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ABSTRACT

Soft labels generated by teacher models have become a dominant paradigm for
knowledge transfer and recent large-scale dataset distillation such as SRe2L,
RDED, LPLD, offering richer supervision than conventional hard labels. How-
ever, we observe that when only a limited number of crops per image are used,
soft labels are prone to local semantic drift: a crop may visually resemble an-
other class, causing its soft embedding to deviate from the ground-truth semantics
of the original image. This mismatch between local visual content and global
semantic meaning introduces systematic errors and distribution misalignment be-
tween training and testing. In this work, we revisit the overlooked role of hard
labels and show that, when appropriately integrated, they provide a powerful
content-agnostic anchor to calibrate semantic drift. We theoretically character-
ize the emergence of drift under few soft-label supervision and demonstrate that
hybridizing soft and hard labels restores alignment between visual content and se-
mantic supervision. Building on this insight, we propose a new training paradigm,
Hard Label for Alleviating Local Semantic Drift (HALD), which leverages hard
labels as intermediate corrective signals while retaining the fine-grained advan-
tages of soft labels. Extensive experiments on dataset distillation and large-scale
conventional classification benchmarks validate our approach, showing consistent
improvements in generalization. On ImageNet-1K, we achieve 41.8% with only
285M storage for soft labels, outperforming prior state-of-the-art LPLD by 8.1%.
Our findings re-establish the importance of hard labels as a complementary tool,
and call for a rethinking of their role in soft-label–dominated training.

1 INTRODUCTION

Latent Space

Rabbit

Cat decision boundary 

soft label
hard label

outlier

outlier

Figure 1: Illustration of local-view se-
mantic drift: partial crops may change
object–label relations, yielding seman-
tics that deviate from the full image.

Soft labels have emerged as a standard and strong super-
vision signal derived from pretrained teacher models in
knowledge distillation (Hinton et al., 2015) and dataset
distillation (Yin et al., 2023) tasks. Unlike hard labels,
which provide only class-level supervision, soft labels
encode richer inter-class similarity information, offering
smoother gradients and better generalization. In partic-
ular, for dataset distillation, FKD-based (Shen & Xing,
2022) soft labels have become indispensable because they
allow student models to inherit semantic knowledge from
powerful teacher networks without relying on access to
the teacher in the post stage. This is especially critical in
the post-training stage, where the teacher must be com-
pletely isolated from the training pipeline as it is trained
on the original data, to avoid information leakage and any
direct contact with raw full data following the task setting.

Despite these advantages, the reliance on soft labels in-
troduces a critical bottleneck: storage. The most widely
adopted strategy, such as in FKD and FerKD, involves pre-computing and saving soft labels for ev-
ery image crop in the distilled dataset. While effective, this design leads to massive storage require-
ments, particularly on large-scale datasets like ImageNet-1K (distilled data: 750M vs. soft-label:
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28.33 GB), even larger than the distilled data storage size which is not acceptable. Thus, storing
per-crop logits across thousands of classes results in prohibitive memory overhead, hindering the
scalability and practical deployment of dataset distillation pipelines. As datasets continue to grow
in size and granularity, compressing or reducing soft label storage has become an urgent problem.

A straightforward approach to alleviate storage costs is to reduce the number of crops, and conse-
quently, the number of soft labels per image. However, this seemingly simple solution introduces a
more subtle and overlooked issue: local semantic drift. As shown in Fig. 1, since crops often cap-
ture only partial or ambiguous regions of an image, their soft labels may semantically shift toward
unrelated categories. For example, a crop from a cat image might be similar to a rabbit, and the
soft embedding derived from the teacher would misalign with the global semantics of the original
class. This mismatch between local visual evidence and global semantics undermines training, lead-
ing to degraded generalization and unstable predictions. We also provide a theoretical guarantee
by establishing a strictly positive lower bound on the expected mismatch between the objective de-
fined with reduced crops and that with sufficient crops. Our analysis shows that this gap is inversely
proportional to the number of crops: the fewer the crops, the larger the mismatch.

Hard labels as a corrective signal. In contrast, hard labels are content-agnostic and immune to local
visual ambiguity. While they lack the fine-grained information encoded in soft labels, they provide
a stable supervisory anchor tied to the ground-truth semantic identity of the image. This raises a key
insight: hard labels, if carefully integrated, could serve as corrective signals to calibrate soft-label
supervision and mitigate semantic drift. Surprisingly, this potential has been largely overlooked
in the literature, where hard labels are often considered too coarse or discarded entirely in favor
of soft labels. From a theoretical perspective, we further guarantee that proper joint training with
soft and hard labels does not introduce gradient inconsistencies that would hinder optimization.
On the contrary, the controlled fluctuations arising from hard-label supervision inject additional
information, boosting the learning of new knowledge beyond what soft labels alone can provide.

Our contributions. In this work, we revisit the role of hard labels in dataset distillation and propose
a hybrid training paradigm, Hard Label for Alleviating Local Semantic Drift (HALD). The core
idea is to strategically integrate hard labels into the training pipeline, using them to calibrate and re-
align the semantic space of crops while preserving the nuanced information provided by soft labels.
We provide theoretical analysis showing why few soft-label inevitably causes semantic drift, and
demonstrate mathematically how hard labels can compensate for this effect. Building on this foun-
dation, we validate HALD through extensive experiments across multiple benchmarks, consistently
showing that it reduces distribution mismatch and improves generalization, even under aggressive
soft-label compression.

2 RELATED WORK

Dataset Distillation. Dataset distillation aims to construct a small, synthetic surrogate of a large
dataset that retains its core information content. The goal is to accelerate training and cut storage
costs while achieving performance close to training on the full data. Current approaches can be
broadly grouped into six families: 1) Gradient Matching (Zhao et al., 2020; Zhao & Bilen, 2021;
Lee et al., 2022; Kim et al., 2022; Zhou et al., 2024). 2) Meta-Model Matching (Wang et al., 2018;
Nguyen et al., 2021; Loo et al., 2022; Zhou et al., 2022; Deng & Russakovsky, 2022; He et al.,
2024). 3) Trajectory Matching (Cui et al., 2023; Chen et al., 2023; Guo et al., 2024). 4) Distribution
Matching (Wang et al., 2022; Zhao & Bilen, 2023; Xue et al., 2024; Lee et al., 2022; Sajedi et al.,
2023; Shin et al., 2024; Liu et al., 2022). 5) Decoupled Optimization (Yin et al., 2023; Shao et al.,
2024a;b; Yin & Shen, 2024; Zhang et al., 2025; Cui et al., 2025a; Tran et al., 2025; Shen et al., 2025;
Sun et al., 2024). 6) Difussion Based (Gu et al., 2024; Su et al., 2024; Chen et al., 2025; Zhao et al.,
2025; Chan-Santiago et al., 2025; Wang et al., 2025; Zou et al., 2025). A comprehensive overview
of recent advances can be found in (Liu & Du, 2025; Shang et al., 2025).

Soft Label and Hard Label Usage. Soft labels are widely adopted in dataset distillation for their
richer target structure relative to hard labels, enabling finer guidance during optimization (Yin et al.,
2023; Qin et al., 2024; Sun et al., 2024; Yu et al., 2024; Cui et al., 2025b). However, storing per-
sample soft targets can introduce a substantial memory overhead, often comparable to or larger than
the image storage itself. To mitigate this, LPLD (Xiao & He, 2024) proposes generating a limited set
of soft targets and reusing them throughout training, substantially reducing the label-storage budget.
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Yu et al. (2024) proposes a label-lightening framework HeLlO that leverages effective image-to-label
projectors to directly generate synthetic labels online from synthetic images. In parallel, several
works revisit the role of hard labels in distillation: EDC (Shao et al., 2024b) combines hard- and
soft-label objectives within a unified loss to improve performance, while GIFT (Shang et al., 2024)
fuses hard information into soft targets to obtain more reliable supervision.

3 APPROACH

3.1 PRELIMINARY

Dataset Distillation/Condensation. Given datasetO = {(xi, yi)}, dataset distillation seeks a small
set C = {(x̃j , ỹj)} (|C| ≪ |O|) such that models trained on C and O generalize similarly:

min
C

sup
(x,y)∼O

|L(fθO (x), y)− L(fθC (x), y)| . (1)

Here, θO and θC are obtained via ERM (Vapnik, 1991) on O and C, respectively. With this setup
in place, prevailing evaluations of distilled datasets rely on pre-generated soft labels, which tends
to underemphasize the role of hard labels, despite their zero storage cost and direct ground-truth
supervision. Moreover, storing soft labels (often per crop/augmentation) can exceed the images
themselves, motivating storage-efficient alternatives. We therefore revisit this design choice and
analyze the consequences of a soft-only protocol, particularly under limited soft-label coverage.

Soft Label Recap. Using a teacher model to generate soft labels (Hinton et al., 2015) for training a
new model has become both common and popular, especially in the field of dataset distillation (Wang
et al., 2018), where it has repeatedly been shown to be particularly effective and important for large-
scale datasets. The main drawback of soft labels, however, is that each crop requires storing its
own soft label, which leads to substantial storage overhead (Yin et al., 2023). A straightforward
workaround is to reduce the number of crops (and thus soft labels) per image (Xiao & He, 2024).

However, we identify an often-overlooked issue that arises when only a small number of soft labels
are used per image: Semantic Shift. As illustrated in Fig. 1, soft labels are usually assigned to image
crops, but these crops may only capture partial regions. This semantic shift problem is intrinsic to
soft labels, whereas hard labels, being content-agnostic, do not suffer from such drift. While hard
labels bring their own limitation: they fail to align the semantic label with the fine-grained visual
content, making it difficult for the model to learn detailed representations.

Our work addresses precisely this trade-off. In the following sections, we first provide a theoretical
analysis showing why using too few soft labels per image introduces a semantic shift, leading to
mismatched train–test distributions and degraded predictions. We then demonstrate how, when used
appropriately, hard labels can serve as a corrective signal to calibrate this mismatch, since they
provide supervision independent of crop content. Finally, we propose a new training paradigm,
Soft–Hard–Soft, and show through both theoretical explanation and empirical visualizations that it
effectively resolves the limitations of existing approaches.

