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Abstract
Training general-purpose vision models on purely
sequential visual data, eschewing linguistic in-
puts, has heralded a new frontier in visual un-
derstanding. These models are intended to not
only comprehend but also seamlessly transit to
out-of-domain tasks. However, current endeav-
ors are hamstrung by an over-reliance on colos-
sal models, exemplified by models with upwards
of 3B parameters, and the necessity for an ex-
tensive corpus of visual data, often comprising
a staggering 400B tokens (Bai et al., 2023). In
this paper, we delve into the development of an
efficient, autoregression-based vision model, in-
novatively architected to operate on a limited
dataset. We meticulously demonstrate how this
model achieves proficiency in a spectrum of vi-
sual tasks spanning both high-level and low-level
semantic understanding during the testing phase.
Our empirical evaluations underscore the model’s
agility in adapting to various tasks, heralding a
significant reduction in the parameter footprint,
and a marked decrease in training data require-
ments, thereby paving the way for more sustain-
able and accessible advancements in the field of
generalist vision models. The code is available at
https://github.com/ggjy/DeLVM.

1. Introduction
Training a generalist model capable of executing diverse
tasks simultaneously—and with the agility to tackle new
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tasks given just few examples—represents a pivotal stride
toward artificial general intelligence within the computer
vision community. In the realm of contemporary natural lan-
guage processing (NLP), large language models trained via
autoregression, such as GPT (Brown et al., 2020; Achiam
et al., 2023), have demonstrated the remarkable ability to
comprehend and generate natural language text, particularly
excelling in complex and nuanced contexts. These models
leverage language sequences as a universal interface, facil-
itating rapid adaptation to a variety of language-centered
tasks with minimal prompting and examples.

However, the landscape of computer vision is markedly dif-
ferent. Unlike the uniformity of input-output structures in
language tasks, visual tasks exhibit a rich diversity in their
formats, posing significant challenges to the development
of comparable generalist models. Recently, advances in
LVM (Bai et al., 2023) have redefined ‘visual sentences’,
enabling the representation of both raw images and anno-
tated data without requiring meta-knowledge beyond the
pixel level. This paradigm shift opens a new vista for the
evolution of generalist models within the visual domain.

Nevertheless, while the capability of LVM is bolstered by
the employment of large-scale datasets, such as more than
1.6 billion images, this reliance simultaneously engenders
complexities in the training process of LVM. One obstacle
arises from the imbalance of datasets across different tasks.
Our visual world naturally exhibits a long-tailed distribu-
tion of different tasks. The model performance on tasks
with limited data representation is substantially impaired
when there is an uneven distribution of data across tasks,
with certain tasks having an abundance of data and others
suffering from a deficiency. For example, the segmenta-
tion benchmark SA-1B (Kirillov et al., 2023), containing
11 million images, provides a wealth of data compared to
the keypoint detection benchmark COCO (Lin et al., 2014),
containing only 0.2 million images. Direct training on the
combined dataset of these two benchmarks results in the
model’s inability to learn keypoint detection due to the over-
whelming amount of segmentation data, as iilustrated in
Figure 1. This observation forms the basis of our straight-
forward data augmentation strategy, which automatically
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Figure 1: An overview of our framework. We follow the autoregressive setting proposed in LVM (Bai et al., 2023), which encodes input
images into a 1D sequence. We further explore the data-efficient LVMs via data augmentation and knowledge distillation strategy.

enriches smaller datasets and achieves balance among di-
verse tasks. Specifically, we enhance underrepresented (tail)
datasets by randomly augmenting the training samples. We
find that this approach yields stronger performance com-
pared to traditional re-sampling strategy.

The significant performance gain brought by the proposed
data augmentation strategy compels us to contemplate:
Given that a substantial reduction in the volume of data
required for training does not adversely affect model effi-
cacy, could there potentially exist superfluousness within the
model’s parameterization? We resort to knowledge distilla-
tion (KD) methods to enhance the performance of compact
LVMs. In our study, we demonstrate the effectiveness of KD
in autoregressive LVMs. While models with larger capacity
initially exhibit superior performance and surpasses the stu-
dent model trained from scratch by a substantial margin, the
incorporation of KD significantly narrows the performance
gap and shed light on how to build efficient LVMs.

