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ABSTRACT

Low-Rank Adaptation (LoRA) has become a popular technique for memory-
efficient fine-tuning of large models and has recently been adopted in federated
learning (FL) due to its reduced parameter footprint. However, we show that LoRA
significantly underperforms full-parameter fine-tuning (FFT) in FL, especially
under non-IID client distributions. Our neural tangent kernel (NTK) analysis points
to a simple cause: non-IID shifts diversify and misalign client gradients, increasing
the effective rank (spectral energy) of the NTK / gradient-Gram matrix. Because
LoRA commits to a fixed low-rank subspace, it cannot capture this additional
structure; the induced kernel deviates and its spectral floor drops, leading to slower
convergence and weaker generalization. Based on this finding, we argue that
low-rank compression methods—such as GaLore—are inherently better suited
for FL than low-rank reparameterization. Motivated by this insight, we propose
FedLore. On the client side, FedLore uses a GaLore-style optimizer while
replacing SVD with randomized SVD to reduce computational overhead. On the
server side, FedLore estimates a shared low-rank gradient from client updates
and broadcasts it to configure each client’s GaLore projector, aligning update sub-
spaces and mitigating drift under heterogeneity. Across NLU, vision, FedLore
consistently achieves higher accuracy and robustness under non-IID conditions
than LoRA-based strategies, while using comparable or less memory.

1 INTRODUCTION

Foundation Models (FMs) such as GPT, LLaMA, and SAM (Bommasani et al., 2021; Brown et al.,
2020; Touvron et al., 2023; Kirillov et al., 2023) have transformed machine learning through the
pretrain–finetune paradigm. However, fully finetuning these ever-growing models (Kaplan et al.,
2020) is often computationally infeasible. To address this challenge, parameter-efficient finetuning
(PEFT) methods, most notably Low-Rank Adaptation (LoRA) (Hu et al., 2022), have emerged. LoRA
attains performance comparable to full finetuning while drastically reducing the number of trainable
parameters and lowering peak GPU memory usage by decomposing weight updates into low-rank
matrices (e.g., A and B) while keeping pretrained weights frozen.

Building on these advantages, recent work has applied LoRA to Federated Learning (FL) to enable
efficient on-device adaptation. A central obstacle in this setting is non-independent and identically
distributed (non-IID) client data. In practice, local datasets often differ substantially across clients
due to variations in user behavior and device capabilities, leading to statistical heterogeneity. While
empirical results show that LoRA performs on par with full fine-tuning (FFT) in centralized settings
(Hu et al., 2022), its performance deteriorates in heterogeneous federated environments (Babakniya
et al., 2023). As shown in Figure 1, Federated LoRA not only underperforms FFT but also exhibits
a widening gap as non-IID conditions intensify. This motivates our investigation into two central
questions: (1) Why does non-IID1 data severely degrade LoRA’s effectiveness in FL? and (2) Can we
design parameter-efficient approaches that remain robust under such non-IID conditions?

To address these questions, we analyze fine-tuning dynamics through the neural tangent kernel
(NTK) lens (Jacot et al., 2018). Empirically, pretrained language models operate in a kernel-like

1Throughout this paper, we use “data heterogeneity” and “non-IID” interchangeably to refer to differing data
distributions across clients
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Figure 1: Comparison of full-parameter fine-tuning (FFT), FedAvg, and Federated LoRA under
Dirichlet non-IID data (α). (a) At α = 0.5, FFT is more robust than LoRA, with a smaller drop from
the IID baseline. (b) On MNLI, the performance gap widens as α decreases.

regime at initialization (Malladi et al., 2023), so full-parameter fine-tuning is well approximated by
kernel regression with kernel KFFT. LoRA restricts updates to a fixed low-rank subspace, which
is equivalent to applying a random low-rank projection to the input-side features defining KFFT,
thereby inducing a kernel KLoRA. By the Johnson–Lindenstrauss (JL) lemma (Johnson et al., 1984),
when the projection rank k is sufficiently large, KLoRA ≈ KFFT with high probability, explaining
LoRA’s strong performance in centralized (IID) settings. Under non-IID client distributions, however,
heterogeneous data diversifies and misaligns gradient directions, increasing the effective rank (energy)
of the NTK (gradient Gram) matrix. With fixed k, KLoRA cannot capture this additional structure, so
∥KFFT −KLoRA∥ grows and the spectral floor λmin(KLoRA) drops, leading to slower convergence
and weaker generalization. By contrast, gradient compression methods such as GaLore (Zhao et al.,
2024) do not fix a low-rank subspace but adaptively compress gradients in the current span, thereby
preserving the kernel KFFT and avoiding spectral-floor collapse, making them more robust under
non-IID shifts.

Based on the above analysis, we propose a novel federated low-rank adaptation strategy, FedLore.
On the client side, FedLore builds on the GaLore optimizer, where gradients are projected via
Singular Value Decomposition (SVD). While effective, exact SVD is computationally expensive.
To address this, we adopt randomized SVD, which is more efficient while retaining comparable
optimization performance.

On the server side, we observe that client gradients exhibit a shared low-rank structure with additive
client-specific perturbations and noise, Gi = G + P + noise. To align client update subspaces,
FedLore introduces an aggregation strategy that extracts the shared low-rank component G, broad-
casts it to clients, and initializes their GaLore projectors accordingly. This ensures each local round
begins with an aligned subspace. In experiments across NLU, vision FedLore consistently achieves
higher accuracy and robustness under non-IID conditions than LoRA-based strategies, while using
comparable or less memory.

Contribution Our main contributions are threefold. First, we provide an NTK-based analysis of
LoRA in federated settings, showing that it fails under non-IID data due to increased gradient rank
and spectral-floor collapse. Building on this insight, we introduce FedLore, a federated low-
rank adaptation strategy that employs efficient GaLore-based optimization on the client side and a
server-side aggregation scheme to align update subspaces. Finally, through extensive experiments on
NLU, vision benchmarks, we show that FedLore achieves higher accuracy and robustness under
heterogeneous data while using comparable or less memory than LoRA-based approaches.

2 RELATED WORKS

LoRA LoRA’s parameter efficiency has inspired a wide range of extensions. AdaLoRA (Zhang
et al., 2023) dynamically prunes singular values to optimize rank budgets, VeRA (Kopiczko et al.,
2023) shares low-rank matrices across layers, and DoRA (Liu et al., 2024) decomposes pretrained
weights into magnitude and direction. Other works focus on initialization, such as ReLoRA (Lialin
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et al., 2024) and PeriodicLoRA (Meng et al., 2024b), or adopt data-driven strategies including
Pissa (Meng et al., 2024a), LoRA-SB (Ponkshe et al., 2024), LoRA-GA (Wang et al., 2024a), and
EVA (Paischer et al., 2024). These approaches improve efficiency in centralized training but do
not address challenges unique to federated settings. Meanwhile, several studies examine the theory
of LoRA: Zeng & Lee (2023) analyzed its expressive power, Jang et al. (2024) investigated its
optimization landscape under convexity assumptions, and Xu et al. (2025) studied its dynamics
for matrix factorization. However, none of these works consider non-IID client shifts in federated
learning.

