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Abstract

Conditional diffusion models provide a natural framework for probabilistic predic-
tion of dynamical systems and have been successfully applied to fluid dynamics
and weather prediction. However, in many settings, the available information at
a given time represents only a small fraction of what is needed to predict future
states, either due to measurement uncertainty or because only a small fraction of
the state can be observed. This is true for example in solar physics, where we can
observe the Sun’s surface and atmosphere, but its evolution is driven by internal
processes for which we lack direct measurements. In this paper, we tackle the
probabilistic prediction of partially observable, long-memory dynamical systems,
with applications to solar dynamics and the evolution of active regions. We show
that standard inference schemes, such as autoregressive rollouts, fail to capture
long-range dependencies in the data, largely because they do not integrate past
information effectively. To overcome this, we propose a multiscale inference
scheme for diffusion models, tailored to physical processes. Our method generates
trajectories that are temporally fine-grained near the present and coarser as we
move farther away, which enables capturing long-range temporal dependencies
without increasing computational cost. When integrated into a diffusion model,
we show that our inference scheme significantly reduces the bias of the predicted
distributions and improves rollout stability.

1 Introduction

Probabilistic prediction of dynamical systems is at the heart of many challenging tasks in science and
engineering. Diffusion models have recently shown success in probabilistic prediction for physical
systems, especially when they are applied to simulated environments [39] or to settings such as
terrestrial weather prediction [62], where laboratory settings or advanced data assimilation can recover
much of the current system state [27].

Many real systems are partially observable, meaning that data is missing, unobtainable, or sufficiently
noisy such that at any given time there is inadequate information to accurately infer the underlying
state of the system. It follows, then, that there is inadequate information to predict its exact evolution.
In these settings, the correct incorporation of past information can help predict future trajectories.
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A prime example of such a partially observable system is our nearest star. Key components governing
the dynamics of the Sun are not directly observable (e.g, the driving forces beneath the visible
“surface”), and what is observable is only available via remote sensing. Nonetheless, predicting this
particular system’s evolution is important due to the potential impact on technology-based sectors
of society arising from solar energetic events [56]. While domain experts have identified physical
descriptors associated with energetic phenomena such as solar flares [40, 10, 42], and relevant
ML-ready datasets have been curated and published [22, 4, 16], there does not yet exist a model
(physics-based or ML-based) that can predict future states of solar active regions and their magnetic
fields across the spatial and temporal scales relevant to significantly improve prediction for these
events [41, 5].

In this paper we study the problem of predicting partially observable dynamical systems with
diffusion models [29], motivated by the challenging problem of learning solar dynamics from data.
As a benchmark to encourage community progress on this problem, we assemble an 8.5TB dataset of
512×512 videos of solar regions containing 12 fields with measurements of the magnetic vector field
and the Sun’s atmosphere. Diffusion models developed for well-observed fluid simulations [39] or
reanalyzed terrestrial weather data [62] typically use an autoregressive inference scheme to generate
future predictions, conditioning on only a few past frames (typically two). For solar dynamics,
however, we find that such models struggle to accurately predict the evolution, showing significant
deviation from observations over time.

To address these limitations, we introduce a new multiscale inference scheme based on “multiscale
templates”, which provide an efficient way to condition on distant past information without increas-
ing computational cost. These templates enable the generation of distant future time steps while
conditioning on fine-grained present information and coarse-grained past times. A model trained
on generating such videos can then be used to generate arbitrarily long trajectories in the future, by
combining different multiscale templates. Compared to inference schemes such as standard autore-
gressive rollouts used in the literature [39, 62], our method predicts a distant future time step from
past observations in a single call to the diffusion model, avoiding the accumulation of distribution
errors. Furthermore, we condition more frequently, and on a larger portion of past observed data.

