference, master-slave157

alignment (MSA), and multi-objective optimiza-158

tion, where all modules do not require external bias159

knowledge or non-biased dataset. The Low-bias in-160

ference module generates unsupervised responses161

with lower position bias by utilizing pre-trained162

LLMs (in §3.1). Subsequently, the master-slave163

alignment (MSA) module is employed to prune164

these low-quality unsupervised responses based on165

the target responses (in §3.2). Finally, the multi-166

objective optimization module fine-tunes the LLMs167

by optimizing a master objective and a slave objec-168

tive (in §3.3). The master objective utilizes target169

responses to enhance task-specific performance,170

and the slave objective leverages unsupervised re-171

sponses for position debiasing.172

3.1 Low-bias Inference173

Given a biased training dataset D = {(xi, yi)}Ni=1174

for the target task, the low-bias inference module175

generates unsupervised responses with low posi-176

tion bias based on pre-trained LLMs (Utama et al.,177

2021).178

We employ three prompting strategies for gener-179

ation and adapt them for different target tasks.180

• Instruction-only prompting generates respon-181

ses of target task by feeding the task input and182

task instruction to the pre-trained LLMs. Con-183

cretely, we assign the prompt by task instruction184

in Eq. 1 for the generation.185

• Diverse prompting generates responses with186

diverse aspects by feeding various prompts to187

LLMs.188

• In-context learning (ICL) also feeds multiple189

input-output examples to LLMs for generation,190

in addition to the task instruction and input. It en-191

hances the model comprehension of target tasks 192

but requires a longer input length. 193

We adopt ICL only for NLI, due to the limit of the 194

model input length. We employ diverse prompting 195

for CQG, which is intrinsically creative and diverse. 196

And instruction-only prompting is implemented for 197

CQA, KGC, and summarization. 198

3.2 Master-slave Alignment 199

Unlike the annotated high-quality target responses 200

for the master objective, the unsupervised re- 201

sponses for the slave objective are of lower qual- 202

ity and noisy, because they are generated by pre- 203

trained models without specific fine-tuning on the 204

target task. To improve the quality of these unsuper- 205

vised responses and reduce their interference with 206

the master objective, we propose a master-slave 207

alignment (MSA) module to prune the unsuper- 208

vised responses y′i to better align with the target 209

response yi. 210

We propose various alignment strategies for dif- 211

ferent tasks based on their intrinsic characteristics. 212

Alignment for tasks excluding NLI. We first 213

identify low-quality unsupervised responses and 214

then drop them, as the generated responses are 215

flexible for modification and modification may in- 216

troduce new errors. We apply and combine four 217

strategies to identify them. 218

• Non-compliant identification identifies unsu- 219

pervised responses deviating from the task in- 220

struction by keyword matching. For example, it 221

identifies non-‘what’ questions when ‘what’ is 222

specified in the instruction. 223

• Dull identification identifies dull responses by 224

keyword matching, e.g., “What is the title of the 225

passage?”. 226
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• Incoherent identification identifies incoherent227

responses if the perplexity of any token in the228

response falls below a pre-defined threshold.229

• Unreliable identification identifies unreliable230

responses if the overlap score between unsuper-231

vised and target responses is less than a pre-232

defined threshold. The intuition is that the fact in233

the response may be wrong if its semantics devi-234

ate significantly from the fact in the reference.235

For CQA, summarization, and KGC tasks, we236

align unreliable responses since the facts in an-237

swers, summaries, and knowledge-enriched re-238

sponses are always unique in their semantics. For239

CQG task, we align non-compliant, dull, or inco-240

herent responses, considering that the appropriate241

questions are diverse in semantics.242

Alignment for NLI. As the generated responses243

for NLI are deterministic, i.e., entailment, neutral,244

and contradiction, we can directly estimate the245

probability distribution over all classes by prompt-246

ing and then align it. The estimated probability247

distributions are low-quality sometimes when the248

target class dominates, which is redundant for opti-249

mizing the master objective and strengthens posi-250

tion bias. Therefore, we align the estimated proba-251

bility distribution by masking the target class:252

y′i = si ·maski, (2)253

where maski is a vector to mask the target class:254

maski,j =

{
0, if classj = yi

1, otherwise.
(3)255

Here, classj is the tokens for j-th class and yi is256

the tokens for the target class. si is the probabilities257

distribution over all classes in NLI inference:258

si = [si,1, si,2, ..., si,|class|]

