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Abstract
Deep neural networks trained as image denois-
ers are widely used as priors for solving imag-
ing inverse problems. We introduce Stochastic
deep Restoration Priors (ShaRP), a novel frame-
work that stochastically leverages an ensemble
of deep restoration models beyond denoisers to
regularize inverse problems. By using general-
ized restoration models trained on a broad range
of degradations beyond simple Gaussian noise,
ShaRP effectively addresses structured artifacts
and enables self-supervised training without fully
sampled data. We prove that ShaRP minimizes an
objective function involving a regularizer derived
from the score functions of minimum mean square
error (MMSE) restoration operators. We also pro-
vide theoretical guarantees for learning restora-
tion operators from incomplete measurements.
ShaRP achieves state-of-the-art performance on
tasks such as magnetic resonance imaging recon-
struction and single-image super-resolution, sur-
passing both denoiser- and diffusion-model-based
methods without requiring retraining.

1. Introduction
Many problems in computational imaging, biomedical imag-
ing, and computer vision can be viewed as inverse problems,
where the goal is to recover an unknown image from its
noisy and incomplete measurements. Inverse problems
are typically ill-posed, thus requiring additional prior in-
formation for accurate image reconstruction. While many
approaches have been proposed for implementing image
priors, the current research focuses on methods based on
deep learning (DL) (McCann et al., 2017; Ongie et al., 2020;
Kamilov et al., 2023; Wen et al., 2023).

Deep neural networks trained as image denoisers are widely-
used for specifying image priors for solving general inverse
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problems (Romano et al., 2017; Kadkhodaie & Simoncelli,
2021; Zhang et al., 2022). The combination of pre-trained
Gaussian denoisers with measurement models has been
shown to be effective in many inverse problems, including
image super-resolution, deblurring, and medical imaging
(see the recent reviews (Ahmad et al., 2020; Kamilov et al.,
2023; Milanfar & Delbracio, 2024; Daras et al., 2024)). This
success has led to active research on novel methods based
on denoiser priors, their theoretical analyses, statistical inter-
pretations, as well as connections to related approaches such
as score matching and diffusion models (Venkatakrishnan
et al., 2013; Chan et al., 2017; Romano et al., 2017; Buzzard
et al., 2018; Reehorst & Schniter, 2019; Sun et al., 2019;
Sun et al., 2019; Ryu et al., 2019; Cohen et al., 2021; Hu-
rault et al., 2022b; Laumont et al., 2022; Gan et al., 2023a;
Renaud et al., 2024; Xiao et al., 2024; Nathan et al., 2024).

Although priors based on Gaussian denoising models have
been extensively studied, there is little research on leverag-
ing priors from pre-trained restoration models that extend
beyond Gaussian denoisers. In this paper, we present evi-
dence that priors derived from deep models pre-trained as
general restoration operators can surpass those trained exclu-
sively for Gaussian denoising. We introduce a novel frame-
work called Stochastic deep Restoration Priors (ShaRP),
which provides a principled approach to integrate an ensem-
ble of general restoration models as priors to regularize in-
verse problems. By using more versatile restoration models,
ShaRP improves upon traditional methods using Gaussian
denoiser priors in two key ways: (a) ShaRP improved per-
formance by using restoration models that are better suited
for mitigating non-Gaussian structured artifacts arising dur-
ing inference. (b) The restoration models in ShaRP can
sometimes be directly trained in a self-supervised manner
without fully-sampled measurement data.

We present novel theoretical and numerical results highlight-
ing the potential of using an ensemble of restoration models
as image priors. Our theoretical result introduces a novel
notion of regularization for inverse problems corresponding
to the average of likelihoods associated with the degraded
observations of an image. The proposed regularizer has
an intuitive interpretation as promoting solutions whose
multiple degraded observations resemble realistic degraded
images. We show that ShaRP seeks to minimize an objective
function containing this regularizer. Our second theoreti-
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cal result analyzes the possibility of learning the minimum
mean squared error (MMSE) restoration operators directly
from noisy and undersampled measurements. We numeri-
cally show the practical relevance of ShaRP by applying it
to MRI reconstruction with varying undersampling patterns
and rates, using a fixed-rate pre-trained MRI reconstruction
network as a prior. We also show that ShaRP can use a
pre-trained image deblurring model to perform single image
super-resolution (SISR). Our numerical experiments show
that ShaRP adapts the pre-trained restoration model as a
prior, outperforming existing methods based on image de-
noisers and diffusion models, and achieving state-of-the-art
results. Our experiments additionally highlight the benefit
of using restoration models as priors by considering a setting
where only undersampled and noisy MRI data is available
for pre-training the prior. In such cases, self-supervised
training of a restoration model is feasible, whereas training
a Gaussian denoiser requires fully sampled data.

2. Background
Inverse Problems. Many computational imaging tasks can
be formulated as inverse problems, where the goal is to
reconstruct an unknown image x ∈ Rn from its corrupted
measurement

y = Ax+ e, (1)

whereA ∈ Rm×n is a measurement operator and e ∈ Rm
is the noise. A common approach to addressing inverse
problems is to formulate them as an optimization problem

x̂ ∈ argmin
x∈Rn

f(x) with f(x) = g(x) + h(x) , (2)

where g is the data-fidelity term that quantifies the fit to
the measurement y and h is a regularizer that incorporates
prior information on x. For instance, typical functions
used in imaging inverse problems are the least-squares term
g(x) = 1

2 ‖Ax− y‖
2
2 and the total variation (TV) regular-

izer h(x) = τ ‖Dx‖1, whereD is the image gradient and
τ > 0 is a regularization parameter.

Deep Learning. DL has emerged as a powerful tool for
addressing inverse problems (McCann et al., 2017; Ongie
et al., 2020; Wen et al., 2023). Instead of explicitly defining
a regularizer, DL methods use deep neural networks (DNNs)
to map the measurements to the desired images (Wang et al.,
2016; Jin et al., 2017; Kang et al., 2017; Chen et al., 2017;
Delbracio et al., 2021; Delbracio & Milanfar, 2023). Model-
based DL (MBDL) is a widely-used sub-family of DL al-
gorithms that integrate physical measurement models with
priors specified using CNNs (see reviews by (Ongie et al.,
2020; Monga et al., 2021)). The literature of MBDL is
vast, but some well-known examples include plug-and-play
priors (PnP), regularization by denoising (RED), deep un-
folding (DU), compressed sensing using generative models

(CSGM), and deep equilibrium models (DEQ) (Bora et al.,
2017; Romano et al., 2017; Zhang & Ghanem, 2018; Haupt-
mann et al., 2018; Gilton et al., 2021a; Liu et al., 2022;
Hu et al., 2024d). These approaches come with different
trade-offs in terms of imaging performance, computational
and memory complexity, flexibility, need for supervision,
and theoretical understanding.

Denoisers as Priors. Score-based models (SBMs) are a
powerful subset of DL methods for solving inverse problems
that use deep Gaussian denoisers as imaging priors. Plug-
and-Play (PnP) methods can be viewed as SBMs that in-
corporate denoisers within iterative optimization algorithms
(see recent reviews (Ahmad et al., 2020; Kamilov et al.,
2023)). These approaches construct a cost function by com-
bining an explicit likelihood with a score function implicitly
defined by the denoiser prior. Over the past few years,
numerous variants of PnP have been developed (Venkatakr-
ishnan et al., 2013; Romano et al., 2017; Metzler et al.,
2018; Dong et al., 2019; Zhang et al., 2019; Wei et al., 2020;
Hurault et al., 2022a), which has motivated an extensive
research into their theoretical properties and empirical ef-
fectiveness (Chan et al., 2017; Buzzard et al., 2018; Ryu
et al., 2019; Sun et al., 2019; Tirer & Giryes, 2019; Teodoro
et al., 2019; Sun et al., 2021; Cohen et al., 2021; Fang et al.,
2024; Renaud et al., 2024; Hu et al., 2024a; Terris et al.,
2024). Diffusion Models (DMs) represent another category
of SBMs; they are trained to learn the score function of the
underlying probability distribution governed by stochastic
differential equations (SDEs) (Ho et al., 2020; Song et al.,
2021). Once trained, these models can be used as powerful
priors for inverse problems by leveraging their learned score
functions. Specifically, pre-trained DMs facilitate poste-
rior sampling by guiding the denoising process to generate
data consistent with observed measurements. This approach
enables DMs to address inverse problems, often achieving
impressive perceptual performance even for highly ill-posed
inverse problems (Chung et al., 2023; Zhu et al., 2023;
Wang et al., 2023; Feng et al., 2023; Sun et al., 2024; Wu
et al., 2024; Song et al., 2024; Hu et al., 2024b; Alçalar &
Akçakaya, 2024; Zhao et al., 2024; Rout et al., 2024; Bai
et al., 2024; Mardani et al., 2024).

Restoration Networks as Priors. In addition to denoiser-
based methods, recent work has also considered using
restoration models as implicit priors for solving inverse
problems (Zhang et al., 2019; Liu et al., 2020; Gilton et al.,
2021b; Hu et al., 2024c). It has been observed that pre-
trained restoration models can be effective priors for ad-
dressing unseen inverse problems, sometimes surpassing
traditional denoiser-based approaches (Hu et al., 2024c).
However, existing methods present two main limitations.
First, existing restoration priors have relied on a fixed prior
tailored to a specific degradation. Although deep restoration
models can be trained in various settings—such as different
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Figure 1: A restoration network trained on a set of tasks {Hi} can be used as a prior within ShaRP to address different
target inverse problems without the need for retraining.

blur kernels for image deblurring or diverse undersampling
masks for MRI reconstruction—current approaches do not
leverage this capability, limiting their robustness to diverse
artifacts. Second, prior work has not explored the potential
of learning restoration priors directly from undersampled
measurements, without access to fully sampled data. Unlike
Gaussian denoisers, training without fully sampled data is
natural for restoration models (Ulyanov et al., 2018; Krull
et al., 2019; Quan et al., 2020; Yaman et al., 2020; Liu et al.,
2020; Tachella et al., 2022; Chen et al., 2022; Millard &
Chiew, 2023; Gan et al., 2023b; Terris & Moreau, 2023;
Gossard & Weiss, 2024). It is also worth highlighting the re-
lated work that has explored using corrupt measurements for
training Ambient DMs (Daras et al., 2023; Aali et al., 2024).
These Ambient DMs, trained directly on such undersampled
measurements, address the reconstruction problem by sam-
pling from their approximated posterior distribution using a
standard diffusion sampler at inference. ShaRP, conversely,
adopts an optimization approach, defining a novel objec-
tive function from an ensemble of likelihoods of multiple
degraded observations.

