
Under review as a conference paper at ICLR 2024

ONLINE SPECULATIVE DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Speculative decoding is a pivotal technique to accelerate the inference of large
language models (LLMs) by employing a smaller draft model to predict the target
model’s outputs. However, its efficacy can be limited due to the low predictive
accuracy of the draft model, particularly when faced with diverse text inputs and
a significant capability gap between the draft and target models. We introduce on-
line speculative decoding to address this challenge. The main idea is to continually
update (multiple) draft model(s) on observed user query data using the abundant
excess computational power in an LLM serving cluster. Given that LLM inference
is memory-bounded, the surplus computational power in a typical LLM serving
cluster can be repurposed for online retraining of draft models, thereby making
the training cost-neutral. Since the query distribution of an LLM service is rel-
atively simple, retraining on query distribution enables the draft model to more
accurately predict the target model’s outputs, particularly on data originating from
query distributions. As the draft model evolves online, it aligns with the query
distribution in real time, mitigating distribution shifts. We develop a prototype of
online speculative decoding based on online knowledge distillation and evaluate
it using both synthetic and real query data on several popular LLMs. The results
show a substantial increase in the token acceptance rate by 0.1 to 0.65, which
translates into 1.22× to 3.06× latency reduction.

1 INTRODUCTION

Large language models (LLMs) such as GPT-4 (OpenAI, 2023), Claude (Bai et al., 2022), and
Llama (Touvron et al., 2023a;b) are rapidly reinventing today’s applications. Many companies are
racing to deploy LLMs in their vertical domains, such as search, chatbots, and virtual assistants.
Since most of these applications demand low latency, optimizing LLM serving latency is of vital
importance and can directly translate into better quality of service and cost reduction.

The latency of today’s LLM service is unfortunately very high. This is primarily because serving a
user query requires multiple serial evaluations of the LLM, each generating only one token of the
response. An emerging solution to reduce the latency is speculative decoding. Speculative decoding
employs a smaller model to speculate multiple output tokens of the target (large) model, then lets
the target LLM verify these speculations in parallel. Then, if the verification of a token fails, the
large model must recompute from that point. Therefore, the performance of speculative decoding
primarily depends on the speculation accuracy of the small model. In the presence of diverse text
inputs, the accuracy of existing speculative decoding methods is unfortunately not very high, due
to the capability gap between the draft and target model. Employing a larger, more accurate model
however defeats the purpose of speculative decoding as it potentially increases latency.

To address this challenge, we introduce a novel method, online speculative decoding, specifically
designed for online LLM services. The method leverages the abundant redundant compute, termed
as “spare flops,” available in a typical LLM serving cluster to continuously retrain (multiple) small
draft models through online learning on query data posted to the LLM service. Our approach is
simple and offers several significant advantages. First, user queries to a specific LLM service often
exhibit a common domain-specific distribution (Zheng et al., 2023a), reflecting shared usage pat-
terns. While accurately speculating the larger model’s outputs on any diverse input is challenging,
it is feasible to enhance the draft model’s prediction accuracy, only for similar inputs posted to the
service, characterized by the query distribution. This can be achieved by finetuning the draft model
on user query distribution or finetuning multiple draft models, each on a cluster of the query distribu-

1

Under review as a conference paper at ICLR 2024

tion, and selecting the appropriately specialized draft model to speculate based on the class of inputs
they are trained on. As shown in §5.2, we show that it is possible to train multiple draft models, each
for a different language or topic. Second, the primary bottleneck for transformer-based LLM infer-
ence is the accelerator’s memory bandwidth, as generating each word requires loading the model
weights from HBM to SRAM as well as reading the KV cache on all previous words. This results
in a substantial amount of unused compute, especially during non-spike traffic hours (Spector & Re,
2023; Chen et al., 2023; Kwon et al., 2023), in an LLM serving cluster. We demonstrate that these
spare FLOPs can be effectively repurposed for online retraining of draft models, with inconspicu-
ous retraining cost (§4.2.2). Third, since tuning is performed online, the draft models continuously
evolve over time based on the observed query data, which ensures high speculation accuracy even
when faced with shifts in query distribution.

Based on these insights, we develop an online speculative decoding framework to improve the effi-
ciency of online LLM serving. To align the draft model with the target model on a newly observed
user query, we develop a new online learning algorithm based on Generalized Knowledge Distilla-
tion (GKD) (Gu et al., 2023; Agarwal et al., 2023). The algorithm keeps track of the recent queries
that the draft model has speculated incorrectly, and forces the draft model to emulate the target
model’s outputs on these queries. The algorithm performs GKD-based gradient update opportunis-
tically only when spare flops are available, hiding the overhead.

In summary, this paper makes the following contributions:

• We introduce online speculative decoding to reduce LLM serving latency by adapting (multiple)
draft models on the fly using query data and knowledge distillation.

• We explore various GKD methods for constructing draft models and identify the most effective
variants, suggesting them as superior alternatives to existing finetuning methods in offline settings.

• Our method demonstrates a significant improvement in token acceptance rate by 10-65% on di-
verse datasets, translating to 1.2-3.1× reduction in latency theoretically, with a negligible addi-
tional cost. It surpasses existing methods which construct static draft models using fine-tuning or
distillation on offline datasets, and matches the hypothetical accuracy achieved if all query data
were available a priori.

2 RELATED WORK

LLMs have become pervasive in today’s AI applications, underscoring the importance of optimizing
LLM inference. Numerous system optimizations have been developed to optimize the throughput
of LLM serving (Yu et al., 2022; Kwon et al., 2023). This paper particularly concentrates on a
significant strand of research, speculative decoding, aimed at reducing the latency of LLM inference.

Speculative decoding. Speculative decoding (Leviathan et al., 2023; Chen et al., 2023) accelerates
LLM decoding by employing a (small) draft model to predict the outputs of the larger target model,
which are then verified by the target model. Typically, the draft model, while having fewer parame-
ters, is pretrained using the same training data as the target mode, resulting in a negotiable inference
cost but with compromised capability. If the draft model can correctly predict more than one token
per verification step, the memory I/O for accessing the model weights and KV cache at inference is
amortized across multiple output tokens, thereby reduces latency, especially since LLM inference is
often constrained by GPU HBM bandwidth. The efficacy of speculative decoding largely hinges on
the draft model’s ability to accurately predict the target model’s outputs. Existing work improves
the speculation accuracy by using multiple collectively boosted (Miao et al., 2023) or staged (Spec-
tor & Re, 2023) draft models, or retraining the target model with auxiliary prediction heads as a
draft model (Cai et al., 2023; Stern et al., 2018). These methods predominantly assume a static
draft model post-deployment. In contrast, our work introduces a framework that actively adapts
the draft model to the evolving user query distribution on the fly, irrespective of the draft model’s
construction.

