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ABSTRACT

Recent advances in large vision-language models (LVLMs) have enabled pow-
erful multimodal reasoning by integrating visual encoders with large language
models (LLMs). However, their reliability is frequently undermined by hallucina-
tions—generated text that inaccurately describes the visual input. Although fine-
tuning can mitigate this, it is computationally expensive and demands large, cu-
rated datasets, making training-free alternatives more appealing. Among training-
free strategies, model-editing is a more promising solution than decoding-based
approaches. While decoding methods can adapt outputs per-input, they introduce
substantial computational overhead and instability. Model-editing, by contrast,
modifies the model’s internal representations offline, offering a more efficient and
stable framework. However, the effectiveness of current model-editing techniques
is limited. Existing methods typically rely on a single, global subspace to correct
errors. This static, one-size-fits-all approach treats all test samples identically, fail-
ing to capture the diverse modes of hallucination that vary from one input to an-
other. To overcome this specific limitation, we propose a training-free hallucina-
tion mitigation framework that performs dynamic, per-instance suppression at test
time. Our method advances the model-editing paradigm by first constructing a set
of Disentangled Hallucination Subspaces, where each subspace isolates a distinct
hallucination mode. Then, at inference, our model adaptively calculates weights to
determine how a given input relates to each subspace. These weights guide a dy-
namically combined projection that selectively suppresses the most probable hal-
lucination directions for that specific instance while preserving image-grounded
semantics. Extensive experiments across multiple vision-language benchmarks
and LVLMs families demonstrate consistent improvements, highlighting the ro-
bustness, generalizability, and efficiency of our approach.

1 INTRODUCTION

In recent years, integrating vision models with large language models (LLMs) has become a standard
approach to leverage the advanced reasoning capabilities of LLMs. This integration has led to the
emergence of large vision-language models (LVLMs) Liu et al. (2023a); Zhu et al. (2023). Despite
rapid progress in this field, LVLMs remain unreliable in certain scenarios due to the persistent issue
of hallucination, where the model generate irrelevant or non-factual content that is inconsistent with
the input image.

Existing strategies for reducing hallucinations in LVLMs generally fall into two main categories: (i)
fine-tuning approaches Xiao et al. (2025); Yu et al. (2024) and (ii) training-free methods Leng et al.
(2024a); Wang et al. (2024); Yang et al. (2025). Although the fine-tuning approach often achieves
superior performance, it requires curated datasets and significant computational resources, limiting
its practicality in real-world deployments. Thus, training-free methods have become increasingly
popular due to their flexibility and efficiency.

Existing training-free techniques can be broadly categorized into decoding-based Leng et al.
(2024a); Wang et al. (2024) and model-editing Yang et al. (2025) approaches. Decoding-based
methods, such as contrastive decoding Leng et al. (2024b), adapt model outputs per input during
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Figure 1: (Left): Existing model editing methods Yang et al. (2025) derive a single subspace of
hallucination directions (via SVD) and apply fixed editing to the LVLM, using the same edited
model for all inputs. (Right): Our adaptive method identifies multiple subspaces from different
hallucination modes and adaptively adjusts their contributions to edit the model based on the input
image, enabling more flexible and context-aware hallucination suppression.

or after generation. Although effective, they incur substantial computational overhead due to ad-
ditional forward passes and often suffer from instability. In contrast, model-editing approaches
modify the internal layers of LVLMs offline, typically by projecting hidden representations into a
low-dimensional subspace that captures hallucination-sensitive directions. However, prior meth-
ods rely on a single global subspace that is applied uniformly across all test samples, which limits
their generalization capacity: the hallucination direction captured by this subspace may not align
with the diverse hallucination patterns observed during inference. Specifically, existing editing ap-
proaches Yang et al. (2025) (see Figure 1 (left)) perform fixed model editing, intervening in the
internal layers solely according to this global subspace, regardless of the input. This motivates the
need for an adaptive strategy that can dynamically adjust at test time. To this end, we propose an
adaptive model-editing framework (see Figure 1 (right)) that leverages multiple disentangled sub-
spaces. Each subspace is better aligned with a particular hallucination mode, and their contributions
to model editing are adaptively weighted based on the input sample itself. Overall, our framework
operates in two steps:

Step 1: In a preprocessing stage, we construct multiple low-dimensional subspaces, each represent-
ing a distinct hallucination direction. Specifically, we leverage a paired dataset where each image is
associated with both a hallucinated and a truthful description. For every image, we compute the state
differences between hallucinated and truthful captions. These per-layer difference vectors are then
clustered using K-means. Within each cluster, we apply Singular Value Decomposition (SVD) to
extract an orthonormal basis that captures the dominant hallucination direction. This process yields
a collection of subspaces, each characterizing a different hallucination-sensitive direction.

Step 2: At inference time, the precomputed subspaces from the offline stage are adaptively com-
bined based on the given test sample. Specifically, we probe the LVLM with both the original image
and a masked variant designed to induce hallucination. The difference between their hidden states
provides an input-specific hallucination signal, capturing the model’s susceptibility to hallucinated
content. This signal is then projected onto the previously constructed subspaces, where the pro-
jection magnitudes act as relevance scores. These scores are used to compute adaptive weights for
combining the corresponding subspace bases. The resulting weighted projection matrix is finally
applied to the model’s internal representations to suppress hallucinations during inference.

Unlike fixed editing methods Yang et al. (2025), our framework enables adaptive, fine-grained,
and context-aware model editing, effectively filtering hallucinated content while preserving image-
grounded semantics. In summary, our contributions are as follows:

• Disentangled Hallucination Subspaces: an offline construction of multiple low-rank sub-
spaces, each capturing a distinct hallucination mode.

• Adaptive Test-Time Mitigation: a training-free framework that extracts an input-specific
hallucination signal and projects it onto the precomputed subspaces. The resulting adaptive
weighting dynamically suppresses hallucination directions during inference.
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• Extensive Evaluation: We conduct experiments across multiple vision-language bench-
marks and VLM families, demonstrating consistent and generalizable improvements across
evaluation metrics.

2 RELATED WORK

Large Vision-Language Models: Large Vision-Language Models (LVLMs) have advanced rapidly,
with designs such as BLIP-2 Li et al. (2023b), InstructBLIP Dai et al. (2023), MiniGPT-4 Zhu
et al. (2023), LLaVA Liu et al. (2023b), mPLUG-Owl2 Ye et al. (2024), and Qwen-VL Bai et al.
(2023) enabling strong multimodal capabilities. BLIP-2 Li et al. (2023b) employs a Query Trans-
former (Q-Former) to extract a fixed set of informative visual tokens from a frozen vision encoder,
which are then passed to a frozen LLM—enabling modular alignment with minimal adaptation. In-
structBLIP Dai et al. (2023) builds on BLIP-2 by applying instruction tuning across diverse vision-
language tasks to improve generalization and alignment. However, bottlenecks such as the limited
number of visual tokens and reliance on frozen backbones can lead to vision-to-language misalign-
ment, contributing to hallucination risks. Linear projection approaches, such as MiniGPT-4 Zhu
et al. (2023) and early LLaVA Liu et al. (2023b), preserve CLIP visual features but rely on weakly
supervised tuning, which risks semantic misalignment during generation. mPLUG-Owl2 Ye et al.
(2024) improves grounding through adaptive modality collaboration modules and broad instruction
tuning across diverse tasks. Hallucinations—where models generate content ungrounded in the im-
age—are exacerbated by incomplete grounding and the use of next-token training objectives that fail
to penalize unfaithful outputs Li et al. (2023c). Early work in image captioning attributes hallucina-
tion to biased decoders and limited visual grounding, foreshadowing similar challenges in modern
LVLMs. Subsequent evaluations Li et al. (2023c) emphasize that next-token training objectives
further promote unfaithful outputs due to weak alignment constraints. Benchmark datasets such
as CHAIR Rohrbach et al. (2018) and POPE Li et al. (2023c) have exposed persistent grounding
failures. To address these issues, LLaVA-RLHF Sun et al. (2023) introduces factually-augmented
reinforcement learning with human feedback (RLHF) and proposes MMHalBench, a benchmark
specifically designed to assess hallucination in LVLMs, showing that targeted supervision can sig-
nificantly improve factual alignment.