Method Prior Type Prior Configuration
PnP Only Gaussian Denoiser Single Prior

SNORE Only Gaussian Denoiser Ensemble of Priors
DRP General Restoration† Single Prior

ShaRP General Restoration† Ensemble of Priors
† Can include denoisers and extends to other restoration tasks.

Table 1: ShaRP differs from existing methods by offering
greater flexibility through the use of an ensemble of pri-
ors trained on general restoration tasks, extending beyond
Gaussian denoising priors.

Our contribution. (1) We propose ShaRP, a new frame-
work for solving inverse problems leveraging a set of priors
implicit in a pre-trained deep restoration network. As sum-
marized in Table 1, ShaRP generalizes Regularization by
Denoising (RED) (Romano et al., 2017) and Stochastic De-
noising Regularization (SNORE) (Renaud et al., 2024) by
using more flexible restoration operators and generalizes
Deep Restoration Priors (DRP) (Hu et al., 2024c) by using

Algorithm 1 Stochastic deep Restoration Priors (ShaRP)

1: input: Initial value x0 ∈ Rn, γ > 0, σ > 0, and
τ > 0

2: for k = 1, 2, 3, . . . do
3: Sample a degradation operator: H ∼ p(H)
4: s← Hxk−1 + n with n ∼ N (0, σ2I)

5: xk ← xk−1 − γ∇̂f(xk−1)

with ∇̂f(x) := ∇gA(x) + ∇̂h(x)

where ∇̂h(x) := τ
σ2H

TH
(
x− R(s,H)

)
6: end for

multiple restoration priors instead of relying on a single
one. (2) We introduce a novel regularization concept for
inverse problems that encourages solutions that produce de-
graded versions closely resembling real degraded images.
For example, our regularizer favors an MR image solution
only if its various degraded versions are consistent with
the characteristics of actual degraded MR images. (3) We
show that ShaRP can be interpreted as a stochastic gradient
method that seeks to minimize a composite objective that
incorporates our proposed regularizer. We discuss its con-
vergence for both exact and approximate MMSE restoration
operators. We also provide theoretical guarantees on learn-
ing restoration operators from incomplete measurements.
(4) We implement ShaRP with both supervised and self-
supervised restoration models as priors and test it on two
inverse problems: compressed sensing MRI (CS-MRI) and
single-image super-resolution (SISR). Our results highlight
the capability of restoration models to achieve state-of-the-
art performance. Notably, in the MRI context, we show
that restoration networks trained directly on subsampled
and noisy MRI data can serve as effective priors, a scenario
where training traditional Gaussian denoisers is infeasible.

3. Stochastic Deep Restoration Priors
ShaRP is presented in Algorithm 1. It considers a prior
based on a deep restoration model R(s,H) pre-trained using
the family of degradation operators, such as blur kernels or
MRI masks. More specifically, the deep restoration model R
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is trained to solve the following set of restoration problems

s = Hx+ n with x ∼ px, H ∼ p(H), (3)

where n is the AWGN vector with variance σ2 and px
denotes the probability distribution of the target images, and
p(H) is the probability density of considered degradation
operators. Importantly, the restoration problems (3) are
used exclusively for training R and do not need to match the
target inverse problem (1), which involves the measurement
operatorA.

We prove below that ∇̂f corresponds to a stochastic approx-
imation of an objective function of the form f = g + h.
Here, g(x) = 1

2 ‖Ax− y‖
2
2 and the term h(x) is defined

as h(x) = τEs∼Gσ(s−Hx),H∼p(H) [−log p(s|H)]. We will
further introduce the derivation and interpretation of h(x) in
Section 4.1. Similar to traditional stochastic gradient meth-
ods, ShaRP can be implemented using various selection
strategies for the degradation operators.

Each iteration of ShaRP has an intuitive interpretation,
where the next solution is obtained by combining the gra-
dient of the data-fidelity term ∇g and the residual of re-
stored image corresponding to the selected degradation op-
erator. It is worth highlighting that ShaRP is compatible
with multiple priors, each restoring an image from Gaussian
or non-Gaussian degradations. Also, the computational cost
of running ShaRP is comparable to those of single-model
approaches. This is due to the stochastic nature of our algo-
rithm that uses a restoration operator in each iteration.

4. Theoretical analysis of ShaRP
We now present several theoretical results on ShaRP. Our
main contribution is the expression for the closed-form regu-
larizer minimized by ShaRP. We also show how to interpret
ShaRP as a stochastic gradient method, enabling its con-
vergence analysis when using inexact MMSE operators.
We finally prove theoretical guarantees on learning MMSE
restoration operators from unsersampled measurements.

4.1. Explicit formula for regularizer

Consider a restoration model that perform MMSE estima-
tion of x ∈ Rn for problems (3)

R∗(s,H) = E [x | s,H] =

∫
x p(x | s,H) dx

=
1

p(s | H)

∫
xGσ(s−Hx) px(x) dx.

(4)

where we used the probability density of the observation s
conditioned on the operator H

p(s|H) =

∫
Gσ(s−Hx)px(x) dx. (5)

The function Gσ in (5) denotes the Gaussian density func-
tion with the standard deviation σ > 0.

We propose the ShaRP regularizer

h(x) = τEs∼Gσ(s−Hx),H∼p(H) [−log p(s|H)] , (6)

where τ > 0 is the regularization parameter and p(H) is
the distribution of considered degradations. The regularizer
h is minimized when degraded versions of x are highly
probable under the distribution p(s|H), with H sampled
from p(H). In other words, a solution x̂ is considered
effective if its degraded versions Hx̂ align with the degraded
versions Hx of clean images x ∼ px, for all H ∼ p(H).
This can be understood as searching for a fixed point that
exhibits equivariance across multiple degradations. The key
benefit of the proposed regularizer in (6) lies in its versatility,
allowing a wide range of degradation operators to be used in
a unified framework. In particular, this formulation remains
compatible with Gaussian denoisers, as H = I can always
be incorporated into p(H).

We are now ready to state our first theoretical result.

Theorem 1. Assume that the prior density px is non-
degenerate over Rn and let R∗ be the MMSE restoration
operator (4) corresponding to the restoration problems (3).
Then, we have that

∇h(x) =
τ

σ2

(
E
[
HTH(x− R∗(s,H))

])
, (7)

where h is the ShaRP regularizer in (6), the expectation is
with respect to s ∼ Gσ(s−Hx) and H ∼ pH.

The proof is in the appendix. Note that the expression within
the square parenthesis in (7) matches the ShaRP update in
Line 4 of Algorithm 1, which directly implies that ShaRP
using the exact MMSE restoration operator R∗ is a stochastic
gradient method for minimizing f = g + h, where g is the
data-fidelity term and h is the ShaRP regularizer in (6).

4.2. Theoretical convergence of ShaRP

Given the explicit regularized in (6), the iterations of ShaRP
in Algorithm 1 can be seen as stochastic gradient method for
minimizing f = g + h. In practical scenarios, the learned
restoration model may be imperfect, meaning it cannot be
considered a perfect MMSE estimator. We now present the
convergence analysis of ShaRP under a restoration operator
R that approximates the true MMSE restoration operator
R∗. We adopt the analysis of biased stochastic gradient
descent (SGD) from the optimization literature (Bertsekas,
2011; Ghadimi & Lan, 2016; Demidovich et al., 2023),
by interpreting iterations of ShaRP as a variant of biased
SGD. For a given degraded observation s = Hx+ n with
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H ∼ pH and n ∼ N (0, σ2I), we define the stochastic
gradient used by ShaRP

∇̂f(x) = ∇g(x) + ∇̂h(x),

where ∇̂h(x) :=
τ

σ2
HTH

(
x− R(s,H)

)
.

(8)

Since R is an inexact MMSE restoration operator, we also
define the bias vector

b(x) =
τ

σ2
E
[
HTH

(
R∗(s,H)− R(s,H)

)]
(9)

which quantifies the average difference between the exact
and inexact MMSE restoration operators with respect to
H ∼ pH and s ∼ Gσ(s−Hx). The analysis requires three
assumptions that jointly serve as sufficient conditions for
our theorem.

Assumption 1. The function f has a finite minimum f∗ >
−∞ and the gradient∇f is Lipschitz continuous with con-
stant L > 0.

This is a standard assumption used in the analysis of
gradient-based algorithms (see (Nesterov, 2004), for exam-
ple). It is satisfied by a large number of functions, including
the traditional least-squares data-fidelity function.

Assumption 2. The stochastic gradient has a bounded vari-
ance for all x ∈ Rn, which means that there exists a con-
stant ν > 0 such that

E
[∥∥∥∇̂f(x)− E

[
∇̂f(x)

]∥∥∥2
2

]
≤ ν2,

where expectations are with respect to H ∼ pH and s ∼
Gσ(s−Hx).