Contributions. Our key contributions are: (a) We introduce a new multiscale inference scheme
tailored to partially observable dynamical systems encountered in Physics. (b) On the challenging
task of solar prediction, our multiscale inference scheme outperforms standard schemes from the
literature on diffusion models for physics and natural videos, reducing prediction bias and instability.
(c) To the best of our knowledge, our model is the first multi-modal diffusion model trained to predict
high-resolution solar videos; prior work focuses on single modality, low-resolution data (both in time
and space). (d) To encourage competition on the challenging problem of solar prediction, we provide
a new multi-modal 8.5TB dataset of 512× 512 videos capturing solar regions. Upon publication, our
dataset and model will be made publicly available.

2 Related works

Diffusion models for predicting dynamical systems. Unlike [47, 60], which employ a diffusion
model to learn the distribution of individual states in order to refine predictions from a predictor
network, our work falls within the scope of modeling the dynamic of the observations. Along
these lines, [39, 69] address highly observable dynamical systems, like fluids governed by the
Navier–Stokes equations, where all relevant variables (e.g., velocity, pressure) are accessible. Other
works [62] train on data from complex reanalysis of sparse observations (e.g., the ERA5 dataset [27]).
Full observation or re-analysis is not always feasible. For instance, in solar dynamics, it is challenging
to accurately recover surface observations at even moderate scales [see, e.g. 7, 14], and becomes
especially difficult when attempting to infer the state of the Sun’s interior [64, 49], energy transfer [82]
or forces acting on the plasma [11, 88], yet this information is key to predicting solar dynamics. Thus,
while [39, 62] see no benefit from using more than two past observations, incorporating additional past
steps substantially improves results in our setting. In that sense, our findings align with those of [70]
even though they focused on deterministic models. Diffusion models can perform data assimilation
and prediction from incomplete observations simultaneously [66, 74, 33], but this requires a dataset
of underlying system states to train the model – an assumption we do not make in this paper.
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Inference schemes for diffusion models. The standard autoregressive inference scheme for video
diffusion [31, 8, 26, 23, 68] consists in generating progressively an entire video by sliding a short
window. Beyond this, Flexible Diffusion Models (FDM) [25, FDM] and Masked Conditional Video
Diffusion [84] both adopt flexible conditioning strategies and train a single model with a randomized
masking. In particular, [25] introduces two types of inference schemes. The first, called “long-range,”
generates progressively more distant future frames while conditioning only on recent ones, thereby
discarding distant past information. The second, called “hierarchy-2,” uses a sliding-window with
an initial long-range prediction, but it conditions on past information only at the first iteration. In
contrast, our multiscale inference scheme generates videos at multiple scales and conditions on
past information across multiple iterations, which is crucial for recovering information in partially
observable dynamical systems.

Machine learning for solar physics. Machine learning is increasingly used across heliophysics [13,
5], in particular for predicting solar energetic events [9, 57, 59, 58, 20, 44]. However, these approaches
typically perform classification based on selected features rather than modeling the temporal evolution
of the solar atmosphere. Other works apply ML to enhance data quality [12, 35, 86, 34, 24] or build
large-scale pretrained models [85], but these also do not predict future physical states. When
it comes to predicting future solar trajectories, many works either focus on a single quantity of
interest [6, 65, 21] or operate on limited spatiotemporal resolutions. For example, [65, 1] use at least
a 4× spatial downsampling factor and a temporal resolution no finer than 12h. In contrast, our dataset
uses multiple modalities (associated to different instruments); is downsampled only 2× spatially,
matching the optical resolution of the instrument; and is captured at 1h sampling rate.

3 Background: Conditional Diffusion models

This section presents the aspects of conditional diffusion models [75, 29] most relevant to our work.