Hallucination Mitigation Strategies: Mitigation strategies for hallucination in vision-language
models generally fall into four categories. (1) Null-space projection: Nullu Yang et al. (2025) sup-
presses hallucinations by projecting input features into the null space of a learned hallucination
subspace (HalluSpace). While effective, it applies a single global HalluSpace and cannot adapt
to sample-specific hallucination patterns. (2) Latent space steering: VTI Liu et al. (2024) applies
fixed latent offsets to stabilize vision-language features during decoding. Although training-free, it
lacks input adaptivity, as fixed shifts may be suboptimal across different scenes or prompts. (3) To-
ken sparsification and contrastive decoding: VASparse Zhuang et al. (2025) filters low-importance
visual tokens using attention sparsity and performs contrastive decoding between full and pruned
tokens. While efficient, it does not semantically model hallucination features. (4) Constrained and
contrastive decoding: Several methods fall into this category. HALC Chen et al. (2024) reweights
decoding using adaptive visual context and contrast signals. DoLa Chuang et al. (2023) compares
internal representations to detect and suppress hallucinated content. OPERA Huang et al. (2024)
applies over-trust penalties and retrospection to discourage unsupported generations. VCD Leng
et al. (2024a) performs contrastive decoding using perturbed visual inputs, and Woodpecker Yin
et al. (2024) verifies and replaces hallucinated entities by cross-checking them with image-grounded
evidence. Despite these advances, most existing methods are either global, heuristic-driven, or com-
putationally intensive. In contrast, our method constructs multiple low-rank Disentangled Halluci-
nation Spaces and performs sample-specific null-space projection at test time. It is entirely training-
free, adapts to individual inputs, and avoids reranking or model retraining.

3 PRELIMINARY

Vision-Language Alignment. The input to a vision-language foundation model (LVLM) consists
of an image I(i) ∈ RH×W×C and a textual query q(i). A vision encoder (e.g., ViT Dosovitskiy
et al. (2021), CLIP Radford et al. (2021)) first extracts image features from I(i). These features
are then mapped into the language model’s input space by a vision-language alignment module
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(e.g., Q-Former Li et al. (2023a) or a linear projection), producing a sequence of N visual tokens:
X(i) = [x

(i)
0 ,x

(i)
1 , . . . ,x

(i)
N−1], x

(i)
n ∈ Rd. Simultaneously, the textual query q(i) is tokenized into

a sequence of M tokens: T(i) = [t
(i)
N , t

(i)
N+1, . . . , t

(i)
N+M−1], t

(i)
m ∈ Rd. The combined input to

the LVLM is the concatenated sequence [X(i),T(i)] of total length J = N +M .

Model Forwarding. The combined input sequence [X(i),T(i)] ∈ RJ×d, where J = N + M , is
then passed through the language model component of the LVLM. Let L denote the total number of
transformer layers, and z

(i)
ℓ,j ∈ Rd represent the hidden state corresponding to token index j at layer

ℓ for sample i. The model produces a sequence of contextualized embeddings:{
z
(i)
ℓ,j

}L, J

ℓ=1,j=1
= fLVLM

θ

(
I(i),q(i)

)
. (1)

These hidden states serve as the basis for downstream reasoning and generation tasks and are used
in subsequent modules for hallucination suppression.

Response Generation. Following the forward pass through the LVLM, the final-layer hidden states
{z(i)L,j}Jj=1 are used to generate the output response. Specifically, the model performs autoregressive
decoding based on the attended multimodal context, producing the textual response token by token.
The probability of the next token y

(i)
t+1 is modeled as:

P
(
y
(i)
t+1 | y(i)1:t, z

(i)
L,1:J

)
= softmax

(
Wo h

(i)
t

)
, (2)

where h
(i)
t is the decoder’s hidden state at time t, and Wo ∈ RV×d is the output projection matrix

for a vocabulary of size V . Decoding continues until an end-of-sequence token is generated or a
predefined maximum length is reached.