3.2 TRAINING WITH LIMITED SOFT LABEL COVERAGE

Definition 1 (Local-View Semantic Drift (LVSD)). Fix x̃ and an augmentation distribution T (x̃).
For a random crop x(crop) ∼ T (x̃), let p̃(x(crop)) ∈ ∆C be the teacher’s soft prediction and write

p̄ := E[p̃(x(crop))], Σ := Cov[p̃(x(crop))].

We say the supervision exhibits Local-View Semantic Drift (LVSD) iff Σ ̸= 0.

Lemma 1. For s i.i.d. crops define p̂s :=
1
s

∑s
i=1 p̃(x

(crop)
i ). Then,

E[p̂s] = p̄, Cov(p̂s) =
Σ

s
, E

[
∥p̂s − p̄∥22

]
=

Tr(Σ)

s
.

In particular, under LVSD, the deviation is strictly positive for any finite s and decays as O(1/s).
Definition 2 (Soft Label per Image (SLI)). The soft labels per image (SLI) denote the number of
augmented soft labels (e.g., crops or views) generated for each image.

3
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Definition 3 (Soft Label per Class (SLC)). Let C ∈ N be the number of classes, and ipc the number
of images per class. Given that each image has SLI soft labels, the total number of soft labels per
class (SLC) is defined as

SLC = ipc× SLI.

Each soft label is a C-dimensional vector, with each scalar entry stored using b bits. The corre-
sponding per-class storage budget (in bits) is therefore

Storage(SLC) = SLC · (Cb).

Discussion (Why SLC). SLC quantifies per-class pre-generated supervision. Fixing SLC controls
label-side storage: regardless of IPC, equal SLC yields the same number of stored soft labels per
class. By contrast, pruning ratios alone are confounded by IPC and obscure absolute storage.

To reduce the storage overhead associated with soft-label supervision, LPLD Xiao & He (2024)
proposes limiting the total number of stored teacher predictions and reusing them across training.
We refer to this storage budget as SLC (see Definition 3). While this reduces storage substantially,
Lemma 1 implies that finite-s supervision deviates from the full-coverage regime due to Local-View
Semantic Drift (see Definition 1). In what follows, we quantify this deviation.

Deviation from the Ideal Optimization Objective. By Theorem 1, Local-View Semantic Drift
(LVSD), i.e., nonzero per-crop prediction covariance, induces a strictly positive lower bound on the
expected mismatch betweenLs andLideal of order Θ(s−1/2), with a distribution-dependent constant
C(σ, κ). Consequently, in low-SLC regimes (small s) the finite-SLC objective is systematically
misaligned with the ideal supervision goal, the gap decays and vanishes only as s→∞.
Theorem 1 (Proof in Appendix B.1). Consider a synthetic image x̃ with augmentation distribu-
tion T (x̃). Each crop x̃

(crop)
i ∼ T (x̃) is assigned a teacher soft label p̃i ∈ ∆C , while the stu-

dent model produces a predictive distribution qθ(· | x̃(crop)
i ). Let L[p̃, q] : ∆C × ∆C → R≥0

be a per-crop loss functional. The empirical training loss based on s independent crops is
Ls(θ; x̃) = 1

s

∑s
i=1 L

[
p̃i, qθ(· | x̃(crop)

i )
]
, while the ideal loss under full augmentation cover-

age is Lideal(θ; x̃) = Ex̃(crop)∼T (x̃)

[
L
[
p̃, qθ(· | x̃(crop))

]]
. Assume that the per-crop loss has finite

variance and finite fourth central moment:

σ2 = Varx̃(crop)∼T (x̃)

[
L
[
p̃, qθ(· | x̃(crop))

]]
<∞, κ =

E
[(
L − EL

)4]
σ4

∈ [1,∞).

Then the expected deviation between empirical and ideal losses satisfies:

E
[∣∣Ls(θ; x̃)− Lideal(θ; x̃)

∣∣] ≥ σ√
s
· 16

25
√
5
·min

{
1
κ ,

1
3

}
. (2)
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Figure 2: Train and test loss landscapes on an
IPC=10 distilled dataset with SLC=50, comparing
(i) finite soft-label coverage and (ii) our method.

Few Soft Labels Make Train-Test Mis-
aligned. Let θ̂⋆ := argminθ Lideal(θ) denote
the oracle obtained under exhaustive local-view
supervision from a strong teacher. By construc-
tion, θ̂⋆ maximally aligns with the teacher’s pre-
dictive distribution across local views, we as-
sume it achieves the best attainable generaliza-
tion. Thus any deviation θ̂s ̸= θ̂⋆ may degrade
generalization. We therefore study the excess
loss E

[
Lideal(θ̂s) − Lideal(θ̂⋆)

]
, which is non-

negative by the optimality of θ̂⋆ for Lideal and
vanishes iff θ̂s = θ̂⋆. Under limited soft-label
coverage (small s), Ls exhibits LVSD and opti-
mizes a proxy of Lideal; consequently θ̂s departs
from θ̂⋆, incurring an unavoidable generalization penalty. Theorem 2 formalizes this effect, yielding
a lower bound of order Ω(1/s) that decays sublinearly and disappears only as s→∞.
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Figure 3: Gradient similarity between hard- and soft-label losses over training, evaluated on real-
image crops and optimization-based distilled data, showing a clear upward trend indicative of
strengthened alignment.

Theorem 2 (Proof in Appendix B.2). Let Lideal(θ) be twice continuously differentiable in a neigh-
borhood N of its unique minimizer θ̂⋆, and denote H⋆ := ∇2Lideal(θ̂⋆) ⪰ µI for some µ > 0.
Write g(θ;x) := ∇θℓ(θ;x) so that ∇Lideal(θ) = E[g(θ;x)], and let θ̂s ∈ argminθ Ls(θ) be any
ERM. Assume: (A1) (Unbiased score & covariance) E[g(θ̂⋆;x)] = 0, and Σ⋆ := Cov(g(θ̂⋆;x))

with E∥g(θ̂⋆;x)∥2+κ < ∞ for some κ > 0. (A2) (Hessian Lipschitz) ∇2Lideal is LH -Lipschitz on
N . (A3) (Local uniform concentration) There exist r0 > 0 and constants Cuc > 0, c̄ > 0 such that
for all s and δ ∈ (0, 1), with probability at least 1 − δ, supθ∈B(θ̂⋆,r0)

∥∥Hs(θ) − ∇2Lideal(θ)
∥∥ ≤

Cuc

√
log(1/δ)

s , Hs(θ) :=
1
s

∑s
i=1∇2

θℓ(θ;xi), and supθ∈B(θ̂⋆,r0)
∥∥(∇Ls−∇Lideal

)
(θ)−

(
∇Ls−

∇Lideal
)
(θ̂⋆)

∥∥ ≤ c̄
√

log(1/δ)
s ∥θ− θ̂⋆∥. (A4) (ERM stays local) There exists a sequence δs ↓ 0 such

that Pr
(
θ̂s ∈ B(θ̂⋆, r0)

)
≥ 1 − δs. (A5) (Boundedness near optimum) There exists B < ∞ such

that Lideal(θ) ≤ B for all θ ∈ B(θ̂⋆, r0). See more details about assumptions in Appendix B.2.

Then there exist constants C1, C2, Cb > 0 depending only on (µ,LH), such that for all s,

E
[
Lideal(θ̂s)− Lideal(θ̂⋆)

]
≥ 1

2s
tr
(
H−1

⋆ Σ⋆

)
− C1

s3/2
− C2

s2
− Cb δs . (3)

Visualization of the Limitations of Limited Soft Label Supervision. To illustrate the limitations
of limited soft-label coverage, we compare the model’s behavior on both the training and test sets,
as shown on the right part of Fig. 2. Under finite soft-label supervision, the test-time loss landscape
deviates notably from that of the training set, indicating overfitting and reduced generalization.

3.3 CALIBRATING LVSD WITH ACCURATE SUPERVISION

To mitigate LVSD arising under finite-s soft label coverage, we propose Hard Label to Alleviate
Local Semantic Drift (HALD), a soft→hard→soft calibration schedule. Intuitively, we first allow
the student model to acquire coarse discriminative ability from finite-s teacher soft labels, increasing
gradient alignment between hard and soft supervision to ensure a smooth transition. We then de-
LVSD the student by enforcing class-accurate constraints with hard labels, suppressing crop-specific
variance. Finally, we resume teacher-guided learning to align the student with the teacher distri-
bution on the variance-reduced representation, achieving a balance between reliance on limited soft
labels and the global semantics provided by hard labels, thereby enhancing overall performance. We
will then formally describe these three stages.

How to determine the training duration for each stage. We assume (as in our theoretical frame-
work) that the model can fit the finite-s soft-label supervision on Ωsoft to empirical risk minimization
(ERM). Let nsoft denote the epoch budget required for the model to reach convergence on Ωsoft, and
let ntotal be the total training budget. We allocate the remaining epochs to hard-label calibration:
nhard := ntotal − nsoft (≥ 0). Training then follows:

TA︸︷︷︸
soft

=
⌊
nsoft
2

⌋
, TB︸︷︷︸

hard

= nhard, TC︸︷︷︸
soft

= nsoft − TA,

5
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If ntotal ≤ nsoft, we set nhard = 0 and run soft-label training only. This schedule preserves the ERM
fit on Ωsoft, inserts a hard-label calibration phase of length nhard to mitigate local semantic drift, and
finally re-aligns with Ωsoft to consolidate the variance reduction benefits.

(i) Stage A (soft pretraining). Let s denote the total number of pre-generated soft labels (SLC × C).
Define the global soft-label pool:

Ωsoft :=
{
(x

(crop)
i , p̃i)

}s

i=1
, p̃i := p̃(· | x(crop)

i ),

where each x
(crop)
i is obtained by sampling a training image x̃ and a crop x ∼ T (x̃). At step

t, sample indices Jt = {j1, . . . , jB} ⊂ {1, . . . , s} with replacement and form the mini-batch
{(x(crop)

jb
, p̃jb)}Bb=1. Using the same per-crop loss L[·, ·], minimize the batch estimator,

L̂(t)
soft(θ) =

1

B

B∑
b=1

L
(
p̃jb , qθ(· | x

(crop)
jb

)
)
, θt+1 = θt − ηt∇θL̂(t)

soft(θt).

