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Abstract

Large Language Models (LLMs) often do not perform well on queries that require
the aggregation of information across texts. To better evaluate this setting and
facilitate modeling efforts, we introduce TACT—Text And Calculations through
Tables, a dataset crafted to evaluate LLMs’ reasoning and computational abilities
using complex instructions. TACT contains challenging instructions that demand
stitching information scattered across one or more texts, and performing complex
integration on this information to generate the answer. We construct this dataset by
leveraging an existing dataset of texts and their associated tables. For each such
tables, we formulate new queries, and gather their respective answers. We demon-
strate that all contemporary LLMs perform poorly on this dataset, achieving an
accuracy below 38%. To pinpoint the difficulties and thoroughly dissect the prob-
lem, we analyze model performance across three components: table-generation,
Pandas command-generation, and execution. Unexpectedly, we discover that each
component presents substantial challenges for current LLMs. These insights lead
us to propose a focused modeling framework, which we refer to as IE as a tool.
Specifically, we propose to add “tools” for each of the above steps, and implement
each such tool with few-shot prompting. This approach shows an improvement
over existing prompting techniques, offering a promising direction for enhancing
model capabilities in these tasks.
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Figure 1: Annotated components of the TACT dataset. The answer is concise but demands advanced
reasoning. Intermediate artifacts aid in analyzing LLM reasoning and designing the IE as a tool
method. Relevant spans are underlined.
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1 Introduction

Large Language Models (LLMs) have shown exceptional capabilities across a wide range of natural
language tasks. However, they still face significant challenges in solving complex problems that
require reasoning over data presented in non-mathematical formats, such as word and algebraic
problems [[Amini et al., 2019, Dua et al.,|2019]]. Interestingly, research indicates that these types of
problems pose difficulties not only for LLMs but also for humans [Cummins et al., [1988| [Elliott,
2023|]. This difficulty mirrors a broader observation about LLM reasoning capabilities: the process
of transforming linguistic or graphical inputs into solvable mathematical equations is often more
challenging than performing the calculations themselves [[Schick et al.,|2023| |Das et al., |2024]. This
overarching issue is particularly evident when LLMs attempt tasks that involve the aggregation of
information from either single or multiple texts. These models frequently underperform in tasks that
require counting, comparing, or processing similar events or entities within texts [Caciularu et al.|
2022, |Amouyal et al.,2023| L1 et al., [2023]]. This highlights a fundamental limitation: while LLMs
can handle isolated data points effectively, their ability to integrate and interpret information across
contexts remains a significant hurdle.

A first step towards advancing the capabilities of LLMs on complex reasoning, is to have a high-
quality benchmark for evaluating and analyzing their performance in this setting. To this end, we
introduce TACT—Text And Calculations through Tables. TACT instances were created by NLP and
data science experts who wrote aggregative queries over texts. The experts were instructed to use
tables (from the InstructIE dataset [Gui et al.,|2023]]) as the basis for writing the instructions, as they
consolidate dispersed information from source texts into a structured format, enabling comprehensive
aggregation across the text. The resulting TACT instances consist of the original text, the written
instruction, and a gold answer, all requiring advanced text comprehension and reasoning (illustrated
in Figure[I). Importantly, the TACT task does not include the table, so as to test the ability of the
model to answer aggregative queries in an end-to-end manner, requiring advanced text comprehension
and reasoning. Through TACT, the model is implicitly required to address information extraction (IE)
challenges such as coreference resolution [Lee et al., 2017, Joshi et al., 2019 [Kirstain et al.| 2021]],
multi-hop reasoning [Lin et al., 2018} |[Dua et al.l 2019, Zhao et al., 2022]], summarization [Zhang
et al., 2020, |Goyal et al.} 2022} Slobodkin et al., 2023|], and multi-document processing [Caciularu
et al.; 2021 Hirsch et al.l 2021, |Caciularu et al., 2023| [Zhu et al.,2024]]. In Section[2] we describe
our methodology for constructing this benchmark—by layering our new expert annotations over
InstructIE instances—and the measures we took to ensure its difficulty and robustness.

Having evaluated LLMs on TACT and observed the challenges it presents to them (Section ), we
aim to understand the root of these difficulties and explore potential modeling improvements. We
propose dissecting the problem into three tasks: table-generation, Pandas command-generation, and
command-execution. Leveraging TACT’s ground-truth tables and Pandas commands curated by
experts, we analyze the LLM performance of each step in Section[5] Our findings reveal significant
performance headroom in each task, implying that with targeted few-shot prompting, models can
considerably enhance their individual task performance. Building on these results, we propose a
focused modeling strategy termed the /E as a tool framework, which specifically addresses each
phase independently (see an illustration in Figure [ and more details in Section [3). This approach has
shown to be superior to existing prompting techniques, as detailed in Section|d] The demonstrated
improvements suggest a promising direction for enhancing LLM capabilities in complex reasoning
tasks, aligning with our initial findings of untapped potential in each dissected component of the task.

Our contributions are summarized as follows:

* TACT: An expert-curated, diverse evaluation dataset that challenges LLMs on following
aggregative queries, requiring information extraction and complex reasoning.

* A rigorous analysis of LLM performance on decomposed TACT tasks, revealing model
strengths and weaknesses in table-generation, Pandas command-generation, and execution.

* Introduction of the IE as a tool framework, leveraging the aforementioned sub-tasks as dis-
crete tools, demonstrating up to 12% improvement over conventional prompting techniques.



2 Dataset

This section introduces TACT—Text And Calculations through Tables—a novel challenge set de-
signed to evaluate and improve the capability of LLMs on complex queries that require integration
of information. The data is derived from the InstructIE [Jiao et al.,|2023] test set using new expert-
annotated labels, as described below. In this section, we detail the data labeling methodology
employed to create TACT, highlighting the steps taken to ensure the reliability and validity of the
labeled data. We first introduce the InstructIE benchmark creation methodology (Section [2.1)), then
we introduce our TACT dataset (Section [2;2[), and finally, we explore the properties and conduct an
analysis of TACT (Section[2.3).

2.1 Background: The InstructIE Dataset

InstructIE [Jiao et al., 2023] is a dataset that includes texts alongside corresponding tables, which
summarize the textual content. These tables effectively organize the extracted information into sets
of triples—subjects, relations, and objects—derived from the texts. To compile the tables and texts in
the test set of InstructIE, which we employed for creating TACT, human annotators first defined the
table topics and columns using real-world texts from the web. These texts were then utilized to craft
tables that summarize them through a process combining automatic extraction and manual validation.