4 METHOD

LVLMs are highly prone to hallucination, generating textual outputs that are inconsistent with the
input image. Existing training-free mitigation approaches employ either sample-agnostic prepro-
cessing or unstable post-hoc heuristics. Crucially, hallucination patterns exhibit significant sample-
level heterogeneity, necessitating adaptive test-time strategies. To address this gap, we introduce
a novel test-time hallucination mitigation framework that: (1) constructs multiple low-rank disen-
tangled hallucination subspaces and (2) performs input-adaptive projection into these subspaces,
without fine-tuning or compromising generation stability.

4.1 CONTRASTIVE DATASET CONSTRUCTION

To extract contrastive signals indicative of hallucinations, we construct a dataset of paired vision-
language inputs in the offline phase. Each triplet consists of an image I(i), a faithful caption q(i),
and a semantically inconsistent (hallucinated) caption q̃(i). The hallucinated captions are generated
by prompting a language model (e.g., GPT-4) to introduce plausible but absent objects or distort
spatial relationships in the original description. Formally, the dataset is defined as:

D =
{(

I(i),q(i), q̃(i)
)}B

i=1
, (3)

where both q(i) and q̃(i) refer to the same image I(i), but differ in semantic faithfulness.

To analyze the latent representations induced by truthful versus hallucinated captions, we pass each
pair through the LVLM and collect hidden states across all layers and positions:{

z
(i)
ℓ,j

}L, J

ℓ,j=1
= fLVLM

θ

(
I(i),q(i)

)
(4){

z̃
(i)
ℓ,j

}L, J

ℓ,j=1
= fLVLM

θ

(
I(i), q̃(i)

)
(5)

Here, z(i)ℓ,j and z̃
(i)
ℓ,j represent the hidden state at layer ℓ and position j, corresponding to the faithful

and hallucinated captions, respectively.

4
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Figure 2: Illustration of our test-time hallucination mitigation framework. (a) We first construct a
contrastive dataset D to derive a set of low-rank subspaces V

(i)
r , i = 1, . . . ,K, each capturing a

distinct type of hallucination. (b) At test time, given an input I, the model adaptively combines the
learned subspaces obtained from clustered hallucination-truthful feature differences—into a sample-
specific composite subspace P. This subspace is then used to project and modulate internal model
activations, effectively suppressing hallucinations without altering the model’s parameters.

4.2 DISENTANGLED HALLUCINATION SUBSPACES

To uncover semantically distinct directions in the LVLM’s activation space that correspond to hallu-
cinations, we perform clustering over feature differences derived from the contrastive dataset D. For
each sample (I(i),q(i), q̃(i)) ∈ D, we compare the model’s internal activations under hallucinated
and faithful captions.

Given a set of transformer layers L, we first compute token-averaged hidden states from each cap-
tion. For every layer ℓ ∈ L, we define:

z
(i)
ℓ =

1

J

J∑
j=1

z
(i)
ℓ,j , z̃

(i)
ℓ =

1

J

J∑
j=1

z̃
(i)
ℓ,j (6)

where z
(i)
ℓ,j and z̃

(i)
ℓ,j are hidden states corresponding to truthful and hallucinated inputs, respectively.

Inspired by Yang et al. (2025), we interpret the deviation between these mean activations as a proxy
for semantic drift—a key signal of hallucination. For each layer ℓ, we collect the representations
into matrices:

Zℓ = [z
(1)
ℓ ; . . . ; z

(B)
ℓ ] ∈ RB×d (7)

Z̃ℓ = [z̃
(1)
ℓ ; . . . ; z̃

(B)
ℓ ] ∈ RB×d (8)

We compute layer-wise difference matrices:

Dℓ = Z̃ℓ − Zℓ (9)

To obtain a consolidated representation of hallucination-induced shifts, we average across all consid-
ered layers, D̄ = 1

|L|
∑

ℓ∈L Dℓ, where each row D̄(i) ∈ Rd now encodes a semantic shift vector for
sample i. We then apply K-means clustering to the rows of D̄, identifying groups of hallucination
modes:

D̄ = [D̄(1); D̄(2); . . . ; D̄(K)] (10)

where each cluster D̄(k) ∈ RBk×d aggregates samples belonging to hallucination mode k.