Distillation for auto-regressive models. Knowledge distillation (KD) is a framework to generate
smaller models that emulate the performance of larger models. However, KD in its conventional
form has been observed to be less effective for LLMs. Gu et al. (2023) extend KD to autoregres-
sive LLMs by decoding from the student model and optimizing the reserve KL divergence between
students and teachers. Further, Agarwal et al. (2023) introduce generalized knowledge distillation

2

Under review as a conference paper at ICLR 2024

(GKD) to optimize a linear combination of the forward KL and reverse KL between teacher and stu-
dent, using a blend of teacher- and student-sampled data. Drawing inspiration from both works, our
paper applies KD to speculative decoding for LLMs. We empirically determine the most effective
KD variant for maximizing the draft model’s accuracy, and extend it to dynamically generate draft
models for online LLM services.

3 BACKGROUND

We first briefly review speculative decoding (Leviathan et al., 2023), a critical technique that accel-
erates inference of a large target LLM p(·|x) with token proposals from a small draft model qθ(·|x).
x denotes the concatenation of the input prompt and already generated tokens. The two distributions
are both auto-regressive. We emphasize the parameters θ of the draft model because we usually need
to tailor them according to the target LLM for more substantial acceleration.

Speculative decoding uses a (small) draft model to propose k tokens y ≜ {yi}ki=1 ∼ qθ(·|x), and
let the target LLM estimate the k + 1 probabilities, {p(y|x,y<i)}k+1

i=1
1, in parallel. With i rising

from 1 to k, speculative decoding accepts the proposal yi if u ≤ p(yi|x,y<i)/qθ(yi|x,y<i) where
u ∼ U [0, 1]; otherwise exits. Let a denote the number of accepted tokens, which takes values in
{0, . . . , k}. We can sample an additional token ya+1 from the following distribution

p′(y) =

{
p(y|x,y<a+1) if a = k

norm(max(0, p(y|x,y<a+1)− qθ(y|x,y<a+1))) otherwise
(1)

where norm(·) makes the probabilities over the vocabulary sum to 1.

Prior work has shown that the resulting samples ỹ ≜ {y1, . . . , ya+1} strictly follow the distribution
of the target LLM p(·|x) (Leviathan et al., 2023). We concatenate ỹ to x and repeat the above
process until meeting 〈EOS〉. Each run of the target LLM generates a+ 1 tokens with a ≥ 0. This
ensures that at least one new token is generated even in the worst case. The generation process can
be significantly accelerated if the draft LLM better approximates the target one, particularly a is
larger for each target LLM run.

Expected acceptance rate & speedup. The acceptance rate, denoted as α, serves as a measure of
how closely the draft model approximates the target model. It is defined as the expected probability
that speculative decoding will accept a proposal token given the prompt yi ∼ qθ(yi|x,y<i). This
rate directly influences the expected length (E(|ỹ|)) of ỹ for each target LLM run and the speedup
brought by speculative decoding.

Assuming that the k+1 simultaneous evaluations of the target LLM p take roughly the same amount
of time as generating a single token in parallel, let c be the time ratio for a single run between qθ
and p. The expected generation length of a single target LLM run and the speedup in the total wall
time due to speculative decoding is represented as (Leviathan et al., 2023):

E(|ỹ|) = 1− αk+1

1− α
, E(speedup) =

1− αk+1

(1− α)(kc+ 1)
. (2)

We depict the speedup for varying values of α in Figure 1, which demonstrates the importance of α
in affecting the speedup.

Observation. Interestingly, we can actually enhance α based on a key observation: the specu-
lative decoding process inherently identifies the inaccuracies of the small draft LLM and offers
correct solutions for these inaccuracies. This essentially means that we receive valuable insights
on the areas and strategies to refine the draft model at no additional cost. Viewed through the
lens of online learning, we can effortlessly accumulate a set of input-output pairs, denoted as
([x,y<a+1], p(y|x,y<a+1)), that have yet to be assimilated by the draft LLM, paving the way
for its subsequent optimization. Given the reduced size of the draft model (for instance, it may be
over 20× smaller than the target model), its tuning is not only efficient but also viable for real-time
online adjustments. Prior work (Leviathan et al., 2023; Miao et al., 2023) has primarily approached
speculative decoding in an offline manner, meaning the draft model remains static during online
deployment. We next develop online speculative decoding to bridge this gap.

1y<i refers to {yj}i−1
j=1.

3

Under review as a conference paper at ICLR 2024

0.2 0.4 0.6 0.8
Alpha

0.5
1.0
1.5
2.0
2.5
3.0
3.5

Ex
pe

ct
ed

 S
pe

ed
up

k=3 (c=0.1)
k=5 (c=0.1)
k=7 (c=0.1)
k=9 (c=0.1)

0.2 0.4 0.6 0.8
Alpha

1

2

3

4

Ex
pe

ct
ed

 S
pe

ed
up

c=0.01(k=5)
c=0.05(k=5)
c=0.1(k=5)
c=0.2(k=5)

Figure 1: Speculative decoding speedups for varying values of α in Figure 1. For smaller α val-
ues, speculative decoding may even degrade performance (indicated by a speedup < 1), particularly
when the draft model is sizeable. Furthermore, the relationship between speedup and α is superlin-
ear; doubling the acceptance rate can yield a speedup exceeding 2×.

4 ONLINE SPECULATIVE DECODING

We propose the online speculative decoding approach to update the draft model dynamically for
more effective suggestions. We frame the learning problem based on the aforementioned auxiliary
information as online knowledge distillation, where the teacher and student models correspond to
the target and draft LLMs in speculative decoding, respectively. We elaborate on the details below.