This is another standard assumption extensively used in
the analysis of online or stochastic optimization algo-
rithms (Bertsekas, 2011; Ghadimi & Lan, 2016; Demidovich
et al., 2023).

Assumption 3. The bias b(x), as defined in (9), is bounded,
which means that there exists ε > 0 such that for all x ∈ Rn

‖b(x)‖2 ≤ ε.

The only assumption on the bias is that it is bounded, which
is a relatively mild assumption, as image pixel values are
typically constrained (e.g., to [0, 255]).

Note that Assumptions 1-2 are needed only for Proposition 1.
They are not needed for our main results—Theorem 1-2.

Proposition 1. Run ShaRP for t ≥ 1 iterations using the
step-size 0 < γ ≤ 1/L under Assumptions 1-3. Then, the
sequence xk generated by ShaRP satisfies

E

[
1

t

t∑
k=1

‖∇f(xk−1)‖22

]
≤ 2

γt
(f(x0)−f∗)+γLν2+ε2.

The general analysis of biased stochastic SGD has been ex-
tensively discussed in the optimization literature (Bertsekas,
2011; Ghadimi & Lan, 2016; Demidovich et al., 2023). Our
contribution here is the relationship between the iterates
of ShaRP and those of biased SGD, leading to theoretical
guarantees on the stability of ShaRP using restoration net-
works that do not correspond to ideal MMSE estimators.
Proposition 1 states that in expectation, ShaRP minimizes
the norm of the gradient∇f up to an error term that has two
components, γLν2 and ε2. Since the first component de-
pends on γ, it can be made as small as desired by controlling
the step-size γ. The second component only depends on the
magnitude of the bias ε, which, in turn, directly depends on
the accuracy of the restoration operator relative to the true
MMSE restoration operator R∗.

4.3. Learning restoration priors without groundtruth

In this subsection, we present a theoretical result that estab-
lishes the feasibility of learning an MMSE estimator from
undersampled measurements. Let the undersampled mea-
surements be defined as s = Hx + n, where H = PM .
Here, P represents a binary subsampling matrix, M de-
notes the square transfer operator, and n corresponds to the
noise vector.

To show that an MMSE estimator can be learned from under-
sampled measurement, we need the following assumption.

Assumption 4. EP [P TP ] has a full rank where the expec-
tation is taken over pP . The measurement operator M is
orthogonal matrix.

This assumption implies that the union of all sampling ma-
trices P spans the complete measurement domain, even
though each individual P may remain undersampled.

Theorem 2. Under Assumption 4, the MMSE estimator
R learned using the weighted self-supervised loss (`self) is
equivalent to its supervised counterpart (`sup). Specifically,
we have:

R`self (θ) = R`sup(θ) . (10)

where

`sup = E
[

1

2
‖x− x‖22

]
(11)

and

`self = E
[

1

2
‖P ′Mx− s′‖2W

]
, (12)

where the vector x = R(s) is MMSE estimation of R for s,
s′ = P ′Mx is another independently subsampled measure-
ment andW is a weighting matrix to compensate sampling
imbalance in measurement domain.
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5. Numerical Results
We numerically validate ShaRP on two inverse problems of
the form y = Ax+e: (Compressive Sensing MRI (CS-MRI)
and (b) Single Image Super Resolution (SISR). In both cases,
e represents additive white Gaussian noise (AWGN). For the
data-fidelity term in eq. (2), we use the `2-norm loss for both
problems. Quantitative performance is evaluated by Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity In-
dex (SSIM). Additionally, for the SISR task, we include the
Learned Perceptual Image Patch Similarity (LPIPS) metric
to evaluate perceptual quality. Additional numerical results
are provided in the supplementary material.

Noise level σ = 0.005 σ = 0.010 σ = 0.015
Metrics PSNR SSIM PSNR SSIM PSNR SSIM

Zero-filled 26.93 0.848 26.92 0.847 26.90 0.848
TV 31.17 0.923 31.08 0.921 30.91 0.915

PnP-FISTA 35.88 0.938 31.14 0.894 30.32 0.846
PnP-ADMM 35.76 0.941 32.36 0.878 30.66 0.838

DRP 35.52 0.936 32.32 0.914 30.57 0.901
DPS 32.62 0.888 31.39 0.870 30.29 0.856
DDS 35.21 0.937 35.03 0.935 34.51 0.925

ShaRP 37.59 0.963 35.81 0.951 34.92 0.942

E2E-VarNet† 38.10 0.971 36.80 0.967 35.79 0.954
†E2E-VarNet needs to be retrained for each task.

Table 2: Quantitative comparison of ShaRP with several
baselines for CS-MRI using 4× uniform masks. The best
and second best results across general image restoration
methods are highlighted. Notably, ShaRP outperforms
SOTA baseline methods.

Noise level σ = 0.005 σ = 0.010 σ = 0.015
Metrics PSNR SSIM PSNR SSIM PSNR SSIM

ADMM-TV 28.14 0.866 28.06 0.863 27.96 0.859
GRAPPA 28.09 0.792 25.39 0.699 23.94 0.649
SPICER 31.87 0.901 31.67 0.889 31.50 0.887

ShaRPself 33.87 0.909 33.64 0.900 33.21 0.892

Table 3: Quantitative comparison of ShaRP with a self-
supervised pre-trained restoration operator, compared to
several baselines for CS-MRI using 4× uniform masks.
The best and second best results are highlighted. Note the
excellent performance of ShaRP even using priors trained
without fully-sampled ground-truth data.

5.1. CS-MRI setting

The complex-valued measurement model for CS-PMRI is
expressed as: y = PFSx + e. Here, x represents the
underlying complex-valued image, S are the complex multi-
coil sensitivity maps, F is the Fourier transform operator,

and P is the k-space subsampling mask. The term y de-
notes the acquired complex k-space data, and e is the ad-
ditive complex noise vector. We utilized the open-access
fastMRI dataset; further experimental details can be found
in Section B.1 of the supplementary material.

Ensemble of restoration priors for CS-MRI. Recent
methods like InDI (Delbracio & Milanfar, 2023) and
I2SB (Liu et al., 2023) use controllable processes to train
ensembles of restoration priors, each an MMSE operator
for a specific setting. We build on this by training an 8×
uniform subsampling CS-MRI model with 8 masks as our
prior. Following InDI, we decompose the MRI degradation
operatorM = PFS into convex combinations ofM and
the identity I: Hα = (1− α)I + αM , with α controlling
degradation. Varying α creates an ensemble of tasks. Train-
ing R on all these tasks allows it to act as an ensemble of
MMSE operators: R(s,Hα) = E [x|s,Hα]. We used the
MSE loss for training.

Figure 2: Visual comparison of ShaRP with baseline meth-
ods on CS-MRI. The top row shows results for a 4× random
mask with noise σ = 0.005, and the bottom row for a 6×
random mask with noise σ = 0.015. PSNR and SSIM val-
ues are in the top-left corner of each image. Error maps and
zoomed-in areas highlight differences. Notably, ShaRP with
stochastic priors outperforms state-of-the-art methods using
denoiser and diffusion model priors.

Training restoration priors without groundtruth. When
fully-sampled images are unavailable for training, MRI
restoration priors can be trained self-supervisedly (Yaman
et al., 2020; Millard & Chiew, 2023; Gan et al., 2023b;
Hu et al., 2024d), as demonstrated in Theorem 2. Notably,
the MRI imaging system aligns well with the assumptions
required by Theorem 2, as FS represents an orthogonal
matrix. This approach uses a separate subsampled mea-
surement as the training label, instead of the ground-truth
image. Importantly, and consistent with Theorem 2, our self-
supervised training theoretically achieves MMSE restora-
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Figure 3: Visual comparison of ShaRP with several well-known methods on 2× SISR. The top row shows results for SISR
with gaussian blur kernel with σ = 1.25, while the bottom row shows results for SISR with gaussian blur kernel with
σ = 1.5. The quantities in the top-left corner of each image provide PSNR and SSIM values for each method. The squares
at the bottom of each image visualize the zoomed area in the image.

tion priors equivalent to those trained fully-supervisedly. For
validation, we train an 8× uniform subsampling CS-MRI
model to handle eight distinct restoration operators corre-
sponding to different sampling masks. Additional training
details are in Section B.1 of the supplement.

With the pre-trained 8× models as ensembles of restoration
priors, we evaluate ShaRP’s performance across a variety
of configurations, including two sub-sampling rates (4×
and 6×), two mask types (uniform and random), and three
noise levels (σ = 0.005, 0.01, and 0.015). Due to space
constraints, only a subset of these settings is included in the
main paper. Additional results can be found in Section B.1
of the supplementary material.

Baselines. ShaRP was compared against several base-
line methods, including denoiser-based approaches (PnP-
FISTA (Kamilov et al., 2017), PnP-ADMM (Chan et al.,
2017)) and diffusion model-based methods (DPS (Chung
et al., 2023), DDS (Chung et al., 2024)). To highlight the
advantages of using a stochastic set of restoration operators,
we also compared ShaRP with the DRP method (Hu et al.,
2024c), which applies only a single restoration operator.
Additional details related to the baseline methods can be
found in Section B.1 of the appendix.

Results with supervised MMSE restoration operator.
Table 2 provides a quantitative comparison of reconstruction
performance across different acceleration factors and noise
levels using a uniform sub-sampling mask. In all configura-
tions, ShaRP consistently outperforms the baseline methods.
The use of a set of restoration operators clearly enhances

ShaRP’s performance, highlighting the effectiveness of em-
ploying multiple operators to maximize the regularization
information provided by the restoration model. Figure 2
presents visual reconstructions for two test scenarios, where
ShaRP accurately recovers fine brain details, particularly
in the zoomed-in regions, while baseline methods tend to
oversmooth or introduce artifacts. These results highlight
ShaRP’s superior ability to manage structured artifacts and
preserve fine details, outperforming both denoiser-based
and diffusion model-based methods.