To extract a compact basis for each hallucination mode, we perform Singular Value Decomposition
(SVD) on each cluster:

D̄(k) = U(k)Σ(k)V(k)⊤ (11)
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The top-r right singular vectors from V(k), corresponding to the largest singular values, define the
basis of the low-rank subspace:

V(k)
r = [vk,1, . . . ,vk,r] ∈ Rd×r (12)

Here, r is a hyperparameter controlling the subspace rank.

Finally, we collect all subspaces into the set V =
{
V

(k)
r

}K

k=1
.

Each subspace V
(k)
r captures a distinct semantic mode of hallucination, enabling fine-grained,

projection-based suppression. These subspaces are later used to dynamically remove hallucination
directions during inference, enhancing the LVLM’s robustness under distribution shift.

4.3 TEST-TIME HALLUCINATION MITIGATION

Our proposed test-time strategy mitigates hallucinations in LVLMs by dynamically editing the
model’s internal activations using the subspace set V constructed in the offline phase. For each
test instance, we estimate its hallucination tendency and suppress activation components aligned
with hallucination-inducing subspaces.

Given a test image I ∈ RH×W×C , we first construct a masked variant by zeroing out 70% of its
semantically salient regions:

Ĩ = I⊙M, (13)
where M ∈ {0, 1}H×W×C is a binary mask and ⊙ denotes element-wise multiplication.

We then query the LVLM with both the original image I and the masked image Ĩ, using the same
textual prompt q. From a set of selected transformer layers L, we extract hidden representations and
compute their difference to probe hallucination-sensitive behavior:

δℓ,j =
1

J

J∑
j=1

(
z
(masked)
ℓ,j − z

(orig)
ℓ,j

)
∈ Rd. (14)

Each difference vector δℓ,j is projected into the K pre-computed low-rank hallucination subspaces
{V(k)

r }Kk=1, where V
(k)
r ∈ Rd×r contains orthonormal basis vectors for hallucination mode k.

The projection magnitude serves as an alignment score, sk,ℓ =
∥∥∥δ⊤ℓ,jV(k)

r

∥∥∥
2
. These scores are

normalized per layer using softmax:

αk,ℓ =
exp(sk,ℓ)∑K

k′=1 exp(sk′,ℓ)
. (15)

Next, we aggregate alignment scores across layers to obtain a global importance score for each sub-
space, γk =

∑
ℓ∈L αk,ℓ. Then, a temperature-controlled softmax is then applied to derive adaptive

weights:

βk =
exp(γk/τ)∑K

k′=1 exp(γk′/τ)
, (16)

where τ > 0 is a temperature hyperparameter. Using these weights, we construct a sample-specific
projection matrix:

P =

K∑
k=1

βkV
(k)
r V(k)

r

⊤
. (17)

Finally, we intervene in the forward pass of the LVLM by editing activations in-place. At each se-
lected layer ℓ ∈ L, token-wise hidden states are projected away from hallucination-prone subspaces:

z(edited)
ℓ,j = (Id −P)zℓ,j , for j = 0, 1, . . . , J − 1. (18)

This instance-specific projection dynamically suppresses hallucination-aligned components with-
out requiring any parameter updates, thereby improving factual consistency while preserving the
model’s generative fluency.
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5 EXPERIMENTS

We evaluate our proposed method on two established hallucination detection bench-
marks—CHAIR Rohrbach et al. (2018) and POPE Li et al. (2023c)—using three representative large
vision-language models (LVLMs): LLaVA-1.5 Liu et al. (2023b), MiniGPT-4 Zhu et al. (2023), and
mPLUG-Owl2 Ye et al. (2024). We compare our approach against a range of decoding-, tuning-,
and projection-based baselines. Comprehensive ablation studies and qualitative analyses are also
conducted to assess the impact of each design choice.