In general, this paper explores the development of
data-efficient autoregressive-based large vision models
(DeLVMs). Our study focuses on data augmentation strat-
egy, especially in scenarios with long-tail distributions
across different visual tasks. We demonstrate that simple
data augmentation techniques yield satisfactory results com-
pared to re-sampling baselines. We also leverage KD to
create more compact and efficient LVMs, which leads to a
significant reduction in validation loss, with improvement in
accuracy and decrease in perplexity. This highlights the po-
tential of KD to bridge the performance gap and enhance the
capabilities of autoregressive LVMs. Our work aims to ad-
vance the understanding and construction of more efficient
autoregressive vision models capable of simultaneously ad-
dressing various vision tasks.

2. Autoregressive Large Vision Models
Inspired by the achievements of LLMs (Brown et al., 2020;
Touvron et al., 2023b; Chowdhery et al., 2023), various
endeavors have been made to develop autoregressive mod-
els specifically tailored for vision tasks. An outstanding
breakthrough in this domain, referred to as the LVM (Bai
et al., 2023), transforms visual data into visual sentences,
thereby enabling the uniform modeling of diverse vision
tasks. A typical LVM consists of two key modules: (1)
a VQGAN (Esser et al., 2021) for input image tokeniza-
tion; (2) a transformer model (Touvron et al., 2023a) for
sequential autoregressive prediction.

VQGAN tokenizer. The initial step of modeling images
via a transformer-based autoregressive approach involves
converting original images into discrete tokens. A VQ-
GAN (Esser et al., 2021) is utilized for this tokenization pro-
cess, composed of three main components: an encoder, a de-
coder, and a trainable codebook. When training a VQGAN
model, the encoder takes an image as input and projects it
into a grid of features, which are then mapped to specific
codes in the codebook. The decoder is used to reconstruct
the original image based on the grid of codes. A pretrained
VQGAN model is capable of converting the input image into
a sequence of tokens following the scan-line order, which
can be modeled by an autoregressive model.

Autoregressive model. After tokenization, visual sen-
tences are constructed by concatenating tokens from mul-
tiple images and fed into a causal transformer model
which is employed for autoregressive prediction. The goal
of the causal transformer is to predict the next token at
each position, using cross-entropy as the loss function.
Specifically, considering an input sentence of length L as
si = {x1, x2, ..., xL−1, xL}, where xl represents the l-th
token, the objective of the causal transformer is to predict
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Figure 2: Data augmentation yields a similar effect to the
introduction of new data. We train a LLaMA-300M model
on subsets of SA-1B and augmented COCO-Pose datasets
with a fixed 12K training steps. In segmentation task with
ample available data, enhanced model performance is ob-
served upon introducing more training data. Conversely, for
human pose estimation task with limited data, augmenting
the dataset has a comparable impact to the introduction of
new training data. The original COCO-Pose dataset con-
tains approximately 0.03 billion tokens.

so = {x2, x3, ..., xL,∅}.

Prompted inference. After training, LVM is capable of per-
forming inference on downstream tasks via vision prompt-
ing. Firstly, several input-output image pairs are converted
into a visual sentence, which serves as a task definition.
This sentence is then combined with the test image, which
is also tokenized via the VQGAN encoder. Based on the
concatenated sentence, the model generates output tokens
based on the input sequential tokens. The final predicted
image is then obtained by decoding above generated tokens
using the decoder of the VQGAN model.

3. Data Augmentation
In common practices of training highly proficient LLMs,
the training duration is often restricted to just one epoch to
mitigate the risk of overfitting (Brown et al., 2020; Touvron
et al., 2023a;b). In contrast to the NLP field, where numer-
ous large-scale corpora are readily available, many computer
vision tasks encounter a scarcity of extensive datasets. The
scarcity makes it impractical to directly transfer the training

schedule settings from language tasks to vision tasks. For-
tunately, various data augmentation techniques commonly
employed in traditional computer vision tasks can be lever-
aged to enhance the training data for LVMs. We initiate the
examination of data augmentation effectiveness by training
LVM on various vision tasks.