GaLore Beyond LoRA, GaLore (Zhao et al., 2024) has emerged as a training strategy that achieves
memory efficiency by projecting gradient matrices into low-rank subspaces. WeLore (Jaiswal et al.,
2024) adaptively selects the projection rank, while OwLore (Li et al., 2024) introduces layer-wise
updates to improve flexibility and efficiency. Hao et al. (2024) established a connection between
LoRA and GaLore, and Liu et al. (2025) analyzed their optimization landscapes, showing that GaLore
enjoys more favorable optimization properties.

Low-Rank Adaptation in Federated Learning LoRA is also the most widely adopted parameter-
efficient fine-tuning approach in federated learning, and several works adapt it to this setting. FedIT
(Zhang et al., 2024) averages client LoRA matrices, while subsequent variants improve aggregation
(e.g., FLoRA (Wang et al., 2024b), LoRA-Fair (Bian et al., 2024)) or initialization (e.g., FR-LoRA,
FedERA). Other approaches modify the sharing of the A and B matrices, such as FedSA-LoRA
(Guo et al., 2024) and FFA-LoRA (Sun et al., 2024). The most closely related work, FedFTG (Mahla
et al., 2024), applies GaLore directly as an optimizer in federated settings. In contrast, we provide an
NTK-based analysis of non-IID client shifts and extend GaLore with an improved projector and a
novel aggregation strategy.

3 PRELIMINARIES

To set the stage for our analysis, we first establish notation for neural networks and gradient updates,
and then review the formulations of LoRA and GaLore.

We consider a neural network f(x;θ) parameterized by θ. Linear or affine submodules (e.g.,
attention or MLP projections) are indexed by l. After t training steps, each block has weight matrix
W

(t)
l ∈ Rdout×din and pre-activation h

(t)
l = W

(t)
l xl. LoRA injected at layer l reparameterizes the

weight as
W

(t)
l = W

(0)
l +B

(t)
l A

(t)
l , (1)

where Bl ∈ Rdout×r and Al ∈ Rr×din , with r ≪ min{dout, din} denoting the adapter rank. In
standard LoRA, W (0)

l is frozen and (Bl,Al) are trainable. The matrices are typically initialized as
B

(0)
l = 0 and A

(0)
l ∼ N (0, 1/r).

Unlike LoRA’s reparameterization, GaLore applies low-rank projection directly to the gradients
during optimization. At training step t, the full gradient of W (t)

l is G(t)
l = ∇Wl

L(f(x;θ)), where
L is the loss function. GaLore maintains a projection matrix P

(t)
l ∈ Rdin×r with r ≪ min{dout, din}.

The gradient is then compressed and reconstructed as

G̃
(t)
l = G

(t)
l P

(t)
l P

(t)⊤
l , (2)

and used by the optimizer to perform parameter updates, including accumulation of momentum in
adaptive methods such as Adam (Kingma & Ba, 2014) or AdamW (Loshchilov & Hutter, 2017). In
practice, P (t)

l is obtained from a low-rank factorization (e.g., truncated SVD) of recent gradients and
is periodically refreshed.

4 ANALYSIS

In this section, we analyze the training dynamics of LoRA and GaLore in comparison to full-
parameter fine-tuning (FFT). Since our analysis relies on the neural tangent kernel (NTK), it requires
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the assumption that fine-tuning of a pretrained language model θ exhibits kernel behavior. This
assumption is not only theoretically convenient but also empirically validated: pretrained language
models fine-tuned from θ(0) have been observed to follow kernel dynamics, with training trajectories
well predicted by the corresponding kernels (Malladi et al., 2023).
Definition 4.1 (Kernel behavior (Malladi et al., 2023; Woodworth et al., 2020)). Training is said to
exhibit kernel behavior at θ(0) if, along the fine-tuning trajectory,

f(x;θ) ≈ f(x;θ(0)) + ∇θf(x;θ
(0))⊤(θ − θ(0)) linearization

∇θf(x;θ
(t)) ≈ ∇θf(x;θ

(0)) fixed features
(3)

Under this assumption, one training step with optimizer A updates predictions as

f( · ;θ(t+1))− f( · ;θ(t)) ≈ −ηt χt KA( · ,x(t)) (4)

where χt = ∂L(f(x(t);θ(t)), y(t))/∂f and KA is an optimizer-specific kernel. In other words,
fine-tuning reduces to kernel gradient descent and the training dynamics are fully determined by KA.

For SGD, KSGD is the NTK (Jacot et al., 2018) KSGD(xi,xj) = ⟨∇f(xi;θ
(0)),∇f(xj ;θ

(0))⟩,
where ⟨·⟩ denotes the inner product. For adaptive optimizers such as Adam and AdamW, early-stage
dynamics admit a sign-based kernel of the form ⟨sign(∇f(xi;θ

(0))), sign(∇f(xj ;θ
(0)))⟩ as shown

by Littwin & Yang (2023), with AdamW additionally introducing a decoupled shrinkage in function
space.

4.1 LORA APPROXIMATE THE DYNAMICS OF FULL-PARAMETER FINETUNING

Building on this foundation, we now analyze the kernel induced by LoRA. We begin by defining the
per-layer contribution of block l to the full-parameter kernel

K(l)
FFT(i, j) =

〈
dhl

(i), dhl
(j)

〉︸ ︷︷ ︸
Sl(i,j)

·
〈
xl,i, xl,j

〉︸ ︷︷ ︸
Gl(i,j)

, (5)

where xl,i is the input to block l for sample i and dhl
(i) is the backprop signal into the pre-activation

of block

dhl
(i) :=

∂f(xi;θ)

∂hl
|θ=θ(0) (6)

Theorem 4.2 (LoRA’s kernel). When LoRA is injected at block l with right projection Al, the induced
kernel is

K(l)
LoRA(i, j) = Sl(i, j) ·

〈
Alxl,i, Alxl,j

〉
. (7)

Proof. We defer the complete proof to Appendix B and provide a sketch here. At block l, with
pre-activation hl = Wlxl, the layerwise Jacobian at θ(0) factorizes as θ(0): ∇Wl

f(xi;θ
(0)) =

dhl
(i)x⊤

l,i. Under LoRA Wl = W
(0)
l +BlAl and standard initialization B

(0)
l = 0, the first-order

parameter is Bl. Thus ∇Bl
f(xi;θ

(0)) = dhl
(i) (Alxl,i)

⊤. Taking Frobenius inner products of
these Jacobians across two samples gives Eq. equation 7

Theorem 4.2 states that LoRA does not alter the backprop block Sl(i, j) = ⟨dhl
(i),dhl

(j)⟩; it only
replaces the input inner product ⟨xl,i,xl,j⟩ by ⟨Alxl,i,Alxl,j⟩. Consequently, if Al approximately
preserves pairwise inner products on the training inputs, the LoRA kernel closely matches the
full-parameter kernel. Denote the network-level kernel as KFFT =