The primary components of InstructIE that we utilized are: Text— the accompanying document or
collection of short documents, Table— a structured representation of the extracted information, where
the first row serves as the table header and the subsequent rows contain the extracted data. See an
illustrative example in Figure [7/in Appendix [C.2] and [Jiao et al.| [2023]] for additional details and
descriptions of other components that were not included in our study. While InstructIE provides a
good setup for information extraction, it does not directly test the models’ abilities to aggregate the
extracted information, which we target in TACT.

2.2 The TACT Dataset

Our goal is to evaluate the capabilities of LLMs in addressing aggregative, information-seeking
queries, that require both text comprehension and complex reasoning. Using tables as the basis for
creating such queries is highly effective, since they consolidate the essential information from their
source texts into a structured format. Thus, performing an aggregation on these tables is equivalent
to executing an aggregation across the entire text. We leverage and extend the use of the InstructIE
dataset, which already contains structured information in table format (see above). We introduce the
Text And Calculations through Tables (TACT) challenge set, aimed at verifying the capabilities of
LLMs in handling complex numerical instructions (the resulting TACT dataset and its components
are compared to InstructlE in Figure[7)in Appendix [C.2)).

TACT was created by NLP and data science experts, who employed a rigorous annotation process to
transform InstructIE instances into a format suitable for aggregative instruction following. Creating
the data includes the steps of assessing the text and the table, then formulating a query in natural
language, and finally translating the query into a Pandas command, and executing it on the table. We
chose Pandas over other languages, such as SQL, due to its simplicity. While SQL requires defining
a schema, Pandas can easily operate on a single dataframe and often provide solutions with just a
single line of code.

Additionally, two human passes were conducted over the dataset, where an expert human validator
ensured 100% accuracy. The expert achieved this level of precision given the lack of ambiguity
in the questions, further strengthening the reliability of the data. See the data creation guidelines,
summarization of the annotation process, and more details about the data creation in Appendix [C).
The full steps are:

Initial Review and Relevance Vetting: A comprehensive review of the InstructIE dataset, focusing
on texts and tables out of InstructIE’s test set containing numerical data. Experts identified tables and
text segments where numerical data was present and suitable for quantitative instructions. Tables were
vetted for numerical integrity and alignment with the text to ensure data quality. For the remaining
examples, the experts were tasked to convert the Markdown-formatted tables from InstructIE into the
CSV table format (for convenient parsing into the Pandas dataframe format).



Numerical Aspect Identification: Experts identified specific numerical aspects within the text and
tables—such as years, currencies, population counts, and temperatures—that enable quantitative
operations like counting, calculation, and aggregation. This step identifies which aspect of the table
data should be incorporated into the instruction.

Natural Language Instruction Formulation: Based on the identified numerical aspects, experts
formulated clear and precise natural language instructions over the text that result in a single numerical
value. These instructions targeted the numerical aspects with a focus on aggregation functions like
sum, mean, and filtering.

Natural Language Query Over the Table: After formulating the natural language instructions,
experts verbalized them into corresponding natural language queries over the tables (see Figure|[T)).
These queries refined the focus on the numerical data within the table, minimized ambiguity, and
helped to prepare the Pandas command.

Translation to Pandas Commands and Gold Response Extraction: Next, experts translated the
previous natural language query over the table into a Pandas command. Then, they extracted the gold
response by executing the formulated Pandas commands over the tables.

Command Execution and Validation: Finally, the extracted responses were manually verified
against the expected outcomes derived from the formulated instructions and texts. This validation
step ensured that the results were consistent with the intended instructions and the underlying data
from both the text and the tables.

Each instance in the dataset consists of (see illustrative example in Figure [I):

1. Original Text and Table: Sourced from the InstructIE dataset, these elements contain the
foundational data and numerical information relevant to the query. The text provides context,
while the table offers structured numerical data aligned with the text content.

2. Natural Language Question: A clearly formulated query in natural language that targets
specific numerical aspects identified in the text and table. These questions focus on com-
putational tasks like sum, mean, and filtering to challenge the models’ understanding and
processing capabilities.

3. Natural Language Query Over the Table: After formulating the natural language question,
a corresponding natural language query over the table is developed. This step refines the
focus on the numerical data within the table, ensuring that the essential information for the
computation is precisely delineated and consistent with the intent of the initial question.

4. Pandas Command: A precise translation of the natural language question into a Pandas
command. This command is designed to replicate the expected computational process using
the original column names from the table, ensuring the accuracy and consistency of the data
manipulation.

5. Expected Result: The correct numerical answer derived from executing the Pandas command,
serving as a benchmark to validate the models’ responses against the ground truth.

The resulting TACT dataset contains 124 examplesﬂ as well as additional 4 examples that serve
as optional few-shot examples for in-context leamingﬂ For evaluating performance on TACT, we
employ exact match for the final answer, since it is a single-span (number). For intermediate steps
available in TACT, such as table- and command-generation, we utilize a both similarity metrics (e.g.,
ROUGE |[Lin, 2004]]) and execution-based metrics (e.g., accuracy of the generated command’s output)
as described in Section[3

2.3 Exploring the Numerical Challenges in TACT

In this section, we delve into the characteristics of the TACT dataset. TACT offers a diverse range of
tasks, primarily focusing on two types of instructions—“Calculate” and “Count’:

'Recent studies, through empirical validation, found that 100 examples are sufficient to conduct a high-quality
evaluation of LLMs [Liang et al.,|2023} [Polo et al., [2024]).

These examples are sourced from the validation set of InstructIE, but follow the same process for constructing
the TACT, as elaborated in Section@



“Calculate” Instructions: Out of the 124 examples, 63 are categorized under “Calculate” instructions.
These tasks require the execution of basic mathematical operations to solve the instance. As depicted
in Figure E], the operations include addition, subtraction, multiplication, division, and other arithmetic
functions. The distribution of these operations, such as summation (28.3%), mean calculation (10.4%),
and power functions (6.1%), highlights the varied complexity and the need for precise computational
understanding by the models.

“Count” Instructions: The remaining 61 examples fall under “Count” instructions, where the primary
objective is to identify specific types or categories within the attached text and perform a simple
counting operation. This task challenges the model’s ability to accurately parse and interpret textual
data, identifying relevant entities or events, and perform the proper counting.

The composition of the TACT dataset, with a balanced mix of “Calculate” and “Count” instructions,
ensures a comprehensive evaluation of models across different dimensions of numerical reasoning.
The operations, as detailed in the pie chart (Figure[2), further emphasize the diversity and scope of
numerical challenges that TACT presents, offering a broad testbed for evaluating both fundamental
and complex computational reasoning. This variety plays a pivotal role in assessing how well models
can generalize their mathematical skills to real-world tasks.