3.1. Single Task

We initiate our study by conducting experiments on a single
task. It is intuitive that the introduction of new training
data enhances overall model performance. To delve deeper
into this effect, we proceed to train the model on an im-
age segmentation task using varying amounts of available
data. Following the configuration of LVM (Bai et al., 2023),
we employ a causal LLaMA model (Touvron et al., 2023a)
with 300M parameters for autoregressive modeling. For
tokenization, we utilize an off-the-shelf VQGAN trained
by Chang et al. (Chang et al., 2023), which translates each
image into 256 discrete tokens. The VQGAN has a code-
book size of 8192, with each code in the codebook having a
dimension of 64. To align the dimension of the code with
that of the transformer model, we insert a learnable linear
layer between these two modules. Regarding the dataset, we
utilize various subsets of the SA-1B (Kirillov et al., 2023),
spanning from 1% to 10%. The training steps for all models
remain fixed at 12K. Cross-entropy loss and perplexity on a
withheld subset of SA-1B (equivalent to 1% of the dataset)
serve as the metrics. The top two figures in Figure 2 illus-
trate the impact of available data on model performance.
Obviously, as more new data is introduced during training,
there is a significant increase in model performance. For
instance, when the utilized data from SA-1B increases from
1% to 10% (0.34B tokens to 3.43B tokens), the validation
loss decreases by 0.19, and perplexity decreases by 22.4.

However, in certain tasks, such as human pose estimation,
the availability of data is constrained, making it challenging
to enhance model performance by introducing new sam-
ples. To bridge this gap, we employ data augmentation
techniques to augment the existing dataset. Specifically,
for each sample in the dataset, we apply random crop and
random flip operations to generate several augmented ver-
sions. These augmented samples are then tokenized by the
VQGAN model and incorporated into training alongside the
tokenized original dataset. We assess the impact of augmen-
tation by varying the augmentation range from 10 to 100
times. As depicted in the bottom two figures in Figure 2,
expanding the data scale through data augmentation also
contributes to improved model performance. The decreas-
ing trend observed in validation loss and perplexity as the
augmentation times increase mirrors the pattern observed
when introducing new samples. This outcome underscores
that data augmentation has a comparable effect to acquir-
ing more new data, offering a straightforward approach to
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effectively train LVMs in data-limited scenarios.

3.2. Multiple Tasks

In practical scenarios, the goal is to train a versatile LVM ca-
pable of handling multiple tasks. However, data imbalance
poses a challenge, with some tasks having ample data while
others have limited data. Training directly with this unbal-
anced mixture of data from various tasks hinders overall
model performance. To address this issue, the re-sampling
scheme (Zhang et al., 2023) repeat samples from minority
classes to rebalance the classes. Following this approach,
we balance the data amount of different tasks by repeating
samples from tasks with limited data. Additionally, we ex-
plore the effectiveness of using data augmentation to achieve
balanced task data. To conduct multitask experiments, we
focus on three distinct vision tasks: image segmentation,
human pose estimation, and image deraining. The train-
ing data for these tasks comprises a subset of the SA-1B
dataset (approximately 10% of the entire dataset) (Kirillov
et al., 2023), the complete COCO-Pose dataset (Lin et al.,
2014), and the entire Rain13K dataset (Jiang et al., 2020).
In each data setting, the model undergoes a fixed total of
35K iterations during the training process. To evaluate the
performance of our trained model, we use a withheld subset
of SA-1B, along with the MPII dataset (Andriluka et al.,
2014) and the Test2800 dataset (Fu et al., 2017b).

Table 1 lists the validation results. In comparison to training
on the direct mixture of data from the three tasks, training
the model on data balanced by re-sampling even results in
worse performance, particularly evident in the human pose
estimation and image deraining tasks with repeated samples.
By contrast, the model trained on the augmented dataset
achieves better performance, notably excelling in the human
pose estimation and image deraining tasks. Notably, the use
of unbalanced data yields the best quantitative results on the
image segmentation task, likely because the majority of the
training data belongs to this specific task.