4.1 KNOWLEDGE DISTILLATION FOR SPECULATIVE DECODING

Knowledge distillation is a general framework to align the predictive distribution of a small model
(i.e., student model) with that of a larger one (i.e., teacher model). Prior research has utilized knowl-
edge distillation to compress neural networks, resulting in decreased inference costs and memory
requirements. We posit that knowledge distillation is highly effective for speculative decoding. In
this approach, the draft model acts as the student and the target model serves as the teacher. During
speculative decoding, we possess complete information on both the proposed and verified proba-
bilities of each token. This information helps to construct objectives for distilling the draft model,
aligning its output distributions with those of the target model and thereby improving the token
acceptance rate of the draft model. The distillation loss generally takes the form of:

ℓ(θ) =
1

nB

∑
x(i)∈B

ℓ(x(i),θ), ℓ(x,θ) = D(p(·|x)∥qθ(·|x)), (3)

where B = {x(i)}nB
i=1 denotes a batch of inputs and D denotes some distance measure.

Distance measure. In the case of auto-regressive models, the prediction distribution is categorical
at each token. Often, we can augment the predicted logits with a tunable temperature τ for softmax
transformation. We then use the popular forward KL and reverse KL (RKL), as well as their mixture
(i.e., the JSD divergence) to instantiate D (Agarwal et al., 2023; Gu et al., 2023):

ℓKL(x,θ) = DKL(p(·|x)∥qθ(·|x)),
ℓRKL(x,θ) = DKL(qθ(·|x)∥p(·|x)),

ℓJSD[β](x,θ) = βDKL

(
p(·|x)

∥∥pβθ(·|x))+ (1− β)DKL

(
qθ(·|x)

∥∥pβθ(·|x)) ,

(4)

where pβθ(·|x) ≜ βp(·|x) + (1 − β)qθ(·|x). These objectives diverge from the conventionally
used label-based fine-tuning objectives in speculative decoding, as highlighted in (Miao et al., 2023;
Leviathan et al., 2023). As shown in Section 5.1, objectives based on the KL divergence prove to
be more effective. This is because distributions convey richer information than mere labels, thereby
enhancing their capability to guide the student model (Hinton et al., 2015). Additionally, these
objectives enhance convergence rates (He et al., 2022) and bolster calibration. The reverse KL is
highlighted for its mode-seeking behavior, offering unique advantages (Gu et al., 2023). In our
study, and in alignment with previous research (Agarwal et al., 2023), we empirically determine
that the optimal distance measure can vary depending on the tasks and the relative capacities of the
teacher and student models (see §5.1).

4

Under review as a conference paper at ICLR 2024

Algorithm 1 Online Speculative Decoding.
1: Input: Target LLM p(·|x), draft LLM qθ(·|x), warmup dataset D, online data stream S, guess number k,

temporary bufferR, replay bufferQ, update interval for the draft model I .
2: Pre-train qθ to approximate p with data from D by minimizing ℓ(x,θ) using Equation (5);
3: i← 0;
4: Q ← [];
5: cur len = |x| // Total sequence length, including prompt length and tokens generated so far.
6: while True do
7: R ← [] // List of (error index, target logits at error index) pairs for a single request.
8: x ∼ S, i← i+ 1;
9: while 〈EOS〉 not in x do

10: y = {y1, ..., yk} ∼ qθ(·|x);
11: Estimate {p(y|x,y<i)}k+1

i=1 in parallel;
12: Determine number of accepted tokens a and sample one more token, yielding y = {y1, . . . , ya+1};
13: cur len← cur len+ a+ 1;
14: error index← cur len;
15: Append (error index, p(y|x,y<a+1)) toR;
16: x← [x,y<a+2];
17: end while
18: Append (x,R) toQ;
19: if i mod I = 0 then
20: Update qθ onQ to minimize ℓ(x,θ) analytically;
21: Q ← [];
22: end if
23: end while

Sampling and gradient estimation. Estimating the above objectives involves the expectation over
qθ(·|x) or p(·|x), which should be expanded recursively. Once the recursion depth exceeds 1, we
can not analytically compute DKL but hinge on Monte Carlo approximation. When sampling from
qθ(·|x), we should differentiate through the sampling process for unbiased gradient estimation.
However, this leads to policy gradient-style estimators and should rely on elaborate policies such as
reward hacking and single-step regularization to reduce gradient variance and stabilize training (Gu
et al., 2023).

In comparison, a more straightforward approach is to omit the differentiation through the sampling
process (Agarwal et al., 2023), where the sample y is directly plugged into the objective:

ℓ(x,θ) ≈
|y|+1∑
j=1

D(p(y|x,y<j)∥qθ(y|x,y<j)). (5)

This way, various distance measures can be readily applied. Besides, the sampling becomes disen-
tangled from the distance measure. i.e., we sample y from an arbitrary mixture of p(·|x) and qθ(·|x)
but use KL, RKL or JSD for estimating the distribution mis-alignment.

Intuitively, the samples from the teacher model are usually coherent, which may raise difficulties in
fitting the small student model, while samples from the student model may be less structured or even
meaningless. A workaround strategy is to trade off between them via mixed sampling (Gu et al.,
2023), i.e., yj ∼ βp(·|x,y<j) + (1− β)qθ(·|x,y<j).

4.2 ONLINE KNOWLEDGE DISTILLATION

This section expands the application of knowledge distillation for speculative decoding in online
environments. The approach enables improving the performance of draft model using results from
speculative decoding, thus dynamically adapting to the query distribution and improving token ac-
ceptance rate. We also discuss the trade-off of our approach when integrating LLM serving systems.

4.2.1 ALGORITHM

We depict our online speculative decoding algorithm (OSD) in Algorithm 1. OSD begins by training
the draft model using the warmup dataset (Line 2). The serving system then continuously handles
incoming requests (as described in Lines 6 to 23). For each request, it uses standard speculative

5

Under review as a conference paper at ICLR 2024

decoding (Lines 10-11) to generate responses until the 〈EOS〉 token. Concurrently, OSD tracks the
token index (error index) and target logits where the draft model proposes the wrong tokens (Line
15). Leveraging tracked information, OSD updates the draft model every I iteration, with I being a
dynamically adjustable parameter. OSD updates the draft model with different loss functions (Line
20) as described in Section 4.1. The choice of loss function depends on the specific (draft, target)
model pairs and the corresponding input data.

Discussion. OSD utilizes a replay buffer, Q, to capture all pertinent information for updating the
draft model. Various eviction policies can be employed to maintain a compact size for Q. For ex-
ample, one could opt to retain only the most informative pairs or the most recent entries. Similarly,
users have the option to retain data in Q even after utilizing it to update the model multiple times.
Determining the optimal eviction/retention strategy is a subject for future exploration. In the current
study, we refrain from evicting any pairs and release Q after each model update. Furthermore, I
is a dynamic parameter. Depending on the system load and the rate at which the query distribution
changes, users can adjust I accordingly. For example, we can perform a gradient update opportunis-
tically only when the service traffic is not on spike (i.e., spare flops are available). Overall, OSD
continuously improves the draft model’s approximation (indicated by increased token acceptance
rate α) by learning from the target model during the serving phase. We next demonstrate how the
enhanced acceptance rate directly contributes to a reduction in request latency.