si,j =
p(classj |xi)∑|class|

j p(classj |xi)
,

(4)259

where p(classj |xi) is the generation probabilities260

of j-th class tokens, which is calculated by Eq. 1.261

3.3 Multi-Objective Optimization262

Given the target response yi, aligned unsupervised263

response y′i, and input xi, our multi-objective opti-264

mization module fine-tunes the model to generate265

task-specific but low-bias responses. It fine-tunes266

the model by optimizing two objectives: target267

responses as master objective to improve the per- 268

formance on the target task and unsupervised re- 269

sponses as slave objective to mitigate position bias: 270

L =(1− α) · Ltarget(xi, yi)+

α · Lalign(xi, y
′
i),

(5) 271

where α is a hyper-parameter for tradeoff and 272

Ltarget(xi, yi) is a negative log-likelihood (NLL) 273

loss to maximize the generation probability of tar- 274

get response: 275

Ltarget(xi, yi) = −
|yi|∑
j=1

log p(yi,j |xi, yi,<j). (6) 276

Lalign(xi, y
′
i) is a task-specific objective to miti- 277

gate position bias. 278

For tasks excluding NLI, such as CQA and 279

CQG, summarization and KGC, we use NLL loss 280

to maximize the probability of generating y′i: 281

Lalign(xi, y
′
i) = −

|y′i|∑
j=1

log p(y′i,j |xi, y′i,<j). (7) 282

For NLI, we maximize the generation probabil- 283

ity of the most likely class tokens after alignment: 284

Lalign(xi, y
′
i) = −si,ind(i) log p(classind(i)|xi),

(8) 285

where ind(i) is the index of the class, classind(i) 286

is the class tokens, and si,ind(i) is the generation 287

probability of the class tokens in Eq. 4: 288

ind(i) = argmax y′i. (9) 289

y′i is the masked probability distribution for all 290

classes in Eq. 2. 291

4 Experiments 292

We evaluate ZOE on three categories of NLP tasks 293

based on changes in conveyed information from 294

input to output: language understanding tasks, lan- 295

guage compression tasks and language creation 296

tasks (Deng et al., 2021). Language understanding 297

tasks (e.g., NLI, CQA) aim to comprehend and in- 298

terpret natural language input given a conversation 299

or document context. For a compression task (e.g., 300

summarization), the goal is to concisely describe 301

the most important information in the input (e.g., 302

a document). A creation task (e.g., CQG, KGC) 303

generates output that adds new information on top 304

of input (e.g., dialogue history). 305
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4.1 Datasets306

We conduct experiments on eight widely used307

benchmark datasets: CANARD (Elgohary308

et al., 2019), CoQAR (Brabant et al., 2022),309

CNN/DM (Nallapati et al., 2016), News-310

room (Grusky et al., 2018), Doc2dial (Feng et al.,311

2020), Mutual (Cui et al., 2020), SNLI (Bowman312

et al., 2015) and QNLI (Wang et al., 2018), cover-313

ing five NLP tasks: CQA, CQG, summarization,314

KGC and NLI. Following previous works (Ko315

et al., 2020; Shinoda et al., 2022), we split the test316

dataset into biased dataset and non-biased dataset317

for simulation depending on the bias type in each318

dataset. The details of datasets and dataset splitting319

are provided in §A.1 and §A.2.320

4.2 Evaluation Metrics321

Following previous works (Chen et al., 2019; Nal-322

lapati et al., 2016; Tuan et al., 2020; Meng et al.,323

2020), we adopt ROUGE-L (Lin, 2004) as evalu-324

ation metrics for CQA, CQG, summarization and325

KGC tasks, in which ROUGE-L has been shown326

to correlate well with human evaluation (Liu and327

Liu, 2008). We use macro-accuracy for the classifi-328

cation task, NLI. We use nlg-eval package3 for the329

implementation of evaluation metrics.330

4.3 Baseline Methods331

• BASE is the pre-trained LLM with unsupervised332

instruction-following fine-tuning.333

• Random Position (RP) (Shinoda et al., 2022)334

randomly perturbs input positions to reduce the335

model’s dependence on token positions in predic-336

tion.337

• Fine-tune (FT) is the LLM fine-tuned on the338

dataset for the target task to improve the perfor-339

mance of the target task.340

• MarCQAp (Gekhman et al., 2023) is a novel341

prompt-based history modeling approach for342

CQA and CQG that highlights answers from343

previous conversation turns by inserting textual344

prompts in their respective positions.345

• Minimax (Korakakis and Vlachos, 2023) is an346

NLI model which leverages an auxiliary model347

to maximize the loss of the NLI model by up-348

weighting ‘hard’ samples, thus reducing its re-349

liance of shortcuts in ‘easy’ samples.350

• GenX (Varab and Xu, 2023) is a new summariza-351

tion paradigm that unifies extractive and abstrac-352

tive summarization with generative modeling.353

3https://github.com/Maluuba/nlg-eval

• SG-CQG (Do et al., 2023) is a state-of-the-art 354

CQG models with two stages: what-to-ask for ra- 355

tional span selection in the referential document 356

and how-to-ask for question generation. 357

• FocusL (Deng et al., 2023) is a debiasing method 358

built for KGC by adaptively re-weighting the loss 359

of each token, thus encouraging the model to pay 360

special attention to knowledge utilization. 361

4.4 Implementation Details 362

We use FlanT5-large (Chung et al., 2022) as the 363

base LLM for all models. The hidden size is 768. 364

We use the Adam optimizer with a default learn- 365

ing rate 1e−4 (Kingma and Ba, 2015) and set gra- 366

dient clipping with a default maximum gradient 367

norm of 1.04. We select the best model based on 368

the BLEU@2 or macro-accuracy score on the vali- 369

dation set. We use α=0.2 for CQA on CoQAR, 370

NLI and KGC tasks and α=0.1 for other tasks, 371

by default. We run all experiments with NVIDIA 372

RTX3090 24 GB GPU cards. 373

5 Results 374

The overall performances of all methods on lan- 375

guage understanding tasks, language creation tasks 376

and language compression tasks are listed in Ta- 377

ble 1-3. We have three main observations from the 378

results. 379

First, LLMs are susceptible to the bias in the 380

dataset after fine-tuning. As we can see in Ta- 381

ble 1, FT achieves 34.7% improvement on the bi- 382

ased dataset of CoQAR, but 8.6% improvement on 383

the non-biased dataset. This is because LLMs can 384

easily overfit the shortcut of the training dataset in 385

fine-tuning, just like existing neural networks (Ko 386

et al., 2020). 387

Second, ZOE can mitigate position bias signifi- 388

cantly on almost all datasets for three types of tasks. 389

As shown in Table 1-3, ZOE improves the perfor- 390

mance on the non-biased dataset by 1% to 2% on 391

almost all tasks, compared to FT and all baselines. 392

The reason is that ZOE can leverage unsupervised 393

responses with low position bias for optimization 394

in multi-objective optimization module. 395

Third, ZOE only sacrifices a small performance 396

on the biased dataset when mitigating position bias. 397

As shown in Table 3, RP achieves comparable 398

performance to ZOE on the non-biased dataset of 399

Newsroom. However, the ROUGE-L of RP drops 400

4https://huggingface.co/docs/
transformers/v4.33.0/en/main_classes/
trainer
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Table 1: Overall performance (%) on language understanding tasks. Boldface indicates the best results in terms of
the corresponding dataset.