∑
l K

(l)
FFT, KLoRA =

∑
l K

(l)
LoRA,

we have
Theorem 4.3 (LoRA mimic the dynamics of FFT with sufficient rank.). Consider a finite training set
xl,1, . . . ,xl,N and for each block where LoRA is applied. Assume |dhl(i)| ≤ Bl and |xl,i| ≤ Rl for
all i. Assume ∥dhl

(i)∥ ≤ Bl and ∥xl,i∥ ≤ Rl for all i. Let each Al have IID subgaussian entries
with variance 1 and set Ãl := Al/

√
r. If

r ≥ 4

ε2 − ε3
log

(4N2 |LLoRA|
δ

)
,

4
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then with probability at least 1− δ,∣∣KLoRA(i, j)−KFFT(i, j)
∣∣ ≤ ε

∑
l∈LLoRA

B2
l

∥xl,i∥2 + ∥xl,j∥2

2
∀ i, j ∈ [N ]. (8)

In particular, if ∥xl,i∥ ≤ 1 (e.g., post-LayerNorm) then
∣∣KLoRA(i, j)−KFFT(i, j)

∣∣ ≤ ε
∑

l B
2
l .

Proof. For each l and pair (i, j), By the classical Johnson–Lindenstrauss lemma (Johnson et al., 1984)∣∣⟨Ãlxl,i, Ãlxl,j⟩−⟨xl,i, xl,j⟩
∣∣ ≤ ε(∥xl,i∥2+∥xl,j∥2)/2 with probability 1−4 exp

(
−(ε2−ε3)r/4

)
.

Multiplying by |Sl(i, j)| ≤ |dhl
(i)|, |dhl

(j)| ≤ B2
l and applying a union bound over all N2 pairs

and blocks gives equation 8. A complete proof is deferred to Appendix C.

Theorem 4.3 shows that, with sufficiently large adapter rank r, the LoRA kernel KLoRA uniformly
approximates the full-parameter kernel KFFT on the training set. This explains why, in centralized
(IID) settings, LoRA often matches the performance of full-parameter fine-tuning. However, its
behavior under non-IID client data differs substantially. We analyze this regime next.

4.2 WHY LORA BREAK UNDER CLIENT DRIFT

In federated learning, each client c has access to a local dataset Dc drawn from its own distribution
Pc. When data are heterogeneous (Pc1 ̸= Pc2 ), the local objectives

Lc(θ) = E(x,y)∼Pc

[
ℓ(f(x;θ), y)

]
differ across clients. Consequently, the corresponding local gradients ∇θLc(θ) point in different direc-
tions. This misalignment between local and global gradients is referred to as client drift(Karimireddy
et al., 2020). Formally we define:
Definition 4.4 (Non-degenerate client drift). Client drift at layer l is non-degenerate if the per-example
backprop signals acquire additional variance and rotate into directions that were not previously
dominant. Writing Dl = [dhl

(1), . . . ,dhl
(N)] and Sl = D⊤

l Dl, drift produces a new Gram S′
l

such that
tr(S′

l) > tr(Sl) and srank(S′
l) > srank(Sl),

where srank(A) := ∥A∥2F /∥A∥22 is the stable (effective) rank.

Definition 4.4 excludes trivial drift like pure rescaling (S′
l = cSl) or adding energy only along

the current top direction. It captures the structural effect of data heterogeneity: local data injects
genuinely new variance directions so that both energy and effective rank grow. In Appendix D we
give a formal “covariance dominance + incoherence” condition implying Definition 4.4 and show
that it holds in standard factor–plus–noise models of non-IID shift.

Under non-degenerate client drift, the backprop block gets larger and less concentrated, while LoRA
keeps the same fixed input-side projection. This amplifies the LoRA–vs–FFT kernel deviation at
fixed rank and weakens the provable lower bound of λmin(KLoRA). Formally we have,
Theorem 4.5 (Drift amplifies LoRA’s kernel deviation and lowers its spectral floor). Consider LoRA
at blocks l ∈ LLoRA with right matrices Al ∈ Rr×din and Ãl := Al/

√
r. Let Xl = [xl,1, . . . ,xl,N ]

and rx,l = rank(Xl). Denote optimizer-specific kernels (full vs. LoRA) after non-degenerate as
K ′

FFT and K ′
LoRA. Then, with probability at least 1− δ over the LoRA projections,∥∥K ′

LoRA −K ′
FFT

∥∥
2
≤

∑
l∈LLoRA

C ∥S′
l∥2 ∥Xl∥22

√
rx,l

r , (9)

λmin

(
K ′

LoRA

)
≥ λmin

(
K ′

FFT

)
−

∑
l∈LLoRA

C ∥S′
l∥2 ∥Xl∥22

√
rx,l

r (10)

An ∥ · ∥F variant also holds:∥∥K ′
LoRA −K ′

FFT

∥∥
F

≤
∑

l∈LLoRA

C ∥S′
l∥F ∥Xl∥22

rx,l√
r
, (11)

which increases whenever ∥S′
l∥F increases (a consequence of Definition 4.4 under the mild

bounded-spikiness condition in Appendix D).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 4.5 implies that client drift increases the energy of the backprop signals, which in turn
loosens the otherwise tight bound on the deviation between LoRA and full-parameter fine-tuning.
As this energy grows, the gap between KLoRA and KFFT widens monotonically. In effect, non-IID
heterogeneity makes LoRA progressively less robust: what was a close approximation under i.i.d. data
becomes increasingly fragile under drift, and the deviation can only get worse as energy continues to
rise.

At the same time, the lower bound on λmin(KLoRA) deteriorates, implying slower convergence and
weaker generalization. Chen et al. (2023) show that for a loss function L(·) that is Lf -Lipschitz
continuous, the convergence rate and generalization gap are controlled by the condition number
Lf/µ, where

µ := inf
W

λmin(K).

In our setting, client drift reduces the lower bound of λmin(KLoRA), thereby decreasing µ and
enlarging Lf/µ. This directly translates into slower convergence and a larger generalization gap.

4.3 GALORE IS MORE ROBUST AGAINST CLIENT DRIFT

Unlike LoRA, GaLore does not reparameterize Wl; it operates directly on the step by projecting the
gradient G(t)

l onto a data-adapted rank-r right subspace P
(t)
l and updating with

G̃
(t)
l = G

(t)
l P

(t)
l P

(t)⊤
l .

Because the parameters remain in the full space, the underlying Jacobian J and kernel K are
unchanged. There is no fixed input-side distortion x 7→ Alx as in LoRA. As a result, the spectral
floor (minimum eigenvalue) that enters PL-based guarantees is preserved, and GaLore does not suffer
the drift-dependent penalty in equation 10.

We define the captured gradient energy at (l, t) as

αl,t :=
∥G(t)

l P
(t)
l P

(t)⊤
l ∥2F

∥G(t)
l ∥2F

∈ [0, 1], αt := min
l

αl,t.