4.2.2 LATENCY & FLOPS ANALYSIS

Latency. As detailed in Appendix A.2, compared with standard speculative decoding, the expected
speedup for online speculative decoding is 1+α2+α2

2+...+αk
2

1+α1+α2
1+...+αk

1
. Based on the data from our experiment

(refer to Table 1), when compared to standard speculative decoding, we expect a speedup improve-
ment for Vicuna-7B (LLaMA-160M as the draft model) by factors of 2.42×, 1.43×, 1.64×, and
1.22×. Similarly, for Flan-T5-XL 3B (T5-small 80M as the draft model), the speedup enhance-
ments are 3.06×, 1.76×, 2.72×, and 1.55× across the four evaluated datasets.

FLOPs. (1) The FLOPs required to update the draft model are significantly fewer than those needed
for inference on a large model. As elaborated in Appendix A.3, for the two evaluated model pairs,
the FLOPs ratio between the target model and the draft model is 18.75 for the pair (LLaMA-160M,
Vicuna7B), and 12.6 for the pair (T5-small 80M, Flan-T5-XL 3B). (2) In practical systems, the
FLOPs required for inference are significantly below the machine’s capacity. The Appendix A.3
provides an analysis of Arena chatbot traces where the cluster’s computational utilization is under
1 percent. Given the above two observations, it becomes evident that the FLOPs spent on inference
and updating the draft model are relatively insignificant when juxtaposed with the FLOPs consumed
while operating the target model and the cluster’s total FLOPs.

5 EXPERIMENTS

To assess the efficacy of our method, we initially evaluate its ability to improve the token acceptance
rate (α) within an offline context. This provides us with a theoretical upper bound on the perfor-
mance improvements achievable when the query distribution remains constant. Subsequently, we
examine the approach’s impact in an online environment, discovering that the acceptance rate im-
proves even with a moderate amount of data while maintaining accuracy levels comparable to those
in the offline scenario. Throughout our experiments, we employ two target models (Mp): Vicuna-
7B (Chiang et al., 2023) and FLAN-T5-XL (3B) (Chung et al., 2022). Specifically for Vicuna-7B,
we utilize LLaMA-160m (Miao et al., 2023) as the draft model (Mq). For FLAN-T5-XL, we use
T5-Small (Raffel et al., 2020) as the draft model. We evaluate performance across four diverse
datasets: Text-to-SQL (Spider) (Yu et al., 2018), graduate school math (Gsm8k) (Cobbe et al., 2021),
Python code generation (Code-search-Python) (Husain et al., 2019), and financial question answer-
ing (Alpaca-finance) (Bharti, 2023). In all experiments, we set the number of proposed tokens to 5
for speculative decoding. For all online experiments, we fix the update interval I at 8.

6

Under review as a conference paper at ICLR 2024

Table 1: Token acceptance rates (α) after two epochs. FT: Finetuning on teacher-generated labels.
TF, SF, MixF: Teacher, student, and mix token sampling respectively, all with forward KL.

Model Task Original FT TF SF MixF

Vicuna-7B

Spider 0.28 0.74 0.76 0.62 0.70
Gsm8k 0.58 0.74 0.75 0.67 0.73
Code-search-Python 0.38 0.65 0.65 0.51 0.61
Alpaca-finance 0.57 0.68 0.67 0.63 0.65

FLAN T5-XL

Spider 0.13 0.33 0.78 0.67 0.70
Gsm8k 0.29 0.50 0.62 0.51 0.55
Code-search-Python 0.28 0.44 0.81 0.67 0.78
Alpaca-finance 0.39 0.56 0.63 0.59 0.60

5.1 OFFLINE EVALUATION

In this section, we assess the efficacy of employing knowledge distillation to train a small model
specifically for speculation in an offline environment. In such a setting, the speculative Mq model
has unrestricted access to the dataset, and the query distribution remains stable. To emulate these
offline conditions, we distill the Mq using the training dataset for two epochs and subsequently
evaluate its performance by measuring the average token acceptance rate (α) on the test set. As
detailed in Section 4.1, we evaluated various sampling methods, namely teacher sampling, student
sampling, and mix token-level sampling. Table 1 displays the token acceptance rate of the draft
model for each method, using forward KL as the distance metric on the test dataset. For comparison,
we also provide the acceptance rate for teacher-generated label fine-tuning and the original model.

For both the Vicuna-7B and FLAN-T5-XL models, the teacher sampling method outperforms others
by achieving the highest acceptance rate. Furthermore, knowledge distillation has proven its efficacy
in enhancing the draft model’s approximation, resulting in a high token acceptance rate. Lastly, we
experimented with different distance measurements like reverse KL and JSD. Nevertheless, these
measurements either paralleled or underperformed when compared to forward KL. The optimal
distance measurement or sampling method varies depending on the task and model, and we leave it
to future work to find the best combination.

5.2 ONLINE EVALUATION

Online Learning. First, we evaluate the effectiveness of our online algorithm by addressing two
key questions: (1) Does the online algorithm increase the token acceptance rate? And is this en-
hancement comparable to the rates achieved in offline settings, which serve as an upper bound given
their full access to data? (2) How quickly does the online algorithm increase the token acceptance
rate, thereby indicating that the compact model has grasped the underlying distribution?

In our approach, we replicate the online serving process by iterating through the datasets, extracting
prompts, and streaming generation requests. The system utilizes speculative decoding for each of
these requests. Throughout this serving phase, we continually refine the speculative models, as
detailed in Algorithm 1. For our baseline, we envision a scenario where the serving system has the
capability to collect data offline in order to distill an initial draft model. This model is subsequently
deployed online to cater to future requests. This process is simulated by using 10% of the dataset
to distill the draft model, which remains static during online serving. For evaluation metrics, we
calculate token acceptance rates averaged over the most recent 50 requests. This demonstrates Mq’s
efficacy on the most current data.