Method
NLI (%) CQA (%)

SNLI QNLI CoQAR CANARD

Biased Non-Biased Biased Non-Biased Biased Non-Biased Biased Non-Biased

BASE 77.5 79.0 90.3 88.3 47.4 39.8 34.0 17.3
RP — — — — 61.5 51.6 60.4 20.4
MarCQAp — — — — 66.9 52.3 66.3 21.3
Minimax 91.6 87.0 90.9 89.7 — — — —
FT 92.0 88.0 94.3 89.8 64.6 51.9 67.5 20.8
ZOE 92.0 88.4 94.3 90.9 66.3 53.7 65.7 21.9

Table 2: Overall performance (%) on language creation tasks. Boldface indicates the best results in terms of the
corresponding dataset.

Method
CQG (%) KGC (%)

CoQAR CANARD Doc2dial Mutual

Biased Non-Biased Biased Non-Biased Biased Non-Biased Biased Non-Biased

BASE 16.0 17.0 17.9 17.1 23.9 13.7 25.4 21.3
RP 23.2 18.3 24.6 21.2 35.3 32.2 89.6 46.1
MarCQAp 19.7 17.9 26.0 21.8 — — — —
SG-CQG 14.9 15.5 19.7 17.8 — — — —
FocusL — — — — 39.8 35.9 83.0 51.7
FT 26.7 17.2 26.0 21.6 38.7 36.0 93.9 38.9
ZOE 26.7 18.8 25.9 22.4 40.6 38.3 94.0 53.0

Table 3: Overall performance (%) on language compres-
sion tasks. Boldface indicates the best results in terms
of the corresponding dataset.

Method
Summarization (%)

CNN/DM Newsroom

Biased Non-Biased Biased Non-Biased

BASE 22.3 11.6 35.1 20.0
RP 23.9 15.1 47.5 22.0
GenX 17.6 13.7 29.2 19.0
FT 26.9 16.8 51.1 19.8
ZOE 27.1 17.3 50.9 21.3

3.6% compared to FT on the biased dataset, while401

that of ZOE only drops 0.2%. This is because the402

perturbation in RP impairs the overall data quality403

for fine-tuning, while unsupervised responses in404

ZOE are aligned to improve the quality in §3.2.405

Note that some baselines achieve poor perfor-406

mance, sometimes lower than BASE. First, in Ta-407

ble 3, GenX performs worse even than BASE on408

the biased dataset of Newsroom. The reason is that409

the summarization datasets are abstractive and suit-410

able for generative models, e.g., T5, while GenX is411

an extractive baseline. Second, in Table 2, the per-412

formance of SG-CQG is worse than that of FT on413

the biased dataset of CoQAR. This is because SG- 414

CQG is a three-stage question generation model 415

focusing on improving question diversity. The se- 416

lected answer span for question generation is ran- 417

domly chosen from massive generated candidates. 418

6 Analysis 419

In this section, we analyze the effect of the quality 420

of unsupervised responses in §6.1 and objective 421

weighting in the multi-objective optimization mod- 422

ule in §6.2. The overall results of all tasks are 423

presented in §C. Besides, we also conduct a case 424

study in §B.1 and provide cases for all datasets in 425

§C.4. 426

6.1 Analysis of Unsupervised Responses 427

To analyze the effect of the unsupervised responses, 428

we conduct analyses with unsupervised responses 429

obtained from various sources with different qual- 430

ities in Table 4. ZOE w/o MSA, ZOE w/ T5-base 431

and ZOE w/ T5-xlarge denote ZOE using unsuper- 432

vised responses without alignment, responses from 433

FlanT5-base and FlanT5-xlarge, respectively. We 434

have two observations. 435

First, lower response quality leads to worse per- 436

formance. As we can see, ZOE outperforms ZOE 437
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Table 4: ZOE performance (%) of CQG task using vari-
ous unsupervised responses. ‘N-Biased’ denotes perfor-
mance on non-biased datasets. Boldface indicates the
best results in terms of the corresponding dataset.

Method
CoQAR CANARD

Biased N-Biased Biased N-Biased

ZOE 26.7 18.8 25.9 22.4
- w/o MSA 25.8 18.0 26.1 21.5
- w/ T5-base 26.3 18.3 26.1 22.0
- w/ T5-xlarge 26.6 17.9 25.7 22.0
FT 26.7 17.2 26.0 21.6

w/o MSA on non-biased datasets by leveraging438

MSA for enhancing the response quality. Poor-439

quality responses undermine the model comprehen-440

sion of the task, thus leading to worse performance.441

Second, using various sources of unsuper-442

vised responses may degrade model performance.443

ZOE w/ T5-base and ZOE w/ T5-xlarge perform444

worse than ZOE on CANARD. We infer that re-445

sponses from other LLMs use different knowl-446

edge/parameters for generation, which mismatch447

with that of T5. The difference amplifies the diver-448

gence between master objective and slave objective449

in §3.2. Even so, ZOE still outperforms FT.450

6.2 Analysis of Objective Weighting451

0.0 0.1 0.2 0.3 0.4 0.551

53

55
ZOE
FT

(a) CoQAR (CQA)

0.0 0.1 0.2 0.3 0.4 0.520

21

22

23
ZOE
FT

(b) CANARD (CQG)

0.0 0.1 0.2 0.3 0.4 0.536

41

46

51 ZOE
FT

(c) Mutual

0.0 0.1 0.2 0.3 0.4 0.589

90

91

92
ZOE
FT

(d) QNLI
Figure 3: Performance (%) of four tasks over each α.
The x-axis denotes the value of α and the y-axis denotes
the ROUGE-L score on non-biased datasets.