'min:0.5%

B12s0[ -
E LN
£ 1000 °
N7 O °
8 750 PRI
% o gB a . e ° e
Ky 0/ o Ly H
550 okt 0 L
£ 250 piobettde o o
§ $o goo o °
10 20 30 40 50
Total Number of Cells in Table
2
Figure 3: TACT’s Pandas commands
Figure 2: The TACT Dataset pandas different length vs. the total number of cells in
tokens’ distribution. their corresponding tables.

In Figure[3] we present a comparison of the total number of cells in a table against the lengths of the
corresponding Pandas commands. The figure reveals a wide distribution of data points, illustrating
that the length of Pandas commands, quantified in Gemini tokens [Gemini-Team et al., [2023]], does
not correlate directly with the total number of cells in the tables. The varied spread of points across
the graph indicates that additional factors, such as the complexity of arithmetic operations required or
the specific data arrangement within the tables, might play a more significant role in determining the
length of the commands than simply the volume of data.

In Table[T] we present an illustration of the diverse range of implicit tasks incorporated within TACT,
which are specifically designed to test advanced text comprehension and numerical reasoning. Each
task is tied to text spans that underline the specific data points or contextual clues necessary for
task completion, ranging from multi-document summarization to date and time numerical reasoning.
For example, one task leverages coreference resolution, requiring the model to understand and
connect information spread across different parts of the text. Another task tests the model’s capability
for lexical matching, identifying specific words within a context. Complex arithmetic operations
are also present, demanding a high level of numerical literacy to interpret numerical and financial
concepts. This highlights the interplay between linguistic understanding and numerical computations,
demonstrating the ability to handle a wide spectrum of real-world tasks—from simple counting to
complex, multi-step mathematical operations embedded within textual data.



Table 1: An overview of implicit tasks in TACT, split by their types of ’Count’ and ’Calc.” (Calculate)
instruction types, along with textual instructions, accompanying texts and their corresponding sub-
tasks. The sub-tasks’ related aspects in the text are underlined.

Operation
P Instruction Relevant text spans Implicit task
Count Calc.
v Calculate the sum of the years that "To Kill a Mock- ... It was published in 1960 . . . A year after its Coreference resolution
ingbird" was published in, and the year that it won release, it won the Pulitzer Prize . . .
a prize according to the text.
v Count the number of achievements that include 1. We present FLAIR . . . 2. How well can NLP Multi-document summa-
instructions. models perform? . . . 3. Pretrained language mod- rization
els have become increasingly prominent . . .
v Calculate the sum of squares of the stock price ... The S&P 500 rose 1.45% . . . the Nasdaq Complex arithmetics
increases in the text. Composite popped 1.07% . . . The Dow Jones In-
dustrial Average led gains, rising 2.12% . . .
v Count the number of weather forecasts that include . with temps currently ranging from the Numerical range entail-
temperatures between 50 and 91 degrees. upper 80s to low 90s . .. Overnight, seasonal ment
temps in the upper 60s to low 70s continue . . .
v Count the number of wars in the text that have ... The American Indian Wars, also known as the Lexical matching
"Indian" within their names. . . . and the Indian Wars . . .
v Count the number of cases where the delivery date ... 2. OnJune 10, 2023, XYZ Shipping’s Truck Date and time numerical

was later than June 2, 2023 and the travel time

789, . .. Departing at 8:30 AM and arriving at

reasoning

was more than 2 hours in this text. 2:00PM . ..

3 1IE asa Tool

As demonstrated by our experiments in the subsequent sections, current models face significant
challenges when tackling the TACT task. To address this, we introduce a novel approach called IE as
a Tool, which is illustrated in Figure[d The core idea is to handle TACT instructions through the
sequential use of two distinct tools: one that generates a table from the provided text and instruction,
and another that formulates the corresponding Pandas command. The model then executes the
command, alongside the original instruction and text, to derive the final answer. This sequence offers
a natural and efficient strategy for addressing TACT’s aggregative queries.

The implementation of these tools can follow multiple methods. For simplicity, we adopted a few-shot
prompting approach, as detailed in the prompt templates in Appendix [D.3] Our experimental results
reveal that IE as a Tool yields up to 12% improvement in performance on TACT, outperforming
conventional prompting techniques (see Section ).
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Figure 4: Possible setups for solving TACT with LLMs. (a) Typical Approach: the large language
model (LLM) directly generates the answer based on the provided query and text, but without the aid
of any external tools. (b) With /E as a Tool: This approach utilizes a three-step process. First, an
information extraction tool generates a structured table from the text and query. Next, another tool
formulates an appropriate Pandas command based on this table, the text and the query. Finally, all
this information is fed into the LLM, which then generates the answer; or into a code interpreter that
can run the Pandas command over the table.



4 Experimental Setup and TACT Results

We assess the performance of several models on the TACT dataset, including GPT-40 [OpenAl
et al.| 2024]], Claude 3.5 Sonnet [Anthropic, [2024], Gemini-1.0-Ultra [Gemini-Team et al., [2023]],
Gemini-1.5-Pro [Reid et al.| [2024]], Llama-2-13b-chat, Llama-2-70b-chat [Touvron et al., 2023,
Gemma-7b-it (v1.1) [Gemma-Team et al., [2024]], Mistral-7b-instruct (v0.2) [Jiang et al., [2023]],
and Mixtral 8x7B [Jiang et al.,2024]]. Their capabilities are tested using both standard prompting
techniques and our /E as a tool method (detailed in Section [3). Subsequent analysis focuses on the
specific sub-tasks of table generation (Section[5.1]) and Pandas command generation (Section[5.2),
providing a comprehensive evaluation of each model’s performance and identifying potential areas
for improvement in each sub-task.

We measure performance by averaging over four combinations of few-shot examples (by sampling
the order and examples), following the procedure described inJacovi et al.|[2023b], and report the
results for {0, 2, 4}-shot, using dedicated examples from the validation set of InstructIE (see more
details in Appendix [D).

We evaluate the LLMs’ performance on the TACT task, measuring exact match, where the models are
provided a numerical instruction and a text, and are tasked to produce the correct numerical answer.
We report 4-shot results for Gemma-7b-it, Mistral-7b-instruct, and Mixtral 8x7B, while zero-shot
results for the remaining larger models, given the results on table and Pandas query generation in the
following sections, and the observation that few-shot demonstrations yield saturated performance for
most of the tasks for the larger models. We propose the following experimental setups for each LLM:

* Generic: The baseline setting where the LLM receives a TACT instruction and a text
passage, and is tasked with directly generating the answer.

* Chain-of-Thought (CoT): This setting is akin to the baseline, with the enhancement of
adding “Let’s think step-by-step” to the prefix (input). This encourages the model to generate
a detailed, step-by-step CoT reasoning before producing the final answer.