To closely examine the impact of various dataset process-
ing schemes in the multitask scenario, we visualize the
inference results of the trained models in Figure 3. When
trained with unbalanced data, the model excels in the im-
age segmentation task. However, for tasks of human pose
estimation and image deraining, where there is less training
data, its performance is subpar. For instance, in test case 2
of the deraining task, the model seems to be confused by
the abundance of segmentation samples in the training data,
resulting in a segmentation output despite the presence of
deraining prompts. This emphasizes that the direct use of
unbalanced data for training cannot yield excellent LVMs.
When the model is trained with task data balanced by re-
sampling, it achieves even poorer performance. In the image
segmentation and deraining tasks, the model can only pro-

duce tolerable inference results in test case 1 while failing
to provide informative outputs in test case 2. Moreover, in
the deraining task in both cases, it yields disordered results.
Conversely, when employing data augmentation to achieve
data balance, the trained model demonstrates proficiency in
all three tasks and outperforms the other two models.

4. Knowledge Distillation
In the quest for efficient and compact models, knowledge
distillation (KD) stands out as a prevalent technique used to
bolster model performance, as highlighted in (Hinton et al.,
2015). KD capitalizes on a pre-trained, larger teacher model
to guide a smaller, more efficient student model to emulate
the teacher’s outputs (Hao et al., 2023). Yet, the majority
of KD applications have been predominantly associated
with CNN and Transformer, leaving a noticeable void in the
exploration of KD for autoregerssive LVMs. Addressing this
oversight, our work delves into the feasibility of applying
KD in the training of LVMs, aiming to extend the benefits
of KD to these streamlined models.

We begin our investigation by examining the impact of KD
in single-task settings. For the teacher models, we utilize
LLaMA-1B (Touvron et al., 2023a), training them on spe-
cific tasks such as image segmentation and human pose
estimation. Subsequently, we train LLaMA-300M as the
student models, adhering to the KD framework initially
proposed by Hinton et al. (Hinton et al., 2015). All addi-
tional experimental setting are maintained as described in
the preceding section, ensuring consistency in our study.
The results of single-task KD are summarized in Table 2.
LLaMA-1B teacher models, boasting the highest number of
model parameters, demonstrates superior performance on
both tasks, outperforming LLaMA-300M by a significant
margin. Nevertheless, with the incorporation of KD, the
performance gap markedly diminishes in terms of validation
loss, accuracy, and perplexity. This underscores the efficacy
of KD in the single-task scenario.

Correspondingly, the inference outcomes of all the models
trained for both tasks are illustrated in Figure 4. The vi-
sual results align with the quantitative data, demonstrating
that the LLaMA-1B models, serving as the teacher models,
present superior visualizations with a higher level of detail
in the output images. On the other hand, the LLaMA-300M
models, when trained from scratch (without the guidance
of KD), yield inference results that are less detailed, and
these are evidently surpassed by those models that have
been trained utilizing the KD approach.

We expand our investigation to encompass multi-task sce-
narios. By adhering to the experimental settings previously
outlined, we employ a LLaMA-1B teacher to impart its
knowledge to a LLaMA-300M student. This knowledge
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Table 1: Balancing datasets across multiple tasks through augmentation enhances performance. We train a LLaMA-
300M on a mixed dataset involving three tasks. Three configurations for handling the unbalanced dataset are compared.
Compared to directly training on the unbalanced dataset, mitigating the long-tail distribution through re-sampling led to
inferior results. Conversely, achieving balance through dataset augmentation yielded the best overall performance. “-”
indicates collapsed results (larger than 108).

Image Segmentation Pose Estimation Image Deraining
(10% of SA-1B: 3.434B tokens) (COCO-Pose: 0.029B tokens) (Rain13K: 0.007B tokens)

Dataset configuration loss ↓ accuracy ↑ perplexity ↓ loss ↓ accuracy ↑ perplexity ↓ loss ↓ accuracy ↑ perplexity ↓
Unbalanced 4.48 20.32 88.59 4.95 19.86 141.91 5.69 11.89 279.88
Balanced by re-sampling 5.01 16.68 151.66 16.11 15.75 - 21.73 4.53 -
Balanced by augmentation 4.68 18.79 107.77 4.94 20.24 140.39 5.64 11.57 269.04

Task prompt Test case 1 Test case 2

Test sentence Unbalanced data trained model Re-sampled data trained model Augmented data trained model

Figure 3: Visualization of inference results generated by models trained on datasets with different balancing schemes.
The model trained on an unbalanced dataset exhibits biased performance, excelling primarily in the image segmentation
task. Rectifying this data imbalance through re-sampling have unfortunately led to a decrease in performance. Conversely,
employing augmentation to balance the dataset results in improved visualization outcomes.