To analyze the effect of weighting on slave ob-452

jective, we present the performance of ZOE using453

different α in Fig. 3. We have two observations454

from the results.455

First, the performance of ZOE drops with the456

increase of the weight of unsupervised responses in457

multi-objective optimization. In CQA on CoQAR,458

the ROUGE-L score of ZOE drops from 53.6% to 459

52.7% when increasing α from 0.1 to 0.5. This 460

is because the model performance depends on not 461

only the degree of bias but also the data quality. 462

Increasing α will reduce the position bias of all 463

responses, yet it will hurt the quality concurrently. 464

Second, our proposed ZOE always outperforms 465

FT under various α. As shown in Fig. 3, ZOE 466

performances of CQA on CoQAR all exceed 52.5% 467

using various α, while FT only achieves 52.0%. 468

This demonstrates the effectiveness and robustness 469

of ZOE in mitigating position bias. 470

6.3 Analysis on Training Samples 471

(a) CoQAR (CQA) (b) CANARD (CQG)

50 100 200 300 5001,000
Train Num

30
36
42
48
54
60 FT

ZOE

(c) Mutual

50 100 200 300 5001,000
Train Num

85

88

91

94 FT
ZOE

(d) QNLI
Figure 4: Performance (%) of four tasks over different
numbers of training samples. The x-axis denotes the
number of training samples and the y-axis denotes the
ROUGE-L score on non-biased datasets.

We also analyze the effect of the number of train- 472

ing samples to verify the effectiveness of ZOE un- 473

der various low-resource settings. We plot the re- 474

sults in Fig. 4 and have two observations. 475

First, nearly all methods perform better when 476

increasing training samples. As we can see in 477

Fig. 4, the ROUGE-L score of FT increases from 478

19.7% to 22.5% on CANARD when the number 479

of training samples increases from 50 to 1,000. 480

Increasing training samples can improve the gen- 481

eralization ability of LLMs, thus leading to better 482

performance. 483

Second, our proposed ZOE outperforms FT un- 484

der various low-resource settings. As shown in 485

Fig. 4, the ROUGE-L scores of ZOE depicted by 486

the orange bars are consistently higher than those 487

of FT in blue. This is because there are always 488

around 40% aligned unsupervised responses for 489

fine-tuning when ranging the number of training 490

samples, which are enough for effective debiasing. 491
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7 Related Work492