We denote by θ̂As the parameters obtained after Stage A training using this pool-sampling procedure.

(ii) Stage B (de-LVSD via hard labels). Define label smoothing and the CutMix target (for C classes),
LSα(y) = (1− α) δy + α 1

C , tλ,α(y, y
′) = (1− λ) LSα(y) + λLSα(y

′).

Let the sampling space be: Ωcal :=
{
((x̃, y), (x̃′, y′), x, x′, λ,m) : x ∼ T (x̃), x′ ∼ T (x̃′), λ ∈

(0, 1), m∈M
}
. For any ω = ((x̃, y), (x̃′, y′), x, x′, λ,m) ∈ Ωcal, define the calibration loss,

ℓcal(θ;ω) := L
(
tλ,α(y, y

′), qθ(· | CMλ,m(x, x′))
)
.

Initialize θ0 := θ̂As . At each step t, draw an i.i.d. minibatch {ω(t)
i }Bi=1 ⊂ Ωcal and update,

L̂(t)
cal(θ) =

1
B

B∑
i=1

ℓcal(θ;ω
(t)
i ), θt+1 = θt − ηt∇θL̂(t)

cal(θt).

As crops and CutMix geometry are resampled at every step, minibatches are effectively non-
repeating and provide ground-truth–anchored, diverse local views of each base image, thereby miti-
gating the semantic bias induced by finite-s soft-label supervision in Stage A.

(iii) Stage C (soft refinement). Initialize from θ̂B; Stage C follows Stage A’s pool-based protocol
(same sampler on Ωsoft and per-crop loss L), yielding final θ̂.

3.4 THEORETICAL ANALYSIS FOR HALD

Optimization Coherence and Stability. Theorem 3 shows that the alignment between soft- and
hard-label gradients is controlled by the ratio D/m0, where D denotes the inter-class gradient spread
and m0 the minimal gradient norm. As training progresses under any form of supervision that
allows the model to converge, the representation space gradually stabilizes and the classifier head
becomes more aligned across samples. Consequently, D tends to decrease faster than m0, leading to
a monotonically decreasing ratio D/m0 and a progressively tighter alignment bound. Empirically,
as shown in Fig. 3, the cosine similarity between soft- and hard-label gradients remains positive and
increases steadily throughout training, confirming the theoretical prediction.

The Soft–Hard–Soft design naturally follows from this theory: the first Soft stage aligns the model
and strengthens gradient similarity; the Hard stage reduces variance and corrects semantic drift;
and the final stage restores fine-grained teacher consistency on the variance-reduced representation.
Theorem 3 (Soft–Hard Gradient Consistency; proof in Appendix B.3.1). Fix a crop x(crop)∼T (x̃)
and C classes. Let gc := ∇θ log qθ(c | x(crop)), ∇θLsoft = −

∑
c p̃cgc, ∇θLhard = −

∑
c p̄

(α)
c gc

(where p̄(α) is the α-smoothed one–hot). Assume D := supi̸=j ∥gi − gj∥ < ∞ and m0 :=

min{∥
∑

c p̃cgc∥, ∥
∑

c p̄
(α)
c gc∥} > 0. Then there exists a constant Calign(x̃, α) depending only

on the teacher’s predictive entropy and the smoothing rate such that,

Ecrop[cos(∇θLsoft, ∇θLhard)] ≥ 1− D

m0
· Calign(x̃, α).
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Analysis of Hard Label Calibration. By Corollary 1, hard-label calibration increases the effective
sample size from s to at least seff , thereby improving both the optimization objective in Equa-
tions 2 and the generalization bound in Equation 3 via variance reduction. The performance gain
is visualized in Fig. 2. Intuitively, hard-label calibration mitigates local semantic drift by enlarging
the effective sample size, which reduces the sample variance and alleviates overfitting arising from
finite-s soft-label supervision. This improvement is driven by the strong alignment between soft-
and hard-label gradients (high expected cosine similarity), ensuring that optimization on hard labels
remains informative about unseen crops drawn from the same population distribution.
Corollary 1 (Proof in Appendix B.4). Assume the conditions of Theorem 3 hold so that E

[
⟨u, v⟩

]
=

E
[
cos

(
vsoft, vhard

)]
≥ ρ⋆ ∈ (0, 1), where u := vsoft/∥vsoft∥ and v := vhard/∥vhard∥. Let

(ui, vi)
s
i=1 be i.i.d. copies of (u, v). Then the effective sample size satisfies:

seff ≥
s

1− ρ2⋆
.

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

Additional details on datasets, distillation methods, and setup are provided in the Appendix.

Datasets. We evaluate HALD on Tiny-ImageNet (64×64, C=200) (Le & Yang, 2015) and
ImageNet-1K (224×224, C=1000) (Deng et al., 2009), covering both low- and high-resolution
regimes with distinct class scales for comprehensive evaluation.

Generation Methods. We consider four representative paradigms: (i) SRe2L (Yin et al., 2023),
an optimization-based method prone to limited diversity and distribution shift; (ii) LPLD (Xiao
& He, 2024), a diversity-enhanced variant; (iii) RDED (Sun et al., 2024), real-data selection via
class-preserving crops; and (iv) FADRM (Cui et al., 2025a), a residual-hybrid approach that fuses
real-image priors with optimization. These span synthetic–real and low–high diversity axes.

Baselines methods. We compare the proposed Soft–Hard–Soft training paradigm (HALD) with
three baselines: (1) Soft-Only, which relies solely on soft labels for supervision; (2) GIFT (Shang
et al., 2024), which incorporates hard-label information directly into the soft labels during training;
and (3) Joint Objective, which optimizes a combined loss that equally leverages both supervision
sources: L = Lsoft + λLhard, where λ controls the relative weighting between the soft- and hard-
label objectives. Unless otherwise specified, all generation techniques adopt the strongest baseline,
namely the Soft-Only protocol, whereas our method employs FADRM for generation and HALD
for training. Results are reported as Top-1 accuracy (%) with mean ± std over three runs, and
table-specific settings (IPC, SLC, architecture, dataset) are detailed alongside each result.

4.2 MAIN RESULT

As shown in Table 1 and Table 2, our method consistently achieves superior performance. With
SLC= 250 and a 50-IPC distilled dataset, HALD reaches 47.6% Top-1 accuracy on ImageNet-1K,
surpassing the previous SOTA LPLD by +13.4%, thereby validating its effectiveness.

Table 1: Comparison with SOTA methods on Tiny-ImageNet.

SLI = 2 SLI = 1
SRe2L RDED FADRM LPLD Ours SRe2L RDED FADRM LPLD Ours

IPC=10 14.6±0.2 12.5±0.3 17.4±0.5 13.3±0.3 22.8±0.3 8.3±0.4 7.7±0.2 10.1±0.3 8.2±0.2 18.6±0.4

Storage SLC = 20 (1.52 MB) SLC = 10 (0.76 MB)
IPC=20 21.8±0.3 19.6±0.4 26.4±0.2 21.3±0.4 29.7±0.5 14.8±0.3 11.7±0.2 17.5±0.2 14.0±0.3 25.9±0.3

Storage SLC = 40 (3.04 MB) SLC = 20 (1.52 MB)
IPC=30 27.3±0.5 23.6±0.6 31.0±0.4 27.5±0.5 33.8±0.4 19.7±0.2 17.9±0.5 23.8±0.4 17.4±0.4 28.7±0.3

Storage SLC = 60 (4.56 MB) SLC = 30 (2.28 MB)
IPC=40 29.6±0.2 26.8±0.5 32.9±0.4 29.1±0.4 35.2±0.3 22.2±0.3 19.6±0.3 26.6±0.3 22.1±0.5 30.3±0.4

Storage SLC = 80 (6.08 MB) SLC = 40 (3.04 MB)
IPC=50 31.9±0.2 27.9±0.4 36.0±0.3 34.3±0.3 38.2±0.5 24.0±0.4 20.5±0.2 27.8±0.5 24.1±0.2 30.7±0.4

Storage SLC = 100 (7.60 MB) SLC = 50 (3.80 MB)
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Table 2: Comparison with SOTA methods on ImageNet-1K. † denotes the reported results.

SLI = 10 SLI = 5
SRe2L RDED FADRM LPLD Ours SRe2L RDED FADRM LPLD Ours

IPC=10 18.6±0.3 18.1±0.3 26.5±0.2 23.1†±0.1 37.0±0.5 8.6±0.5 8.4±0.3 11.1±0.6 8.1±0.4 27.0±0.6

Storage SLC = 100 (190 MB) SLC = 50 (95 MB)
IPC=20 29.3±0.4 23.9±0.2 34.7±0.4 35.9†±0.3 43.1±0.4 19.4±0.3 15.7±0.5 23.6±0.5 24.0±0.3 39.2±0.4

Storage SLC = 200 (380 MB) SLC = 100 (190 MB)
IPC=30 34.3±0.2 30.6±0.5 41.1±0.6 38.0±0.4 47.7±0.2 23.7±0.6 20.8±0.3 28.7±0.3 26.9±0.3 43.6±0.5

Storage SLC = 300 (570 MB) SLC = 150 (285 MB)
IPC=40 43.3±0.2 40.9±0.4 50.0±0.5 44.9±0.3 52.6±0.3 28.8±0.3 24.1±0.6 33.1±0.6 30.2±0.5 45.6±0.3

Storage SLC = 400 (760 MB) SLC = 200 (380 MB)
IPC=50 46.8±0.3 43.5±0.4 52.7±0.2 47.2±0.3 53.7±0.2 33.9±0.4 29.2±0.6 39.3±0.4 34.2±0.3 47.6±0.5

Storage SLC = 500 (950 MB) SLC = 250 (475 MB)

Table 3: Left: Impact of soft-label phase length on final performance (all generation methods are
trained with HALD). Right: Results on cross-architecture generalization, showing Top-1 accuracy
(%) with IPC=10 under SLC=100 on different neural networks.