Score-based diffusion model. Score-based generative models [77, 78], are a class of generative
models that learn to sample from complex data distributions by reversing a gradual noising process.
These models define a forward diffusion process in which the input data x ∈ RN is progressively
corrupted by adding Gaussian noise at various noise levels σs

xs = x+ σsϵ , ϵ ∼ N (0, IN ). (1)

The resulting distribution over the noisy data is denoted by ps(xs) and captures how the original data
distribution evolves under increasing noise. The generative model learns a reverse denoising process
which maps a Gaussian distribution to the distribution of the data [77, 3, 81]. This can be described
as a stochastic differential equation

dxs = −σ2
s∇ log ps(xs)ds+ σsdWs, (2)

and involves the score function ∇ log ps(xs). This score can be obtained by solving a denoising
task [29, 77, 78, 46, 76, 37]. Indeed, if we write D(x, s) a function that minimizes the L2 loss

Ex∼pdata,ϵ∼N (0,IN )

[
∥D(xs, s)− x∥2

]
, with xs = x+ σsϵ. (3)

then we can show [83, 18, 38, 52] that the score is given by ∇ log ps(xs) = (D(xs, s)− xs) /σ
2
s .

Therefore, a diffusion model is trained by learning a neural network Dθ with parameters θ on the
denoising loss (3), and sampled by discretizing the reverse process (2).

Conditional diffusion model. In the paper, beyond modeling the distribution p(x) of the data, we
focus on modeling conditional distributions p(x|y) where x is a trajectory and y is a part of the
trajectory itself [84, 67]. To that end, let m ∈ {0, 1}N denote a vector (or mask) indicating which
parts of the signal x are used as conditioning. The conditioning data is written m⊙x, where ⊙ is the
element-wise product. As above, the distribution p(x|m⊙ x) can be modeled by learning a denoiser
to reconstruct the "clean" data x from its noised version xs with in addition the information of the
conditioning:

Ex∼pdata,ϵ∼N (0,IN )

[
∥D((1−m)⊙ xs +m⊙ x, s,m)− x∥2

]
, with xs = x+ σsϵ. (4)

where the mask m is fed to the denoiser Dθ to help differentiate between noised data and conditioning
data. This way, the denoiser is trained to retrieve the global noise from the noised data xs just like
Eq.(3), but with additional conditioning clean information m⊙ x.
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Figure 1: Multiscale templates and inference scheme. (Left): Our multiscale templates in purple.
(Right): Comparing a standard autoregressive scheme (on top) with our multiscale inference scheme.
We use the visualization style of [25], in which dark boxes indicate available steps (either observed or
generated at previous iterations) and red and blue boxes indicate steps that are used as conditioning
or generated, respectively. Each row is a new call to the conditional diffusion model with the used
template indicated by the number next to the row. Our inference scheme enables capturing longer-
range dependencies, conditions more often in the past, and mitigate rollout instability by generating a
distant future (9 on the figure) in one call to the conditional diffusion model.

4 Multiscale inference scheme for physical processes

In this paper, we are interested in predicting a dynamical system from its observations x, e.g. the
magnetic field at the surface of the Sun. At each time t, we denote xt the observation of the system,
which provides only a partial view of the underlying true state.

At present time t = 0, the goal is to generate a future realization x1:T at horizon T conditionally on
the past xt≤0. In doing so we aim to approximate the following conditional distribution

p(x1:T |xt≤0) . (5)

Due to computational constraints, modeling the full distribution over long horizons T is infeasible. A
common approach is to compress the data to extend the effective context length, as done in latent
diffusion models [8, 26, 23], but the question remains, how to generate arbitrarily long trajectories
using a generative model with a fixed trajectory length?

We assume that our conditional diffusion model can generate only a subset of 2K + 1 time steps at
once. We seek to use the fixed-size model to produce samples over a far larger set of T ≫ 2K + 1
steps by repeatedly applying the fixed length model. For convenience, assume that the model always
generates K future steps from white noise, and the remaining K + 1 are conditioning (from the past
or present). Generating a trajectory of length T thus requires at least ⌈T/K⌉ steps. If we define In as
the set of K new time indices generated and Cn the set of K + 1 frames used as conditioning, the
iterated process amounts to the following approximation:

p(x1:T |xt≤0) ≈
N∏

n=1

p(xIn |xCn
). (6)