7.1 Position Bias and Debiasing493

Position bias has been explored mainly in three ex-494

tractive tasks, i.e., NLI, summarization and CQA.495

In, NLI, Gururangan et al. (2018); Poliak et al.496

(2018) show that the class labels are highly corre-497

lated to certain words in the hypothesis. McCoy498

et al. (2019) report that models always rely on word499

overlap between hypothesis and premise for pre-500

diction. Karimi Mahabadi et al. (2020); Du et al.501

(2021) train a robust NLI model in an ensemble502

manner by PoE. They train a hypothesis model to503

learn the lexical bias, which guides the NLI model504

to focus on other patterns in the dataset that gener-505

alize better.506

Similar findings are reported in CQA tasks.507

Weissenborn et al. (2017); Sugawara et al. (2018)508

demonstrate that only using partial inputs is suffi-509

cient to correctly extract the answer span for the510

question in most cases. Ko et al. (2020) address511

that absolute position of answer spans can work as512

a spurious clue for prediction. Shinoda et al. (2022)513

report that relative position of answer spans is an-514

other clue for position bias. To mitigate position515

bias, Ko et al. (2020); Shinoda et al. (2022) build516

bias ensemble models by PoE similar to Karimi Ma-517

habadi et al. (2020). They design biased models518

with position-only features to guide CQA models519

to rely more on semantic features for answering.520

Kedzie et al. (2018); Grenander et al. (2019) find521

that 58% of selected summary utterances come di-522

rectly from the lead utterances, and models trained523

on these articles perform considerably worse when524

utterances in the article are randomly shuffled. To525

mitigate lead bias, a simple but effective method526

is to randomly shuffle the document for train-527

ing (Grenander et al., 2019). Then, Xing et al.528

(2021) uses adversarial training for debiasing. They529

design a position prediction module and optimize530

the reverse loss for position prediction, forcing the531

encoder to leverage non-position features.532

However, existing works on mitigating position533

bias always focus on extractive tasks. They can534

hardly be transferred to generative tasks as the la-535

bel space in generative tasks is too large for bias536

estimation or adversarial training. In this paper, we537

focus on position debiasing for generative LLMs.538

7.2 Debiasing for LLMs539

Works on debiasing for LLMs always focus on540

social bias, e.g., gender bias and racial bias, rather541

than position bias (Meade et al., 2022; Du et al., 542

2022). Existing works on mitigating social bias 543

for LLMs can be classified into three types: pre- 544

processing methods, in-processing methods and 545

post-processing methods. 546

In pre-processing, Zmigrod et al. (2019) adopt a 547

counterfactual data augmentation (CDA) algorithm 548

to mitigate social bias by swapping bias attribute 549

words (e.g., he/she) in training dataset. Choi et al. 550

(2022) modify CDA by masking the terms casual 551

to label to force the model to learn label-invariant 552

features. 553

In in-processing, Guo et al. (2022); Li et al. 554

(2023); Yang et al. (2023) propose a two-stage ad- 555

versarial method for debiasing. They first train a 556

continuous prompt to enlarge the bias of utterance 557

pairs and then force the LLMs to minimize the 558

difference of utterance pairs using the prompt. 559

In post-processing, Schick et al. (2021) propose 560

a decoding algorithm that reduces the probability of 561

a model producing biased text. They use a textual 562

description of the undesired behaviors for prompt- 563

ing. Meade et al. (2023) propose an ICL strat- 564

egy which leverages non-biased demonstrations to 565

guide the generation for safety. 566

However, existing methods for mitigating social 567

bias either require the external bias knowledge for 568

data augmentation and training adversarial prompts 569

or require a non-biased dataset for building demon- 570

strations, which are lacking for position debiasing 571

and unpractical in application. Differently, we pro- 572

pose a zero-shot framework for LLMs on mitigat- 573

ing position bias, without relying on any external 574

bias knowledge or non-biased samples, which is 575

general, simple but effective. 576

8 Conclusion 577

In this paper, we have proposed a zero-shot debias- 578

ing framework ZOE for LLMs. It adopts a multi- 579

objective optimization module to mitigate position 580

bias for LLMs, where unsupervised responses for 581

slave objective are of low position bias. These re- 582

sponses are pruned by a proposed MSA module 583

for aligning master and slave objectives. Exten- 584

sive experiments on five tasks and eight benchmark 585

datasets show that ZOE outperforms existing base- 586

lines on non-biased samples while retaining perfor- 587

mance or sacrificing little performance on biased 588

samples. It demonstrates that leveraging unsuper- 589

vised responses is a practicable solution to mitigate 590

position bias for generative LLMs. 591
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Limitations592

This work has the following limitations. First,593

ZOE needs a pre-trained LLM to generate unsu-594

pervised responses with low bias, where these re-595

sponses are still biased. Second, the final perfor-596

mance of ZOE depends on the quality of unsuper-597

vised responses, which are still noisy after being598

aligned by MSA. In future work, we plan to ad-599

dress these issues by investigating non-biased mod-600

els from other domains and model-based strategies601

to align unsupervised responses.602

Ethical Considerations603

We realize that there are risks in developing genera-604

tive LLMs, so it is necessary to pay attention to the605

ethical issues of LLMs. We use publicly available606

pre-trained LLMs, i.e., FlanT5-base, FlanT5-large,607

FlanT5-xlarge, and publicly available datasets in608

the academic community, i.e., CANARD, CoQAR,609

CNN/DM, Newsroom, Doc2dial, Mutual, SNLI,610

QNLI, to conduct experiments. All models and611

datasets are carefully processed by their publishers612

to ensure that there are no ethical problems.613
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A Experimental Details901

A.1 Datasets902

We conduct experiments on eight widely used903

benchmark datasets: CANARD, CoQAR,904

CNN/DM, Newsroom, Doc2dial, Mutual, SNLI905

and QNLI, covering five NLP tasks: CQA, CQG,906

summarization, KGC and NLI.907

• CANARD (Elgohary et al., 2019) is a benchmark908

dataset for CQA and CQG. It is built based on909

QuAC (Choi et al., 2018) and consists of 40k910

questions with different context lengths, where911

answers are selected spans from a given section912

in a Wikipedia article.913

• CoQAR (Brabant et al., 2022) is a large-scale914

dataset for CQA and CQG. It annotates 53k ques-915

tions based on CoQA (Reddy et al., 2019), where916

the documents are from seven diverse domains.917

• CNN/DM (Nallapati et al., 2016) is a well-918

known summarization dataset, which consists919

of 313k articles from CNN and Daily Mail. The920

summary is written by human experts and shown921

as bullet points. We use the non-anonymized922

version (See et al., 2017).923

• Newsroom (Grusky et al., 2018) is a large-scale924

summarization dataset which contains 1.3 mil-925

lion articles and expert-written summaries with926

high diversity.927

• Doc2dial (Feng et al., 2020) is a document-928

grounded dialogue dataset with 4,800 annotated929

conversations and an average of 14 turns. Com-930

pared to the prior document-grounded dialogue931

datasets, this dataset covers a variety of dialogue932

scenes in information-seeking conversations.933

• Mutual (Cui et al., 2020) is a multi-turn reason-934

ing dialogue dataset, consisting of 8,860 manu-935

ally annotated dialogues based on Chinese stu-936

dent English listening comprehension exams. It937

is challenging since it requires a model to handle938

various reasoning problems.939

• SNLI (Bowman et al., 2015) is a large-scale nat-940

ural language inference benchmark with 570k941

utterance pairs. Each pair is manually labeled as942

entailment, neutral, or contradiction with several943

annotators.944

• QNLI (Wang et al., 2018) is a natural language945

inference dataset derived from the Stanford Ques-946

tion Answering Dataset v1.1. An utterance is947

extracted from the passage and paired with the948

question. Each pair is then manually labeled949

according to whether the utterance contains the950

answer to the question.951

A.2 Bias Types and Dataset Splitting 952

In this work, we focus on mitigating three types of 953

widely addressed position bias: lead bias (Kedzie 954

et al., 2018), relative position bias (Shinoda et al., 955

2022) and lexical bias (Gururangan et al., 2018). 956

• Lead bias in summarization is a phenomenon 957

that the generated summary is highly correlated 958

to utterances appearing at the beginning of the 959

document (Kedzie et al., 2018). 960

• Relative position bias in QA is a phenomenon 961

that a QA model tends to degrade the perfor- 962

mance on samples where answers are located in 963

relative positions unseen during training (Shin- 964

oda et al., 2022). The relative position is defined 965

as the relative position of grounded utterances 966

between the last turn answer and the current turn 967

answer. 968

• Lexical bias is the phenomenon that deep learn- 969

ing models achieve high accuracy by exploiting 970

trigger words or word overlapping (Gururangan 971

et al., 2018; Poliak et al., 2018). Note that lexical 972

bias is a type of position bias in generative mod- 973

els. For example, trigger words in hypothesis in 974

generative models are regarded as trigger words 975

behind ‘Hypothesis: ’, which is a positional clue 976

for prediction. 977

Following previous works (Ko et al., 2020; Shin- 978

oda et al., 2022), we split the test dataset into biased 979

dataset and non-biased dataset for simulation de- 980

pending on the bias type in each dataset. In CQG 981

and CQA datasets (CANARD and CoQAR), we 982

select the samples with relative position equaling 983

0 or 1 into the biased dataset and the left samples 984

into the non-biased dataset. In KGC and summa- 985

rization datasets (Doc2dial, Mutual, CNN/DM and 986

Newsroom), we filter samples where the reference 987

response is highly correlated to the beginning utter- 988

ance of the given document into the biased dataset 989

and the left samples into the non-biased dataset. 990

For NLI datasets (SNLI and QNLI), samples with 991

specific words are filtered into the biased dataset 992

and other samples are filtered into the non-biased 993

dataset. The dataset statistics are shown in Table 5. 994

12



Table 5: Dataset statistics after splitting.