As depicted in Figure 2, both for Vicuna-7B and FLAN-T5, in the beginning, OSD yields a lower
token acceptance rate in comparison to the offline distilled model. Nevertheless, these acceptance
rates rise swiftly as the draft model is exposed to more data. We also annotate the token accep-
tance rate from the offline setting to highlight the potential peak performance that the online serving
system could reach. In all instances, the online context can achieve comparable results. In some
scenarios, OSD even surpasses the token acceptance rate of the offline test alphas. This discrepancy
can be attributed to the fact that offline test alphas are assessed on the entire test dataset, whereas
the online alphas represent the moving average of the latest 50 requests. It’s plausible that OSD per-

7

Under review as a conference paper at ICLR 2024

Online Speculative Decoding Offline Distilled with 10% data Offline Test Alphas

0 2 4 6
of Records (K)

0.3
0.4
0.5
0.6
0.7
0.8

Al
ph

a

Vicuna

Spider

0 2 4 6
of Records (K)

0.5

0.6

0.7

0.8

Al
ph

a

Vicuna

Gsm8k

0 2 4 6 8
of Records (K)

0.3
0.4
0.5
0.6
0.7
0.8

Al
ph

a

Vicuna

Code-search-python

0 2 4 6 8
of Records (K)

0.5

0.6

0.7

0.8

Al
ph

a

Vicuna

Alpaca-finance

0 2 4 6
of Records (K)

0.0

0.2

0.4

0.6

0.8

1.0

Al
ph

a

FLAN-T5
0 2 4 6

of Records (K)

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Al
ph

a

FLAN-T5
0 2 4 6 8

of Records (K)

0.2

0.4

0.6

0.8

1.0

Al
ph

a

FLAN-T5
0 2 4 6 8

of Records (K)

0.3

0.4

0.5

0.6

0.7

Al
ph

a

FLAN-T5

Figure 2: Online acceptance rate (α) across different datasets. The x-axis represents the number of
records that OSD has processed. Alpha is averaged over the most recent 50 records.

0 1 2 3 4 5 6 7 8
of Records (K)

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

Al
ph

a

Gsm8k Spider Alpaca-
finance

Code-search-
python

Online
30%
50%

70%
100%

Figure 3: Distribution Shift: Alpha is averaged over the most recent 100 records.

forms optimally on specific data subsets, particularly if those subsets are more narrowly distributed
than the complete dataset.

Distribution Shifts. We evaluate OSD’s ability to adapt to changes in data distribution. We detail
the experiment setting in Appendix A.6. As illustrated in Figure 3, OSD’s alpha value dips notably at
distribution boundaries, especially around 2K, 4K, and 6K records. This is anticipated since the draft
model initially struggles when faced with a new distribution. However, the alpha value rebounds
quickly as OSD processes more data, highlighting its adaptability to shifting query distributions.

We also compared our results to those from a static setting. To ensure the draft model wasn’t just
memorizing data, we chose samples distinct from the online evaluation data. These samples cor-
respond to 30%, 50%, 70%, and 100% of each dataset’s online evaluation volume, at 0.6K, 1K,
1.4K, and 2K quantities respectively. As depicted in Figure 3, upon an initial shift in query distri-
bution, OSD’s performance aligns with or slightly trails the distillation with 30% data. However, it
quickly catches up, matching or even surpassing performances seen with 70% to 100% data access.
This highlights OSD’s ability to rival models fully exposed to the query distribution, even without
intimate knowledge of the underlying query dynamics.

Real Workloads. We evaluate OSD on real LMSYS-chat conversations (Appendix A.7) that span
4 months. First, we categorize conversations based on the language and we focus on conversations
among the top five languages, excluding English. For every chosen language, we use an independent
LLaMA-160M to serve as our draft model. All draft models share the same Vicuna-7B as the target
model. The token acceptance rate, averaged over the latest 100 requests, showed in Figure 4, reveals
that OSD’s enhances rates by 0.1 to 0.2, even with under 2K data points. Notably, Japanese was the
easiest while Portuguese was the toughest. We also clustered English conversations by topics using
the fine-tuned distilled Bert model (Luqmani, 2023), focusing on the top five. For topics with over
5K conversations, we sampled evenly to keep it within 5K. Figure 4 shows acceptance rates above
0.6 across topics, with Social and Computer discussions peaking near 0.8.

5.3 QUALITATIVE ANALYSIS

In this section, we conduct a comprehensive analysis to understand how our method enhances the
token acceptance rate, and which tokens the draft model acquires across varying query distributions.

8

Under review as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5
of Records (K)

0.3

0.4

0.5

0.6

0.7

Al
ph

a

Language

Chinese
Japanese

Spanish
Portuguese

Russian

0 1 2 3 4 5
of Records (K)

0.5

0.6

0.7

0.8

0.9

Al
ph

a

Topic

Business
Eduation

Computer
Social

Game

Figure 4: Chatbot Arena Conversations clustered by language and topic.

0 20 40 60 80 100
Top 100 frequent tokens

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Distilled Original

0 20 40 60 80 100
Top 100 frequent tokens

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Distilled Original

Figure 5: Precision and recall of high-frequency tokens. The x-axis shows the rating of the tokens
based on their occurrence in the generated answers. For instance, token 1 appears most frequently
in answers. Precision = # of times token i is accepted by the target model / # of times token i is
proposed by the draft model. Recall = # of times token i is accepted by the target model / # of times
token i appears in the final answer.

High-frequency tokens precision and recall. In our experiment using the Spider dataset, Vicuna-
7M is the target model, and LLaMA-160M is the draft. We identify the top 100 tokens most fre-
quently generated by the target model, which account for 72.2% of all appearances, following a
power-law distribution. Figure 5 shows a marked improvement in both accuracy and recall of these
tokens after distillation on the test dataset in an offline evaluation.
Table 2: Top 15 tokens with the most recall/precision improvement across datasets. We ignore
before tokens, which represents space in the LLaMA tokenizer.