If P (t)
l is chosen as the top-r right singular directions of recent G(t)

l (truncated SVD), then by the
Eckart–Young theorem αl,t is maximal among all rank-r right projections. Linearizing one step gives

∆ft(·) ≈ −ηt J
(⊕

l

Πl,t

)
J⊤ χt, Πl,t : G 7→ GP

(t)
l P

(t)⊤
l ,

, where
⊕

l Πl,t denotes the block-diagonal operator that applies the projection Πl,t independently
at each block l. So the GaLore update is exactly the full-FT update scaled in the current descent
direction, with a per-step contraction factor αt:

∥∆fGaLore
t −∆fFFT

t ∥ ≤ (1− αt) ∥∆fFFT
t ∥.

In words: GaLore preserves the kernel geometry (hence λmin(K)) while only reducing per-step
progress by at most (1− αt). By contrast, LoRA fixes Al ex ante, so when drift rotates and spreads
gradient directions (Def. 4.4), its kernel deviation scales with ∥S′

l∥2 (Theorem 4.5) and its spectral
floor degrades. GaLore instead refreshes P (t)

l from the observed gradients, so as directions rotate,
the chosen subspace follows them. As long as the top-r singular directions capture most of the mass,
αl,t remains close to 1 even when the effective rank grows — precisely the regime where LoRA’s
fixed projection accumulates error. Crucially, GaLore’s discrepancy bound depends only on (1− αt)
and not on ∥S′

l∥, so increasing drift “energy” does not directly erode any certified kernel floor.

5 FEDLORE: FEDERATED LOW-RANK ADAPTATION WITH ALIGNED
PROJECTIONS

Client Training Recall that GaLore compresses the layerwise gradient G(t)
l by projecting onto a

rank-r right subspace,
G̃

(t)
l = G

(t)
l P

(t)
l P

(t)⊤
l .

6
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In vanilla GaLore, the projector P (t)
l ∈ Rdin×r is obtained from the top-r right singular vectors of

G
(t)
l , i.e., via truncated SVD:

G
(t)
l = UlΣlV

⊤
l , P

(t)
l = Vl,1:r.

By the Eckart–Young theorem, this choice maximizes the captured gradient energy among all rank-r
projections. However, computing an exact SVD at every training step is computationally prohibitive
and requires storing large matrices.

To address this, FedLore replaces exact SVD with randomized SVD (RSVD) (?). Given G
(t)
l ∈

Rdout×din , we draw a random Gaussian test matrix Ω ∈ Rdin×(r+p) with a small oversampling factor
p, form the sketch Y = G

(t)
l Ω, and compute an orthonormal basis Q = orth(Y ). The projector is

then obtained from the SVD of the reduced matrix G
(t)
l Q:

G
(t)
l Q = Ũ Σ̃Ṽ ⊤, P

(t)
l = QṼ:,1:r.

RSVD approximates the top-r right singular subspace at much lower cost by reducing the dimension
of the SVD calculation. In particular, it reduces the computational complexity from O(doutd

2
in) for

exact SVD to O(doutdinr) for rank-r approximation, thereby significantly improving efficiency while
still retaining near-optimal accuracy with high probability.
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Figure 2: Effect of the initial projection ma-
trix on CIFAR-10 with an MLP.

Server Aggregation Our analysis and experiments
show that the initial projection matrix plays a decisive
role in both convergence speed and final accuracy. If
the first projector P (0)

l is misaligned, the model con-
verges more slowly and often plateaus at a higher
loss, even when subsequent projectors are updated
adaptively. This is because the very first projection
defines the descent subspace for early training, and er-
rors introduced at this stage propagate across rounds.

Figure 2 compares FFT, LoRA, GaLore, and GaLore-
Random (where the initial projector is random). Ga-
Lore closely tracks FFT, while GaLore-Random con-
verges more slowly and reaches higher loss, showing
that aligning the first projection with dominant gra-
dient directions is essential for robust performance.

This highlights the importance of the first initialization of local training: the initial projection must
be aligned with the dominant gradient subspace. Without this alignment, early updates take place
in a suboptimal subspace, slowing convergence and leading to higher final loss. Motivated by this
observation, our goal is to identify the dominant subspace that captures the gradient structure shared
across clients. We model the local gradient of client c at layer l as

Gc,l = G∗
l + Lc,l + Ec,l,

where G∗
l denotes the shared low-rank component common across clients, Lc,l is a client-specific

low-rank perturbation, and Ec,l is random noise.

This decomposition is supported by empirical evidence: gradients in deep networks are often
approximately low-rank Zhao et al. (2024), and additional structure introduced by client drift can also
be captured in low-rank form. The remaining stochastic variability from optimization manifests as
noise. Thus, extracting the shared component G∗

l provides a principled way to estimate the dominant
subspace. The server can then broadcast this shared subspace to clients, ensuring that each local round
begins from an aligned projector and avoiding the instability caused by misaligned initialization.

To separate shared from client-specific structure, we draw on the classical Joint and Individual
Variation Explained (JIVE) framework. For each layer l, we model local gradients Gc,l as the sum of
a shared component G∗

l , client-specific perturbations Lc,l, and noise. Extracting G∗
l admits a convex

surrogate via nuclear-norm regularization:

min
G∗

l , {Lc,l}
1
2

N∑
c=1

wc ∥Gc,l −G∗
l −Lc,l∥2F + λ∗∥G∗

l ∥∗ + λind

N∑
c=1

∥Lc,l∥∗. (12)
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This convex approximation guarantees global optimality while directly encoding our drift model.

We adopt an ADMM solver: the quadratic loss is split from the nuclear norms, and each subproblem
reduces to singular-value thresholding (SVT). All SVD calls are truncated and computed via ran-
domized SVD (RSVD), yielding complexity Õ(doutdinr). This ensures scalability even with many
clients. From the optimal G∗

l , we extract the right singular vectors V ∗
l,1:r, which serve as the server’s

shared projector. Broadcasting these projectors to all clients ensures that each round of local training
begins from an aligned descent subspace anchored in the dominant shared gradient directions.

The overall FedLoRe pipeline therefore alternates between (i) local client updates with GaLore (using
RSVD for projector refresh) and (ii) server-side extraction of the shared subspace via JIVE+ADMM.
Clients send both their parameter state and last-step gradients; the server solves equation 12 to
isolate G∗

l , computes the shared projector, and broadcasts it back. This tight loop allows FedLoRe
to continually adapt client subspaces to the evolving dominant gradient directions, mitigating drift
and stabilizing convergence. The full pseudo-code of FedLoRe (including client GaLore, server
JIVE+ADMM, and communication protocol) is provided in Appendix F.

6 EXPERIMENTS

We evaluate FedLore across three diverse tasks: (1) NLU: RoBERTa-base (Liu, 2019) on 7 GLUE
text classification tasks (Wang, 2018). (2) Vision: ViT-base (Dosovitskiy, 2020) on 6 DomainNet
visual domains (Peng et al., 2019).

All GaLore-based methods use the GaLore variant of AdamW (Loshchilov & Hutter, 2017), while
other baselines use standard AdamW with the following settings: learning rate 3×10−5, weight decay
0.01, β1 = 0.9, β2 = 0.98, linear LR warmup, and gradient clipping at 1.0. Training configurations
are: GLUE (15 global rounds, 2 local epochs), DomainNet (30 rounds, 3 local epochs). We simulate
5 clients per round.