Dataset
Biased

Non-
biased

#Train #Dev #Test #Test

CANARD 500 250 3,460 2,440
CoQAR 500 250 3,222 4,873
CNN/DM 500 250 1,421 5,000
Newsroom 500 200 5,000 5,000
Doc2dial 500 250 2,000 5,000
Mutual 500 250 2,000 5,000
SNLI 500 250 2,000 5,000
QNLI 500 250 2,000 5,000

B Analysis995

B.1 Case Study996

To investigate the reason for the effectiveness of997

ZOE, we present an example of generated re-998

sponses in CQA in Table 6 and an example of999

unsupervised responses in CQG in Table 7.1000

In CQA example, ZOE can generate an answer1001

with lower bias than FT. As shown in Table 6, FT1002

generates an answer from U5, adjacent to U4, the1003

utterance containing the last turn answer. In con-1004

trast, ZOE generates an answer from U1, which is1005

far from U4. After fine-tuning with unsupervised1006

responses from various positions, ZOE cannot eas-1007

ily fall into the trap of finding answers from neigh-1008

boring utterances of the one containing the last turn1009

answer.1010

In CQG example in Table 7, ZOE uses unsuper-1011

vised responses which have lower bias than the1012

target response. As we can see, target question1013

is based on the utterance with relative position1014

1, while unsupervised questions generated from1015

BASE are based on utterances varying in the doc-1016

ument. Fine-tuning with unsupervised responses1017

generated from pre-trained LLMs encourages the1018

model to generate questions based on utterances in1019

various document positions, thus mitigating posi-1020

tion bias.1021
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Table 6: An example of generated answers on CANARD. U1, U4, and U5 are the 1st, 4th, 5th utterances in the
document, T1 and T2 are the first and second turn utterances of the dialogue. ‘Target’ is the target answer of this
example, ‘FT’ and ‘ZOE’ are the generated answers of FT and ZOE. ‘Position’ is the position of the grounded
utterance of the answer in the document and ‘Relative position’ is the distance of grounded utterances between the
current answer and the last turn answer.

ID Document

U1 Gaston had worked with players at an individual level as a hitting instructor ...
U4 In the six games the Blue Jays played in those places during World Series play ...
U5 ... and Gaston was the first ever African-American manager to win a World Series.

ID Context Position

T1
Question: What happens in the series?
Answer: In the six games the Blue Jays played in those places during
World Series play, the Jays went 4-2 ...

U4

T2 Question: What else did Cito do?

Model Answer Relative position

Target Gaston had worked with players at an individual level ... -3 (U1)

FT
... Gaston was the first ever African-American manager to win a World
Series.

1 (U5)

ZOE Gaston had worked with players at an individual level ... -3 (U1)

Table 7: An example of unsupervised questions on CANARD. U1–U6 are the first six utterances in the document
and T1 is the first turn utterance of the dialogue. ‘Target’ is the target question of this example, ‘BASE-1’ and
‘BASE-2’ are the questions generated by pre-trained LLM. ‘Position’ is the position of the grounded utterance of
the question in the document and ‘Relative position’ is the distance of grounded utterances between the current
question and the last turn question.

ID Document

U1 Gautam Gambhir, born 14 October 1981, is an Indian cricketer, ...

U2
Gambhir was picked up by the Delhi Daredevils franchise in the first player auction of the
Indian Premier League for a price of US$725,000 a year.

U3 He became the second highest run-scorer of the inaugural season with ...
U4 He was promoted to the post of Captain of the Delhi Daredevils for IPL Season 2010.

U5
At the end of the tournament he became the only player from Delhi Daredevils to score
more than 1000 runs in the IPL.

U6 In the 2011 IPL player auction, ...

ID Context Position

T1
Question: Who was Gautam Gambhir in Indian premier league?
Answer: He was promoted to the post of Captain of the Delhi Daredevils
for IPL Season 2010.

U4

Source Question Relative position

Target What did Gautam Gambhir do as captain? 1 (U5)
BASE-1 Where was Gautam Gambhir born? -3 (U1)
BASE-2 Was Gautam Gambhir in Indian premier league? -2 (U2)
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C Overall Analysis1022

Table 8: ZOE Performance (%) using various unsupervised responses on language understanding tasks. Boldface
indicates the best results in terms of the corresponding dataset.

Method
NLI (%) CQA (%)

SNLI QNLI CoQAR CANARD

Biased Non-Biased Biased Non-Biased Biased Non-Biased Biased Non-Biased

ZOE 92.0 88.4 94.3 90.9 66.3 53.7 65.7 21.9
- w/o MSA 91.0 87.4 92.7 88.7 66.3 53.7 65.7 21.9
- w/ T5-base 90.5 87.6 94.4 90.6 64.3 52.3 61.6 19.9
- w/ T5-xlarge 91.2 87.7 93.2 91.3 65.1 53.6 67.1 22.4
FT 92.0 88.0 94.3 89.8 64.6 51.9 67.5 20.8

1023

Table 9: ZOE Performance (%) using various unsupervised responses on language creation tasks. Boldface indicates
the best results in terms of the corresponding dataset.