Dataset Spider Gsm8k Alpaca-Finance Code-Python

Tokens
with the
greatest
precision
increase

AV, SELECT, first,
〈EOS〉, template,
SUM, G, COUNT,
\n, city, WHERE,
’;, (, IST, id

〈EOS〉, >>, +, To,
<<, this, =, %,
know, are, We, cal-
culate, be, The,
have

1, Here, (, :, pro-
vide, depends,
However, goals,
amount, 3, there,
The, \n, personal,
will

”’, (, Here, python,
’, how, doc, snip-
pet, import, based,
{, Python, This, :,
you

Tokens
with the
greatest
recall in-
crease

SELECT, *,
FROM, (, IST,
*), \n, COUNT,
G, first, WHERE,
〈EOS〉, IN, ;,
MAX, ’;

start, >>, <<, +,
find, how, we, =,
fore, To, so, \,
〈EOS〉, then, let

general, 1, several,
This, depends,
Here, provide,
However, goals,
over, (, If, amount,
it, can

Here, This, snip-
pet, ”’, ’, how,
python, (, takes,
Python, you, doc,
an, import, def

Tokens learned across different datasets In our study, we analyze the top 10 tokens with the
most pronounced accuracy and recall improvements across various datasets, focusing on the 100
most frequent tokens to understand the draft model’s learning trends. As detailed in Table 2, the
improved tokens align well with the underlying data distribution. For example, in the Spider dataset,
which frequently generates SQL statements, tokens like SELECT and WHERE have notably higher
acceptance rates post-distillation. These patterns highlight the draft model’s ability to adapt and
predict tokens consistent with the data distribution.

6 CONCLUSION

Speculative decoding’s efficiently hinges on the draft model’s approximation to the target model. We
introduce an online speculative method that continuously enhances the draft model based on varying
data distributions. Experiments on both synthetic and real data demonstrate that online speculative
decoding swiftly adapts to new data distributions, significantly enhancing token acceptance.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Tinyllama, Sep 2023. URL https://github.com/jzhang38/TinyLlama.

Rishabh Agarwal, Nino Vieillard, Piotr Stanczyk, Sabela Ramos, Matthieu Geist, and Olivier
Bachem. Gkd: Generalized knowledge distillation for auto-regressive sequence models. arXiv
preprint arXiv:2306.13649, 2023.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Gaurang Bharti. gbharti/finance-alpaca, 2023. URL https://huggingface.co/datasets/
gbharti/finance-alpaca. Accessed: 2023-09-17.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, and Tri Dao. Medusa: Simple frame-
work for accelerating llm generation with multiple decoding heads. https://github.com/
FasterDecoding/Medusa, 2023.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language mod-
els. arXiv preprint arXiv:2210.11416, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Georgi Gerganov. llama.cpp, 2023. URL https://github.com/ggerganov/llama.cpp. Ac-
cessed: 2023-11-22.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Knowledge distillation of large language models.
arXiv preprint arXiv:2306.08543, 2023.

Ruifei He, Shuyang Sun, Jihan Yang, Song Bai, and Xiaojuan Qi. Knowledge distillation as efficient
pre-training: Faster convergence, higher data-efficiency, and better transferability. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9161–9171, 2022.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt.
CodeSearchNet challenge: Evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. arXiv preprint arXiv:2309.06180, 2023.

10

https://github.com/jzhang38/TinyLlama
https://huggingface.co/datasets/gbharti/finance-alpaca
https://huggingface.co/datasets/gbharti/finance-alpaca
https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://github.com/ggerganov/llama.cpp

Under review as a conference paper at ICLR 2024

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Ali Mazhar Luqmani. distilled bert topic, 2023. URL https://huggingface.co/alimazhar-110/
website classification. Accessed: 2023-10-07.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Rae Ying Yee Wong,
Zhuoming Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating
generative llm serving with speculative inference and token tree verification, 2023.

R OpenAI. Gpt-4 technical report. arXiv, pp. 2303–08774, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2020.

Benjamin Spector and Chris Re. Accelerating llm inference with staged speculative decoding. arXiv
preprint arXiv:2308.04623, 2023.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information Processing Systems, 31, 2018.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A
distributed serving system for {Transformer-Based} generative models. In 16th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 22), pp. 521–538, 2022.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle Li, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zhuohan Li, Zi Lin, Eric Xing, et al. Lmsys-chat-1m: A large-scale real-world llm
conversation dataset. arXiv preprint arXiv:2309.11998, 2023a.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle Li, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zhuohan Li, Zi Lin, Eric. P Xing, Joseph E. Gonzalez, Ion Stoica, and Hao Zhang.
Lmsys-chat-1m: A large-scale real-world llm conversation dataset, 2023b.

11

https://huggingface.co/alimazhar-110/website_classification
https://huggingface.co/alimazhar-110/website_classification

Under review as a conference paper at ICLR 2024

(,)

Draft Model
(student)

Target Model
(teacher)Proposal Verification

t1 t2 t3 t1 t2 t3_correct

Update Model when size(Buffer) > Threshold
Distance metric: KL/Reverse KL/ JSD

Buffer

…………

Prompt

resume from t3_correct to generate subsequent tokens

t3 t3_correct
logits distribution

Figure 6: Online speculative decoding overview. For each prompt, the draft model suggests multiple
tokens in a single step. The target model then verifies these tokens, accepting some and rejecting
others. If the student proposes incorrect tokens, both the draft and target distributions are stored in a
buffer. Once the buffer exceeds a specified threshold, the draft model is updated by calculating the
loss between the draft and target distributions using various distance metrics.

A APPENDIX

A.1 SPEEDUP OF SPECULATIVE DECODING

As proved in Leviathan et al. (2023), compared with standard decoding, the expected improvement
factor for offline speculative decoding is 1−αk+1

(1−α)(ck+1) . Let the time taken for a single run of Mp

be T . Define c, the cost coefficient, as the ratio of the time taken for a single run of Mq to that of
Mp. Each execution of lines 7 to 8 takes Tck + T and, on average, yields 1−αk+1

1−α tokens. As a

result, the average time to produce one token using speculative decoding is given by (ck+1)(1−α)
1−αk+1 T .

In contrast, the time to produce a single token using standard decoding is T . Hence, the wallclock
time reduction of offline speculative decoding can be described as 1−αk+1

(1−α)(ck+1) .

A.2 LATENCY ANALYSIS

Suppose OSD can improve the token acceptance rate from α1 to α2 and T is the generation time
for standard decoding. Based on Equation 2, this improvement leads to a decrease in the average
generation time for each token, transitioning from (ck+1)(1−α1)

1−αk+1
1

T to (ck+1)(1−α2)

1−αk+1
2

T . Consequently,

this results in a speedup factor of 1−αk+1
2

1−αk+1
1

1−α1

1−α2
=

1+α2+α2
2+...+αk

2

1+α1+α2
1+...+αk

1
compared to standard speculative

decoding.

In the aforementioned analysis, we omitted the additional latency due to updating the smaller model
for the following reasons: (1) As illustrated subsequently, the additional computational cost (FLOPs)
from the update remains marginal when juxtaposed with the computational demands of running the
larger model. (2) Updates are periodic, during times of moderate request loads, the latency for
serving individual requests remains largely unaffected. Additionally, given that the update operation
for the smaller model is considerably less resource-intensive than inference, the associated latency
might be seamlessly masked, rendering it virtually imperceptible. Lastly, the processes of updating
and inference can even be executed concurrently on separate devices.