A collection of pairs of index sets (In, Cn), 1 ≤ n ≤ N, is called an inference scheme. Given the
above fixed budget constrain, these sets must satisfy |Cn| = K + 1, |In| = K. We write Pn the set
of indices available at step n, which is defined recursively as P1 = {t ≤ 0} (observed past) and
Pn = Pn−1 ∪ In (available time steps). To properly formalize the problem, we consider inference
schemes that satisfy the following properties:

• (completeness) ∪N
n=1In = {1, . . . , T}

• (admissibility) Cn ⊂ Pn, the conditioning is done on already generated (or observed) steps

• (efficiency) Ik ∩ Iℓ = ∅ for k ̸= ℓ, no future step is generated twice

For example, an autoregressive inference scheme consists of sliding a fixed-size fine-grained window
progressively forward in time, Cn = {(n − 1)K, . . . , nK} and In = {nK + 1, . . . , (n + 1)K}
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Figure 2: Performance of our multiscale inference scheme on a synthetic example. The
observed data (blue) consists of Gaussian fluctuations around a sinusoidal trend. Predictions (red)
are from a diffusion model with access only to past data t ≤ 0. (Top): The global trend is barely
observable at fine scale. Thus, a model that generates small trajectory segments autoregressively
tends to accumulate errors, leading to biased and overly broad predicted distributions. (Bottom):
Our multiscale inference scheme (see Fig. 1) efficiently recovers the target distribution – with a
Wasserstein distance of 0.021 vs. 0.23 for the autoregressive model. When restricted to the same
3-step past horizon, the multiscale inference still performs better, with a Wasserstein distance of 0.08.

as shown on Fig. 1. This autoregressive inference scheme has several downsides, as evidenced in
Tab. 1 and illustrated in Fig. 1. The main one being that after the second iteration, there is no explicit
conditioning on observed data, which contributes to rollout instability.

4.1 Multiscale templates for physical processes

Finding an appropriate inference scheme for partially observable dynamical systems is challenging
due to the large space of possibilities: many candidates exist for pairs of conditioned times Cn and
generated times In at each step that satisfy the above properties.

To guide our design, we highlight two key challenges encountered in predicting physical systems:

(a) Partially observable. The state of the system at any given time cannot be fully determined
from the observations. Consequently, the distribution of future scenarios conditioned on
past observed data may not be restricted to a Dirac measure. In many cases, the system
state cannot be fully observed due to missing measurements of key physical variables (e.g.,
velocity fields, or unresolved structures), insufficient observational resolution, or corruption
arising from instrumental noise.

(b) Long-memory. Many physical processes exhibit long memory, or long-range dependency,
in time. This can be quantified by a smooth decay of the autocorrelation (sometimes
characterized in the frequency domain by a power-law decay of the power spectrum [51, 79,
2, 48, 53, 55]). Intuitively, observations closer to the present have a stronger impact on the
future and the influence of distant past observations gradually diminishes while remaining
significant.

Diffusion models have been applied to predicting dynamical systems without fully addressing
challenge (a) or relying on additional information to overcome it. For example, [39] apply a diffusion
model to fully resolved fluids which are effectively Markovian. In weather prediction, although the
observed data is sparse, data assimilation—also known as reanalysis—enables the reconstruction of
missing information, resulting in large datasets of highly informative states [27], on which diffusion
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Figure 3: (Above): Example full-disk solar images from 2015-12-12 (see § 5.2 for details). The left
three panels are photospheric vector magnetic-field components; the right three panels are images of
the solar corona and chromosphere. “Active regions” (intense magnetic fields connected to bright
coronal structures) are present in both modalities. (Below): A sequence of frames of a cropped active
region, corresponding to the red box in the row above.

models have been successfully trained [62]. Other models handle missing states, but require clean
sates for training [74, 33], which is not always available.