Method
CQG (%) KGC (%)

CoQAR CANARD Doc2dial Mutual

Biased Non-Biased Biased Non-Biased Biased Non-Biased Biased Non-Biased

ZOE 26.7 18.8 25.9 22.4 40.6 38.3 94.0 53.0
- w/o MSA 25.8 18.0 26.1 21.5 32.6 34.1 91.0 36.7
- w/ T5-base 26.3 18.3 26.1 22.0 42.8 36.3 94.3 45.1
- w/ T5-xlarge 26.6 17.9 25.7 22.0 44.1 39.1 94.3 52.7
FT 26.7 17.2 26.0 21.6 38.7 36.0 93.9 38.9

1024

Table 10: ZOE Performance (%) using various unsu-
pervised responses on language compression tasks. ‘N-
Biased’ denotes performance on the non-biased datasets.
Boldface indicates the best results in terms of the corre-
sponding dataset.

Method
Summarization (%)

CNN/DM Newsroom

Biased N-Biased Biased N-Biased

ZOE 27.1 17.3 50.9 21.3
- w/o MSA 27.1 14.8 48.0 20.2
- w/ T5-base 26.8 14.2 47.7 20.3
- w/ T5-xlarge 28.0 14.6 48.4 20.2
FT 26.9 16.8 51.1 19.8

1025

C.1 Analyses of Unsupervised Responses1026

Table 8-10 demonstrate ZOE performance using1027

different qualities of unsupervised responses. As1028

we can see, lower response quality leads to worse1029

performance. Besides, using various sources of un-1030

supervised responses always degrades model per-1031

formance on non-biased datasets.1032

C.2 Analyses of Objective Weighting 1033

Fig. 5 provides the overall performance over dif- 1034

ferent α. In most cases, ZOE outperforms the fine- 1035

tuned LLM, i.e., FT. 1036

C.3 Analyses on Training Samples 1037

Fig. 6 provides the overall performance on differ- 1038

ent numbers of training samples. In most cases, 1039

ZOE outperforms the fine-tuned LLM, i.e., FT. 1040

C.4 Cases 1041

We also present cases for CQA, CQG, summariza- 1042

tion and KGC tasks in Table 11–17. As we can see, 1043

FT always finds relevant information from utter- 1044

ances near the grounded utterances of the last turn 1045

utterance for CQA and CQG tasks or from the lead 1046

utterance for summarization and KGC tasks. While 1047

ZOE can find relevant knowledge from any utter- 1048

ances in the document. Note that on the Mutual 1049

dataset, where each sample has four candidate re- 1050

sponses as the document, FT always fails to select 1051

the relevant utterance from the last two responses. 1052
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Figure 5: Performance over each α on all datasets. The
x-axis denotes the value of α and the y-axis denotes the
ROUGE-L score on non-biased datasets.
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Figure 6: Performance over different numbers of train-
ing samples on all datasets. The x-axis denotes the
number of training samples and the y-axis denotes the
ROUGE-L score on non-biased datasets.
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Table 11: An example of CQA on CoQAR. U1–U4 are the first four utterances in the document, T1 and T2 are
the 1st and 2nd turn utterances of the dialogue. ‘Target’ is the target answer of the example, ‘FT’ and ‘ZOE’ are
the generated answers from FT and ZOE. ‘Position’ is the position of the grounded utterance of the answer in the
document and ‘Relative position’ is the distance of grounded utterances between the current answer and the last turn
answer.

ID Document

U1 This final war was to give thousands of colonists, including ..., military experience ...

U2
By far the largest military action in which the United States engaged during this era was the
War of 1812.

U3
With Britain locked in a major war with Napoleon’s France, its policy was to block American
shipments to France

U4 The United States sought to remain neutral while pursuing overseas trade.

ID Context Position

T1
Question: What did this give the colonists?
Answer: Military experience.

U1

T2 Question: Whose side was the US on at first in the war of 1812?

Model Answer Relative position

Target At first neutral 3 (U4)
FT Britain. 2 (U3)

ZOE Neutral 3 (U4)

Table 12: An example of CQG on CoQA. U1–U5 are the first five utterances in the document and T5 is the 5th
turn utterance of the dialogue. ‘Target’ is the target question of the example and ‘FT’ and ‘ZOE’ are the generated
questions from FT and ZOE. ‘Position’ is the position of the grounded utterance of the question in the document and
‘Relative position’ is the distance of grounded utterances between the current question and the last turn question.

ID Document

U1
John’s Metropolitan Area is the second largest Census Metropolitan Area (CMA) in Atlantic
Canada ...

U3
Its name has been attributed to the feast day of John the Baptist, when John Cabot was
believed to have sailed into the harbor in 1497.

U4
St. John’s is one of the oldest settlements in North America, with year-round settlement
beginning sometime after 1630 and seasonal habitation long before that.

U5 It is not, however, the oldest surviving English settlement in North America or Canada ...

ID Context Position

T5
Question: In what continent is it located?
Answer: North America.

U4

Model Question Relative position

Target What year did John Cabot arrive in the harbor? -1 (U3)
FT When was St. John’s founded? 0 (U4)

ZOE What is the second largest CMA in Atlantic Canada? -3 (U1)
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Table 13: An example of CQG on CANARD. U1–U5 are the first five utterances in the document and T1 is the 1st
turn utterance of the dialogue. ‘Target’ is the target question of the example and ‘FT’ and ‘ZOE’ are the generated
questions from FT and ZOE. ‘Position’ is the position of the grounded utterance of the question in the document and
‘Relative position’ is the distance of grounded utterances between the current question and the last turn question.

ID Document

U1
In May 2009, production company CinemaNX announced that it would distribute Me and
Orson Welles itself ...