A.3 FLOPS ANALYSIS

The FLOPs required to update the draft model are significantly fewer than those needed for inference
on a large model. Denote L as the average length of the generated sequence. For each verification,
the draft model suggests k tokens. The expected length for a single run of the target LLM, denoted
as a, can be calculated using Equation 2. Therefore, OSD undergoes the verification process L

a
times, with each time verifying k + 1 tokens. We use Fqfwd to represent the arithmetic operations
required by a singular forward run of the draft model for each token, and Fpfwd stands for the

12

Under review as a conference paper at ICLR 2024

FLOPs needed for a single forward run of the target model per token. Therefore, the computational
demand (in FLOPs) for the draft and teacher models to handle one request can be expressed as:
FLOPs(draft) = L

a × k × Fqfwd,FLOPs(target) = L
a × (k + 1) × Fpfwd. Let’s consider the

FLOPs required to update the student model per token as Fqbwd. The cumulative FLOPs necessary
to process I requests is given by:

LI

a
× [k × Fqfwd + (k + 1)× Fpfwd] + I × L× Fqbwd.

Based on the findings of Kaplan et al. (2020), training is approximately three times costlier than
inference. This translates to roughly 6 FLOPs per parameter for training on a single token and 2
FLOPs per parameter for inferring on one token. Thus, we can simplify the total FLOPs expression
to:

LI

a
[(k + 3a)× Fqfwd + (k + 1)× Fpfwd] . (6)

The proportion of FLOPs needed to run the target model to that of the draft model is given by:
(k + 1)× Fpfwd

(k + 3a)× Fqfwd
.

For the two model pairs evaluated, assuming an average of 5 proposed tokens per run: (1)
(LLaMA-160M, Vicuna7B) with an average acceptance rate of 0.71, the ratio is approximately

(5+1)×7B
(5+3×3)×160M = 18.75. (2) (T5-small 80M, Flan-T5-XL 3B), with an average acceptance rate of

0.76, the ratio is roughly (5+1)×3B
(5+3×4.3)×80M = 12.6.

In practical systems, the FLOPs required for inference are significantly below the machine’s capac-
ity. Consider the LMSYS-Chat-1M Zheng et al. (2023b). It comprises traces spanning 125 days
with 1000,000 requests, averaging less than 2,000 tokens per request (including both prompts and
responses). When serving a 30B model with 8 A100 GPUs, the FLOPs consumed per second can
be estimated as (Still, we estimate 2 FLOPs per token per parameter):

2000× 1000, 000

125× 24× 3600
× 30× 109 × 2 = 5.5× 109 FLOPs or 5.5 GFLOPs

On the other hand, 8 A100 GPUs offer a combined capacity of 8× 312 TFLOPs, and the computa-
tional utilization is notably low. While Arena (the platform that generates LMSYS-Chat-1M) may
not be the most efficient and might lack substantial traffic, it’s the only publicly accessible LLM
service trace. Even after amplifying the load multiple times, based on the above calculations, the
computation efficiency remains limited.

A.4 BANDWIDTH ANALYSIS

LLM inference is memory bandwidth bound. When the input/output length is short, the memory
operations are dominated by loading model parameters from GPU HBM to SRAM. We analyze
the memory loading requirements of different inference techniques below (batch size = 1). We
first introduce the notations used in the analysis. M /m: The total bytes of the target/draft model.
L: inference length. a1/a2: The expected generation length for a single run of the target LLM of
Vanilla speculative decoding(VSD)/OSD. I: the interval to update the draft model. On a high level,
L
a ∗M represents the bytes required to load the target model, while L∗m indicates the bytes needed
for loading the draft model. For OSD, m ∗ L

I denotes the bytes necessary to load the draft model for
updates.

We applied Formula 2 from our paper to calculate a1, a2, using the token acceptance rates for
standard vanilla speculative decoding and OSD on the Spider dataset with the LLaMA-160M and
Vicuna-7B models as the draft and target models, respectively. This resulted in a1 = 1.4 and
a2 = 3.4. The memory sizes are M = 14GB for the target model and m = 0.32GB for the draft
model. For OSD, the draft model is updated every 8 iterations (I=8). Using these values, we have
estimated the memory loading bytes, presented in the right column.

As seen in Tabel 3 Updating the draft model is not memory-intensive because the draft model is
small. The majority of memory operations are still dominated by loading the target model. (2)
OSD can significantly reduce memory bandwidth. This efficiency is achieved through a higher
token acceptance rate, which consequently decreases the frequency of calling the larger model for
verification.

13

Under review as a conference paper at ICLR 2024

Table 3: Bandwidth analysis. Original means inference without speculative decoding. VSD, vanilla
Speculative Decoding. OSD, online speculative decoding.

Memory Loading Formula Memory Loading in bytes of
(LLaMA-160M, Vicuna-7B) pair, L=128, a1=1.4, a2=3.4

Original L ∗M 1792 GB
VSD L

a1
∗M + L ∗m 1320 GB

OSD L
a2

∗M + L ∗m+m ∗ L
I 573 GB

Alpha on gsm8k Alpha on Alpaca-finance

0 1 2 3 4
of Records (K)

0.55

0.60

0.65

0.70

0.75

0.80
Al

ph
a

Update with
Gsm8K

Update with
Alpaca-finance

Mix of two

Figure 7: Mix of distributions.

A.5 DATA MIX

Moreover, there is a question of whether the draft model, once adapted to the new distribution, might
lose its prior knowledge. To probe this, we conducted an experiment mixing 2k prompts each from
the Gsm8k and Alpaca-finance datasets. During online serving, for the initial 2k requests, we only
update the model based on data from the Gsm8k dataset. For the subsequent half of the requests, we
restrict updates solely to data from the Alpaca-finance dataset. We then provide the average token
acceptance rates for all requests, segmented by their data source (Gsm8k versus Alpaca-finance). As
depicted in Figure 7, the token acceptance rate for Gsm8k increases as the draft model is exposed
to more data. Conversely, the acceptance rate (α) for the Alpaca-finance dataset remains consistent.
This is anticipated since we only update the draft model using Gsm8k data. In the latter half of the
dataset, the token acceptance rate for the Alpaca-finance dataset also shows an uptrend. Intriguingly,
the rate for Gsm8k remains consistent, suggesting that the draft model retains its learned knowledge
without showing signs of forgetting.