* In-context IE: This method adopts a chain-of-thought-like approach, where the LLM first
generates a table from the text, then creates a Pandas query, and finally, with all this context
provided, the model generates the answer, all within the same prompt.

 IE as a tool: Here, the model can utilize generated tables and Pandas queries to answer the
instruction, like the previous setup, however, in this variation, we employ few-shot prompted
LLMs as separate tools (the number of shots applies for these tools). See Section [3| for
more details. We include both Without Pandas and With Pandas variants as an ablation.
We include these since as detailed in Section even with syntactic errors in the Pandas
commands, these errors may still assist the model in generating correct outputs.

* IE as a tool (Gold): This configuration is similar to the previous one (with Pandas command)
but utilizes gold-standard (i.e., ground truth) tables (Gold Table) and/or Pandas commands
(Gold Table+Pandas) from TACT, rather than relying on outputs generated by the tools.
This baseline serves as an upper bound for the performance of the /E as a tool approach.

Table 2: Exact match accuracy evaluation results of different models on TACT, evaluated across
different experimental setups, including Generic, Chain-of-Thought (CoT), In-context IE, and IE as a
tool with various settings. The best-performing results are highlighted in bold.

Model Generic  CoT  In-context IE IE as a Tool
Without/With Pandas  Gold Table  Gold Table + Pandas

Gemma-7b (4-shot) 17.1 25.4 26.2 27.1/28.9 333 45.1
Mistral-7b (4-shot) 2.4 2.6 2.6 27135 4.1 10.9
Llama-2-13b (4-shot) 8.5 8.0 8.3 8.5/8.5 9.2 14.3
Mixtral 8x7B (4-shot) 44 42 52 59/6.1 6.3 12.6
Llama-2-70b (0-shot) 3.6 4.0 42 4.5/77.6 12.9 224
Gemini-Pro (0-shot) 28.4 34.7 12.3 40.2/41.9 48.5 72.1
Gemini-Ultra (0-shot) 25.4 37.3 36.6 39.7/414 49.8 72.3
GPT-40 (0-shot) 30.1 37.7 36.4 41.1/42.2 50.9 74.1
Claude 3.5 Sonnet (0-shot) 28.6 379 36.8 40.8/42.1 513 74.6




The results, which are depicted in Table 2] show that all models experience substantial benefits
when using the IE as a tool approach, with a small improvement when tasked to generate a Pandas
command. This particularly clear in the larger models (Gemini, GPT, and Claude), which excel
on this task, where Claude outperforms the rest of the models. This is evident from the consistent
performance improvement across different models when comparing the IE as a tool setup with the
Generic baseline and other approaches. On the other hand, smaller models showed more moderate
improvements when using IE as a tool. The gap between the performance in /E as a tool and the
Gold variant implies a significant potential for enhancing the overall task effectiveness through the
refinement of IE tools. Specifically, the larger gap for smaller models suggests that their capabilities
can be dramatically increased by improving the accuracy and reliability of the generated tables and
commands. This points towards the critical importance of future work on optimizing IE tools to
maximize the end-task performance for complex reasoning tasks.

S Performance Analysis via TACT Decomposition

To understand the factors contributing to the suboptimal performance of current LLMs on TACT,
we decompose the problem into two constituent tasks: 1) table generation from text based on a
TACT instruction and the corresponding text (Section[5.1)), and 2) Pandas query generation based
on the corresponding table (either gold or previously generated), instruction, and text (Section[5.2)).
Successful execution of these two tasks would naturally result in accurate TACT results. We assess
current LLM capabilities on each task using gold outputs, revealing substantial headroom and a
potential for improvement. This observation directly motivated our design of IE as a Tool, a method
that demonstrably improved TACT performance.

5.1 Evaluating the Accuracy of Table Generation

We assess the capabilities of LLMs to generate the appropriate tables given a TACT instruction and its
corresponding text, tasking the model to construct the correct table based on the specified instruction.
Note that the model should infer the correct table from the TACT instruction, which only implicitly
points towards the relevant information to extract. Each model is provided with TACT instructions
and corresponding texts. The task requires generating tables that accurately reflect the data described
in the text, and helps to seek the correct information given the instruction.

We follow the evaluation protocol from Jiao et al.| [2023]] and adopt a soft matching strategy [Jiao
et al.| 2022]] by using SentenceT5-Large [Ni et al., 2022] to calculate the cosine similarity (multiplied
by 100) as the semantic similarity score between the generated table and the gold table, as table
contents reflect the quality of extraction. Additionally, we use the ROUGE-L F1 score [Linl 2004] to
evaluate the lexical similarity of the generated table to the gold one. We also report the Table Validity
rate, where we were able to parse a syntactically correct CSV table from the generated content.

Table 3: Evaluation Results of Different Models on TACT table generation, measuring semantic
similarity, ROUGE-L F1 (lexical matching), and table validity between the generated tables and the
gold tables. The best-performing results are highlighted in bold.

Semantic Similarity ROUGE-L F1 Table Validity Rate (%)
Model 0-shot  2-shot  4-shot  O-shot  2-shot  4-shot  0O-shot  2-shot  4-shot
Gemma-7b 68.6 69.1 69.4 6.5 6.6 7.1 0.6 23.1 25.5
Mistral-7b 73.5 72.8 72.8 4.9 6.4 7.0 1.2 30.9 34.4
Llama-2-13b 73.4 72.7 73.1 4.3 5.2 5.5 42.7 43.5 47.4
Mixtral 8x7B 72.3 71.7 71.8 4.5 7.1 7.2 9.5 39.9 24.3
Llama-2-70b 72.3 724 72.7 39 5.1 4.9 92.5 73.4 73.8
Gemini-Pro 78.4 78.2 78.3 18.8 21.0 22.9 81.5 90.2 93.3
Gemini-Ultra 78.6 78.6 79.3 18.7 21.1 24.8 81.3 89.9 94.1
GPT-40 78.2 78.9 79.9 19.3 23.2 27.3 93.4 93.6 95.7

Claude 3.5 Sonnet 78.5 78.6 80.1 19.7 23.1 28.1 94.1 94.2 96.2




The evaluation of various LLMs on their ability to generate accurate tables based on TACT instructions
is shown in Table[3] Claude and GPT mostly outperform other models across all metrics. The Gemini
models also shows strong performance but vary across different shots, indicating potential instability
in its output quality. Llama-2-13b, Llama-2-70b, and Mistral-7b exhibit moderate performance,
with Mistral-7b achieving a higher semantic similarity but lower table validity rates. Gemma-7b
and Mixtral 8x7B show comparatively lower performance, particularly in table validity. Notably,
the smaller models like Gemma-7b and Mistral-7b benefit significantly from few-shot learning,
demonstrating that small models are incapable of solving this task without any aid.