Results with MMSE restoration operator learned from
incomplete measurements. We further evaluate ShaRP’s
performance using an restoration model, learned in a self-
supervised manner, as introduced in (Gan et al., 2023b).
In this setting, we compare ShaRP against two classical
methods for CS-MRI reconstruction without groundtruth:
TV (Block et al., 2007) and GRAPPA (Griswold et al., 2002)
and a recent state-of-the-art self-supervised deep unrolling
method: SPICER (Hu et al., 2024d). As shown in Table 3,
ShaRP demonstrates its effectiveness in leveraging a self-
supervised restoration prior for various reconstruction tasks,
even when only incomplete measurements (8× subsam-
pled) are available. Note that, ShaRP using self-supervised
restoration prior even outperforms DPIR and DPS that use
Gaussian denoisers trained using fully-sampled ground truth
images (see Table 6 in the appendix). It is important to high-
light that training Gaussian denoisers is infeasible when
only undersampled measurements are available.

We further evaluate the convergence performance of ShaRP
using both supervised and self-supervised restoration priors.
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Due to space limitations, the detailed results and discussion
are provided in Section C.3.

5.2. Single Image Super Resolution (SISR)

The measurement operator in SISR can be written asA =
SK, whereK represents convolution with the blur kernel,
and S performs standard d-fold down-sampling. In our
experiments, we use two Gaussian blur kernels k , each
with distinct standard deviations (1.25 and 1.5), and with
down-sampling factor of 2. Both noisy and noise-free cases
are considered to evaluate the noisy robustness of ShaRP. We
randomly selected 100 images from the ImageNet test set, as
provided in DiffPIR1. Due to space constraints, only a subset
of comparisons is included in the main paper. Additional
results can be found in Section D of the supplement.

Ensemble of Restoration Priors for Image Deblurring.
Similar to our CS-MRI prior training, we decompose the
deblurring task (Gaussian blur operator K) into a convex
combination of K and the identity mapping I: Hα =
(1 − α)I + αK, with α controlling degradation. Vary-
ing α yields multiple degradation operators, enabling our
restoration network R to handle each. This allows R to
function as an ensemble of MMSE restoration operators:
R(s,Hα) = E[x | s,Hα], where s and x are the degraded
and original images, respectively. The original K uses
a 31 × 31 Gaussian kernel with a standard deviation of 3.
Further training details are in Section B.2 of the supplement.

Baselines. We compared ShaRP against baselines including
DPIR (Zhang et al., 2022), a state-of-the-art PnP method
using pre-trained denoisers, and diffusion-based methods
DPS (Chung et al., 2023), DDNM (Wang et al., 2023),
DDRM(Kawar et al., 2022), and DiffPIR(Zhu et al., 2023),
which use different sampling strategies for SISR.

Results on SISR with deblurring prior. Figure 3 shows
the visual reconstruction results for two settings with dif-
ferent blur kernels. As demonstrated, ShaRP successfully
recovers most features and maintains high data consistency
with the available measurements. Table 4 provides quan-
titative comparisons against baselines across blur kernels
and noise levels. ShaRP achieves the highest PSNR and
SSIM, but ranks second in perceptual performance (LPIPS),
consistent with SOTA Diffusion Model-based methods on
SISR. However, the deblurring prior in ShaRP recovers fine
details, ensuring competitive perceptual quality. One inter-
pretation for the improved performance is that when con-
sidering an ensemble of blur-then-deblur operations, ShaRP
can be seen as masking and subsequently restoring portions
of null-space—akin to the mechanism of masked (denoising)
autoencoders. In this interpretation, MMSE restoration net-
works effectively reconstruct the missing null-space signals,

1https://github.com/yuanzhi-zhu/DiffPIR/tree/main/testsets

which improves the perceptual quality. Additional results
can be found in Section D of supplementary material.

6. Discussion
ShaRP as a Unifed Framework. Unlike methods that rely
on a fixed prior for all tasks, ShaRP operates without being
constrained to any specific prior. Instead, it adapts flexibly
to the unique characteristics of diverse inverse problems, en-
abling the integration of a broad range of restoration priors,
including—but not limited to—denoisers. This adaptability
not only enhances the versatility and applicability of the
framework but also has the potential to achieve superior
performance, as demonstrated in Section 5. By building on
a unified theoretical foundation, ShaRP represents a signif-
icant advancement in addressing a wide variety of inverse
problems effectively.

Performance improved with Ensemble Priors. Conven-
tional ensemble priors for inverse problems typically focus
on Gaussian denoisers across varying noise levels (Zhang
et al., 2019; Hurault et al., 2022a; Renaud et al., 2024).
ShaRP advances this concept by integrating structured noise
from diverse degradation operators, forming a richer and
more robust ensemble. Empowered by its flexible and novel
regularizer, ShaRP seamlessly incorporates this diverse en-
semble into a unified, closed-form prior that accommodates
both Gaussian and more complex denoisers. This innova-
tion highlights ShaRP’s ability to leverage a broader range
of priors, enabling adaptable and robust performance across
a wide variety of noise environments. Further evidence of
the benefits of such an expansive ensemble is provided by
an ablation study in Section E.2.

ShaRP’s ability to integrate diverse restoration priors within
a unified framework enables task-specific adaptability, driv-
ing significant performance improvements and advancing
inverse problem-solving.

Sampling from Restoration Priors. Our current work in-
troduces a novel objective function balancing data fidelity
with implicit regularization from an ensemble of priors.
Although this optimization-based approach achieves high
reconstruction accuracy, its perceptual performance is in-
herently limited by the well-known perceptual-distortion
trade-off (Blau & Michaeli, 2018). To enhance the percep-
tual performance, sampling-based extension is a promis-
ing future direction. Specifically, we aim to adapt existing
diffusion-based image restoration methods (Daras et al.,
2023; Bansal et al., 2023; Delbracio & Milanfar, 2023; Liu
et al., 2023), initially developed for specific tasks, to serve
as priors for sampling in general image restoration.
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Noise level Noiseless σ = 0.01 Noiseless σ = 0.01
Metrics PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DPIR 28.10 0.809 0.305 28.05 0.807 0.308 27.90 0.803 0.314 27.87 0.800 0.314

DDNM 27.53 0.786 0.240 27.49 0.784 0.246 27.02 0.764 0.264 27.01 0.763 0.267
DPS 24.68 0.661 0.395 24.60 0.657 0.399 24.50 0.657 0.403 24.44 0.655 0.406

DiffPIR 28.92 0.852 0.152 28.63 0.839 0.169 28.59 0.834 0.172 28.02 0.819 0.185
DDRM 28.20 0.845 0.161 28.11 0.832 0.188 27.93 0.826 0.188 27.67 0.817 0.193

DRP 29.28 0.868 0.207 28.87 0.848 0.248 28.24 0.836 0.235 28.01 0.820 0.278
ShaRP 30.09 0.891 0.179 29.03 0.852 0.223 29.28 0.872 0.209 28.06 0.821 0.268

Table 4: Quantitative comparison of ShaRP with several baselines for SISR based on two different blur kernels on ImageNet
dataset. The best and second best results are highlighted. Notably, ShaRP outperforms SOTA methods based on denoisers
and diffusion models.

7. Conclusion
This work presents ShaRP, a novel framework for imag-
ing inverse problems that leverages pre-trained restoration
networks as priors. Unlike methods limited to Gaussian
denoisers or a single prior, ShaRP integrates multiple priors
tailored to diverse degradations within a unified theoretical
framework. The key findings are: (1) using priors beyond
traditional Gaussian denoisers broadens the framework’s
applicability and performance, and (2) stochastically inte-
grating multiple degradation-specific priors achieves better
performance than relying on a single prior. Numerical ex-
periments confirm ShaRP’s superiority over conventional
methods. By unifying diverse priors into a flexible frame-
work, ShaRP encourages exploring more complex restora-
tion priors for inverse problem-solving.
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Here’s what we cover in the appendix:

• Theoretical Analysis of ShaRP

– Proof of Theorem 1 (detailed in Subsection A.1): Derivation of the gradient of the ShaRP regularizer.
– Proof of Proposition 1 (detailed in Subsection A.2): Convergence guarantees for ShaRP with inexact Minimum

Mean Square Error (MMSE) restoration operators using biased Stochastic Gradient Descent (SGD) analysis.
– Proof of Theorem 2 (detailed in Subsection A.3): Equivalence of the MMSE estimator learned via weighted

self-supervised loss to its supervised counterpart.

• Experiment Details (Section B)

– Implementation details for Compressed Sensing MRI (CS-MRI) tasks (Subsection B.1):
– Implementation details for Single Image Super-Resolution (SISR) tasks (Subsection B.2):

• Additional results for CS-MRI (Section C)

– Quantitative performance of ShaRP for uniform (Table 5) and random (Table 6) subsampling settings.
– Visual comparisons for CS-MRI tasks (Figure 5, Figure 6).
– Performance of ShaRP with self-supervised restoration priors (Subsection C.2, Table 7).
– Convergence performance analysis of ShaRP with both supervised and self-supervised priors (Subsection C.3,

Figure 7), aligning with the convergence analysis for inexact MMSE estimators.
– Performance comparison with additional baseline methods on matched and mismatched settings (Table 8, Figure 8).

• Additional visual results for SISR (Section D)

– Further visual comparisons against various baseline methods for SISR (Figure 9, Figure 10).
– Additional visual comparisons against the DRP method (Figure 11).
– Quantitative (Table 10) and visual (Figure 12) comparisons against additional diffusion-based baselines.

• Additional Experiments

– Ablation study on using a pre-trained super-resolution prior for the CS-MRI task (Subsection E.1, Algorithm 5,
Table 12).