Soft-Label Phase Length (epochs)

Method 100 150 200 250

FADRM 31.3 34.8 37.0 29.3
RDED 16.6 24.0 25.4 22.5
LPLD 24.1 27.1 28.8 26.3
SRe2L 26.7 30.9 31.7 26.4

Soft-label convergence length = 200 epochs

Model #Params RDED LPLD FADRM Ours

ResNet-18 11.7M 18.1 23.1 26.5 37.0 ↑10.5

ResNet-50 25.6M 25.2 27.3 36.1 38.0 ↑1.9

EfficientNet-B0 39.6M 19.5 26.1 36.4 37.8 ↑1.4

MobileNetV2 3.4M 17.3 25.1 34.2 35.3 ↑1.1

DenseNet121 8.0M 28.3 36.7 43.3 44.3 ↑1.0

ShuffleNetV2-0.5x 1.4M 17.9 21.1 29.2 32.3 ↑3.1

Vit-Tiny 13M 3.2 3.8 5.6 8.9 ↑3.3

VGG-11 133M 26.3 28.9 31.0 33.6 ↑2.6

VGG-16 138M 28.9 34.3 36.2 37.4 ↑1.2

Table 4: Performance comparison under identical stor-
age and training budgets, highlighting HALD’s advan-
tage through stage-wise soft–hard integration. JO de-
notes the Joint Objective method.

SLC GIFT JO. λ = 1 JO. λ = 0.1 JO λ = 0.01 Soft Only Ours

100 27.0 5.9 7.0 13.1 26.9 43.5
200 39.1 8.1 9.4 17.5 39.2 47.3
300 46.7 9.5 10.3 20.1 46.6 50.7

Comparison with more baselines. As
summarized in Table 4, HALD achieves
the best overall performance, while GIFT
performs comparably to the soft-only
baseline. For the Joint Objective, perfor-
mance declines as λ increases and peaks
at λ = 0 (soft-only), indicating that jointly
mixing hard and soft supervision intro-
duces gradient inconsistency that degrades performance. In contrast, HALD’s stage-wise design
leverages their alignment sequentially, mitigating this conflict and yielding consistent gains.

Table 5: Storage vs. Effectiveness. (ImageNet-1K IPC=10)
571M 476M 381M 285M 190M 95M

LPLD 43.1 34.2 34.7 33.7 24.6 8.1
Ours 46.9 ↑3.8 47.6 ↑13.4 46.3 ↑11.6 41.8 ↑8.1 41.9 ↑17.3 35.3 ↑27.2

Storage Efficiency. Table 5 reports
performance under varying soft la-
bel storage budgets. While LPLD
degrades sharply with tighter con-
straints, HALD maintains strong accuracy (e.g., 35.3% at 95M, +27.2%). This demonstrates the
storage efficiency of our calibration strategy, which effectively enhances the utility of stored soft
labels under limited capacity.

4.3 ANALYSIS

Table 6: Quantitative analysis of Local-View Semantic Drift
(LVSD) across teacher models. A larger R indicates higher
prediction variance under local views relative to gloal views,
confirming that LVSD is substantial across architectures.

Teacher Mean Tr(Σ̂weak) Mean Tr(Σ̂strong) log10(Mean R) p(R > 1)

ResNet-18 4.84× 10−15 0.0102 3.27 97.2%
MobileNetV2 4.42× 10−15 0.3756 5.28 99.2%
ShuffleNetV2 4.51× 10−15 0.0591 5.35 98.0%

LVSD Quantification. To quantify
the degree of LVSD across teacher
models, we define the LVSD ratio as
R(x̃) =

Tr(Σ̂strong)

Tr(Σ̂weak)+ε
, where the nu-

merator measures the prediction vari-
ance under strong augmentations that
correspond to local views of the im-
age (e.g., aggressive random resized
cropping), and the denominator under weak augmentations that preserve global semantics (resize
and center crop). Hence, R(x̃) captures the degree of semantic drift between local and global views.
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Table 7: Comprehensive ablation of the impact of incorporating hard-label supervision across state-
of-the-art dataset distillation methods on ImageNet-1K and Tiny-ImageNet. All models are trained
for 300 epochs under identical hyperparameters, with the evaluation protocol being the sole differ-
ence. † denotes values reported by the corresponding original sources.

ImageNet-1K Tiny-ImageNet

IPC Generation Evaluation SLC=300 SLC=250 SLC=200 SLC=150 SLC=100 SLC=50 SLC=100 SLC=50

SRe2L Soft-Only 32.2 29.9 28.0 24.3 18.6 8.6 31.4 24.0
Ours 35.2 ↑3.0 35.9 ↑6.0 33.3 ↑5.3 31.3 ↑7.0 31.7 ↑13.1 23.8 ↑15.2 31.9 ↑0.5 25.5 ↑1.5

RDED Soft-Only 26.2 24.1 21.4 18.8 18.1 8.3 27.6 22.3
Ours 27.2 ↑1.0 26.2 ↑2.1 25.5 ↑4.1 22.8 ↑4.0 25.4 ↑7.3 16.9 ↑8.6 31.0 ↑3.4 27.0 ↑4.7

LPLD Soft-Only 32.7 † 34.9 32.7 28.6† 23.1† 8.1 31.5 23.5
Ours 37.0 ↑4.3 36.7 ↑1.8 33.9 ↑1.2 31.9 ↑3.3 28.8 ↑5.7 20.5 ↑12.4 32.6 ↑1.1 26.5 ↑3.0

FADRM Soft-Only 42.1 40.7 39.0 35.3 26.5 11.1 34.4 28.1

IPC=10

Ours 43.4 ↑1.3 42.2 ↑1.5 40.4 ↑1.4 38.6 ↑3.3 37.0 ↑10.5 27.0 ↑15.9 36.2 ↑1.8 30.7 ↑2.6

SRe2L Soft-Only 35.1 30.6 29.3 21.8 19.4 6.8 30.9 22.0
Ours 40.5 ↑5.4 38.0 ↑7.4 36.2 ↑6.9 35.5 ↑13.7 31.6 ↑12.2 21.7 ↑14.9 32.7 ↑1.8 24.5 ↑2.5

RDED Soft-Only 29.2 26.4 23.9 20.2 15.7 7.1 30.1 20.7
Ours 35.5 ↑6.3 33.9 ↑7.5 31.6 ↑7.7 29.5 ↑9.3 27.9 ↑12.2 19.1 ↑12.0 33.0 ↑2.9 25.2 ↑4.5

LPLD Soft-Only 41.0† 38.5 35.9† 33.0† 24.0 7.8 35.2 21.2
Ours 42.8 ↑1.8 40.9 ↑2.4 40.6 ↑4.7 37.2 ↑4.2 34.9 ↑10.9 20.9 ↑13.1 36.0 ↑0.8 24.6 ↑3.4

FADRM Soft-Only 39.9 36.8 34.7 30.0 23.6 8.4 37.0 26.8

IPC=20

Ours 46.4 ↑6.5 44.8 ↑8.0 43.1 ↑8.4 40.9 ↑10.9 39.2 ↑15.6 27.1 ↑18.7 37.6 ↑0.6 29.8 ↑3.0

SRe2L Soft-Only 36.3 33.9 30.5 24.6 23.9 8.6 31.9 24.0
Ours 41.2 ↑4.9 40.8 ↑6.9 38.1 ↑7.6 33.6 ↑9.0 31.3 ↑7.4 27.9 ↑19.3 32.9 ↑1.0 26.0 ↑2.0

RDED Soft-Only 31.5 29.2 25.7 20.7 21.0 12.7 27.9 20.5
Ours 42.3 ↑10.8 39.1 ↑9.9 38.7 ↑13.0 38.1 ↑17.4 38.5 ↑17.5 32.8 ↑20.1 31.1 ↑3.2 26.4 ↑5.9

LPLD Soft-Only 43.1† 34.2 34.7 33.7† 24.6 8.1 34.4 24.1
Ours 44.8 ↑1.7 41.1 ↑6.9 39.8 ↑5.1 37.3 ↑3.6 32.1 ↑7.5 26.5 ↑18.4 36.3 ↑1.9 27.8 ↑3.7

FADRM Soft-Only 42.3 39.3 43.6 30.4 30.6 18.3 36.0 27.8

IPC=50

Ours 46.9 ↑4.6 47.6 ↑8.3 46.3 ↑2.7 41.8 ↑11.4 41.9 ↑11.3 35.3 ↑17.0 38.2 ↑2.2 30.7 ↑2.9

As shown in Table 6, R is markedly large across backbones, indicating that LVSD is consistently
severe, thereby motivating the need for semantic calibration under limited soft label coverage.

Semantic Calibration. To verify that HALD mitigates semantic drift and improve generalization,
we analyze both crop-level consistency and prediction alignment with a reference model trained
under full soft-label coverage. Specifically, crop-level consistency quantifies how well predictions
from different crops of the same image agree, measured by the average Jensen–Shannon (JS) di-
vergence and cosine similarity before and after Stage B. Prediction alignment, on the other hand,
evaluates how closely the student model’s predictions (w/ or w/o hard Calibration) match those of
the reference model on unseen data. As shown in Table 8, we observed improved semantic consis-
tency and stronger prediction alignment with the reference model, validating the role of hard labels
in mitigating semantic drift and improving overall performance.

Table 8: Left: Crop-level consistency before and after Stage B. Right: Prediction alignment with a
reference model trained under full soft-label coverage on unseen data.

Stage JS Div. Cos. Sim.

Before Stage B 0.1811 0.744
After Stage B 0.0393 0.959

JS Div. Cos. Sim.

w/o Hard Calibration 0.337 0.458
w/ Hard Calibration 0.226 0.623

4.4 CROSS-ARCHITECTURE GENERALIZATION

To assess backbone-agnostic effectiveness, we evaluate HALD across heterogeneous backbones,
ranging from lightweight networks to larger architectures under same hyper-parameters. As reported
in the right of Table 3, HALD yields consistent improvements across all backbones examined. For
instance, HALD improves ShuffleNetV2 by +3.1%. These results indicate that the benefits of our
training paradigm are architecture-agnostic and scale with parameter counts and model capacities.