In this paper, we tackle the challenging problem of predicting the observations of a dynamical system
presenting the two challenges (a) and (b) simultaneously, as is common across many disciplines. For
example, in oceanography and climatology, shallow ocean layers are observed while few observations
exist for the deep ocean [45]; and in seismology, subsurface stress is not directly measured [36].
In solar physics, the goal of predicting a future trajectories of active solar regions from available
observations (of the magnetic solar surface and hot coronal atmosphere) is challenged by: (a) missing
key components of the sate – in this case, observations of the interior of the Sun, with instrumental
noise present in the data [32, 72], which is sometimes not fully understood or mitigated [73]. And
(b), the targets that are of predictive interest, e.g., sunspots, have long-range dependencies described
by plasma diffusion and flow patterns on local, moderate, and global spatial scales [14].

In principle, if the system state was knowable and described by well-constrained partial differential
equations (e.g., a magneto-hydrodynamic framework [63]), one could solve the dynamics forward in
time from a single time step (Markov process). Now, under assumption (a), even if the underlying
system is Markovian, its observations may not be predicted deterministically because of the lack
of information; such systems are often called hidden Markov [19]). The combination of properties
(a) and (b) as it is often the case in real cases, encourages a diffusion model to consider not only
information near the present but further back in time to access what is needed to predict the future.
Inspired by works on long-range temporal processes [2, 48, 55] and wavelets [51, 79, 15, 54], we
introduce a framework to do this.

A multiscale template Tα
K is a set of 2K + 1 indices centered at the present tα0 = 0 and becoming

progressively coarser farther from it, defined using time increments as powers of α ≥ 1:

Tα
K = {tα−K , . . . , tα0 , . . . , t

α
K} with tαk+1 = tαk + αk and tα−k = tα−k+1 − αk (7)

This set of indices is symmetrical in tα0 = 0. For α = 1, we retrieve a standard uniform window
used in an autoregressive scheme. When α > 1, the time indices are progressively more spaced as
we move away from present. We allow α to be real, in that case, the template is mapped to integers
through Tα

K = {sign(tαk )⌊|tαk |⌋ , −K ≤ k ≤ K} where ⌊t⌋ is the integer part of t.

For a fixed budget of K times, a multiscale template allows to consider a horizon in the past (and in
the future), that is exponential in K, while a uniform template α = 1 has a horizon that is linear in K.
As we will see in the next section, this is crucial for capturing long-range dependencies, and helps
stabilize long predictions.

The term template reflects the flexibility to later separate it into conditioning Cn and newly generated
time indices In as needed, that is, to apply an arbitrary conditioning mask m in Eq. (4).
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Figure 4: Example of predictions, for different inference schemes: autoregressive and multiscale
(ours). Colorbar: -3000 3000 Gauss (magnetic field).

4.2 Multiscale inference scheme

We now design an inference scheme to produce arbitrarily long future trajectories, using the multiscale
templates introduced above and motivated by the key properties of observed physical systems. As
described above, this involves defining pairs (Cn, In) of conditioning indices and newly generated
indices at each iteration n, that is, at each call to the diffusion model, which progressively cover
a future trajectory (see Eq. (6)). In the experiments we choose to generate K = 3 new time steps
at each iteration, which means our diffusion models generate small videos of length 2K + 1 = 7,
and we choose to use templates Tαmax

K with a maximum αmax = 2.5 (see Fig. 1); in the following we
drop the dependence on K and write Tα directly. This means that the most extended video we will
generate at once goes up to 9 = ⌊1 + 2.5 + 2.52⌋ steps in the past and future (see Eq. (7)). We refer
the reader to the Appendix for multiscale inference schemes with different choices of K and αmax.

Our inference scheme, illustrated in Fig. 1, begins by using the largest template Tαmax =
{−9,−3, 1, 0, 1, 3, 9} to generate K = 3 steps in the future: I1 = {1, 3, 9} and conditioning
on the K + 1 = 4 observed steps C1 = {−9,−3,−1, 0}. This enables the model to generate the 9th

step into the future while incorporating observed data that extends equally far into the past. Without
completing an entire trajectory, this first step gives us predictions of the physical system at multiple
horizons in the future. Once this multiple-horizon prediction is performed, the goal is to "fill the
gaps" in the future using the other, shorter-range templates.