– Ablation study on the impact of the number of restoration priors, b, in the ensemble on CS-MRI performance
(Subsection E.2, Figure 13, Figure 14).

– Ablation study on the influence of the hyperparameter α (controlling prior selection, as introduced in Subsec-
tion B.1) on CS-MRI performance (Subsection E.3, Figure 15).

A. Theoretical Analysis of ShaRP
A.1. Proof of Theorem 1

Theorem. Assume that the prior density px is non-degenerate over Rn and let R∗ be the MMSE restoration operator (4)
corresponding to the restoration problems (3). Then, we have that

∇h(x) =
τ

σ2

(
Es∼Gσ(s−Hx),H∼pH

[
HTH(x− R∗(s,H))

])
,

where h is the ShaRP regularizer in (6).

Proof. The ShaRP regularizer h(x) is defined as

h(x) = τEs∼Gσ(s−Hx),H∼pH [−logp(s|H)]

= −τ
∫
p(H)

[∫
Gσ(s−Hx)logp(s|H) ds

]
dH, (13)
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where Gσ is the Gaussian probability density with variance σ2 and p(s|H) is the likelihood function for the degraded
observation given the operator H. The expectation over p(H) accounts for the randomness of the restoration operator H.

We start by relating the MMSE restoration operator to the score of the degraded observation

∇p(s|H) =
1

σ2

∫
(Hx− s)Gσ(s−Hx)px(x) dx,

where px is the prior. By using the definition of the MMSE estimator, we obtain the relationship

∇logp(s|H) =
1

σ2
(HR∗(s,H)− s) . (14)

Consider the function inside the parenthesis in the expression for the ShaRP regularizer (13)

ρ(z) := (Gσ ∗ logps|H)(z) =

∫
Gσ(z − s) logp(s|H) ds,

where z has the same dimensions as s and ∗ denotes convolution. The gradient of ρ is given by

∇ρ(z) = (∇Gσ ∗ logps|H)(z) = (Gσ ∗ ∇logps|H)(z)

=
1

σ2

∫
Gσ(z − s) [HR∗(s,H)− s] ds

=
1

σ2

(
H

∫
R∗(s,H)Gσ(z − s) ds− z

)
where we used (14). By using z = Hx, we write the gradient with respect to x

∇xρ(Hx) =
1

σ2
HTH

(∫
R∗(s,H)Gσ(s−Hx) ds− x

)
By using this expression in (13), we obtain the desired result

∇h(x) = − τ

σ2

[∫
p(H)

∫
Gσ(s−Hx)

(
HTH(R∗(s,H)− x)

)
ds dH

]
=

τ

σ2
Es∼Gσ(s−Hx),H∼pH

[
HTH(x− R∗(s,H))

]
.

A.2. Proof of Proposition 1

We adopt the analysis of biased stochastic gradient descent (SGD) from the optimization literature (Bertsekas, 2011; Ghadimi
& Lan, 2016; Demidovich et al., 2023) to provide theoretical convergence guarantees to ShaRP under inexact MMSE
restoration operators. Our contribution here is the interpretation of the iterations of ShaRP as a variant of biased SGD, rather
than a general analysis of SGD, which is well-known in the optimization literature.

Proposition. Run ShaRP for t ≥ 1 iterations using the step-size 0 < γ ≤ 1/L under Assumptions 1-3. Then, the sequence
xk generated by ShaRP satisfies

E

[
1

t

t∑
k=1

‖∇f(xk−1)‖22

]
≤ 2

t
(f(x0)− f∗) + γLν2 + ε2.

Proof. First note that from the definition of the bias in eq. (9), we have that

E
[
∇̂f(xk−1) |xk−1

]
= ∇f(xk−1) + b(xk−1), (15)

where the expectation is with respect to s ∼ Gσ(s−Hxk−1) and H ∼ pH. In order to simplify the notation, we will drop
these subscripts from the expectations in the analysis below.

15



Stochastic Deep Restoration Priors for Imaging Inverse Problems

Consider the iteration k ≥ 1 of ShaRP with inexact MMSE operator

f(xk) ≤ f(xk−1) +∇f(xk−1)T(xk − xk−1) +
L

2
‖xk − xk−1‖22

= f(xk−1)− γ∇f(xk−1)T∇̂f(xk−1) +
Lγ2

2
‖∇̂f(xk−1)‖2,

where in the first line we used the Lipschitz continuity of∇f . By taking the expectation with respect to s ∼ Gσ(s−Hxk−1)
and H ∼ pH on both sides of this expression, we get

E[f(xk)|xk−1] ≤ f(xk−1)− γ∇f(xk−1)T(∇f(xk−1) + b(xk−1)) +
Lγ2

2
E
[
‖∇̂f(xk−1)‖22|xk−1

]
≤ f(xk−1)− γ

2
‖∇f(xk−1)‖22 +

γ

2
‖b(xk−1)‖22

+
Lγ2

2

(
E
[
‖∇̂f(xk−1)‖22|xk−1

]
−
(
E[∇̂f(xk−1)|xk−1]

)2)
≤ f(xk−1)− γ

2
‖∇f(xk−1)‖22 +

γε2

2
+
Lγ2ν2

2
.

In the second row, we completed the square, applied eq. (15), and used the assumption that γ ≤ 1/L. In the third row, we
used the variance and bias bounds in Assumptions 2 and 3. By rearranging the expression, we get the following bound

‖∇f(xk−1)‖22 ≤
2

γ

(
f(xk−1)− E[f(xk)|xk−1]

)
+ Lγν2 + ε2

By taking the total expectation, averaging over t iterations, and using the lower bound f∗, we get the desired result

E

[
1

t

t∑
k=1

‖∇f(xk−1)‖22

]
≤ 2

γt
(f(x0)− f∗) + Lγν2 + ε2.

A.3. Proof of Theorem 2:

Let the undersampled measurements be defined as s = Hx+n, where H = PM . Here, P represents a binary subsampling
matrix,M denotes the square transfer operator, and n corresponds to the noise vector.

To show that an MMSE estimator can be learned from undersampled measurement, we need the following assumption.

Assumption 5. EP [P TP ] has a full rank andM is an orthogonal matrix, where the expectation is taken over pP .

This assumption implies that the union of all sampling matrices P spans the complete measurement domain, even though
each individual P may remain undersampled. This property can be achieved by incorporating an additional weightW into
the loss function, where: W = P ′W (P ′W )

T ∈ Rm×m denotes a subsampled variant ofW given P ′.

Proposition 2. When Assumption 2 is satisfited,

E
[
MTP ′

T
WP ′M

]
= I ,

where the expectation is with respect to pM . This proof is the same as provided in previous work (Gan et al., 2023b).

Theorem 3. Under Assumption 5, the MMSE estimator R learned using the weighted self-supervised loss (`self ) is equivalent
to its supervised counterpart (`sup). Specifically, we have:

R`self (θ) = R`sup(θ) . (16)

where

`sup = E
[

1

2
‖x− x‖22

]
(17)
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and

`self = E
[

1

2
‖P ′Mx− s′‖2W

]
. (18)

The vector x = R(s) is MMSE estimation of R for s.

Proof. Note that the self-supervised loss involves the term P ′Mx̄− s′, where s′ = P ′Mx+ n′

P ′Mx̄− s′ = P ′M(x̄− x)− n′. (19)

Thus, the self-supervised loss becomes:

`self = E
[

1

2
‖P ′M(x̄− x)− n′‖2W

]
. (20)

Expanding the squared term:

‖P ′M(x̄− x)− n′‖2W = ‖P ′M(x̄− x)‖2W − 2(P ′M(x̄− x))TWn′ + ‖n′‖2W
= (x̄− x)TMTP ′

T
WP ′M ′(x̄− x)− 2(P ′M(x̄− x))TWn′ + ‖n′‖2W .

So that

E
[
‖P ′M(x̄− x)− n′‖2W

]
= E

[
(x̄− x)TMTP ′

T
WP ′M(x̄− x)

]
− E

[
2(P ′M(x̄− x))TWn′

]
+ E

[
‖n′‖2W

]
.

= E
[
‖x− x‖22

]
+ constant,

where the first term equals to E
[
‖x− x‖22

]
due to the Proposition 2 that E

[
MTP ′TWP ′M

]
= I ; the second term

equals to zero because n′ is zero-mean and independent of P ′ and x; The third term, ‖n′‖2W , does not depend on x and
contributes a constant that does not affect the optimization for training the MMSE estimator R.
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B. Experiment Details
B.1. Implementation details of CS-MRI tasks

Dataset. We simulated multi-coil subsampled measurements using T2-weighted human brain MRI data from the open-access
fastMRI dataset, which comprises 4,912 fully sampled multi-coil slices for training and 470 slices for testing. Each slice
has been cropped into a complex-valued image with dimensions 320× 320. The coil sensitivity maps for each slice are
precomputed using the ESPIRiT algorithm (Uecker et al., 2014). We simulated a Cartesian sampling pattern that subsamples
along the ky dimension while fully sampling along the kx dimension.

Subsampling pattern for CS-MRI. In this paper, we explored two types of subsampling patterns for MRI reconstruction
tasks. All undersampling masks were generated by first including a set number of auto-calibration signal (ACS) lines,
ensuring a fully-sampled central k-space region.

Figure 4 illustrates the k-space trajectories for both random and uniform (equidistant) subsampling at acceleration factors
of 4, 6, and 8. Notably, different patterns were used for training and testing. During training, our restoration prior was
only trained on a uniform mask with a subsampling rate of 6. However, for inference, we employed both uniform and
random masks at subsampling rates of 4 and 6, creating a mismatch between the pre-trained restoration prior and the test
configurations.