4.5 ABLATION

Impact of Hard-Label Calibration. To assess the generality of HALD, we compare the
Soft–Hard–Soft (ours) schedule with Soft–Only across multiple dataset distillation techniques (Ta-
ble 7). Consistent gains across all methods confirm the benefit of hard-label calibration, especially
under low-SLC settings where local-view semantic drift is more pronounced.
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Table 9: Impact of different training schedules under
SLC=100 on an IPC=10 distilled FADRM dataset.

Hard-Soft Soft-Hard Hard-Soft-Hard Soft-Hard-Soft

17.0 % 14.2 % 11.3 % 37.0 %

When to Switch to Hard Labels. To
evaluate the effectiveness of our proposed
training paradigm, we train HALD under
four schedules. As reported in Table 9,
Soft–Hard–Soft achieves the highest accu-
racy across settings, whereas the remain-
ing schedules underperform. These results show that introducing hard labels mid-training is most
effective, aligning with Theorem 3, which predicts stronger gradient alignment after partial training.

Table 10: Effect of Label-Smoothing
Rate (All methods use HALD).

0.0 0.2 0.4 0.6 0.8 0.9

FADRM 35.3 35.5 35.7 35.9 37.0 36.3
LPLD 26.9 27.3 27.5 27.9 28.8 27.9
SRe2L 29.6 30.0 30.9 31.5 31.7 31.3
RDED 21.9 22.9 23.8 24.0 25.4 24.5

How Long to Use Hard Labels. We validate our theo-
retical assumption that the soft-label phase should match
the convergence time of standalone soft-label training. As
shown in the left of Table 3, extending this phase to its full
predefined length consistently improves performance.

Effect of Label-Smoothing (α). As shown in Table 10,
the optimal α is 0.8 for both generation techniques, likely
due to the use of high-temperature soft label training, where a larger α better preserves the corre-
sponding high-entropy label distribution.

Table 11: Effect of first and last soft-
label phase durations on performance.

First Soft Duration Last Soft Duration HALD

50 100 35.2
100 50 34.7
75 75 35.6

Effect of the first and last soft-label stages. As shown
in Table 11, both the first and last soft-label phases are es-
sential, as allocating more training budget to either phase
leads to inferior performance compared with the balanced
setting. When the budget is biased toward the first phase,
the model after semantic calibration lacks sufficient sam-
ples to relearn the teacher’s fine-grained semantics. Con-
versely, emphasizing the last phase causes the model to enter the hard-label stage before full con-
vergence, resulting in poor gradient alignment and weakened semantic calibration. Therefore, we
allocate the soft-label duration equally between the two phases.

4.6 CONVENTIONAL LARGE-SCALE DATASET EXPERIMENT

Table 12: Soft-Only vs. HALD on real dataset.

SLC=100 (190 MB) SLC=50 (95 MB)
ResNet-18 Soft-Only Ours Soft-Only Ours

IPC=10 29.9 34.4 26.9 28.6
IPC=50 26.9 44.7 19.1 40.9

To assess generalization beyond synthetic data,
we evaluate HALD on a randomly sampled
subset from original ImageNet-1K. As shown
in Table 12, incorporating hard-label supervi-
sion consistently improves performance, con-
firming the effectiveness of HALD on real data.

5 CONCLUSION

In this work, we revisited the limits of soft-label supervision in dataset distillation under tight stor-
age budgets and identified local semantic drift as a core failure mode when only a few per-image
crops (and thus soft labels) are retained. We showed theoretically that the expected objective mis-
match between reduced-crop and sufficient-crop training admits a strictly positive lower bound that
scales inversely with the number of crops, and we proved that combining soft and hard labels does
not introduce gradient inconsistency. Building on these insights, we proposed a lightweight cali-
bration paradigm HALD, where hard labels act as content-agnostic anchors that realign supervision
while preserving the fine-grained benefits of soft labels. Experiments on large-scale settings (e.g.,
ImageNet-1K) demonstrate that HALD mitigates drift, improves generalization and robustness, and
substantially reduces storage overhead, providing a practical path toward scalable distillation.

ETHICS STATEMENT

This work focuses on supervision design and storage efficiency, it neither collects new human sub-
jects data nor accesses sensitive attributes beyond standard benchmarks. To minimize risks of origi-
nal data leakage in the post-training phase, we explicitly isolate the teacher in post-training and avoid
contact with original raw data, respecting practices in dataset distillation settings. We provide syn-
thetic images and monitor class-wise disparities to reduce potential bias. Given the environmental
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impact of the efficient training, we favor storage/compute-efficient protocols and disclose approx-
imate storage savings. The distilled data is intended for research, any downstream development
should follow local regulations and dataset licenses and avoid harmful or deceptive applications.

REPRODUCIBILITY STATEMENT

All experiments are conducted on publicly available datasets, such as Tiny-ImageNet and ImageNet-
1K. To ensure reproducibility, we fix random seeds for all stochastic components, and provide full
details of hyper-parameters, training schedules, and model configurations in Appendix E. In addi-
tion, all experimental settings are managed via structured .yml configuration files, enabling mod-
ular and transparent control over the pipeline. The complete source code, along with configuration
files and scripts for data preparation, training, and evaluation will be released.
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A NOTATION

Symbol Definition
O Original dataset of labeled samples
C Distilled dataset (small synthetic set)

(x, y) Input sample x with ground-truth label y
x̃, ỹ Synthetic (distilled) sample and label
fθ Model parameterized by θ

θO, θC Parameters trained on O or C
L(·, ·) Per-sample loss functional
T (x̃) Augmentation distribution of x̃
x(crop) Random crop sampled from T (x̃)

p̃(x(crop)) Teacher soft prediction on a crop
p̄ Crop-averaged teacher prediction E[p̃(x(crop))]
Σ Covariance of teacher predictions across crops
p̂s Empirical average prediction over s crops
SLC Soft Labels per Class (storage budget)

nsoft, nhard, ntotal Epoch budgets for soft-/hard-label training
Ωsoft Global pool of stored soft labels
Ωcal Calibration sampling space with hard labels

LSα(·) Label smoothing distribution with ratio α
tλ,α(y, y

′) CutMix target between labels y, y′
qθ(· | x) Student predictive distribution on input x
θ̂As , θ̂

B, θ̂ Parameters after Stages A, B, and C
H⋆ Hessian of Lideal at optimum
Σ⋆ Gradient covariance at optimum
seff Effective sample size after calibration

Table 13: List of common mathematical symbols used in this paper.

B PROOF

B.1 LOWER BOUND ON THE EMPIRICAL LOSS BIAS UNDER LIMITED CROP SUPERVISION

Proof of Theorem 1. Fix the synthetic image x̃ and its augmentation law T (x̃). Define the per-crop
loss random variable:

X := L
[
p̃, qθ(· | x̃(crop))

]
, where x̃(crop) ∼ T (x̃).

Let µ := EX = Lideal(θ; x̃), σ2 := Var(X) < ∞, and a finite kurtosis κ :=
E[(X−µ)4]

σ4 ∈ [1,∞).
For s i.i.d. crops (x̃(crop)

i )si=1 drawn from T (x̃), set:

Xi := L
[
p̃i, qθ(· | x̃(crop)

i )
]

(i.i.d. copies of X), X̄s :=
1

s

s∑
i=1

Xi = Ls(θ; x̃).

Our target quantity is E
[
|X̄s − µ|

]
= E[ |Ls(θ; x̃)− Lideal(θ; x̃)| ].

Step 1 (Second and fourth moments of the centered sample mean). Let Yi := Xi−µ so that EYi = 0,
EY 2

i = σ2, and EY 4
i = κσ4. Define the centered sample mean:

W := X̄s − µ =
1

s

s∑
i=1

Yi.

By independence,

E[W 2] =
1

s2

s∑
i=1

E[Y 2
i ] =

σ2

s
.
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For the fourth moment, only index patterns that are all equal or pairwise-equal contribute:

E

[( s∑
i=1

Yi

)4
]

= sE[Y 4
1 ] + 3 s(s− 1)σ4 = s κ σ4 + 3s(s− 1)σ4.

Therefore,

E[W 4] =
1

s4
E

[( s∑
i=1

Yi

)4
]

=
σ4

s3
(
κ+ 3(s− 1)

)
.

Step 2 (Paley–Zygmund on W 2). Let Z := W 2 ≥ 0. For any θ ∈ (0, 1), Paley–Zygmund yields:

P(Z ≥ θEZ) ≥ (1− θ)2
(EZ)2

E[Z2]
.

Using EZ = E[W 2] = σ2/s and E[Z2] = E[W 4] = σ4

s3

(
κ+ 3(s− 1)

)
from Step 1,

P
(
W 2 ≥ θ

σ2

s

)
≥ (1− θ)2

(
σ2

s

)2
σ4

s3 (κ+ 3(s− 1))
= (1− θ)2 · s

κ+ 3(s− 1)
.

Step 3 (From a small-ball event to a first-moment bound). For any t > 0, E|W | ≥ tP(|W | ≥ t).
Choose t :=

√
θEW 2 = σ√

s

√
θ to match Step 2. Then:

E|W | ≥ σ√
s

√
θ P

(
W 2 ≥ θ

σ2

s

)
≥ σ√

s

√
θ (1− θ)2

s

κ+ 3(s− 1)
.

Step 4 (Optimize θ). Define g(θ) :=
√
θ (1 − θ)2 on θ ∈ [0, 1]. A direct derivative check gives

g′(θ) = 0 at θ⋆ = 1
5 and g(θ⋆) = 16

25
√
5

. Plugging θ⋆ into Step 3 yields

E|W | ≥ σ√
s
· 16

25
√
5
· s

κ+ 3(s− 1)
.

Step 5 (Uniform-in-s simplification). Consider h(s) :=
s

κ+ 3(s− 1)
=

s

3s+ κ− 3
for s ≥ 1.

Then

h′(s) =
(κ− 3)

(κ+ 3s− 3)2
.

Hence:

• If κ ≥ 3, h is nondecreasing on [1,∞), so mins≥1 h(s) = h(1) = 1
κ ≤

1
3 .

• If κ < 3, h is strictly decreasing and infs≥1 h(s) = lims→∞ h(s) = 1
3 , while h(1) = 1

κ >
1
3 .

In both cases,
s

κ+ 3(s− 1)
≥ min

{
1

κ
,
1

3

}
.