While the semantic similarity between the generated tables of Gemini-Ultra and the gold standard
tables is relatively high, lexical similarity remains low. However, a qualitative analysis suggests that
the generated tables contain key information that addresses the instructions, despite their differences
from the gold tables. This observation supports the use of semantic similarity as a more appropriate
metric for evaluating table generation in this context [Jiao et al.,[2023]].

5.2 Evaluating the Accuracy of Pandas Command Generation

The ability to accurately generate Pandas commands is a key intermediate step in solving TACT
queries, and evaluates how well LLMs can comprehend the TACT instruction and the table at once.
Thus, we next evaluate the ability of LLMs to generate Pandas commands, when provided with
the TACT instruction, the associated text, as well as a table extracted from the text. We consider
two cases: one where the provided table is the gold one, and one where it is the one generated by
the model. To assess the quality of the generated Pandas queries, we execute them using a Python
interpreter, and compare the output to the gold answer.

Table 4: Evaluation Results of Different Models on TACT Pandas command generation on the
generated/gold table, measured by the accuracy after executing the command with a Python interpreter.
The best-performing results are highlighted in bold.

Model 0-shot (Generated/Gold) 2-shot (Generated/Gold) 4-shot (Generated/Gold)
Gemma-7b 0/04 14/23 1.9/24
Mistral-7b 0.0/0.1 04/0.6 0.5/0.9
Llama-2-13b 0.0/0.3 0.1/0.6 03/1.2
Mixtral 8x7B 1.2/1.8 1.3/2.1 1.5/2.9
Llama-2-70b 25/34 3.1/4.1 32/43
Gemini-Pro 34/3.6 3.0/4.8 7.3/8.0
Gemini-Ultra 1.1/19 4.8/5.0 77184
GPT-40 45/49 5.3/6.0 8.7/94
Claude 3.5 Sonnet 51/59 5.6/6.4 9.6 /10.1

Table[z_f] presents the results, where Claude consistently outperforms the other models. GPT, Gemini,
and Llama-2-70b also demonstrate relatively strong performance, though with some variability across
different shot configurations. Interestingly, as in the previous experiment, the smaller models—such
as Gemma-7b and Mistral-7b—showed lower performance overall but exhibited significant improve-
ments with few-shot learning, highlighting their ability to effectively leverage additional examples.
Llama-2-13b and Mixtral 8x7B delivered moderate performance but still trailed behind the larger
models.

It is worth noting that the overall numbers in Table [4] are quite low, even when compared to the
results in Table [2} including for gold-standard tables usage. This may seem surprising at first, but
upon inspection, we found that many of the Pandas commands generated by the models contain
syntax errors or other issues that lead to execution failures. In contrast, the results in Table|2|do not
involve Python execution, which allows for more robust command interpretation and, as a result,
better answers.

6 Related Work

Information Extraction (IE) and Text-to-Table IE is the process of automatically extracting
structured information from unstructured text, involving sub-tasks like named entity recognition,



relation extraction, and event extraction. Many works have leveraged large language models (LLMs)
to provide effective solutions for IE [Ma et al.| 2023} |Lu et al., 2023 [Zhou et al., [2024]]. Recently,
Wu et al.| [2022] presented the concept of text-to-table, and Jiao et al.| [2023]] introduced InstructIE, a
benchmark that includes triplets of an IE instruction, their associated text, and the relevant content in
a tabular format (see Section[J). We employ a labeling methodology on top of InstructIE to distill
an aggregative instruction following challenge set. [Yuan et al.| [2024] presented an effort with a
similar focus on numerical tasks but with a narrower scope, limited to financial data. Another related
research realm is open information extraction, which aims to extract information without predefined
schemas, typically focusing on simple structures from short texts [Banko et al.,| 2007, [Mausam et al.,
2012} [Stanovsky et al., [2018], [Zhan and Zhao, [2020].

Complex and Numerical Reasoning A persistent challenge for LLMs lies in their ability to solve
numerical problems, particularly those involving mathematical calculations [Geva et al., 2020} Imani
et al., 2023] |Chang et al., [2024} |Ahn et al.l |2024]] or the need to stitch and aggregate information
across the text [Li et al., |2023| [Sprague et al., 2024, Jacovi et al.| 2024f]. Some works propose
to evaluate models on such tasks, by presenting challenge datasets based on financial data [Chen
et al., 2021} |Yuan et al., 2024f]. DROP [Dua et al., 2019]] and IIRC [Ferguson et al.| |2020], two
reading comprehension benchmarks involving reasoning, showcase the complexity of comprehensive
numerical reasoning. DROP focuses on discrete reasoning over paragraphs, requiring models to
perform operations like addition, counting, and sorting, while IIRC evaluates the ability to handle
incomplete contexts and locate additional sources of information. TACT focuses on a more practical
and common use-case: reasoning over texts given natural language instructions, necessitating the
integration of information scattered throughout the text.

Semantic Parsing is the process of converting natural language into a machine-interpretable
representation, such as a formal query or command [Pasupat and Liang, 2015] [Yoran et al., [2022}
Mekala et al.}2023| [Bogin et al.l 2023||. /E as a tool also aligns with previous research on semantic
parsing, as we utilize executable Pandas command generation over texts and tables, demonstrating
how LLMs can interpret and convert complex instructions into executable code operations.

Multi-step Reasoning and LLM Tools Our research is closely related to various methodologies
that utilize LLM tools for task resolution, as explored in recent studies [Parisi et al., [2022] Mialon
et al., [2023] [Schick et al., |2023|, [Hao et al., [2023| [Patil et al.| 2023|]. These methods train LLMs
to utilize APIs independently during inference, contrasting with our /E as a tool approach, which
employs a static strategy for addressing complex reasoning tasks. Furthermore, prior research has
emphasized enhancing task resolution through multi-step processes [Berant et al., 2014, |Drozdov
et al., [2023| [Zhou et al., 2023} [Fu et al., 2023]]. Unlike these approaches, which apply general
multi-step reasoning or tool triggering across various domains, /E as a tool specifically concentrates
on constructing tables and executing commands for numerical reasoning, thereby targeting a more
focused application of multi-step numerical reasoning.