Figure 4: Illustration of the undersampling masks used for CS-MRI in this work. (a) The eight different 8× uniform masks
used for training the restoration prior. (b) The inference setting for ShaRP, demonstrating how the prior trained on the masks
in (a) can be applied to solve other problems without retraining.

Algorithm 2 Supervised Training of CS-MRI Restoration Network

Require: dataset: p(x), sampling operator set: {M1,M1, · · · ,M1}, Restoration model: Rθ(·, α)
repeat:
x ∼ p(x),M ∼ {M1,M2, · · · ,M8}, e ∼ N (0, σ2I), α ∼ U([0, 1])
y = Mx+ e

minθ
∥∥Rθ ((1− α)x+ αMTy;α

)
− x

∥∥2
2

until converge

B.1.1. IMPLEMENTATION OF SUPERVISED PRIOR FOR CS-MRI

Models training for supervised case. We use the same U-Net architecture as employed in the official implementation of
DDS2 for R(·;α). For the supervised learning case, we select 1,000 different α values to train the model, following the α
schedule outlined by I2SB (Liu et al., 2023). The model is trained with Adam optimizer with a learning rate of 5× 10−5.
As shown in Algorithm 2, we train our supervised learning model using eight different masks for 8× uniform sampling
CS-MRI reconstruction. In the pseudocode, {M1,M2, · · · ,M8} represent the eight different MRI degradation operators,
each defined by a unique sampling pattern, as shown in Figure 4 (a). This results in a total of 8,000 possible combinations of
α values and sampling masks, effectively creating an ensemble of restoration priors during training.

Inference with a Subset of the Ensemble (Supervised Case). During inference, to simplify computation and focus on the
most effective priors, we use only a subset of the supervised trained ensemble. Specifically, we fix the α value to a particular
choice (e.g., α = 0.5) and use the 8 different sampling masks {M1,M2, · · · ,M8}, resulting in 8 restoration priors.

2https://github.com/HJ-harry/DDS
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Step size and regularization parameter. To ensure fairness, for each problem setting, each method—both proposed and
baseline—is fine-tuned for optimal PSNR using 10 slices from a validation set separate from the test set. The same step size
γ and regularization parameter τ are then applied consistently across the entire test set.

Baseline details. We compare ShaRP with several variants of denoiser- and diffusion model-based methods. For denoiser-
based approaches, we include PnP-FISTA (Kamilov et al., 2023), PnP-ADMM (Chan et al., 2017). PnP-FISTA and
PnP-ADMM correspond to the FISTA and ADMM variants of PnP, both utilizing AWGN denoisers built on DRUNet (Zhang
et al., 2022). For diffusion model-based methods, we compare with DPS (Chung et al., 2023) and DDS (Chung et al., 2024),
which use pre-trained diffusion models as priors and apply different posterior sampling strategies to address general inverse
problems. We use the same pre-trained diffusion model configuration as outlined in the DDS paper. For all baseline methods,
we fine-tuned their parameters to maximize the PSNR value. Notably, both the DRUNet denoiser and the diffusion model
were trained using the same dataset employed for training our restoration prior. For a fair comparison, the diffusion model
pre-trained for DDS and DPS use the same network architecture as our restoration network . All models are trained from
scratch on the fastMRI training set, following the architecture settings provided in DDS3. We also compared with method
that also use the deep restoration prior to solve general inverse problem: DRP (Hu et al., 2024c). For DRP, we utilize the
same pre-trained restoration network as in ShaRP. However, instead of employing a set of degradation priors, DRP uses
a single fixed prior. For a fair comparison, we selected the optimal fixed prior—defined by a fixed α and subsampling
mask—based on PSNR performance on the validation set, and applied it accordingly.

B.1.2. IMPLEMENTATION OF SELF-SUPERVISED PRIOR FOR CS-MRI

Algorithm 3 Self-Supervised Training of CS-MRI Restoration Network

Require: dataset: p(yi,Mi,yj ,Mj), Restoration model: Rθ(·)
repeat:
yi,Mi,yj ,Mj ∼ p(yi,Mi,yj ,Mj), e ∼ N (0, σ2I)

minθ
∥∥MjRθ

(
MT

i (yi + e)
)
− yj

∥∥2
W

until converge

Models training for (Self-Supervised Case). For self-supervised training, the ground truth reference x is not available
as a label. Instead, as shown in Algorithm 3, we work with pairs of subsampled measurements, yi and yj , along with
their corresponding sampling operators, Mi and Mj . These paired measurements exhibit significant overlap within the
shared auto-calibration signal (ACS) region, which increases the weighting of these overlapping k-space regions. Following
the approach proposed by SSDEQ (Gan et al., 2023b), we introduce a diagonal weighting matrix W to account for the
oversampled regions in the loss function. By incorporating this weighted loss, we are able to train our MMSE restoration
operator using incomplete measurements alone. Furthermore, unlike the supervised case where we use the combination of α
values to form an ensemble, in the self-supervised setting, we construct the ensemble using only eight different sampling
masks across the entire dataset.

Inference Using All Restoration Priors (Self-Supervised Case). During inference in the self-supervised setting, we
utilize all 8 restoration priors corresponding to the different sampling masks. By incorporating the entire ensemble, we fully
leverage its capacity to remove the artifacts and enhance reconstruction performance.

Step size and regularization parameter. To ensure fairness, for each problem setting, each method—both proposed and
baseline—is fine-tuned for optimal PSNR using 10 slices from a validation set separate from the test set. The same step size
γ and regularization parameter τ are then applied consistently across the entire test set.

Baseline details. In the self-supervised setting, we compared ShaRP with two widely used traditional methods: TV (Block
et al., 2007) and GRAPPA (Griswold et al., 2002), both of which address the restoration problem without requiring fully-
sampled references. Additionally, we included SPICER (Hu et al., 2024d), a recent state-of-the-art self-supervised deep
unrolling method designed for MRI reconstruction using only pairs of undersampled measurements. To ensure consistency,
we trained the SPICER model on the same amount of paired data used for training our restoration prior in the 8× uniform
CS-MRI setting and applied it to other CS-MRI configurations.

3https://github.com/HJ-harry/DDS

19

https://github.com/HJ-harry/DDS


Stochastic Deep Restoration Priors for Imaging Inverse Problems

Algorithm 4 Gaussian Deblurring Restoration network training

Require: dataset:p(x,y), Gaussian blur operator: K, Rθ(·, α)
repeat:
x ∼ p(x), e ∼ N (0, σ2I), α ∼ U([0, 1])

minθ ‖Rθ ((1− α)x+ αKx;α)− x‖22
until converge

B.2. Implementation details of SISR tasks

Restoration Model training. We use the same U-Net architecture as the Gaussian deblurring model provided by I2SB4.
Utilizing the pre-trained checkpoints from their repository, we fine-tune our model accordingly. Specifically, we align with
their codebase and configure the model type to OT-ODE to satisfy our MMSE restoration operator assumption.

To create an ensemble of restoration priors, we consider a family of degradation operators that are convex combinations
of the identity mapping I and the Gaussian blur operator K. The blurring operator K corresponds to convolution with
a Gaussian blur kernel of size 31 × 31 and standard deviation 3. Specifically, we define the degradation operator as
Hα = (1− α)I + αK, where α ∈ [0, 1] controls the degradation level. By varying α, we generate multiple degradation
operators, allowing us to train the restoration network R to handle all these operators, expressed as R(s,Hα) = E [x|s,Hα],
where s is the degraded image and x is the original image.

We select 1,000 different α values from the interval [0, 1], following the α schedule outlined by I2SB (Liu et al., 2023). This
results in 1,000 different degradation operators Hα, effectively creating an ensemble of restoration priors during training.
The model is trained using the Adam optimizer with a learning rate of 5× 10−5.

Inference with a Subset of the Ensemble. During inference, to simplify computation and focus on the most effective
priors, we use only a subset of the supervised trained ensemble. Specifically, we select 6 α values, resulting in 6 restoration
priors.

Step size and regularization parameter. To ensure fairness, for each problem setting, each method—both proposed and
baseline—is fine-tuned for optimal PSNR using 5 images from a validation set separate from the test set. The same step size
γ and regularization parameter τ are then applied consistently across the entire test set.

Baseline details. We compare ShaRP against several denoiser- and diffusion model-based methods. For denoiser-based
approaches, we evaluate DPIR (Zhang et al., 2022), which relies on half-quadratic splitting (HQS) iterations with DRUNet
denoisers. For diffusion model-based methods, we compare with DPS (Chung et al., 2023), DDNM (Wang et al., 2023),
and DiffPIR (Zhu et al., 2023). These methods all use the same pre-trained diffusion models as priors, but each employs a
distinct posterior sampling strategy to solve general inverse problems. We specifically use the pre-trained diffusion model
from DiffPIR. We also compare our approach with DRP (Hu et al., 2024c), a method that leverages deep restoration priors
for solving general inverse problems. For a fair comparison, we use the same pre-trained deblurring network as in ShaRP for
DRP. However, instead of employing a set of degradation priors, DRP uses a single fixed prior. For a fair comparison, we
selected the optimal fixed prior—defined by a fixed α based on PSNR performance on the validation set, and applied it
accordingly. For all baselines, we fine-tuned their parameters to maximize PSNR performance. Notably, the diffusion model
backbone for all diffusion-based baselines was trained on the same dataset used to train our restoration prior.

4https://github.com/NVlabs/I2SB
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C. Additional results for CS-MRI
C.1. Performance of ShaRP for uniform and random subsampling setting

Due to space constraints, we present only the quantitative performance for the 4× uniform subsampling setting in the main
paper. In this section, we further evaluate ShaRP’s performance on both uniform random subsampling setting, with two
sub-sampling rates (4× and 6×), and three noise levels (σ = 0.005, 0.01, and 0.015).