Combining with the bound above concludes

E
[∣∣X̄s − µ

∣∣] = E
[∣∣Ls(θ; x̃)− Lideal(θ; x̃)

∣∣] ≥ σ√
s
· 16

25
√
5
·min

{
1

κ
,
1

3

}
.

This is exactly the claimed bound.
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B.2 LIMITED CROP SUPERVISION DEGRADES GENERALIZATION PERFORMANCE

Interpretation of Assumptions (A1–A5). To establish a finite-sample lower bound on the excess
population risk of empirical risk minimization (ERM), we adopt five standard assumptions that
ensure local regularity and statistical stability near the population minimizer θ̂⋆. Below we provide
an intuitive interpretation of each:

• (A1) Unbiased Score and Covariance. We assume E[g(θ̂⋆;x)] = 0 and that the covari-
ance Σ⋆ = Cov(g(θ̂⋆;x)) exists with bounded (2 + κ)-moment. This ensures that the
gradient noise at the optimum is well-behaved, and the matrix Σ⋆ characterizes the first-
order variance that drives the leading term in the excess risk.

• (A2) Hessian Lipschitz Continuity. The population loss Hessian is assumed to be LH -
Lipschitz in a neighborhood of θ̂⋆. This smoothness enables accurate control over second-
order Taylor expansions and guarantees that local quadratic approximations remain valid.

• (A3) Local Uniform Concentration. We require that both the empirical Hessian and em-
pirical gradient fluctuations concentrate uniformly to their population counterparts in a
neighborhood of θ̂⋆, with deviations decaying as O(1/

√
s). This ensures that the empirical

loss landscape closely tracks the population landscape, which is essential for Newton-type
approximations and influence-function expansions.

• (A4) ERM Stays Local. With high probability, the empirical minimizer θ̂s lies within a
fixed ball around θ̂⋆. This ensures that our analysis can be restricted to a well-behaved local
region where smoothness and concentration assumptions hold.

• (A5) Bounded Loss Near Optimum. The population loss is assumed to be uniformly
bounded within the neighborhood of interest. This provides worst-case control when θ̂s
falls outside the local region, allowing us to bound the risk in rare failure cases.

Together, these assumptions provide a sufficient foundation to develop second-order expansions
around θ̂⋆, rigorously control deviation terms, and derive a tight lower bound on the expected excess
risk of finite-sample ERM. Next, we will formally prove the theorem.

Proof of Theorem 2. Step 0 (Good vs. bad events). Define the event:

Es :=
{

(A3) holds and θ̂s ∈ B(θ̂⋆, r0)
}
.

By (A3)–(A4), Pr(Es) ≥ 1− δ′s, with δ′s ≤ δs+2δ, where δ can be chosen polynomially small (e.g.
δ = s−3). Split the expectation:

E
[
Lideal(θ̂s)− Lideal(θ̂⋆)

]
= E[·; Es] + E[·; Ecs ].

On the bad event, (A5) implies Lideal(θ̂s)−Lideal(θ̂⋆) ≥ −B, so E[·; Ecs ] ≥ −Cb δs. Thus it suffices
to prove the stated bound conditional on Es.

Step 1 (Influence-function expansion). Let Us(θ) := ∇Ls(θ) − ∇Lideal(θ), ḡs := Us(θ̂⋆) =
1
s

∑s
i=1 g(θ̂⋆;xi). On Es, Lipschitz continuity yields ∥Us(θ)− Us(θ̂⋆)∥ ≤ c̄ s−1/2∥θ − θ̂⋆∥. Using

the Newton map Ts(θ) := θ−H−1
⋆ ∇Ls(θ), and setting rs := c ∥ḡs∥ with c > 0 depending only on

(µ,LH , c̄), one shows that Ts is a contraction mapping B(θ̂⋆, rs) into itself, with unique fixed point
θ̂s. Define ∆s := θ̂s − θ̂⋆. Then:

∆s = −H−1
⋆ ḡs +Rs,

where the remainder satisfies ∥Rs∥ ≲ ∥ḡs∥2 + s−1/2∥ḡs∥. Since E[∥ḡs∥] = O(s−1/2) and
E[∥ḡs∥2] = O(s−1), it follows that

E[∥Rs∥ | Es] = O(s−1). (4)

Step 2 (Quadratic term). With ∥v∥2H⋆
:= v⊤H⋆v, one has

∥∆s∥2H⋆
= ∥H−1

⋆ ḡs∥2H⋆
+ 2⟨H−1

⋆ ḡs, Rs⟩H⋆
+ ∥Rs∥2H⋆

.
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Taking expectations conditional on Es and using equation 4,

E[∥∆s∥2H⋆
| Es] =

1

s
tr(H−1

⋆ Σ⋆) +O(s−3/2).

Step 3 (Excess risk). The integral second-order expansion gives

Lideal(θ̂s)− Lideal(θ̂⋆) =
1
2∥∆s∥2H⋆

+R(3)
s ,

where R
(3)
s :=

∫ 1

0
(1− t)∆⊤

s (∇2Lideal(θ̂⋆ + t∆s)−H⋆)∆s dt. By (A2), |R(3)
s | ≤ (LH/6)∥∆s∥3.

Since E∥∆s∥3 = O(s−3/2), it follows that

E[R(3)
s | Es] ≥ −O(s−3/2).

Therefore,

E
[
Lideal(θ̂s)− Lideal(θ̂⋆) | Es

]
≥ 1

2s
tr(H−1

⋆ Σ⋆)−
C1

s3/2
− C2

s2
.

Step 4 (Combine events). Adding the contribution from Ecs gives

E
[
Lideal(θ̂s)− Lideal(θ̂⋆)

]
≥ 1

2s
tr(H−1

⋆ Σ⋆)−
C1

s3/2
− C2

s2
− Cb δs,

as claimed.

B.3 OPTIMIZATION STABILITY

B.3.1 PRELIMINARIES

Lemma 2 (Mixing bound via dual norms, Proof in Appendix B.3.1). Let p, q ∈ ∆C and
g1, . . . , gC ∈ Rd. Fix any norm ∥ · ∥ on Rd with dual norm ∥ · ∥∗, and define the diameter

D := sup
i,j
∥gi − gj∥ <∞.

Then ∥∥∥ C∑
c=1

(pc − qc) gc

∥∥∥ ≤ D

2
∥p− q∥1.

Moreover, the constant D/2 is optimal (tight when C = 2, p = (1, 0), q = (0, 1), ∥g1 − g2∥ = D).

Proof of Lemma 2. Write r := p− q and note
∑

c rc = 0. By the dual representation of the norm,∥∥∥∑
c

rcgc

∥∥∥ = sup
∥u∥∗≤1

〈
u,

∑
c

rcgc

〉
= sup

∥u∥∗≤1

∑
c

rc ϕc, where ϕc := ⟨u, gc⟩.

Split the indices into P := {i : ri > 0} and N := {j : rj < 0}, and let

T :=
∑
i∈P

ri =
∑
j∈N

|rj | = 1
2∥r∥1 = 1

2∥p− q∥1.

Then for any fixed u,∑
c

rcϕc =
∑
i∈P

riϕi −
∑
j∈N

|rj |ϕj ≤
(
max

c
ϕc −min

c
ϕc

)
T,

because the linear form is maximized by assigning all positive mass to an index attaining maxc ϕc

and all negative mass to one attaining minc ϕc. Hence∥∥∥∑
c

rcgc

∥∥∥ ≤ T sup
∥u∥∗≤1

(
max

c
ϕc −min

c
ϕc

)
≤ T sup

∥u∥∗≤1

sup
i,j
|ϕi − ϕj |.

Finally,
|ϕi − ϕj | = |⟨u, gi − gj⟩| ≤ ∥u∥∗ ∥gi − gj∥ ≤ ∥gi − gj∥,

so sup∥u∥∗≤1 supi,j |ϕi − ϕj | ≤ supi,j ∥gi − gj∥ = D, and thus∥∥∥∑
c

(pc − qc)gc

∥∥∥ ≤ T D =
D

2
∥p− q∥1.

For tightness, take C = 2, p = (1, 0), q = (0, 1); then T = 1, and choosing g1, g2 with ∥g1− g2∥ =
D yields equality.
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B.3.2 FORMAL PROOF

Proof of Theorem 3. Step 1 (Mixing stability). By Lemma 2, for any p, q ∈ ∆C ,∥∥∥ C∑
c=1

(pc − qc) gc

∥∥∥ ≤ D

2
∥p− q∥1,

and the constant D
2 is tight (e.g. C = 2, p = (1, 0), q = (0, 1), ∥g1 − g2∥ = D).

Step 2 (From differences to cosine). Let

a := ∇θLsoft = −
∑
c

p̃c gc, b := ∇θLhard = −
∑
c

p̄(α)c gc.

For nonzero a, b, write â := a/∥a∥ and b̂ := b/∥b∥. Then

1− cos(a, b) = 1
2∥â− b̂∥2 ≤ ∥â− b̂∥ =

∥∥∥ a

∥a∥
− b

∥b∥

∥∥∥ ≤ ∥a− b∥
∥a∥

+
∥a− b∥
∥b∥

≤ 2∥a− b∥
min{∥a∥, ∥b∥}

.

By the theorem’s non-degeneracy assumption, min{∥a∥, ∥b∥} ≥ m0 > 0, hence

1− cos(a, b) ≤ 2

m0
∥a− b∥.

Applying Step 1 with p = p̃ and q = p̄(α) yields

1− cos(a, b) ≤ 2

m0
· D
2
∥p̃− p̄(α)∥1 =

D

m0
∥p̃− p̄(α)∥1. (5)

Step 3 (Upper-bounding ∥p̃ − p̄(α)∥1). Let y = argmaxc p̃c and ey be the one-hot at y. By the
triangle inequality,

∥p̃− p̄(α)∥1 ≤ ∥p̃− ey∥1 + ∥ey − p̄(α)∥1.
The two terms are exact:

∥p̃− ey∥1 =
∑
c ̸=y

p̃c +
∣∣1− p̃y

∣∣ = 2(1− pmax), pmax := max
c

p̃c,

and
∥ey − p̄(α)∥1 =

∑
c ̸=y

α

C
+

∣∣∣1− (
1− α+

α

C

)∣∣∣ = 2α
(
1− 1

C

)
.