A.6 EXPERIMENT SETTING FOR DISTRIBUTION SHIFT ANALYSIS

We employ a single LLaMA-160M as the initial draft model and Vicuna-7B as the target model. To
simulate the distribution shift, we integrate data from diverse datasets. Our evaluation focuses on the
draft model’s token acceptance rate, across varying numbers of data records. To emulate this shift
in distribution, we select 2k prompts from each dataset under evaluation. T he data from the four
datasets are amalgamated by direct concatenation, such that the records from i× 2k to (i+ 1)× 2k
belong solely to dataset i.

A.7 REAL WORKLOADS

Arena Dataset For expedited experimental evaluation, we randomly sample a subset with 10K
records from LMSYS-Chat-1M Zheng et al. (2023b), a comprehensive real-world LLM conversation
dataset. This dataset encompasses interactions with 25 models spanning from April to August 2023
and features conversations in over 150 languages. For all experiments, we only pick conversations
for Vicuna models.

Customize draft models We propose that employing distinct draft models for queries on various
topics can enhance the token acceptance rate. Unlike the approach of utilizing a single draft model
for all topics, assigning specific draft models to individual topics narrows the range of query distri-

14

Under review as a conference paper at ICLR 2024

Table 4: Measured execution time/speedup and theoretical execution time/speedup. Original means
inference without speculative decoding.

Original OSD,
α = 0.5

OSD,
α = 0.6

OSD,
α = 0.7

OSD,
α = 0.8

OSD,
α = 0.9

Measured time in
ms/token (speedup)

51.09 39.90
(1.28 ×)

35.48
(1.44 ×)

30.96
(1.65 ×)

25.42
(2.01 ×)

19.43
(2.63 ×)

Theoretical time in
ms/token (speedup)

51.09 39.00
(1.31 ×)

32.12
(1.59 ×)

26.07
(1.96 ×)

20.77
(2.46 ×)

16.38
(3.12 ×)

butions each model must adapt to. This focused approach simplifies the learning process for each
draft model, as they deal with a more limited set of queries. To substantiate this hypothesis, we mea-
sured and plotted the token acceptance rates using both strategies - a single universal draft model
versus multiple topic-specific draft models - in Figure 8, to highlight the idea of customizing draft
model for different types of queries. As seen from the graph, across all topics, employing multiple
draft models results in an increase in the token acceptance rate by 0.1 to 0.2. This aligns with our
expectation that draft models benefit from a narrower query distribution, making it easier to learn
and adapt. We leave it to future research to decide the optimal number of draft models and the best
classification strategy.

0 1 2 3 4 5
of Records (K)

0.5

0.6

0.7

0.8

0.9

Al
ph

a

Business_Corporate

Single Draft Model
Separate Draft Models

0 1 2 3 4 5
of Records (K)

0.5

0.6

0.7

0.8

0.9

Al
ph

a

Computers and Technology

Single Draft Model
Separate Draft Models

0 1 2 3 4 5
of Records (K)

0.5

0.6

0.7

0.8

0.9

Al
ph

a

Education

Single Draft Model
Separate Draft Models

0 1 2 3 4 5
of Records (K)

0.5

0.6

0.7

0.8

0.9

Al
ph

a

Games

Single Draft Model
Separate Draft Models

0 1 2 3 4 5
of Records (K)

0.5

0.6

0.7

0.8

0.9

Al
ph

a

Social Networking and Messaging

Single Draft Model
Separate Draft Models

Figure 8: Single draft model vs multiple draft models. For the single draft model, we send all queries
to the same draft model and measure the token acceptance rate based on query topics. For multiple
draft models, we employ a customized draft model for each query based on the query topic.

A.8 LATENCY MEASUREMENT

In this section, we evaluate the speedup achieved by OSD. These tests are conducted using lla-
macpp Gerganov (2023) on an A100 GPU. Initially, we set a constant token acceptance rate to
compare the theoretical and actual measured speedups. Following this, we employ OSD distilled
model as the draft model and measure the speedup compared with inference without speculative
decoding on four distinct datasets. We employ TinyLLaMA-1.1B tin (2023) as the student model
and Vicuna 33B as the target model.

From Table 4, OSD can obtain more than 2x speedup in comparison with vanilla LLM inference
when we use TinyLLaMA-1.1B as the student model and Vicuna 33B as the teacher model with
the above 80% token acceptance rate. Moreover, the observed speedup closely aligns with the
theoretical expectations. The primary discrepancies can be attributed to two factors: (1) Slow Sam-
pling: Speculative decoding necessitates additional sampling steps, as the draft model generates
preliminary tokens. For optimal performance, the sampling process must be expedited. (2) To
attain significant speedup, the execution time ratio (denoted as c) between the draft and target mod-
els should be minimized. However, in practical implementations, the overall execution time for
the draft model is disproportionately affected by kernel launch overheads and Python-related de-
lays, resulting in slower-than-anticipated performance. Lastly, we measure the speedup of OSD

15

Under review as a conference paper at ICLR 2024

Table 5: (TinyLLaMA-1.1B, Vicuna-33B) measured speedup on four evaluated datasets on a single
A100-80G. Inference without speculative decoding has a token latency of 51.09 ms/token.

Dataset Spider Gsm8k Alpaca-
Finance

Code-
Python

Measured time in ms/token
(Speedup)

23.53
(2.17 ×)

27.40
(1.89 ×)

26.53
(1.92 ×)

30.12
(1.69 ×)

offline distilled model. We use teacher sampling with forward KD as the distillation method. Us-
ing TinyLLaMA-1.1B as the draft model and Vicuna-33B as the target model, we report the token
latency and speedup compared with inference without speculative decoding in Table 5. As shown,
OSD can achieve 1.64× to 2.09× speedup across four evaluated datasets.

16

	Introduction
	Related Work
	Background
	Online Speculative Decoding
	Knowledge Distillation for Speculative Decoding
	Online Knowledge Distillation
	Algorithm
	Latency & Flops Analysis

	Experiments
	Offline Evaluation
	Online Evaluation
	Qualitative Analysis

	Conclusion
	Appendix
	Speedup of Speculative Decoding
	Latency Analysis
	Flops Analysis
	Bandwidth Analysis
	Data Mix
	Experiment Setting for Distribution Shift Analysis
	Real Workloads
	Latency Measurement