Then, we iterate over all possible templates Tα with 1 ≤ α ≤ αmax in decreasing order, along with
all their possible shifts into the future. For each candidate, we check whether the shifted template
overlaps with at least K + 1 = 4 available time steps. This ensures sufficient conditioning data to
generate K new steps. Among the valid options, we select the first template and shift whose final
index aligns with the current maximum horizon, which is 9 in our experiments. This ensures that the
generation proceeds in a consistent way, gradually filling in missing future steps while maintaining
coherence with earlier generated data. In the experiments, we get T = {−6,−2,−1, 0, 1, 2, 6} which
must be shifted by 3 steps in the future. The overlap with the previously generated time steps defines
C2 = {−3, 1, 3, 9} and the newly generated indices at this second iteration are I2 = {2, 4, 5}.

We repeat this procedure until all the gaps from the first applied largest template are filled. For
the values chosen in the experiments, this requires applying a last multiscale template Tα =
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Table 1: Predictions performance. We compare different inference schemes (Autoregressive,
Hierarchy-2 [25], Ours – Multiscale) and models (AViT [50],AR-diff [39], Ours). For each, we
evaluate at three different time windows (1-4 hours, 4-16 hours, 16-32 hours) using multiple metrics:
the Wasserstein distance between the distributions; mean absolute error in the power spectrum; and
normalized mean absolute error of representative solar physics quantities from [10] – the Mean
Horizontal Gradient of the Total Field (MeanGBT) and of the Vertical Field (MeanGBZ).

Wasserstein MAE Power Spec. NMAE MeanGBT NMAE MeanGBZ

Model Scheme 1:4 4:16 16:32 1:4 4:16 16:32 1:4 4:16 16:32 1:4 4:16 16:32

DiT Autoreg. 3.9 5.6 7.9 0.25 0.36 0.53 0.18 0.30 0.37 0.15 0.25 0.31
DiT Hiera. [25] 3.0 4.6 6.0 0.12 0.27 0.38 0.12 0.28 0.38 0.09 0.22 0.31
DiT Ours 3.0 4.3 5.5 0.12 0.22 0.33 0.14 0.27 0.33 0.10 0.21 0.27
[50] Autoreg. 12 13 15 0.11 0.35 0.81 0.40 0.44 0.45 0.40 0.43 0.44
[39] Autoreg. 7.3 12 16 0.20 0.47 0.71 0.29 0.52 0.67 0.27 0.49 0.64
DiT Ours 3.0 4.3 5.5 0.12 0.22 0.33 0.14 0.27 0.33 0.10 0.21 0.27

{−3,−2,−1, 0, 1, 2, 3}, which is actually a uniform template, shifted by 6 in the future, and condi-
tioned on the time steps C3 = {3, 4, 5, 9} and generating new time steps I3 = {6, 7, 8}.

Once the first template span has been entirely generated, we shift the current present to the last
generated step, 9 in the experiments, and can now repeat the above scheme to predict a complete
video until 18 and so on (see Fig. 1).

This inference scheme offers key advantages. Compared to standard autoregressive or “hierarchy-
2” schemes [25], it conditions more often on distant past and future information, better capturing
long-range dependencies around the present. It predicts up to 9 steps ahead in a single diffusion
call, whereas autoregressive methods require 3 calls for the same horizon. This improves error
accumulation, though errors can still grow beyond the largest template’s time scale.

The horizon of the largest template is chosen to be 9 in experiments but it can be adjusted (see
Appendix for a general algorithm). If the physical process exhibits a finite decorrelation timescale, it is
natural to choose a largest template that spans this timescale to fully capture long-range dependencies
and mitigate rollout instabilities. We refer the reader to the Appendix for multiscale inference schemes
based on larger templates.