We compare FedLore against the following baselines: FedAvg (full fine-tuning), FedIT (Zhang
et al., 2024), FFA-LoRA (Sun et al., 2024) (freezes A), FLoRA (Wang et al., 2024b), and FedFTG
(Mahla et al., 2024). In particular, FedFTG corresponds to the naive GaLore baseline in Federated
Leraning and serves as an ablation. For fairness, all LoRA-based methods use the same rank: r = 8
(GLUE), r = 16 (DomainNet).

We report performance under both IID (✓) and Non-IID (✕) splits. Non-IID data are generated with
LDA partitioning (see Appendix A). The performance gap ∆ between IID and Non-IID settings
serves as a measure of robustness to heterogeneity: smaller ∆ indicates better handling of Non-IID
client distributions.

Results and Discussion We first evaluate on the GLUE benchmark (Table 1). The full-parameter
FedAvg baseline shows relatively small performance gaps (∆) across most tasks (CoLA, SST, MRPC,
QNLI, and RTE), indicating that updating all parameters naturally provides robustness to data
heterogeneity. In contrast, LoRA-based methods such as FedIT, FFA-LoRA, and FLoRA suffer from
noticeably larger gaps under Non-IID splits. FedLore consistently maintains high accuracy under
both IID and Non-IID conditions, narrowing the robustness gap while requiring far fewer trainable
parameters. FedFTG achieves strong IID performance but exhibits worse robustness to Non-IID
data, as it lacks the aggregation correction mechanism introduced in FedLore. A minor exception
arises on STS-B, a regression task, where FedLore does not always achieve the best Non-IID score.
Nevertheless, across classification tasks, our method demonstrates consistently strong performance
and robustness under heterogeneity, with a substantially reduced parameter footprint.

We further evaluate on DomainNet. Since the ViT backbone is pretrained on ImageNet, it naturally
performs well on the Real domain. We therefore focus on the Non-IID performance gaps across
the Clipart, Painting, Infograph, Quickdraw, and Sketch domains to assess robustness. As shown in
Table 2, the full-parameter FedAvg (100% trainable) again performs strongly. FedFTG achieves accu-
racy comparable to FedAvg and FedLore under IID splits, but its robustness degrades significantly
under Non-IID conditions, mirroring our observations on GLUE. In contrast, FedLore attains equal
or better accuracy in both IID and Non-IID settings, consistently showing higher tolerance to data
heterogeneity. These DomainNet findings reinforce our GLUE results, demonstrating that FedLore
enhances both accuracy and robustness under heterogeneity.
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Table 1: GLUE Benchmark Results. ✕ denotes Non-IID, ∆ indicates the difference.

Method CoLA Acc% SST Acc% MRPC Acc% QQP Acc%

✓ ✕ ∆ ✓ ✕ ∆ ✓ ✕ ∆ ✓ ✕ ∆

FedAvg-Full 83.6 83.0 ↓0.6 94.6 94.0 ↓0.6 89.7 83.0 ↓0.8 84.4 82.1 ↓2.3

FedIT 71.2 65.4 ↓5.8 88.1 83.7 ↓4.4 82.3 76.9 ↓5.4 78.9 72.4 ↓6.5
FFA-LoRA 84.0 78.3 ↓5.7 94.1 88.4 ↓5.7 89.3 82.1 ↓7.2 84.7 78.2 ↓6.5
FLoRA 84.7 75.1 ↓9.6 92.1 85.2 ↓6.9 87.8 82.5 ↓5.3 86.3 77.1 ↓9.2
FedFTG 83.2 81.4 ↓1.8 94.5 90.2 ↓4.3 89.8 84.5 ↓5.3 85.4 81.5 ↓3.9
FedLore 83.9 83.1 ↓0.8 94.8 93.9 ↓0.9 89.8 88.2 ↓1.6 84.3 82.5 ↓1.8

Method MNLI Acc% QNLI Acc% RTE Acc% STS-B MSE

✓ ✕ ∆ ✓ ✕ ∆ ✓ ✕ ∆ ✓ ✕ ∆

FedAvg-Full 82.5 81.1 ↓1.4 90.1 89.8 ↓0.3 75.1 68.2 ↓6.9 0.45 0.67 ↓.22

FedIT 75.6 69.8 ↓5.8 83.4 78.1 ↓5.3 66.5 58.9 ↓7.6 0.38 0.55 ↑.17
FFA-LoRA 82.2 75.8 ↓6.4 89.9 83.4 ↓6.5 74.8 65.3 ↓9.5 0.44 0.56 ↑.16
FLoRA 82.7 73.2 ↓9.5 92.0 86.7 ↓5.3 75.1 68.2 ↓6.9 0.39 0.53 ↑.14
FTG 81.2 77.4 ↓3.8 93.3 88.1 ↓5.2 76.2 68.0 ↓8.2 0.33 0.51 ↑.18
FedLore 82.7 81.4 ↓1.3 90.3 89.8 ↓0.5 75.2 68.2 ↓7.0 0.45 0.67 ↑.22

Table 2: DomainNet Results (excluding Real domain). Accuracies in %. ✓ denotes IID, ✕ denotes
Non-IID, ∆ indicates the difference.

Method Clipart Painting Infograph Quickdraw Sketch

✓ ✕ ∆ ✓ ✕ ∆ ✓ ✕ ∆ ✓ ✕ ∆ ✓ ✕ ∆

FedAvg-Full 82.3 78.9 ↓3.4 79.2 75.8 ↓3.4 54.3 48.5 ↓5.8 71.0 67.2 ↓3.8 78.3 74.1 ↓4.2

FedIT 80.1 74.2 ↓5.9 77.5 70.8 ↓6.7 52.8 45.9 ↓6.9 69.4 62.8 ↓6.6 76.2 69.1 ↓7.1
FFA-LoRA 79.8 72.5 ↓6.3 76.9 71.2 ↓5.7 51.9 46.2 ↓5.7 68.7 63.5 ↓5.2 75.8 68.4 ↓7.4
FLoRA 80.7 74.1 ↓6.6 77.8 71.3 ↓6.5 52.1 45.0 ↓7.1 69.5 63.2 ↓6.3 76.0 68.5 ↓7.5
FTG 82.1 71.3 ↓10.8 79.5 72.4 ↓7.1 53.8 41.9 ↓11.9 69.2 64.3 ↓4.9 76.8 70.5 ↓ 6.3
FedLore 81.9 78.2 ↓3.7 78.8 75.1 ↓3.7 53.8 47.6 ↓6.2 70.5 66.4 ↓4.1 77.9 73.5 ↓4.4

7 CONCLUSION

In this work, we analyzed why LoRA, despite its popularity in centralized settings, fails under
non-IID client data in federated learning. Our NTK-based analysis showed that client drift increases
gradient energy and rank, loosening LoRA’s approximation to full-parameter fine-tuning and lowering
its spectral floor. In contrast, GaLore adaptively compresses gradients without altering kernel
geometry, making it more robust to drift. Building on these insights, we proposed FedLore, which
combines client-side GaLore optimization with server-side projector alignment via a JIVE-style
convex decomposition. Experiments across NLU, vision benchmarks demonstrated that FedLore
improves robustness to heterogeneity while training only a small fraction of parameters. Overall,
our results suggest adaptive gradient compression is a promising direction for scalable and robust
federated fine-tuning.