7 Conclusion

In this paper, we introduced TACT—Text And Calculations through Tables, a dataset designed to
assess the reasoning capabilities of Large Language Models (LLMs) through complex, aggregative
instructions. TACT features numerical instructions that require processing and integrating information
dispersed across one or more texts for producing the correct answer. By leveraging the InstructIE
dataset [Jiao et al., 2023]], experts annotated and transformed instances into a format suitable for
aggregative instruction following, ensuring high precision and relevance. To better understand
the performance of LLMs on TACT, we provide further analysis that evaluates performance on
two distinct sub-tasks that are likely to be relevant for solving TACT (table-generation and Pandas
command-generation). We also provide a modeling scheme, IE as a tool, that is based on this
decomposition, and show that it improves performance on TACT. Future work could focus on further
enhancing the performance of LLMs on TACT by developing and integrating new, more sophisticated
tools that are specifically designed for handling complex, aggregative instructions over text.
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A Limitations

While our work and the introduced tools specifically target numerical complex reasoning tasks, they
are not designed to address the full spectrum of natural language processing challenges. Consequently,
their application to non-numerical tasks may not yield optimal results. Another significant limitation
is the sequential use of tools, which can introduce and propagate errors through the processing stages,
potentially compromising the accuracy and reliability of the final response. This propagation of
errors underscores the need for careful handling and validation at each step to mitigate compounding
inaccuracies. Future work should aim to develop more versatile tools and methodologies that can
handle a broader range of tasks while minimizing the risk of error propagation.

B License and Intended Use

The TACT benchmark, including templates and instructions, is licensed under the Creative Commons
Attribution NoDerivs 4.0 International License (CC BY ND 4.0). Contributions derived from
InstructIE [Jiao et al., 2023]], such as texts and tables, are provided under the terms of this license.
Users must assume responsibility for their use in accordance with the obligations to the creators
of InstructlE. The intended use of these materials is for the improvement and evaluation of large
language models (LLMs), and we assume full responsibility for any potential violations of rights and
confirm adherence to the licensing agreements associated with the data used in this study

We emphasize the strict use of the TACT dataset exclusively for evaluation purposes, prohibiting
its inclusion in NLP model training datasets to mitigate potential biases and contamination. We
implement measures to prevent data contamination as outlined by Jacovi et al.| [2023a], and we
require that any future redistribution or use of the data adheres to these same guidelines. Additionally,
redistribution of any part of the dataset is advised against without robust measures to block web-
crawler access. To facilitate the tracing and management of potential data contamination within
web-crawled corpora, a distinct 64-character identifier string is appended to each dataset instance.

C TACT Data Creation and Guidelines

In this section, we include additional details and material regarding the data creation process. We
provide the official guidelines that were given to the experts for creating the data (Appendix [C.T)
along with the concluded data creation process (Appendix [C.2)).

C.1 Guidelines

The data creation process was guided by a comprehensive set of guidelines, prepared to equip the
participants with the necessary skills and knowledge for the task. These prerequisites included
familiarity with basic Python, proficiency in the Pandas library, and an understanding of data
aggregation concepts such as sum, mean, and filtering. The original instructions are depicted in

Figure[5]
C.2 Creation Process

In the creation of TACT, we engaged NLP and data science experts (with a PhD degree specializing
in NLP), each with a minimum of four years of experience, to ensure high-quality data curation.
These experts reported that labeling each example typically required between 16 to 20 minutes.
Approximately 70% of this time was dedicated to carefully reading the provided tables and accompa-
nying texts, and formulating challenging numerical questions that draw on the data. The remaining
time was allocated to writing the queries, including one in Pandas and two in natural language,
and executing the Pandas query on the table to verify that the intended results were achieved. This
meticulous process guarantees that our dataset can both challenge LLMs and accurately reflects
realistic scenarios where mathematical reasoning is essential. The summarized data creation process

3The data, the full licence details are all available in https://huggingface.co/datasets/google/
TACT, and the TACT metadata is available in https://huggingface.co/api/datasets/google/TACT/
croissant.
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Data Creation Guidelines

Prerequisites

e Familiarity with basic Python and the Pandas library.
e Understanding of data aggregation concepts (e.g., sum, mean, filtering).

Task Objective
To extract and compute numerical aspects from provided text and table data in a replicable and unambiguous manner using the Pandas library.
Instructions
1. Careful Review and Assessment:
Read the text thoroughly.
Examine the attached instruction and provided table.
Relevance Assessment: Determine if the table contains numerical data that directly relates to the text and aligns with the given
instructions.
o Disregard tables if they:
i.  Were overlooked during the annotation phase, especially those that consist of only a single row without any complex or
challenging information leading to numerical computation.
ii.  Contain inaccurate information or do not accurately reflect the content of the text.
ii. ~ Are poorly structured, failing to clearly communicate key aspects.
iv. Focus solely on analyzing the structure rather than the content of the text, such as instructions aimed at extracting linguistic
features, semantic relationships, and discourse structures.
2. Numerical Aspect Identification:

o Identify a numerical aspect within both the text and the table that allows for counting, calculation, or aggregation (combining multiple
values).

o Ensure this aspect can be uniquely determined from the data.

3. Natural Language Instruction Creation:

o Formulate a clear, well-defined question in natural language that addresses the chosen numerical aspect. Log the expected
(numerical) answer for the question.

o Focus on Aggregation: Consider adding to the question a requirement for summation, average, count, or other calculations on the
data. You can add a complex function or combination as well, such as the sum of squares.

o Mitigate Ambiguity: Ensure the instruction has a single, straightforward interpretation.

4. Natural Language Query Over the Table:

o After formulating the natural language instruction, develop a corresponding natural language query over the table. This query refines
the focus on the numerical data within the table, ensuring that the essential information for computation is accurately delineated and
consistent with the intent of the initial instruction.

5. Pandas Command Formulation:

o Translate your natural language instruction into a precise Pandas command.

o Column Name Adherence: Use the original column names from the provided table.

o Clarity: Strive for a command that is easy to understand and replicate.

o  Expected Output: The final command should yield a numerical answer.

6. Command Execution and Validation:
o Execute your Pandas command.
o Verification: Meticulously verify that the result aligns with the original question and the data within both the text and table.

o o o

Example

Text: " The warehouse floor was a Tetris puzzle of wooden crates from the recent shipment. Stacked against the far wall, which was about 10 feet high,
twelve large crates towered over the rest, each a hefty 25 kilograms. It took about 4 hours to drop those. Closer to the loading dock, a cluster of six
medium-sized crates, 15 kilograms apiece, awaited their turn, which will roughly take 2 hours to unload. Tucked into a corner, five small crates, light at 8
kilograms each, seemed almost lost in the vast space, with about 30 minutes unloading time. This shipment was a mix of sizes and weights, ready to be
distributed to various destinations.”

Table:
Crate Size Quantity Weight (kg)
Large 12 25
Medium 6 15
Small 5 8

Natural Language Instruction: Calculate the total weight of the medium crates in the shipment, as if their quantity was equal to the number of small
crates.

Natural Language Query Over the Table : Given the following table, write a single-line pandas command in python, to calculate the product of ‘Weight
(kg)’ when its ‘Crate Size'is equal to ‘Medium’, with the ‘Quantity’ when its ‘Crate Size' is equal to ‘Small’.