5 Numerical experiments

5.1 Synthetic example

We present a synthetic example of time-series of observations xt = µt+ηt, where µt is a deterministic
sinusoidal trend, and is made partially observable by the addition of Gaussian noise ηt. In the absence
of noise, a single time step suffices to determine the future trajectory completely. In the presence
of noise, however, consider the times around a negative peak (approximately t = 30; see Fig. 2).
Depending on the noise realization, the local trend may be upward or downward, making the state
difficult to recover locally. That is, partial observability induced by noise prevents accurate estimation
of the underlying slowly varying component. It is thus necessary to look further into the past, which
is precisely what our multiscale inference scheme achieves.

Fig. 2 shows predictions with a small diffusion model, with either an autoregressive scheme or our
multiscale inference scheme. Our scheme better captures the trajectories than the autoregressive one,
as confirmed visually and by Wasserstein distance (0.021 vs 0.23). Because of the partial observability
of the trend mentioned above, the autoregressive scheme produces errors that accumulate.

Our multiscale scheme efficiently captures long-range dependencies through its multiscale templates
(see Section 4.1). When predicting the future at t = 0, it also conditions on earlier steps (up to −9)
compared to only −3 for an autoregressive scheme (see Fig.1). To isolate the effect of the multiscale
template from that of conditioning further in the past, we restrict our scheme in Fig.2 to the same past
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horizon (−3). Performance slightly degrades (from 0.021 to 0.08), but still surpasses autoregressive
baselines.

We refer the reader to the Appendix for another synthetic example of a partially observable fluid
dynamical system.

5.2 Solar dynamics prediction

Solar dataset. To encourage competition on predicting partially observable long-memory dynamical
systems, we introduce a new ML-ready dataset (see Fig. 3) of reasonably high-resolution solar dynam-
ics prediction based on real observations from the NASA Solar Dynamics Observatory mission [61],
in continuous operation since 2010. The data contains two modalities from two instruments, surface
magnetic fields [71], and images of the solar atmosphere [43]. Each produces 4096 × 4096-pixel
images of the full disk of the Sun (see Fig. 3) at high cadence, making the data-handling very de-
manding. As discussed in [16], because active regions occupy only a small fraction of the visible disk,
we propose a dataset of square-image videos of 512× 512-pixel windows that track an active-region.
This data is curated to carefully account for the rotation of the Sun, the limb of the Sun (its “edge”),
co-alignment between the two modalities, potential overlap between targets, and uncertainty, artifacts,
and missing data. Each day, we randomly sample 8 regions of the Sun to follow for 48h, sampled
hourly. The regions are selected to avoid bias towards rare events. Our dataset consists of 8.5TB
composed of ≈ 15K multi-channel videos of shape 48 × 12 × 512 × 512. Each video contains 3
magnetic fields channels and 9 channels for the solar atmosphere at different wavelengths. In the
following, all models are trained on images downsampled by a factor of 2 (to the instrument’s optical
resolution) and considering only 3 of the atmosphere channels, in order to reduce the computational
cost of training multiple diffusion models.

Diffusion model hyperparameters. We adopt a Vision Transformer [17, ViT] architecture as our
denoiser backbone, following the approach in [37], but extended to handle spatio-temporal data and
inspired by the implementation in [67]. The denoiser takes as input 3D patches of size 1× 8× 8 (no
patchification in time), and consists of 16 attention-based layers with a hidden dimension of 512 and
4 attention heads per layer. The resulting denoiser has 62 million learnable parameters. Time and
spatial information on the patches are added as input and we use a RoPE positional encoding [80].
Like in [37], input, output, and noise levels are preconditioned to improve the training dynamics. For
sampling, we generate small trajectories of length 7 with 100 diffusion steps with a Adams-Bashforth
multi-step sampler [87, 89].