Limitations and Future Work While FedLore shows strong robustness and efficiency, there
remain several directions for improvement. First, the server-side projector extraction introduces extra
computation compared to simpler aggregators, and scaling this to ultra-large models or thousands of
clients will require further system optimization. Second, our theoretical analysis relies on the NTK
regime; extending the guarantees to later training stages or non-kernel settings is an open challenge.
Finally, in terms of privacy, FedLore follows the same assumptions as FedAvg, but could benefit
from stronger analysis or integration with privacy-preserving techniques.
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8 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics.2 Our study does not involve human subjects,
personally identifiable information, or sensitive data. We use only publicly available datasets (GLUE,
DomainNet, under their respective licenses, and our methods are intended for advancing the robustness
and efficiency of federated learning. We do not foresee any direct ethical concerns or potential harms
arising from this research.

9 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. All experimental config-
urations, including model architectures, hyperparameters, and training schedules, are described in
Section 6. Additional details for theoretical analysis, including proofs and assumptions, are provided
in Appendix, and implementation details for optimization and aggregation are described in Ap-
pendix F. Upon acceptance, we will release the full source code and scripts for dataset preprocessing,
training, and evaluation to facilitate independent verification of our findings.
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Figure 3: Illustration of Dirichlet-based data partitioning on MNIST (α = 0.5) with two clients. Each
bar represents the label distribution of one client.
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A DIRICHLET DISTRIBUTION FOR MODELING NON-IID DATA

Following common practice in federated learning (Yurochkin et al., 2019; Wang et al., 2020; Li
et al., 2020), we model client data heterogeneity using a Dirichlet distribution. Specifically, for a
classification task with K classes, the label distribution for each client i is sampled from a Dirichlet
distribution:

pi ∼ Dir(α · 1K),

where α > 0 is the concentration parameter and 1K is a K-dimensional vector of ones. A smaller α
produces more skewed client label distributions (i.e., stronger non-IID conditions), while a larger α
yields more balanced distributions approaching the IID case.

After sampling pi, we partition the dataset by allocating examples to client i according to pi. This
procedure ensures controlled heterogeneity across clients while keeping the total number of samples
per client fixed. Figure 3 illustrates how the Dirichlet partition leads to distinct label distributions
across clients. In our experiments, we vary α to study the impact of data heterogeneity on Federated
LoRA and full-parameter fine-tuning (FFT).

B PROOF OF THEOREM 4.2

Proof. Step 1 (Jacobian factorization at θ(0)). By the chain rule,

∇Wl
f(xi;θ

(0)) = dhl
(i)x⊤

l,i ∈ Rdout×din . (13)

Because Wl = W
(0)
l +BlAl, an infinitesimal variation gives dWl = dBl Al +Bl dAl. Using

Frobenius calculus,

df =
〈
∇Wl

f, dWl

〉
F

=
〈
∇Wl

f A⊤
l , dBl

〉
F

+
〈
B⊤

l ∇Wl
f, dAl

〉
F
.

Hence the block-gradients are

∇Bl
f = ∇Wl

f A⊤
l , ∇Al

f = B⊤
l ∇Wl

f. (14)

Evaluating equation 14 at θ(0) and using equation 13 yields

∇Bl
f(xi;θ

(0)) = dhl
(i)

(
A

(0)
l xl,i

)⊤ ∈ Rdout×r, (15)

∇Al
f(xi;θ

(0)) =
(
B

(0)
l

)⊤
dhl

(i)x⊤
l,i = 0 ∈ Rr×din , (16)

since B
(0)
l = 0. Thus, at θ(0), the A-block tangent feature vanishes identically, while the B-block

carries feature A
(0)
l xl,i on the input side and dhl

(i) on the backprop side.

Step 2 (Kernel analog under kernel behavior). Kernel behavior (Def. 4.1) asserts that tangent
features are fixed (along training) and equal to their values at θ(0) up to higher-order error. Therefore,
the per-layer kernel analog is the inner product of the nonzero Jacobian blocks at θ(0):

K(l)
LoRA(i, j) =

〈
∇Bl

f(xi;θ
(0)), ∇Bl

f(xj ;θ
(0))

〉
F
,

because the A-block contributes ⟨0, 0⟩F = 0, and cross-terms between (Bl,Al) vanish by block
orthogonality. Using ⟨uv⊤, u′v′⊤⟩F = ⟨u, u′⟩ ⟨v, v′⟩ with equation 15 gives equation 7.

Notice that First-order dominance of the B-block (training A does not appear. This is because, from
equation 14 at θ(0) we have ∇Al

f = 0, so the first update of Al is ∆A
(0)
l = −η0 ∇Al

LS(θ
(0)) = 0.

After one step, B(1)
l = O(η0), so ∇Al

f(·;θ(1)) = B
(1)⊤
l ∇Wl

f = O(η0) and ∆A
(1)
l = O(η20).

Thus any contribution of the A-block to a kernel computed along the lazy trajectory is second order
in step size, while the B-block appears at first order. The kernel analog, defined at θ(0) under fixed
features, therefore depends only on equation 15, establishing equation 7.

14
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C PROOF OF THEOREM 4.3

Proof. We first recall the definitions of the per–layer kernel contributions at θ(0). For block l,

K(l)
FFT(i, j) = Sl(i, j)Gl(i, j) with Sl(i, j) :=

〈
dhl

(i),dhl
(j)

〉
, Gl(i, j) :=

〈
xl,i,xl,j

〉
,

and, when LoRA is inserted at l with right matrix Al,

K(l)
LoRA(i, j) = Sl(i, j) G̃l(i, j), G̃l(i, j) :=

〈
Ãlxl,i, Ãlxl,j

〉
, Ãl := Al/

√
r.

(If block l /∈ LLoRA, then G̃l = Gl.) Hence, for any pair (i, j),∣∣K(l)
LoRA(i, j)−K(l)

FFT(i, j)
∣∣ = |Sl(i, j)| ·

∣∣ G̃l(i, j)−Gl(i, j)
∣∣. (17)

Step 1: Inner–product JL for each LoRA block. We use the following standard inner–product
JL lemma (e.g., Johnson et al. (1984)): for any finite set X ⊂ Rd of size N and any ε ∈ (0, 1), if
Φ ∈ Rr×d has IID subgaussian entries with variance 1/r, then

Pr
[∣∣⟨Φu,Φv⟩ − ⟨u, v⟩

∣∣ ≤ ε

2

(
∥u∥2 + ∥v∥2

)
∀u, v ∈ X

]
≥ 1− 4N2 exp

(
− (ε2−ε3)r

4

)
. (18)

Apply equation 18 with X = {xl,1, . . . ,xl,N} and Φ = Ãl for each l ∈ LLoRA. Let El be the event
that equation 18 holds for block l; then

Pr(El) ≥ 1− 4N2 exp
(
− (ε2−ε3)r

4

)
.