Method LLaVA-1.5 MiniGPT-4 mPLUG-Owl2
CHAIRS ↓ CHAIRI ↓ BLEU↑ CHAIRS ↓ CHAIRI ↓ BLEU↑ CHAIRS ↓ CHAIRI ↓ BLEU↑

Greedy 20.40±2.80 7.08±0.33 15.72±0.10 32.40±2.20 12.20±0.42 14.57±0.11 22.90±0.90 8.62±0.11 15.01±0.24

Beam Search 19.50±2.30 6.84±0.79 15.99±0.14 30.10±0.30 11.87±0.37 15.35±0.24 20.30±0.70 7.62±0.19 15.43±0.05

DoLa 20.20±2.80 6.75±0.54 15.68±0.10 31.90±3.30 12.15±0.89 14.54±0.12 22.40±1.80 8.36±0.04 15.13±0.21

OPERA 17.50±0.50 6.07±0.32 16.02±0.02 29.70±0.30 11.96±0.29 14.82±0.05 20.07±2.07 7.18±0.39 15.41±0.12

VCD 20.30±1.10 7.28±0.10 14.53±0.01 29.00±2.80 12.64±1.19 14.42±0.01 22.80±0.80 8.68±0.17 15.14±0.13

Woodpecker 23.85±4.62 7.50±0.01 17.05±0.00 28.87±2.20 10.20±0.85 15.30±0.01 26.33±1.98 8.43±0.80 16.43±0.00

LURE 19.48±2.35 6.50±0.38 15.97±0.01 27.88±2.25 10.20±0.85 15.03±0.01 21.27±0.06 7.67±0.16 15.65±0.15

HALC 16.90±2.10 5.72±0.55 16.02±0.04 25.20±2.00 9.42±0.41 14.91±0.13 18.80±1.20 7.00±0.01 15.33±0.24

Nullu 15.20±0.60 5.30±0.03 15.69±0.04 21.40±1.00 8.99±0.36 14.81±0.06 15.60±1.20 5.77±0.01 15.45±0.01

Ours 14.60±0.35 4.92±0.05 15.63±0.01 21.01±0.95 8.64±0.22 14.87±0.03 15.21±1.01 5.46±0.01 15.69±0.02

Table 1: Comparison of different methods on CHAIRS , CHAIRI , and BLEU metrics across LLaVA-
1.5, MiniGPT-4, and mPLUG-Owl2.

5.1 DATASETS

We evaluate our method on four benchmark datasets widely used to assess hallucination and visual
grounding in large vision-language models: CHAIR Rohrbach et al. (2018) and POPE Li et al.
(2023c). These benchmarks collectively examine both object-level hallucination and multimodal
consistency across image captioning and visual question answering tasks.

CHAIR. CHAIR focuses on object hallucination in image captions by verifying whether the men-
tioned objects are visually grounded in the image. It reports two metrics: CHAIRS , the percentage
of captions containing hallucinated objects, and CHAIRI , the proportion of hallucinated object to-
kens among all generated object mentions—lower values indicate better grounding. We also report
BLEU to assess caption fluency. Following standard protocol Yang et al. (2025), we prompt each
model with: “Please describe this image in detail.”

POPE. POPE evaluates hallucination through yes/no questions about object presence in images.
It comprises three query types—random, frequent, and adversarial—to probe model robustness
under varying difficulty levels. In addition, we adopt the Offline POPE (OPOPE) variant Li et al.
(2023c), which analyzes hallucination by checking whether non-existent objects appear in generated
captions, rather than in direct answers to object queries.

5.2 BASELINES AND EVALUATION SETUP

We compare our method against a diverse set of recent hallucination mitigation approaches, in-
cluding decoding-based, projection-based, and tuning-based techniques. Specifically, we evaluate
against DoLa Chuang et al. (2023), OPERA Huang et al. (2024), VCD Leng et al. (2024a), Wood-
pecker Yin et al. (2024), LURE Zhou et al. (2023), HALC Chen et al. (2024), and Nullu Yang
et al. (2025). We also include standard decoding strategies (Greedy, Beam Search) and tuning-based
baselines such as LURE and MiniGPT-4 fine-tuned variants.