U2
It opened the New Orleans Film Festival on October 9, 2009; and it was screened at the St.
Louis International Film Festival in November 2009.

U3
The film was released in the US on November 25, 2009, and in the UK on December 4,
2009.

U4
IndieWIRE reported, “The do-it-yourself release of Richard Linklater’s Me and Orson
Welles bluegot off to a very nice start, averaging $15,910 from its four theaters, the highest
PTA of all debuting films.”

U5
While Orson Welles is one the first examples of such a high-profile film going to the DIY
route, if it proves successful, it’s going to be done a lot more in the future.

ID Context Position

T1
Question: What month was Me and Orson Welles released in theaters?
Answer: The film was released in the US on November 25, 2009.

U3

Model Question Relative position

Target What were critics reviews of Me and Orson Welles? 2 (U5)
FT When was the film Me and Orson Welles released in the UK? 0 (U3)

ZOE What was the response to Me and Orson Welles? 2 (U5)

Table 14: An example of summarization on Newsroom. U1, U2, U7 and U8 are the 1st, 2nd, 7th and 8th utterances
in the document. ‘Target’ is the target summary of the document and ‘FT’ and ‘ZOE’ are the generated summary
from FT and ZOE. ‘Position’ is the position of the utterance associated with the summary in the document.

ID Document

U1 Joe Staley celebrates Colin Kaepernick’s touchdown run in Super Bowl XLVII.

U2
Cubs inspire Super Bowl memories for Staley Cubs fans were euphoric Wednesday
night.

U7 Staley, 32, is the longest-tenured member of a team that’s 6-17 since 2015.

U8
Does he think the 49ers, who are nearly 22 years removed from their last title, can
win a Super Bowl before he retires? “ Yeah,” he said, “I’ll never give up, man.”

Model Summary Position

Target
Cubs inspire Super Bowl memories for Staley Cubs fans were euphoric
Wednesday night ...

U2

FT
Joe Staley celebrates Colin Kaepernick’s touchdown run in Super Bowl
XLVII. Cubs inspire Super Bowl memories for Staley.

U1

ZOE
Joe Staley says he wished the 49ers had won the Super Bowl after the
2012 season.

U8
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Table 15: An example of summarization on CNN/DM. U1–U3 are the first three utterances in the document. ‘Target’
is the target summary of the document and ‘FT’ and ‘ZOE’ are the generated summary from FT and ZOE. ‘Position’
is the position of the utterance associated with the summary in the document.

ID Document

U1
Negotiations between the United States and Libya that could result in compensation
for past acts of state-sponsored terrorism by Libya are under way.

U2
The wreckage of Pan Am 103 in Lockerbie, Scotland; the bombing killed 270 people
in 1989. U.S. and Libyan officials met Wednesday and Thursday, the official said.

U3
The nations hope to hammer out a deal in which Libya would “resolve all outstanding
claims in good faith” and offer “fair compensation” to victims and their families, he
said.

Model Summary Position

Target
The negotiations could result in compensation for past acts of state-
sponsored terrorism by Libya.

U3

FT
The nations hope to hammer out a deal in which Libya would “resolve
all outstanding claims in good faith”.

U1

ZOE
Nations hoping for deal in which Libya would compensate terrorism
victims.

U3

Table 16: An example of KGC on Doc2dial. U7–U10 represent the consecutive four utterances following the 7th
utterance in the document. T1 and T2 are the 1st and 2nd turn utterances of the dialogue. ‘Target’ is the target
response of the example, ‘FT’ and ‘ZOE’ are the generated responses from FT and ZOE. ‘Position’ is the position
of the grounded utterance of the response in the document and ‘Relative position’ is the distance of grounded
utterances between the current response and the last turn response.

ID Document

U7 Should I Sign Up For Medical Insurance (Part B)?

U8
When you sign up for Medicare, you will be asked if you want to enroll in Medical Insurance
Part B.

U9
If you do not choose to enroll in Medicare Part B and then decide to do so later, your
coverage maybe delayed and you may have to pay a higher monthly premium unless you
qualify for a “Special Enrollment Period” or SEP.

U10 You may qualify for a SEP that will let you sign up for Part B during ...

ID Context Position

T1

Question: We don’t need to get any supplementary medical insurance,
isn’t?
Answer: Yes, that’s correct. You may qualify for a SEP that will let you
sign up for Part B.

U10

T2 Question: Do I sign up for medicare part B?

Model Answer Relative position

Target
When you sign up for Medicare you will be asked if you want to enroll
in Medical insurance Part B.

-2 (U8)

FT
Yes, that’s correct. You may qualify for a SEP that will let you sign up
for Part B.

0 (U10)

ZOE Yes, you will be asked if you want to enroll in Medical insurance Part B. -2 (U8)
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Table 17: An example of KGC on Mutual. U1–U4 represent the four candidate responses. T1 and T2 are the 1st and
2nd turn utterances of the dialogue. ‘Target’ is the target response of the example, ‘FT’ and ‘ZOE’ are the generated
responses from FT and ZOE. ‘Position’ is the position of the selected response.

ID Document

U1
It does n’t matter. you just joined a new team, and the manager said it’s normal that
you are not good at interpersonal skills.

U2
Although the manager said you are not good at interpersonal skills, you still evaluated
others’ performances.

U3
So you had your performance evaluation yesterday and were praised by the manager,
right?

U4 yeah, you were praised by the manager, weren’t you?

ID Context Position

T1
Female: you look happy.
Male: I am. I had my performance evaluation today.

–

T2
Female: so it went well?
Male: yes, the manager said my interpersonal skills are great. I work
well with others.

–

Model Female Position

Target Yeah, you were praised by the manager, weren’t you? U4

FT
It does n’t matter. you just joined a new team, and the manager said it’s
normal that you are not good at interpersonal skills.

U1

ZOE Yeah, you were praised by the manager, weren’t you? U4
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