By the union bound,

Pr
( ⋂

l∈LLoRA

El
)

≥ 1− 4 |LLoRA|N2 exp
(
− (ε2−ε3)r

4

)
.

Choosing

r ≥ 4

ε2 − ε3
log

(4N2 |LLoRA|
δ

)
ensures Pr(∩lEl) ≥ 1− δ.

On the event ∩lEl, for every l ∈ LLoRA and all i, j,∣∣ G̃l(i, j)−Gl(i, j)
∣∣ ≤ ε

2

(
∥xl,i∥2 + ∥xl,j∥2

)
. (19)

Step 2: Multiply by the bounded backprop factor and sum over blocks. By assumption
∥dhl

(i)∥ ≤ Bl for all i, hence |Sl(i, j)| ≤ B2
l . Combining equation 17 and equation 19, for each

LoRA’d block l and all i, j,∣∣K(l)
LoRA(i, j)−K(l)

FFT(i, j)
∣∣ ≤ B2

l · ε
2

(
∥xl,i∥2 + ∥xl,j∥2

)
.

Summing over l ∈ LLoRA (blocks without LoRA contribute 0) yields∣∣KLoRA(i, j)−KFFT(i, j)
∣∣ ≤ ε

∑
l∈LLoRA

B2
l

∥xl,i∥2 + ∥xl,j∥2

2
,

uniformly for all i, j ∈ [N ], with probability at least 1 − δ. If, in addition, ∥xl,i∥ ≤ 1 (e.g.,
post–LayerNorm), the right-hand side simplifies to ε

∑
l∈LLoRA

B2
l .

D FORMALIZING CLIENT DRIFT: COVARIANCE DOMINANCE AND
INCOHERENCE

This appendix provides a precise condition under which client drift increases both the energy and the
effective rank of the backprop Gram, justifying the informal Definition 4.4 in the main text.

15
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Setup. Fix a LoRA’d block l. For training samples {xi}Ni=1, stack the per-example backprop signals
(evaluated at θ(0)) as columns

Dl = [ dhl
(1), . . . , dhl

(N) ] ∈ Rdout×N , Sl = D⊤
l Dl ⪰ 0 (N ×N).

Under drift, observed signals are D′
l = Dl + Pl, and

S′
l = D′

l
⊤D′

l = Sl + (D⊤
l Pl + P⊤

l Dl)︸ ︷︷ ︸
cross term

+ P⊤
l Pl. (20)

We use the stable/effective rank srank(A) := ∥A∥2F /∥A∥22.

D.1 POPULATION CONDITION: COVARIANCE DOMINANCE AND INCOHERENCE

Definition D.1 (CDI: covariance dominance + incoherence). Let Tl := E[P⊤
l Pl ] ⪰ 0 and let u1 be

a unit top eigenvector of Sl. We say drift at block l satisfies CDI(α, β, r) if there exist α ≥ 0, β ≥ 0
and a subspace U ⊂ u⊥

1 with dim(U) = r such that

Tl ⪰ α IN + β ProjU . (21)

We say the cross term is unbiased if E[D⊤
l Pl ] = 0.

The term αIN is a population variance floor across samples; the β ProjU term imposes incoherence:
a fixed fraction of energy lands away from the pre-drift top mode.
Lemma D.2 (Population lift). If CDI(α, β, r) holds and the cross term is unbiased, then

E[S′
l ] = Sl + Tl ⪰ Sl + αIN + β ProjU .

Consequently,

trE[S′
l ] ≥ trSl+αN+βr, ∥E[S′

l ]∥2F ≥ ∥Sl∥2F+2α trSl+2β tr(SlProjU )+α2N+2αβr+β2r.

Moreover, with eigenvalues λ1 ≥ · · · ≥ λN ≥ 0 of Sl,

srank(Sl + αIN ) ≥ srank(Sl), (22)

with strict inequality unless Sl is a scalar multiple of IN .

Proof. The PSD inequality and the trace/Frobenius lower bounds follow from ∥A+B∥2F = ∥A∥2F +
2⟨A,B⟩+ ∥B∥2F and ⟨Sl,ProjU ⟩ = tr(SlProjU ). For equation 22,

srank(Sl + αI) =

∑
i(λi + α)2

(λ1 + α)2
=

∑
i λ

2
i + 2α

∑
i λi +Nα2

λ2
1 + 2αλ1 + α2

≥
∑

i λ
2
i

λ2
1

= srank(Sl),

with strictness unless all λi are equal.

Lemma D.3 (Stable-rank increase from incoherent lift). Let S ⪰ 0 have eigenvalues λ1 ≥ · · · ≥ λN

and top eigenvector u1. Let ProjU be a rank-r projector with U ⊂ u⊥
1 . Then, for any β > 0,

∥S + β ProjU ∥2F ≥ ∥S∥2F + 2β

N∑
i=N−r+1

λi + β2r, ∥S + β ProjU ∥2 ≤ λ1 + β.

Consequently,

srank(S + β ProjU ) ≥
∥S∥2F + 2β

∑N
i=N−r+1 λi + β2r

(λ1 + β)2
>

∥S∥2F
λ2
1

= srank(S)

whenever
∑N

i=N−r+1 λi > 0.

Proof. Write ProjU = V V ⊤ with V ∈ RN×r orthonormal and V ⊤u1 = 0. Then ∥S+βV V ⊤∥2F =
∥S∥2F + 2β tr(SV V ⊤) + β2∥V V ⊤∥2F with tr(SV V ⊤) =

∑r
k=1 v

⊤
k Svk. Restricted Ky Fan yields

minV ⊤u1=0 tr(SV V ⊤) =
∑N

i=N−r+1 λi. Also ∥V V ⊤∥2F = tr(V V ⊤) = r, and ∥S + βV V ⊤∥2 ≤
∥S∥2 + β.

16
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D.2 SAMPLE VERSION AND CONCENTRATION

Assumption D.4 (Subgaussian columns; bounded cross term). The columns pi of Pl are inde-
pendent, mean-zero, subgaussian with parameter κ and covariances Σi; hence Tl = E[P⊤

l Pl ] =
diag(trΣ1, . . . , tr ΣN ). Assume either: (i) E[D⊤

l Pl ] = 0; or (ii) ∥D⊤
l Pl∥2 ≤ γ and ∥P⊤

l Dl∥2 ≤ γ
a.s., for some γ ≥ 0.

Lemma D.5 (Matrix Bernstein concentration). Under Assumption D.4, for any δ ∈ (0, 1), with
probability at least 1− δ,∥∥P⊤

l Pl − Tl

∥∥
2
≤ C1(κ)

(
σmax

√
N log 2N

δ + σmax log
2N
δ

)
,

where σmax := maxi tr Σi. Moreover, in case (ii), ∥D⊤
l Pl + P⊤

l Dl ∥2 ≤ 2γ deterministically.