Therefore
∥p̃− p̄(α)∥1 ≤ 2(1− pmax) + 2α

(
1− 1

C

)
. (6)

Step 4 (Relating 1 − pmax to entropy and rewriting via teacher entropy). Using the standard
inequality (natural logarithm),

H(p̃) ≥ − log pmax =⇒ pmax ≥ e−H(p̃) =⇒ 1− pmax ≤ 1− e−H(p̃) ≤ H(p̃),

where the last step uses 1 − e−x ≤ x for x ≥ 0. Substituting equation 6 into equation 5 gives, for
each crop,

1−cos(∇θLsoft, ∇θLhard) ≤
D

m0

{
2
(
1−e−H(p̃)

)
+2α

(
1− 1

C

)}
≤ D

m0

{
2H(p̃)+2α

(
1− 1

C

)}
.

Taking expectation over the crop distribution T (x̃) (conditioning on the base image x̃), and intro-
ducing the notation

Hteacher(x̃) := Ex(crop)∼T (x̃)

[
H
(
p̃(· | x(crop))

) ]
,

we obtain

Ecrop[cos(∇θLsoft, ∇θLhard)] ≥ 1 − D

m0
·
(
2Hteacher(x̃) + 2α

(
1− 1

C

))
,
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where the bracketed term can be viewed as a data-dependent alignment constant. That is, we may
write

Ecrop[cos(∇θLsoft, ∇θLhard)] ≥ 1 − D

m0
· Calign(x̃, α),

where

Calign(x̃, α) := 2Hteacher(x̃) + 2α

(
1− 1

C

)
.

B.4 HALD INCREASES GENERALIZATION PERFORMANCE

Proof of Corollary 1. Consider the scalar control–variate residual rβ := u − βv, β ∈ R. Using
linearity of expectation and ∥u∥ = ∥v∥ = 1,

E∥rβ∥2 = E∥u∥2 − 2β E⟨u, v⟩+ β2E∥v∥2 = 1− 2β E⟨u, v⟩+ β2.

This quadratic is minimized at β⋆ = E⟨u, v⟩, yielding

min
β

E∥u− βv∥2 = 1−
(
E⟨u, v⟩

)2 ≤ 1− ρ2⋆. (1)

Center the residual r̃ := rβ⋆ − E[rβ⋆ ] so that E[r̃] = 0. For i.i.d. copies (r̃i)si=1,

E
∥∥∥1
s

s∑
i=1

r̃i

∥∥∥2 =
1

s2

s∑
i=1

E∥r̃i∥2 =
1

s
E∥r̃∥2 ≤ 1

s
E∥rβ⋆∥2 ≤ 1− ρ2⋆

s
,

where we used independence, zero mean (cross terms vanish), and (1). Interpreting the factor (1 −
ρ2⋆) as variance contraction of the single-sample noise implies the same mean–square error as having
seff baseline samples with no contraction:

1− ρ2⋆
s

=
1

seff
=⇒ seff =

s

1− ρ2⋆
.

Because we used only a scalar control variate in the direction v, any richer use of the hard informa-
tion (e.g., including magnitudes or conditional expectations) can only further reduce the left-hand
side, hence the stated inequality seff ≥ s/(1− ρ2⋆).

Insight. Corollary 1 extends Theorem 3 by transforming gradient alignment into a formal variance-
reduction guarantee. While Theorem 3 establishes that the soft-to-hard switch is optimization-
coherent, Corollary 1 quantifies its benefit: stronger alignment between soft- and hard-label gra-
dients (ρ⋆ > 0) effectively increases the usable supervision by enlarging the effective sample size,

seff ≥
s

1− ρ2⋆
.

This shows that during the hard-label calibration stage, variance is reduced and semantic drift is
corrected, providing the theoretical basis for the subsequent soft-label refinement that restores fine-
grained teacher consistency on top of the variance-reduced representation.

C ADDITIONAL EXPERIMENTS

C.1 PREDICTION CONSISTENCY WITH TEACHER MODEL

In this section, we compare the prediction consistency on unseen data between models trained with
and without the final soft-label refinement stage, to empirically demonstrate the performance gains
introduced by this phase. As shown in Table 14, prediction alignment with the teacher on unseen
data improves notably after the final refinement stage.

C.2 MORE RESULTS ON EFFECT OF HALD

To more comprehensively evaluate HALD’s performance, we present additional results for IPC=30
and IPC=40 in Table 15, where consistent improvements can be observed.
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D GENERATION METHOD

D.1 SRE2L

SRe2L (Yin et al., 2023) decouples dataset condensation into three stages, Squeeze, Recover, and
Relabel, so that the model training on O and the optimization of C never interleave. Concretely:

Stage I: Squeeze (train on O). Learn a reference model by standard ERM on the original data:

θO = argmin
θ

E(x,y)∼O
[
L
(
fθ(x), y

) ]
.

Stage II: Recover (optimize x̃ with BN-consistency and classification). Fix fθO and optimize
the images x̃ ∈ C (labels y are class indices) by matching both the classifier head and global Batch-
Norm (BN) statistics accumulated on O. With random crops x(crop) ∼ T (x̃),

min
x̃∈C

Ex(crop)∼T (x̃)

[
L
(
fθO

(
x(crop)

)
, y

)]︸ ︷︷ ︸
classification (single-level)

+ αBN RBN(x̃)︸ ︷︷ ︸
BN-consistency

+ αℓ2 ∥x̃∥22 + αTV TV(x̃).

The BN-consistency regularizer matches per-layer running mean/variance of fθO :

RBN(x̃) =
∑
ℓ

∥∥µℓ(x
(crop))− BNRMℓ

∥∥2
2
+

∑
ℓ

∥∥σ2
ℓ (x

(crop))− BNRVℓ

∥∥2
2
,

where BNRMℓ,BNRVℓ are the global running mean/variance stored in the ℓ-th BN of fθO . Multi-
crop optimization (sampling x(crop) repeatedly from T (x̃)) enriches local semantics and constrains
updates to the cropped region, which empirically improves recovery.

Stage III: Relabel (crop-level soft labels and student training). For each recovered x̃, draw s

crops x(crop)
i ∼ T (x̃) and obtain teacher soft predictions

p̃
(
x
(crop)
i

)
= qθO

(
·
∣∣∣x(crop)

i

)
, p̄ = E

[
p̃(x(crop))

]
, p̂s =

1
s

s∑
i=1

p̃
(
x
(crop)
i

)
, (L1)

and optionally characterize crop-prediction variability by Σ = Cov
(
p̃(x(crop))

)
. Train a student on

C with crop-level distillation (temperature τ ):

min
θ

Ex̃∈C

[
1

s

s∑
i=1

CE
(
softmax

(
1
τ p̃(x

(crop)
i )

)
, qθ

(
·
∣∣∣x(crop)

i

))]
. (L2)

However, solely aligning to global running statistics induces an overly restrictive inductive bias that
depresses intra-class diversity and precipitates information vanishing. The effect is exacerbated in
the recovery phase because the original dataset is excluded, depriving optimization of high-variance
exemplars and promoting convergence to low-entropy, BN-compliant configurations rather than di-
verse, semantically faithful modes.

D.2 LPLD

To promote the intra-class diversity, LPLD (Xiao & He, 2024) re-batches synthesis within
each class and supervises recovery with class-wise BatchNorm (BN) statistics, while keeping the

Table 14: Comparison of prediction consistency with the teacher model on unseen data, with and
without the final soft-label refinement stage.

Method JS Divergence Cosine Similarity
w/o final soft-label refinement 0.61 19.8
w/ final soft-label refinement 0.38 43.8
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Table 15: Comprehensive ablation of the impact of incorporating hard-label supervision across state-
of-the-art dataset distillation methods on ImageNet-1K and Tiny-ImageNet. All models are trained
for 300 epochs under identical hyperparameters, with the evaluation protocol being the sole differ-
ence. † denotes values reported by the corresponding original sources.

ImageNet-1K Tiny-ImageNet

IPC Generation Evaluation SLC=300 SLC=250 SLC=200 SLC=150 SLC=100 SLC=50 SLC=100 SLC=50

SRe2L Soft-Only 34.3 32.1 26.7 23.7 14.7 5.4 31.0 19.5
Ours 41.6 ↑7.3 38.4 ↑6.3 38.7 ↑12.0 36.3 ↑12.6 32.3 ↑17.6 20.0 ↑14.6 32.5 ↑1.5 23.6 ↑4.1

RDED Soft-Only 30.6 27.3 23.4 20.8 13.0 8.1 27.8 15.8
Ours 38.4 ↑7.8 36.3 ↑9.0 33.5 ↑10.1 33.8 ↑13.0 29.1 ↑16.1 19.0 ↑10.9 32.9 ↑5.1 26.7 ↑10.9

LPLD Soft-Only 36.0 32.7 28.1 23.9 16.3 5.6 32.2 17.9
Ours 42.0 ↑6.0 40.4 ↑7.7 38.9 ↑10.8 39.8 ↑15.9 32.4 ↑16.1 19.4 ↑13.8 35.2 ↑3.0 24.6 ↑6.7

FADRM Soft-Only 41.1 37.7 31.1 28.7 20.1 11.0 36.4 23.5

IPC=30

Ours 47.7 ↑6.6 46.9 ↑9.2 44.6 ↑13.5 43.6 ↑14.9 38.8 ↑18.7 25.8 ↑14.8 38.3 ↑1.9 29.6 ↑6.1

SRe2L Soft-Only 33.6 31.9 28.8 19.9 14.3 7.0 30.4 21.0
Ours 42.4 ↑8.8 40.0 ↑8.1 38.8 ↑10.0 36.6 ↑16.7 31.7 ↑17.4 23.8 ↑16.8 31.5 ↑1.1 24.0 ↑3.0

RDED Soft-Only 30.3 27.2 24.1 17.4 18.1 11.2 26.8 19.7
Ours 39.5 ↑9.2 38.3 ↑11.1 36.8 ↑12.7 34.1 ↑16.7 29.0 ↑10.9 27.1 ↑15.9 31.5 ↑4.7 24.5 ↑4.8

LPLD Soft-Only 35.0 32.1 30.2 20.8 13.2 6.6 29.3 20.3
Ours 42.2 ↑7.2 42.9 ↑10.8 39.4 ↑9.2 35.5 ↑14.7 31.2 ↑18.0 22.7 ↑16.1 31.7 ↑2.4 23.6 ↑3.3

FADRM Soft-Only 38.9 37.6 33.1 25.1 22.6 13.3 34.1 27.0

IPC=40

Ours 49.0 ↑10.1 48.5 ↑10.9 45.6 ↑12.5 43.7 ↑18.6 41.0 ↑18.4 30.7 ↑17.4 35.9 ↑1.8 30.1 ↑3.1

classification head evaluated under global BN for stable targets. For class c with IPC images
Cc = {x̃c,i}IPC

i=1 and label ỹ = c, LPLD optimizes the synthetic images via,

L
(
f (global BN)
θO

(
x̃c,i

)
, ỹ

)
︸ ︷︷ ︸

classification w/ global BN

+ αBN

∑
ℓ

∥∥∥µℓ(Cc)− BNRMℓ,c

∥∥∥2
2
+

∑
ℓ

∥∥∥σ2
ℓ (Cc)− BNRVℓ,c

∥∥∥2
2︸ ︷︷ ︸

class-wise BN matching

.