Our method is applied to three strong LVLM backbones: LLaVA-1.5 Liu et al. (2023b), MiniGPT-
4 Zhu et al. (2023), and mPLUG-Owl2 Ye et al. (2024), all evaluated without any model fine-tuning.
Following prior work Yang et al. (2025), we treat hallucination mitigation as a test-time operation
and use consistent prompts across models for fair comparison. While our approach builds upon
Nullu Yang et al. (2025), it differs by learning multiple HalluSpaces through clustering and applying
adaptive, sample-specific null space projections.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Method LLaVA-1.5 MiniGPT-4 mPLUG-Owl2
Accuracy↑ Precision↑ F score↑ Accuracy↑ Precision↑ F score↑ Accuracy↑ Precision↑ F score↑

Greedy 79.14±0.89 91.98±0.82 90.45±0.86 71.22±1.27 93.72±1.02 90.04±1.23 76.46±0.92 88.85±1.15 87.29±1.15

Beam Search 79.41±0.69 92.52±0.55 90.96±0.59 71.65±1.15 94.70±0.60 90.97±0.85 76.76±1.02 90.28±0.80 88.56±0.87

DoLa 78.98±0.56 91.66±0.81 90.15±0.79 71.28±1.15 93.92±0.83 90.22±1.04 76.07±1.09 88.54±1.25 86.95±1.27

OPERA 79.29±0.32 92.25±0.07 90.71±0.11 70.48±1.63 94.41±1.11 90.66±1.42 75.49±1.29 91.23±1.06 89.11±1.17

VCD 78.01±0.75 91.33±0.88 89.69±0.89 70.83±1.83 92.31±0.88 88.76±1.29 75.49±1.27 88.75±1.56 87.02±1.57

HALC 77.87±0.22 93.17±0.39 91.25±0.38 71.17±0.89 94.88±0.15 90.95±0.42 74.93±1.09 90.20±0.90 88.12±0.99

Nullu 79.52±0.04 93.46±0.03 91.79±0.04 71.92±0.39 95.96±0.65 92.07±0.65 77.09±1.37 92.83±0.29 90.80±0.52

Ours 79.80±0.02 93.6±0.02 91.92±0.06 72.2±0.33 96.02±0.62 92.32±0.32 78.12±1.02 93.4±0.22 91.68±0.62

Table 2: The OPOPE evaluation results on MSCOCO dataset of LVLMs with different methods for
mitigating OH. Higher accuracy, precision, and F score indicate better performance.

5.3 IMPLEMENTATION DETAILS

We apply our method without any fine-tuning to three pretrained LVLM backbones: LLaVA-1.5 Liu
et al. (2023b), MiniGPT-4 Zhu et al. (2023), and mPLUG-Owl2 Ye et al. (2024). For each model
and benchmark, we vary the number of HalluSpace clusters and the dimensionality of the projection
bases. On the CHAIR benchmark, we use 5 clusters and 32 basis vectors for mPLUG-Owl2, and
11 clusters with 8 basis vectors for MiniGPT-4. On POPE, we use 6 clusters for LLaVA-1.5 and 11
clusters for MiniGPT-4. These settings were selected based on preliminary experiments balancing
performance and computational efficiency. All evaluations are conducted on the MSCOCO valida-
tion split, and we report the mean and standard deviation across ten independent runs to account for
variance introduced by clustering.

5.4 RESULTS ON CHAIR

Table 1 presents results on the CHAIR benchmark, using CHAIRS , CHAIRI , and BLEU as met-
rics. Across all three base models, our method consistently reduces both sentence-level and image-
level hallucination rates compared to all baselines, including strong constrained decoding methods
(HALC, DoLa) and null-space projection (Nullu). On LLaVA-1.5, we reduce CHAIRI from 5.30
(Nullu) to 4.92, while maintaining comparable BLEU. The trend holds for MiniGPT-4 and mPLUG-
Owl2, where our method either matches or slightly improves BLEU, while reducing hallucination
errors. This demonstrates that our adaptive, sample-specific projection reduces hallucination rates
more effectively than all baselines, while maintaining competitive BLEU scores.