Proposition D.6 (High-probability non-degenerate drift). Suppose CDI(α, β, r) holds for Tl and
Assumption D.4 (case (i) or (ii)) holds. Then, for any δ ∈ (0, 1), with probability at least 1− δ,

S′
l ⪰ Sl + (α− ε) IN + (β − ε) ProjU − 2γ IN ,

with ε := C1(κ)
(
σmax

√
N log 2N

δ + σmax log
2N
δ

)
. Consequently,

tr(S′
l) ≥ tr(Sl) +N(α− ε) + r(β − ε)− 2γ,

and both ∥S′
l∥F and srank(S′

l) exceed their pre-drift values as soon as α or β dominate the
concentration/cross-term radii.

Proof. Combine equation 20, Lemma D.5, and CDI equation 21. For the trace and srank claims,
apply Lemmas D.2–D.3, noting that − 2γIN ⪯ D⊤

l Pl + P⊤
l Dl ⪯ 2γIN in case (ii).

D.3 A GENERATIVE MODEL THAT IMPLIES CDI

Proposition D.7 (Factor–plus–noise drift implies CDI). Let Pl = UrC+E where Ur ∈ Rdout×r has
orthonormal columns, C ∈ Rr×N , and E = [e1, . . . , eN ] has independent mean-zero subgaussian
columns with E[ eie⊤i ] = Σe ⪰ σ2

sIdout . Assume (i) 1
NCC⊤ ⪰ βIr for some β > 0 and (ii)

U⊤
r u1 = 0 (i.e., the new factors are orthogonal to the pre-drift top mode). Then CDI holds with

Tl = E[P⊤
l Pl ] ⪰ Nσ2

s IN + Nβ ProjU ,

where U = row(C) has dimension r. If additionally E[D⊤
l E ] = 0, the cross term is unbiased.

Proof. E[P⊤
l Pl ] = C⊤C + E[E⊤E ] ⪰ Nβ Projrow(C) + Nσ2

sIN . Orthogonality (ii) ensures
incoherence with the pre-drift top direction u1.

D.4 SUMMARY

Definitions D.1 and D.4, together with Lemmas D.2–D.3 and Proposition D.6, yield the main-text
notion of non-degenerate client drift: with high probability,

tr(S′
l) > tr(Sl) and srank(S′

l) > srank(Sl),

ruling out trivial rescaling or purely top-aligned perturbations and capturing the structural effect of
heterogeneity (energy increases and spreads across new directions).

E PROOF OF THOREM 4.5

Proof of Theorem 4.5. Fix a LoRA’d block l. At θ(0), the per-layer kernels (post-drift backprop,
same lazy features) are

K
′(l)
FFT = S′

l ◦Gl, K
′(l)
LoRA = S′

l ◦ G̃l,

17
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where S′
l(i, j) = ⟨d′hl

(i), d′hl
(j)⟩, Gl = X⊤

l Xl with Xl = [xl,1, . . . , xl,N ], and G̃l(i, j) =

⟨Ãlxl,i, Ãlxl,j⟩ with Ãl := Al/
√
r. Therefore

K
′(l)
LoRA −K

′(l)
FFT = S′

l ◦∆Gl, ∆Gl := G̃l −Gl = X⊤
l

(
Ã⊤

l Ãl − I
)
Xl. (23)

Step 1: OSE/JL bound on ∆Gl. Let rx,l = rank(Xl). By a subspace Johnson–Lindenstrauss
lemma, for subgaussian Ãl and any δl ∈ (0, 1), with probability ≥ 1− δl,

∥∆Gl∥2 =
∥∥X⊤

l (Ã⊤
l Ãl − I)Xl

∥∥
2
≤ C ∥Xl∥22

√
rx,l
r

. (24)

Step 2: Hadamard–spectral bound per layer. For any symmetric positive semidefinite (PSD) S
and any symmetric H , ∥S ◦H∥2 ≤ maxi Sii ∥H∥2 ≤ ∥S∥2 ∥H∥2. Applying this with S = S′

l and
H = ∆Gl, and using equation 24,

∥∥K ′(l)
LoRA −K

′(l)
FFT

∥∥
2
≤ ∥S′

l∥2 ∥∆Gl∥2 ≤ C ∥S′
l∥2 ∥Xl∥22

√
rx,l
r

.

Step 3: Sum over LoRA’d blocks; Weyl. Summing the per-layer bounds and using the triangle
inequality gives

∥∥K ′
LoRA −K ′

FFT

∥∥
2
≤

∑
l∈LLoRA

C ∥S′
l∥2 ∥Xl∥22

√
rx,l
r

.

Choosing r (or splitting δ) so that all events equation 24 hold simultaneously via a union bound yields
the stated probability 1− δ. Finally, Weyl’s inequality gives

λmin(K
′
LoRA) ≥ λmin(K

′
FFT) −

∥∥K ′
LoRA −K ′

FFT

∥∥
2
,

which is equation 10.

Frobenius variant. Using ∥S ◦H∥F ≤ ∥S∥F ∥H∥∞ ≤ ∥S∥F ∥H∥2 and equation 24,

∥∥K ′
LoRA −K ′

FFT

∥∥
F

≤
∑

l∈LLoRA

∥S′
l∥F ∥∆Gl∥2 ≤

∑
l∈LLoRA

C ∥S′
l∥F ∥Xl∥22

√
rx,l
r

,

which is equation 11.

18
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F PSEUDO CODE FOR FEDLORE

G

Algorithm 1: FedLoRe: Client GaLore + Server JIVE (ADMM)

Init: Server sets per-layer shared projector {P (0)
l,srv} (e.g., from a warmup batch or identity).

Each client c sets P (0)
c,l ←P

(0)
l,srv for all projected layers l.

1 for round t = 0, 1, . . . , T − 1 do
2 On each client c (in parallel):;
3 for local step τ = 1, . . . , E do
4 Compute layerwise gradients G(t,τ)

c,l .;
// GaLore step with projector refresh (RSVD)

5 Form G̃
(t,τ)
c,l = G

(t,τ)
c,l P

(t)
c,l P

(t)⊤
c,l and update params.;

6 Periodically (every k steps): build P
(t)
c,l via RSVD on recent G(t,τ)

c,l sketches.;

7 Package state dict θ(t)c and the last gradients {G(t,E)
c,l }; return to server.;

8 On the server:;
// Stack per-layer client gradients and solve JIVE

9 For each layer l, collect {G(t,E)
c,l }

N
c=1.;

10 Solve the convex JIVE program (nuclear-norm surrogate) with ADMM:

min
G∗

l
, {Lc,l}

1

2

∑
c

wc∥Gc,l −G∗
l −Lc,l∥2F + λ∗∥G∗

l ∥∗ + λind

∑
c

∥Lc,l∥∗

Each ADMM SVT subproblem uses truncated SVD via RSVD.;
11 Extract shared projector P (t+1)

l,srv ← RSVD_R(G∗
l , r) (right singular vectors).;

12 broadcast {P (t+1)
l,srv }l to all clients; set P (t+1)

c,l ←P
(t+1)
l,srv .;

13 Aggregate model states (e.g., FedAvg) to form θ(t+1) and redistribute.;
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