Evaluation metrics. We use several metrics that can be computed between a sample and an
observation. In evaluating magnetogram predictions, per-pixel averages are not informative since they
are dominated by quiet Sun pixels even in patches [86, 28]. We therefore use multiple other metrics
(see Tab. 1). First, the Wasserstein distance assesses the fit between the predicted distribution of pixels
and the observed one. Second, we compute the mean absolute error in the isotropic power spectrum,
which provides information on the spatial frequency content of an image. This metric is less sensitive
to noise in the data. Finally, we consider physics-based summary statistics that characterize spatial
gradients of the magnetic field. All metrics are averaged on all fields, on several realizations of the
model, at several prediction dates, and averaged over several different time horizons.

Baselines. We compare our model to 4 baselines. Two fix the denoising architecture and compare
the multiscale inference scheme with: an autoregressive inference scheme (a default choice in the
literature) and the hierarchy-2 inference scheme from [25] (which sparsely completes missing frames,
then autoregressively samples the remainder by conditioning on both past and future frames). The
other two compare our model to existing spatiotemporal models for physical systems: [39] is a
diffusion model tested on fluid dynamics data; and [50] is a deterministic transformer based on
axial attention [30]. All models are trained with 40 epochs. We refer the reader to the Appendix for
additional details.

Solar predictions. Tab. 1 confirms that, in this more challenging case, our multiscale inference
scheme better predicts the pixel distributions than an autoregressive scheme at all future horizons
(1:4, 4:16 and 16:32) by achieving the lowest Wasserstein distance. The spatial content is better
preserved, shown by the error in the power spectrum, and illustrated in the predictions in Fig. 4.
Our multiscale inference scheme also outperforms the “Hierarchy-2” model introduced for natural
videos [25], which was not designed for slow-decaying, autocorrelated long-memory processes. Tab. 1
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also shows that our diffusion model, equipped with our multiscale inference scheme, significantly
outperforms existing models [50, 39]. A deterministic baseline such as AViT [50] can predict a future
trajectory that is close to observed data but loses high frequency content, which gives rise to errors
that accumulate with the rollout. Our model also compares favorably to the diffusion model of [39],
which was developed for fluid dynamics data. These results showcase the limits of current models in
probabilistic prediction of partially observable dynamical systems.

6 Conclusion and discussion

This work introduces and analyzes a multiscale inference scheme for predicting partially observable
dynamical systems. Our approach efficiently incorporates past information—while being refined
around the present—to predict future time steps. We show superior performance in both synthetic
settings and the challenging task of predicting solar dynamics, outperforming existing schemes [25]
and models [50, 39] for video and spatiotemporal physical systems prediction. Our results suggest
that multiscale temporal conditioning helps mitigate partial observability, especially when long-range
precursors influence future evolution, as in solar dynamics. To support further work, we contribute a
dataset of high-resolution multi-modal solar regions trajectories.

While our method is well suited for long-memory systems with smoothly decaying temporal de-
pendencies, it may not remain competitive when observations are dominated by short-term patterns.
Future work could explore adaptive or learned conditioning strategies.
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7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: due to compute budget limits.

17



8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, estimates of the computational resources used is contained in the Ap-
pendix.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes. The research uses publicly available scientific data, respects data own-
ership and attribution, and does not involve human subjects or sensitive content. All
contributions are intended for scientific use and follow the NeurIPS Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, in the introduction we explain why using solar data and studying the Sun
can have important societal impacts.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The dataset and models are designed for scientific study of solar dynamics and
do not pose high risk for misuse; no safeguards are necessary beyond standard open-science
practices.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes. All external assets used in the article, including the SDO / HMI and SDO
/ AIA datasets, are publicly available and properly cited ([22], [43], [71]). We used the
curated dataset from [22], which includes appropriate preprocessing and is suitable for ML
applications. No external code or models requiring attribution beyond standard libraries
were used.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes. We introduce a new 8.5 TB multimodal dataset for solar forecasting,
described in Section 5 and the Appendix, including the inference scheme. The dataset and
documentation will be released publicly upon publication. It is not possible to include this
data in the submission due to file size.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: We did not do any crowdsourcing

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA. The paper does not involve human participants or any data derived from
human subjects; it solely uses observational solar data from publicly available sources.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research doesn’t involve the usage of
LLMs.
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