4× Uniform 6× Uniform
Noise level σ = 0.005 σ = 0.010 σ = 0.015 σ = 0.005 σ = 0.010 σ = 0.015

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Zero-filled 26.93 0.848 26.92 0.847 26.90 0.848 22.62 0.728 22.60 0.726 22.59 0.721

TV 31.17 0.923 31.08 0.921 30.91 0.915 25.00 0.806 24.94 0.803 24.33 0.755
PnP-FISTA 35.88 0.938 31.14 0.894 30.32 0.846 26.30 0.822 25.97 0.786 25.46 0.747

PnP-ADMM 35.76 0.941 32.36 0.878 30.66 0.838 26.13 0.808 25.90 0.776 25.51 0.742
DRP 35.52 0.936 32.32 0.914 30.57 0.901 29.51 0.872 28.52 0.882 28.35 0.876
DPS 32.62 0.888 31.39 0.870 30.29 0.856 30.53 0.862 29.41 0.843 28.63 0.830
DDS 35.21 0.937 35.03 0.935 34.51 0.925 31.02 0.889 30.84 0.888 30.79 0.888

ShaRP 37.59 0.963 35.81 0.951 34.92 0.942 33.42 0.940 32.86 0.932 32.09 0.922

Table 5: Quantitative comparison of ShaRP with several baselines for CS-MRI using uniform masks at undersampling
rates of 4 and 6 on fastMRI dataset. The best and second best results are highlighted. Notably, ShaRP outperforms SOTA
methods based on denoisers and diffusion models.

4× Random 6× Random
Noise level σ = 0.005 σ = 0.010 σ = 0.015 σ = 0.005 σ = 0.010 σ = 0.015

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Zero-filled 25.83 0.815 25.81 0.812 25.76 0.807 22.68 0.724 22.67 0.722 22.67 0.719

TV 28.14 0.866 28.06 0.863 27.96 0.859 24.55 0.782 24.33 0.750 24.28 0.736
PnP-FISTA 29.31 0.863 28.40 0.817 27.49 0.799 26.01 0.797 25.63 0.756 24.94 0.717

PnP-ADMM 28.83 0.842 28.39 0.816 27.70 0.786 25.59 0.776 25.19 0.740 24.93 0.728
DRP 29.97 0.880 29.37 0.839 28.31 0.794 26.98 0.866 26.78 0.853 26.49 0.821
DPS 31.72 0.874 30.45 0.857 29.50 0.843 30.32 0.856 29.36 0.824 27.99 0.810
DDS 32.41 0.910 32.37 0.906 32.25 0.901 30.59 0.876 30.35 0.874 30.31 0.879

ShaRP 34.66 0.949 33.57 0.920 33.18 0.931 31.53 0.924 31.46 0.918 31.45 0.914

Table 6: Quantitative comparison of ShaRP with several baselines for CS-MRI using random masks at undersampling
rates of 4 and 6 on fastMRI dataset. The best and second best results are highlighted. Notably, ShaRP outperforms SOTA
methods based on denoisers and diffusion models.

Table 6 provides a quantitative comparison of reconstruction performance across different acceleration factors and noise
levels using a uniform sub-sampling mask. In all configurations, ShaRP consistently outperforms the baseline methods. The
use of a set of restoration operators clearly enhances ShaRP’s performance, highlighting the effectiveness of employing
multiple operators to maximize the regularization information provided by the restoration model. Figure 6 presents visual
reconstructions for two test scenarios, where ShaRP accurately recovers fine brain details, particularly in the zoomed-in
regions, while baseline methods tend to oversmooth or introduce artifacts. These results highlight ShaRP’s superior ability
to manage structured artifacts and preserve fine details, outperforming both denoiser-based and diffusion model-based
methods.
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Figure 5: Visual comparison of ShaRP with baseline methods on CS-MRI. The top row shows results for a 4× random mask
with noise σ = 0.005, and the bottom row for a 6× random mask with noise σ = 0.015. PSNR and SSIM values are in the
top-left corner of each image. Error maps and zoomed-in areas highlight differences. Notably, ShaRP with stochastic priors
outperforms state-of-the-art methods using denoiser and diffusion model priors.

Figure 6: Visual comparison of ShaRP with baseline methods on CS-MRI for 6× random sampling mask with noise
σ = 0.015. PSNR and SSIM values are in the top-left corner of each image. Error maps and zoomed-in areas highlight
differences. Notably, ShaRP with stochastic priors outperforms state-of-the-art methods using denoiser and diffusion model
priors.
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C.2. Performance of ShaRP with Self-supervised restoration priors

4× Random 6× Random
Noise level σ = 0.005 σ = 0.010 σ = 0.015 σ = 0.005 σ = 0.010 σ = 0.015

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
PnP-ADMM 28.83 0.842 28.39 0.816 27.70 0.786 25.59 0.776 25.19 0.740 24.93 0.728
ADMM-TV 28.14 0.866 28.06 0.863 27.96 0.859 24.55 0.782 24.33 0.750 24.28 0.736

GRAPPA 28.09 0.792 25.39 0.699 23.94 0.649 25.67 0.737 23.72 0.646 22.51 0.595
SPICER 31.87 0.901 31.67 0.889 31.50 0.887 30.18 0.871 30.05 0.863 30.01 0.860

ShaRPself 33.87 0.909 33.64 0.900 33.21 0.892 30.87 0.899 30.36 0.890 30.21 0.875

Table 7: PSNR (dB) and SSIM values for ShaRP with a self-supervised pre-trained restoration operator, compared to
several baselines for CS-MRI with random undersampling masks at rates of 4 and 6 on the fastMRI dataset. The best and
second best results are highlighted. For reference, the highlighted row presents a PnP method using a Gaussian denoiser,
which requires fully sampled data for training. Note the excellent performance of ShaRP even using priors trained without
fully-sampled ground-truth data.

C.3. Convergence Performance of ShaRP with supervised and self-supervised priors

Figure 7 illustrates the convergence behavior of ShaRP with both supervised and self-supervised learned restoration priors on
the test set with an acceleration factor of R = 6 and additional noise σ = 0.01. As observed, ShaRP converges stably under
both settings. However, the self-supervised prior exhibits a performance gap compared to the supervised one, indicating that
it does not serve as a perfect MMSE estimator in practice. Despite this, it still enables stable convergence as an ensemble of
priors for ShaRP, which aligns with our convergence analysis for inexact MMSE estimators presented in Proposition 1.

Figure 7: Convergence of ShaRP for 4× accelerated MRI reconstruction on the fastMRI dataset. (a)-(b) depict the
convergence behavior of ShaRP using restoration operators trained in a supervised manner, while (c)-(d) correspond to
those trained in a self-supervised manner. The plots illustrate the average distance ‖xk − xk−1‖22 and PSNR relative to the
ground truth, as a function of the iteration number, with shaded regions representing the standard deviation. Note the stable
convergence of ShaRP with both types of priors.
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C.4. Performance of additional baseline methods on matched and mismatched settings

In this section, we highlight an important observation: pre-trained restoration networks typically exhibit poor generalization
to mismatched settings. We chose two commonly used methods (SwinIR (Liang et al., 2021) and E2E-VarNet (Sriram
et al., 2020)) for the specific setting of CS-MRI. We trained them on the same 8× uniform subsampling setting as our
restoration prior and directly applied them to solve both matched and mismatched problems, as ShaRP did. As shown in the
Table 8, the baseline method’s performance drops significantly under mismatched conditions, whereas ShaRP maintains
stable performance and convergence guarantees. This demonstrates ShaRP’s ability to adapt pre-trained restoration models
as priors and use it to solve problems under mismatched settings. As shown in the Figure 8, due to the mismatched settings,
the two baseline methods suffer from over-smoothing, lack important details, and exhibit artifacts, whereas ShaRP still
provides high-quality reconstruction performance. This indicates that ShaRP can balance data fidelity and the artifact
removal capabilities of the prior model, leading to an artifact-free reconstruction that preserves important details.

Settings 4× Uniform 4× Random 6× Uniform 6× Random 8× Uniform

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
SwinIR 24.78 0.849 25.09 0.841 29.55 0.907 27.98 0.819 29.37 0.898

E2E-VarNet 35.40 0.957 33.48 0.945 32.79 0.936 31.02 0.913 32.59 0.919

ShaRP 37.59 0.963 34.66 0.949 33.42 0.940 31.53 0.924 32.37 0.907

Table 8: Quantitative comparison of ShaRP with task-specific baselines trained on the 8× uniform mask. Baselines perform
well in matched settings (highlighted in the table) but show a significant drop under mismatched conditions. In contrast,
ShaRP remains robust, handling both matched and mismatched scenarios effectively.

Figure 8: Visual comparison of ShaRP with task-specific baseline methods on CS-MRI for 6× random sampling mask with
noise σ = 0.015. PSNR and SSIM values are in the top-left corner of each image. Error maps and zoomed-in areas highlight
differences. Notably, ShaRP with stochastic priors outperforms state-of-the-art methods using denoiser and diffusion model
priors.

C.5. Additional Evaluation: Non-Cartesian CS-MRI Generalization

In this section, we present an additional evaluation designed to further assess ShaRP’s generalization capabilities. This new
experimental setting explores non-Cartesian sampling for Compressed Sensing MRI (CS-MRI), specifically employing a 2D
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Gaussian sampling mask. A key aspect of this evaluation is that the restoration network, originally trained for 8× uniform
Cartesian sampling, was directly applied to this unseen sampling scheme without any retraining or fine-tuning. The results,
summarized in Table 9, provide compelling evidence of ShaRP’s robustness to diverse sampling patterns and highlight its
strong generalization performance.