Pandas Command Formulation:

df[df['Crate Size'] == 'Medium']['Weight (kg)'].astype(int).item()
* df[df['Crate Size'] == 'Small']['Quantity'].astype(int).item()
Result: 75

Figure 5: The data creation guidelines for the TACT Dataset. This figure presents a comprehensive
set of guidelines designed to assist annotators in extracting and computing numerical aspects from
provided text and table data using the Pandas library. The guidelines include steps for reviewing
and assessing the relevance of data, identifying numerical aspects, formulating natural language
instructions and queries, translating these into precise Pandas commands, and validating the results.
An example is provided to demonstrate the process, from text and table review to the execution and
verification of the computed result.
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with an accompanying example, following the guidelines above and the description in Section[2.2] is
illustrated in Figure[6] The resulting dataset and its components are compared to InstructIE in Figure
[7 [Piao et all, 2023

(a) Review and assess the text and the table, identify numerical aspects.

| Text: The warehouse floor was a Tetris puzzle . Table:

of wooden crates from the recent shipment. L

Stacked against the far wall, which was about 10 . ¢ |Cratesize  Quantity Weight (kg)
feet high, twelve large crates towered over the |

rest, each a hefty 25 kilograms. It took about 4 Large 12 25

hours to drop those. Closer to the loading dock, a Medium 6 15

cluster of six medium-sized crates, 15 kilograms .

apiece, awaited their turn, which will roughly take 2 © - small 5 8
hours to unload. Tucked into a corner, five small s

crates, light at 8 kilograms each...

7/ TACT Instruction: Calculate : 7 Query over the table: Given the following
the total weight of the medium . table, write a single-line pandas command in
crates in the shipment, as if their : . python, to calculate the product of ‘Weight (kg)’
quantity was equal to the number of .. when its ‘Crate Size'is equal to ‘Medium’, with the
small crates. . * ‘Quantity’when its 'Crate Size'is equal to ‘Small’.

% Pandas Command: . Answer:
df[df['Crate Size'] == 'Medium']['Weight (kg)'].astype(int).item() * - 75
df[df['Crate Size'] == 'Small']['Quantity’'].astype(int).item() o

Figure 6: The summarized data creation process for the TACT benchmark. This illustration outlines
the systematic guidelines employed for annotating numerical data derived from textual and tabular
content within the TACT framework. It elaborates on the sequential steps necessary for annotators to
effectively review text and tables, identify numerical data, formulate and translate these into natural
language instructions and corresponding Pandas queries, and finally, execute and validate these
commands. An example accompanies the instructions to showcase the entire process from initial
review to the successful execution and verification of the result.
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against the far wall, number of small rates. Medum |6 15 { Query Over the Table:
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each...

information with the
relevant numbers.

Small 5

8

Figure 7: TACT (above) and typical Information Extraction (IE) (below). TACT includes an
instruction, and allows various intermediate outputs before the answer generation, while IE focuses
on table generation. The TACT instruction, the Pandas command, the query over the table, and the
answer, were all created by NLP experts.

D Additional Experimental Details

In this section, we include additional experimental details, including the Large Language Mod-
els’ (LLMs’) settings we used in our experiments (Appendix [D.T)), the few-shot prompting setup
(Appendix [D.2), as well as the templates we used (Appendix [D.3).

D.1 Models and Inference Details

In our experiments, all large language models (LLMs) were configured to operate with a temperature
setting of 0.8. This parameter choice was aimed at striking an optimal balance between diversity
and coherence in the model’s responses, facilitating more varied yet still plausible outputs for the
generation of the final answer as well as the tools. For tasks involving table generation and Pandas
command generation, we parse the model’s response to extract the desired output from the generated
text. Conversely, for tasks requiring a numerical answer, we identify and consider the final number in
the generated text as the definitive response.

For the inference of open-source models in our study — Llama-2-13b-chaf} Llama-2-70b-chaf’|
[Touvron et al.,|2023], Gemma-7b-ilE| [Gemma-Team et al.,|2024], Mistral-7b-instrucﬂ [Jiang et al.,
2023]], and Mixtral 8x7ﬁ [Jiang et al.,[2024]], we utilized 8 H100 GPUs. For the rest of the evaluated
models, Gemini-1.0-Ultra, Gemini-1.0-Pro [Gemini-Team et al., 2023, we used the developers AP]ﬂ

D.2 Few-shot Prompting

In the few-shot evaluation settings, prompts were constructed by randomly choosing few-shot
examples out of a pool of 4 demonstrations (that were manually curated from the validation set
of InstructIE). These prompts were adjusted to include the maximum number of demonstrations
that, along with the query, stayed within the context length limit for all the evaluated models. We
ended up with 4 different prompts for each example, to maintain uniformity in the number of
shots. For zero-shot examples we ran the same prompt, but the temperature sampling maintained
randomness. This approach resulted in effectively 496 examples for each performance result report
in Sections[4 and[5} The robustness of this methodology allowed us to achieve statistically significant
results, demonstrating the reliability and efficacy of our few-shot evaluation framework in mimicking
real-world analytical tasks.

*huggingface.co/meta-1lama/Llama-2-13b-chat-hf
Shuggingface.co/meta-1lama/Llama-2-70b-chat-hf
Shuggingface.co/google/gemma-1.1-7b-it
"huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
$huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

9ai.google.dev
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1 In this task, you should calculate the numerical answer that is the
solution for the given instruction and text. The answer should be
numerical, using digits only.

3 Examplel:

4 Instruction: Calculate the sum of the year that "To Kill a Mockingbird"
was published in and the year that it won a prize according to the
text.

5 Text: ... It was published in 1960 ... A year after its release, it won
the Pulitzer Prize ...

Answer: 4021

Instruction: Count the number of achievements that include instructions.
Text: 1. We present FLAIR ... 2. How well can NLP models perform? ... 3.
Pretrained language models have become increasingly prominent ...

11 Answer: 3

6
7
8 Example2:
9
0

13 Example3:
14 Instruction: Calculate the sum of squares of the stock price increases in
the text.
15 Text: ... The S&P 500 rose 1.45) ... the Nasdaq Composite popped 1.07%
. The Dow Jones Industrial Average led gains, rising 2.12} ...
16 Answer: 0.0558

18 Now your turn:

19 Instruction: [Your custom instruction here]
20 Text: [Your relevant text spans here]

21 Answer:

Figure 8: Example of the Generic TACT task prompt provided to our evaluated models. The prompt
consists of basic instructions, several few-shot in-context examples, and the instance input. The
examples demonstrate how to generate the answer to the instruction, based on given instruction and
text. Note that the examples illustrated are slightly modified from the original TACT, for simplicity.