Here µℓ(Cc) and σ2
ℓ (Cc) are the per-layer BN mean/variance computed on the within-class mini-

batch Cc, whereas BNRMℓ,c,BNRVℓ,c are the class-wise running mean/variance obtained from O
(squeeze stage). Their exponential moving–average (EMA) updates are

BNRMℓ,c←(1− ε) BNRMℓ,c + ε µℓ(xc), BNRVℓ,c←(1− ε) BNRVℓ,c + ε σ2
ℓ (xc),

This coupling over Cc enlarges intra-class diversity and improves the quality of the data.

D.3 FADRM

FADRM (Cui et al., 2025a) synthesizes each x̃ by periodically fusing the intermediate synthetic
image with a resized real patch from O. Let Ps ⊂ O be the initialization patch and Dt the working
resolution at iteration t. The adjustable residual connection (ARC) applies a per-element convex
fusion

x̃t ← α x̃t + (1− α)Resample(Ps, Dt), α ∈ [0, 1],

thereby explicitly injecting real-image content at the current resolution Dt while retaining synthe-
sized structure. Smaller α emphasizes high-frequency details from Ps; larger α preserves the global
layout already formed in x̃t. By reintroducing real-content priors along the optimization trajectory,
FADRM mitigates information vanishing and yields higher-fidelity, semantically faithful synthetic
data.

D.4 RDED.

RDED (Sun et al., 2024) constructs C by class-preserving selection of high-confidence crops from
O. For each (x, y)∈O, draw K crops {x(k)}Kk=1∼T (x) and rank them by teacher–label agreement

s(k) = −L
(
p̃(x(k)), y

)
, p̃(u) = fθO (u).

Keep the image-wise best crop x(⋆) = argmaxk s
(k), then within each class retain the top M =

N ·IPC crops for synthetic dataset construction.
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E IMPLEMENTATION DETAILS

E.1 DATASETS

We evaluate HALD on two benchmark datasets, ImageNet-1K and Tiny-ImageNet, both formatted
as ImageFolder. While the original datasets contain real high-resolution natural images, our
training sets are fully composed of synthetic images generated by dataset distillation methods. The
validation sets remain unchanged and follow standard preprocessing pipelines.

ImageNet-1K. ImageNet-1K (Deng et al., 2009) contains 1,000 object classes with approximately
1.28M training images and 50K validation images. For all methods, the distilled training data are
generated at resolution 224 × 224. During evaluation, each validation image is resized such that
the shorter side is 256 pixels, followed by a center crop of size 224 × 224. Pixel values are nor-
malized using the standard ImageNet statistics: mean (0.485, 0.456, 0.406) and standard deviation
(0.229, 0.224, 0.225).

Tiny-ImageNet. Tiny-ImageNet (Le & Yang, 2015) is a simplified version of ImageNet with 200
classes, each having 500 training and 50 validation images. All images are pre-resized to 64 ×
64 resolution. In our setup, distilled training images maintain this resolution. For evaluation, the
validation images are directly used without additional resizing or cropping. We normalize the input
images using the same statistics as ImageNet for compatibility with pretrained backbones.

E.2 STORAGE ANALYSIS

We quantify the on-disk footprint of distilled datasets under different IPC settings and compare it to
the corresponding soft label storage. Despite their effectiveness, soft labels incur substantial storage
overhead, often exceeding the size of the distilled images by an order of magnitude.

Tiny-ImageNet (200 classes, 64×64). As shown in Table 16, even at the lowest IPC setting
(IPC=1), the original soft labels consume over 29× more space than the images themselves. This
ratio remains consistent across IPC values due to the per-sample label overhead, leading to over
1 GB of soft labels when IPC=50, despite the images themselves occupying only 40 MiB.

Table 16: Original soft label storage for Tiny-ImageNet.

IPC Image Storage Original Soft Labels Storage

1 0.8 MiB 23.4 MiB (29.25× image storage)
10 8 MiB 234 MiB (29.25× image storage)
50 40 MiB 1,170 MiB (29.25× image storage)

ImageNet-1K (1000 classes, 224×224). The storage disparity becomes even more pronounced
on ImageNet-1K. As shown in Table 17, soft labels require up to 38× more storage than images.
For instance, at IPC=50, the soft labels occupy nearly 30 GB, despite distilled images requiring less
than 1 GB. Such a storage bottleneck motivates the development of more storage-efficient distillation
schemes, such as partial label reuse or label reconstruction via teacher queries.

Table 17: Original soft label storage for ImageNet-1K.

IPC Image Storage Original Soft Labels Storage

1 15 MiB 570 MiB (38× image storage)
10 150 MiB 5.7 GB (38× image storage)
50 750 MiB 28.3 GB (38× image storage)

These results highlight that while synthetic images can be stored compactly, naive storage of soft
labels becomes the primary bottleneck, especially in high-IPC or large-class-count regimes.8
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E.3 EXPERIMENTAL SETUP

We evaluate all methods by training classification models exclusively on the distilled datasets, with-
out any access to the original training data. Each synthetic dataset, produced by a specific distillation
method, is used to supervise the training of a randomly initialized student model from scratch.

For soft-only baselines, the student is trained using the provided finite soft labels throughout the
entire training process, with supervision applied via Kullback–Leibler (KL) divergence.

For HALD, we adopt a Soft–Hard–Soft training strategy. The model is first trained using the soft
labels to leverage their fine-grained supervision. In the middle phase, hard labels are used to correct
local-view semantic drift. Training then returns to soft labels in the final phase to refine the decision
boundaries.

We report the validation accuracy at the final training epoch. To ensure fair and reproducible com-
parison, all methods are trained under an identical pipeline, with matched data augmentations, hy-
perparameters, and validation preprocessing steps.

E.4 HYPER-PARAMETERS

Common Hyperparameters. This part outlines the hyperparameters shared by both the Soft-Only
baseline and HALD. All models are trained for 300 epochs using the AdamW optimizer with a batch
size of 16. Additional details, including the learning rate and scheduler smoothing factor (denoted
as Eta), are provided in Table 18 for each architecture and dataset.

Table 18: Hyper-parameters for all architectures on ImageNet-1K (left) and Tiny-ImageNet (right).

ImageNet-1K (input size 224×224)

Model IPC Learning Rate Eta

ResNet18

10 0.0010 2
20 0.0010 2
30 0.0010 2
40 0.0010 2
50 0.0010 1

ShuffleNetV2

10 0.0010 2
20 0.0010 2
30 0.0010 2
40 0.0010 2
50 0.0010 1

ResNet50

10 0.0010 2
20 0.0010 2
30 0.0010 2
40 0.0010 1
50 0.0010 1

MobileNetV2

10 0.0010 2
20 0.0010 2
30 0.0010 2
40 0.0010 2
50 0.0010 2

Densenet121

10 0.0010 2
20 0.0010 2
30 0.0010 2
40 0.0010 2
50 0.0010 2

EfficientNet

10 0.0010 2
20 0.0010 2
30 0.0010 2
40 0.0010 1
50 0.0010 1

Tiny-ImageNet (input size 64×64)

Model IPC Learning Rate Eta

ResNet18

10 0.0010 2
20 0.0010 2
30 0.0010 2
40 0.0010 1
50 0.0010 1

ShuffleNetV2

10 0.0010 2
20 0.0010 2
30 0.0010 2
40 0.0010 1
50 0.0010 1

ResNet50

10 0.0010 2
20 0.0010 2
30 0.0010 2
40 0.0010 1
50 0.0010 1

MobileNetV2

10 0.0010 2
20 0.0010 2
30 0.0010 2
40 0.0010 1
50 0.0010 1

Densenet121

10 0.0010 2
20 0.0010 2
30 0.0010 2
40 0.0010 1
50 0.0010 1

EfficientNet

10 0.0010 2
20 0.0010 2
30 0.0010 2
40 0.0010 1
50 0.0010 1

HALD-Specific Hyperparameters. In addition to soft-label supervision, HALD incorporates an
intermediate hard-label training phase governed by two additional hyperparameters. The first is the
label smoothing rate α, which is fixed at 0.8 across all experiments. The second is the duration of
the hard-label phase, which is aligned with the convergence time of soft-label-only training. These
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durations are determined empirically based on the number of soft labels available and are presented
separately for ImageNet-1K and Tiny-ImageNet in Table 19, respectively.

Table 19: Hard-label training duration (in epochs) for different SLC values. Left: ImageNet-1K;
Right: Tiny-ImageNet.

(a) ImageNet-1K

SLC 300 250 200 150 100 50

Hard Epochs 75 75 150 150 150 150

(b) Tiny-ImageNet

SLC 100 50

Hard Epochs 50 50

F USE OF LARGE LANGUAGE MODELS

We used an LLM to help solely refine the writing of the paper, all ideas and experiments were
prepared and carried out entirely by the authors.
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