5.5 RESULTS ON POPE

Table 2 reports results on POPE, which evaluates factual alignment in a question-answering setting.
Our method achieves the best performance across all three metrics on mPLUG-Owl2, improving
F-score from 90.80 (Nullu) to 91.60, along with consistent gains in accuracy and precision. For
LLaVA-1.5 and MiniGPT-4, our method yields slight improvements in accuracy but does not surpass
Nullu in F-score or precision. These results suggest that our sample-specific suppression mechanism
is particularly effective for stronger base models such as mPLUG-Owl2, where it enhances factual
alignment without compromising fluency. Moreover, the improvements demonstrate the adaptability
of our framework, showing that even modest gains can accumulate to meaningful robustness in
challenging benchmarks.

5.6 ABLATION STUDY

We evaluate the impact of cluster count and basis dimensionality on hallucination mitigation. Fewer
clusters result in reduced specificity, while smaller bases fail to isolate fine-grained spurious features.
Our method outperforms Nullu even with fewer clusters, due to per-sample adaptivity.

Number of subspaces: In this experiment (see Figure 3 (left)), we evaluate the effect of the number
of subspaces on the performance of the LLaVA model. The optimal number of subspaces for each
model is first determined on the COCO training set and then applied to the test set. As shown in
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1

Figure 3: (left) The impact of the number of subspaces in the LLaVA-1.5 model within our proposed
method. (right) We assess different perturbation strategies—masking, Gaussian, and blurring.

Metric Number of basis
1 2 4 8 16 32 64

CHAIRS ↓ 16.2 15.2 14.6 14.5 13.2 12.5 11.3
CHAIRI ↓ 6.1 5.3 4.9 4.8 4.2 4.0 3.9
BLEU ↑ 15.6 15.5 15.6 14.2 13.4 12.9 12.7

Table 3: The influence of the number of subspaces in our method applied to the LLaVA-1.5 model.

the figure, we select 7 subspaces for LLaVA, as this configuration minimizes CHAIRS score while
maximizing the BLEU score. Similarly, we choose 11 subspaces for MiniGPT-4 and 5 for mPLUG-
Owl2 based on the same optimization criteria. These findings highlight that the optimal number of
subspaces varies across models, underscoring the importance of tailoring the editing strategy to each
LVLM. Moreover, the results confirm that increasing the number of subspaces beyond the optimal
point does not necessarily yield further improvements and may even degrade performance.

Influence of image perturbations: We evaluate the impact of different perturbation strate-
gies—masking, Gaussian noise, and blurring—applied to test samples during test time in our halluci-
nation mitigation method (see Figure 3 (right)). As shown in the figure, the masking strategy yields
the best performance. This suggests that masking provides a more effective signal for disentangling
hallucination-prone directions compared to other perturbations. Overall, the results highlight the
importance of carefully selecting perturbation strategies when designing adaptive editing methods.

Number of basis vectors: This experiment (see Table 3) evaluates the impact of the number of basis
vectors in the LLaVA. As the number of basis vectors increases beyond 4, we observe a decrease
in CHAIRS and CHAIRI scores, while the BLEU score decreases. This trend is undesirable, as a
lower BLEU score in this context indicates that the LVLM model is generating responses that are
less grounded in the image content. As a result, we choose the number of basis vectors 4 for the
LLaVA model.

6 CONCLUSION

We have presented a novel training-free, test-time adaptation method for mitigating hallucinations
in large vision-language models. By modeling hallucinations with multiple low-rank subspaces
derived from clustered hallucination-truthful feature pairs, our approach captures the diverse and
sample-specific nature of hallucination patterns. Unlike existing methods, our framework dynam-
ically adapts the hallucination suppression subspace for each test input, allowing for fine-grained,
input-dependent corrections without permanently altering the model. Our extensive evaluation on
six benchmarks and across four LVLM families confirms that our method consistently improves hal-
lucination robustness while maintaining the original model’s integrity. This work offers a practical
and effective solution toward more reliable LVLM deployments in real-world applications.
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