D.3 Prompt Templates

Next, we detail the template structures employed for our few-shot prompts. It’s important to note that
we tested multiple templates and settings to ensure that substantial effort was devoted to reporting
the strongest baseline prompt implementations. Our approach included the creation of prompts
designed for the specific tasks in this paper, each complemented by examples that demonstrate their
goal. The Generic TACT task prompt is depicted in Figure[8] and the Table Generation task prompt,
Table Generation task prompt, and the overall task prompt are illustrated in Figures[9} [I0] and [IT]
respectively. Figure [[T|matches both the In-context IE and IE as a tool setups, as for the latter we
insert the generated table and Pandas command as the outputs from the tools in Figures [9]and [I0] (see
Section ] for the setups’ details). Note that for the Chain-of-Thought (CoT) setups, the “Let’s think
step-by-step” suffix was added.
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1 In this task, you should create an appropriate CSV table according to the
given Instruction and Text.

3 Examplel:

4 Instruction: Calculate the sum of the year that "To Kill a Mockingbird"
was published in and the year that it won a prize according to the
text.

5 Text: ... It was published in 1960 ... A year after its release, it won
the Pulitzer Prize

6 Table:

7 "Event","Year"

8 "Published","1960"

9 "Prize Won","1961"

10

11

12 Example2:

13 Instruction: Count the number of achievements that include instructions.
14 Text: 1. We present FLAIR ... 2. How well can NLP models perform? ... 3.

Pretrained language models have become increasingly prominent
15 Table:
16 "Number","Achievement"
17 "1","We present FLAIR"
18 "2","How well can NLP models perform?"
19 "3","Pretrained language models prominence"

20
21
22 Example3:
23 Instruction: Calculate the sum of squares of the stock price increases in
the text.
24 Text: ... The S&P 500 rose 1.45% ... the Nasdaq Composite popped 1.07%
. The Dow Jones Industrial Average led gains, rising 2.12J ...
25 Table:

26 "Increase","Venture"

27 "1.45%","S&P"

28 "1.07%","Nasdaq Composite popped"
29 "2.12%","Dow Jones Industrial"

32 Now your turn:

33 Instruction: [Your custom instruction here]
34 Text: [Your relevant text spans here]

35 Table:

Figure 9: Example table generation prompt provided to our evaluated models. The prompt consists
of basic instructions, several few-shot in-context examples, and the instance input. The examples
demonstrate how to create a CSV table based on given instructions and text. Note that the examples
illustrated are slightly modified from the original TACT, for simplicity.
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In this task, you should create an appropriate Pandas command according to
the given Instruction, Text, and Table, such that the command will
run on the table and return the correct number answering the
instruction.

Examplel:
Instruction: Calculate the sum of the year that "To Kill a Mockingbird"
was published in and the year that it won a prize according to the

text.

Text: ... It was published in 1960 ... A year after its release, it won
the Pulitzer Prize

Table:

"Event","Year"
"Published","1960"

"Prize Won","1961"

Pandas Command:

df [’Year’] .astype(int) .sum()

Example2:
Instruction: Count the number of achievements that include instructions.
Text: 1. We present FLAIR ... 2. How well can NLP models perform? ... 3.

Pretrained language models have become increasingly prominent
Table:
"Number" ,"Achievement"
"1","We present FLAIR"
"2","How well can NLP models perform?"
"3","Pretrained language models prominence"
Pandas Command:

len(df)
Example3:
Instruction: Calculate the sum of squares of the stock price increases in
the text.
Text: ... The S&P 500 rose 1.45), ... the Nasdaq Composite popped 1.07%
. The Dow Jones Industrial Average led gains, rising 2.12% ...
Table:
"Increase","Venture"
" 1 . 45%" , IIS&P"

"1.07%","Nasdaq Composite popped"

"2.12%","Dow Jones Industrial"

Pandas Command:

(df [’Increase’].str.replace(’%’, ’’).astype(float) / 100).pow(2).sum()

Now your turn:

Instruction: [Your custom instruction here]
Text: [Your relevant text spans here]
Table: [Your relevant table here]

Pandas Command:

Figure 10: Example Pandas command generation prompt provided to our evaluated models. The
prompt consists of basic instructions, several few-shot in-context examples, and the instance input.
The examples demonstrate how to create a Pandas command based on given instructions, text, and
table. Note that the examples illustrated are slightly modified from the original TACT, for simplicity.
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1 In this task, you should calculate the numerical answer that is the
solution for the given instruction and text. Use the following Table
in your calculations, by executing the Pandas Command on it. The
answer should be numerical, using digits only.

(98]

Examplel:

4 Instruction: Calculate the sum of the year that "To Kill a Mockingbird"
was published in and the year that it won a prize according to the
text.

5 Text: ... It was published in 1960 ... A year after its release, it won
the Pulitzer Prize

6 Table:

7 "Event","Year"

8 "Published","1960"

9 "Prize Won","1961"

10 Pandas Command:

11 df[’Year’].astype(int).sum()

12 Answer: 4021

14 Example2:

15 Instruction: Count the number of achievements that include instructions.

16 Text: 1. We present FLAIR ... 2. How well can NLP models perform? ... 3.
Pretrained language models have become increasingly prominent

17 Table:

18 "Number","Achievement"

19 "1","We present FLAIR"

20 "2","How well can NLP models perform?"

21 "3","Pretrained language models prominence"

22 Pandas Command:

23 len(df)
24 Answer: 3
25

26 Example3:

27 Instruction: Calculate the sum of squares of the stock price increases in
the text.

28 Text: ... The S&P 500 rose 1.45), ... the Nasdaq Composite popped 1.07%

. The Dow Jones Industrial Average led gains, rising 2.12} ...

29 Table:

30 "Increase","Venture"

31 "1.45%","SgP"

32 "1.07%","Nasdaq Composite popped"

33 "2.12%","Dow Jones Industrial"

34 Pandas Command:

35 (df[’Increase’].str.replace(’}%’, ’’).astype(float) / 100).pow(2).sum()

36 Answer: 0.0558

38 Now your turn:

39 Instruction: [Your custom instruction here]
40 Text: [Your relevant text spans here]

41 Table: [Your relevant table here]

42 Pandas Command: [Your Pandas command here]
43  Answver:

Figure 11: Example of the TACT task prompt provided to our evaluated models, using tables and
Pandas commands. The prompt consists of basic instructions, several few-shot in-context examples,
and the instance input. The examples demonstrate how to generate the answer to the instruction, based
on given instruction, text, table, and Pandas command, and should generate the computed answer.
Note that the examples illustrated are slightly modified from the original TACT, for simplicity.
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