Table 9: Performance comparison on CS-MRI with a 2D Gaussian sampling mask. The restoration network was trained on
8× uniform Cartesian sampling and applied directly without retraining or adaptation.

Method PSNR SSIM

PnP-ADMM 31.33 0.917
DPS 32.01 0.904
DDS 33.19 0.924
DRP 32.70 0.921
ShaRP 34.01 0.942
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D. Additional visual results for SISR
In this section, we present additional visual results to numerical comparisons for the SISR task.

D.1. Additional visual results against baselines

As illustrated in Figure 9 and Figure 10, ShaRP outperforms all baseline approaches under both blur kernel settings,
achieving higher PSNR and SSIM values. Moreover, we maintain superior data consistency with the measurements while
achieving enhanced perceptual quality. The use of an ensemble of deblurring priors enables our method to recover fine
details at varying corruption levels, contributing to the improved performance.

Figure 9: Visual comparison of ShaRP with several well-known methods on 2× SISR with gaussian blur kernel with
σ = 1.5. The quantities in the top-left corner of each image provide PSNR and SSIM values for each method. The squares
at the bottom of each image visualize the zoomed area in the image.

Figure 10: Visual comparison of ShaRP with several well-known methods on 2× SISR with gaussian blur kernel with
σ = 1.25. The quantities in the top-left corner of each image provide PSNR and SSIM values for each method. The squares
at the bottom of each image visualize the zoomed area in the image.
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D.2. Additional visual results against DRP

To further emphasize the necessity and advantages of using an ensemble of deblurring priors, as opposed to a fixed prior like
in DRP (Hu et al., 2024c), we provide additional visual comparison results. As shown in Figure 11, ShaRP consistently
recovers finer details, resulting in improved PSNR and SSIM scores, along with enhanced perceptual performance.

Figure 11: Visual comparison of ShaRP with DRP on 2× SISR with gaussian blur kernel with σ = 1.5. The quantities in
the bottom-left corner of each image provide PSNR and SSIM values for each method. The squares at the bottom of each
image visualize the zoomed area in the image.
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D.3. Additional Comparison against DDRM and DiffIR

To further evaluate ShaRP’s performance against state-of-the-art diffusion-based methods, we included two additional
baselines for comparison: DDRM (Kawar et al., 2022) and DiffIR (Xia et al., 2023). The experiment setting is 2× SISR task
with gaussian blur kernel with σ = 1.25 on ImageNet dataset. For DDRM, we utilized the same pre-trained unconditional
diffusion backbone as DiffPIR, DDNM, and DDS, but followed the sampling procedure outlined in their original paper. For
DiffIR, we directly used the provided checkpoint from the authors.

Metrics PSNR SSIM LPIPS
DPIR 28.10 0.809 0.305

DDNM 27.53 0.786 0.240
DPS 24.68 0.661 0.395

DiffPIR 28.92 0.852 0.152
DiffIR 25.79 0.812 0.180
DDRM 28.20 0.845 0.161

DRP 29.28 0.868 0.207
ShaRP 30.09 0.891 0.179

Table 10: Quantitative comparison of ShaRP with several additional baselines for 2× SISR with gaussian blur kernel with
σ = 1.25 on ImageNet dataset. The best and second best results are highlighted. Notably, ShaRP outperforms SOTA
methods based on denoisers and diffusion models.

Figure 12: Visual comparison of ShaRP with additional baselines on 2× SISR with gaussian blur kernel with σ = 1.25. The
quantities in the bottom-left corner of each image provide PSNR and SSIM values for each method. The squares at the
bottom of each image visualize the zoomed area in the image.
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D.4. Additional Evaluation: SISR with New Gaussian Kernel

To further investigate ShaRP’s robustness, we ran an additional Super-Resolution (SISR) experiment using a new Gaussian
blur kernel with σ = 1.0. This test aimed to evaluate if ShaRP can maintain consistently good performance, comparable to
its results with the other two kernels detailed in the main manuscript, even with this previously unseen degradation. As
shown in Table 11, ShaRP continues to provide excellent performance, suggesting its strong generalization capabilities and
potential effectiveness across a wider range of Gaussian blur levels.

Table 11: SISR performance with a new Gaussian blur kernel (σ = 1.0).

Method PSNR (dB) SSIM LPIPS ↓ FID ↓
DPIR 28.45 0.854 0.247 82.90
DDRM 27.26 0.803 0.209 44.77
DiffPIR 28.37 0.841 0.215 40.59
DRP 28.43 0.853 0.236 75.29
ShaRP 28.70 0.858 0.226 69.75
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E. Additional Experiments
In this section, we include two additional ablation studies to further highlights ShaRP’s capability to leverage restoration
priors for solving general inverse problems, as well as to evaluate its performance under different hyperparameter settings.

E.1. Ablation study on using SR prior for CS-MRI task

To demonstrate the flexibility of our approach in integrating diverse restoration models to address general inverse problems,
we conducted an additional ablation study using a pre-trained super-resolution network as a prior for solving the CS-MRI
problem.

Algorithm 5 MRI Super Resolution network training

Require: dataset:p(x,y), 4× bicubic downsampling operator: K, Rθ(·, α)
repeat:
x ∼ p(x), e ∼ N (0, σ2I), α ∼ U([0, 1])

minθ
∥∥Rθ ((1− α)x+ αDTDx;α

)
− x

∥∥2
2

until converge

Models training for MRI-SR We use the same U-Net architecture as employed in the official implementation of DDS5

for R(·;α). To create an ensemble of restoration priors, we consider a family of degradation operators that are convex
combinations of the identity mapping I and the Gaussian blur operator D. The 4× bicubic downsampling operator
D corresponds to bicubic downsample with factor equals to 4. Specifically, we define the degradation operator as
Hα = (1− α)I + αDTD, where α ∈ [0, 1] controls the degradation level. By varying α, we generate multiple degradation
operators, allowing us to train the restoration network R to handle all these operators, expressed as R(s,Hα) = E [x|s,Hα],
where s is the degraded image and x is the original image.

We select 1,000 different α values from the interval [0, 1], following the α schedule outlined by I2SB (Liu et al., 2023). This
results in 1,000 different degradation operators Hα, effectively creating an ensemble of restoration priors during training.
The model is trained using the Adam optimizer with a learning rate of 5× 10−5.

Using MRI-SR model as prior for CS-MRI task. During inference, to simplify computation and focus on the most
effective priors, we use only a subset of the ensemble. Specifically, we select 6 α values, resulting in 6 restoration priors.

As shown in Table 12, under the 4× uniform mask setting, employing the pre-trained MRI-SR model as prior allows
ShaRP to outperform denoiser- and diffusion-based approaches. However, its performance remains inferior to ShaRP with a
mismatched CS-MRI-specific prior. In the 4× random mask setting, ShaRP with the pre-trained MRI-SR model as prior
continues to surpass PnP-based methods that utilize a denoiser prior but performs worse than approaches based on diffusion
models. Notably, ShaRP with a mismatched CS-MRI-specific prior consistently delivers the best performance.

Tasks Metrics PnP-FISTA PnP-ADMM DPS DDS ShaRPCS ShaRPSR

4x Uniform
PSNR 35.88 35.76 32.62 35.21 37.59 35.91
SSIM 0.938 0.941 0.888 0.937 0.961 0.943

4x Random
PSNR 29.31 28.83 31.72 32.41 34.66 30.91
SSIM 0.863 0.842 0.874 0.910 0.949 0.905

Table 12: Quantitative comparison of ShaRP against baselines for CS-MRI reconstruction using 8× CS-MRI and 4×
super-resolution priors, evaluated on the fastMRI dataset. Results are reported for both uniform and random undersampling
masks at a 4x undersampling rate. The best and second best results are highlighted.

5https://github.com/HJ-harry/DDS
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E.2. Ablation Study on the number of restoration priors included in the ensemble

To evaluate the impact of the number of restoration priors, b, on ShaRP’s performance, we conducted an ablation study in
the 4× CS-MRI setting with random sampling masks. We specifically examined how varying b influenced reconstruction
performance, offering valuable insights into ShaRP’s sensitivity to this parameter and its role in achieving optimal results.

As illustrated in Figure 13 and Figure 14, increasing b, which corresponds to incorporating more restoration priors in the
ensemble, generally enhances ShaRP’s reconstruction performance.

Figure 13: Performance comparison of ShaRP’s CS-MRI reconstruction at 4× acceleration with varying numbers of
restoration priors, b. Left: PSNR vs. b; Right: SSIM vs. b. ShaRP with b = 8 consistently achieves superior results,
highlighting the performance improvements gained by incorporating more restoration priors into ShaRP.

Figure 14: Visual comparison of ShaRP with varying amounts of restoration priors, denoted by b, in the ensemble. The
PSNR and SSIM values for each method are shown in the top-left corner of each image. Zoomed-in regions, highlighted as
squares at the bottom of each image, provide a closer look at key details. Notably, increasing the number of restoration
priors in the ensemble enhances visual performance by effectively reducing artifacts and capturing finer details.
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E.3. Ablation Study on the Influence of Hyperparameter α

To evaluate the impact of the hyperparameters α as introduced in Section B.1, we conducted an ablation study in the 4×
CS-MRI setting using random sampling masks, where α governs the selection of a specific restoration prior. Specifically,
we analyzed how varying the values of α influenced reconstruction performance. As shown in Figure 15 demonstrates the
influence of α on performance. A very small α fails to provide sufficient regularization to constrain the solution, while an
excessively large α overly restricts the model, leading to a decline in performance. These findings highlight the importance
of appropriately tuning α and b to balance flexibility and regularization for optimal results.

Figure 15: Performance comparison of ShaRP’s CS-MRI reconstruction at 4× acceleration with varying α. Left: PSNR vs.
α; Right: SSIM vs. α.
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