Image Segmentation

Test sentence LLaMA-1B LLaMA-300M (w/o KD) LLaMA-300M (w/ KD)

Pose Estimation

Figure 4: Visualization of the inference results of single-task trained models. The LLaMA-1B teacher model produces the best outcomes,
and the LLaMA-300M model trained with KD exhibits greater similarity to the teacher model compared to the model trained from scratch.

transfer occurs through the utilization of a combination
of three datasets, all balanced via data augmentation tech-
niques. The validation outcomes for this multi-task scenario
are summarized in Table 3. Upon comparing the perfor-

mance of the distilled model with that of the model trained
from scratch, we observe that the former exhibits superior
results. This observation highlights the efficacy of KD in
enhancing the performance of LVMs, even within the more
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Table 2: KD proves beneficial in enhancing the single-
task performance of LVMs. We employ a LLaMA-1B
model as the teacher to train a student model LLaMA-300M
using KD. In comparison to training the student model from
scratch, the introduction of KD significantly improves per-
formance on both the image segmentation and human pose
estimation tasks.

Model KD loss ↓ accuracy ↑ perplexity ↓
Image Segmentation (10% of SA-1B)
LLaMA-1B - 4.50 20.18 90.04
LLaMA-300M ✗ 4.64 19.17 103.24
LLaMA-300M ✓ 4.59 19.48 98.72

Pose Estimation (COCO-Pose)
LLaMA-1B - 4.90 20.96 134.07
LLaMA-300M ✗ 4.97 20.46 144.08
LLaMA-300M ✓ 4.91 20.80 135.91

practical and complex context of multi-task scenarios.

In addition, we conduct a quantitative evaluation of our
distilled models on a foreground segmentation task. The
objective is to binary-segment a given query image into
foreground and background components. The task prompt
consists of three example image pairs, followed by a test
(query) image. We prompt our model to generate the next
256 tokens, which are then decoded into the output image.
For benchmarking, we utilize the Pascal-5i dataset estab-
lished in (Shaban et al., 2017), following the methodologies
of (Bai et al., 2023; Bar et al., 2022). This dataset encom-
passes four distinct image splits, each containing between
346 and 725 images alongside corresponding segmentation
masks. Each class in the dataset is represented by sev-
eral image-mask pairs and is supplemented with held-out
image queries for evaluation. We report our results using
the mean Intersection Over Union (mIOU) metric. We ex-
amine the performance of our models in both a zero-shot
setting and after finetuning. As illustrated in Table 4, the
distilled LLaMA-300M model outperforms its counterparts
that were trained from scratch. Despite our model being
trained on the SAM dataset, where object colors are random-
ized, and our use of prompt images with black backgrounds,
our generated images still exhibit some randomness in color.
This randomness make it challenging to separate the binary
segments through post-processing. To address this, we fine-
tuned the model using the training split of Pascal-5i, which
features uniformly black backgrounds. After finetuning, we
observed a significant boost in the mIOU scores.

It is important to highlight that both LVM (Bai et al., 2023)
and Visual Prompting (Bar et al., 2022) have retrained their
VQGAN encoders on custom datasets, resulting in more
satisfactory mIoU scores. Attaining a higher mIoU is not
the primary goal of this paper; hence, we have chosen to

use the encoder trained on the Laion dataset (Schuhmann
et al., 2022) directly. We believe that a better encoder and
decoder would yield improved results.

5. Ablation Study
Influence of Different Prompts. In this section, we in-
vestigate the influence of different input prompts on the
generated outputs in the context of foreground segmenta-
tion task. Our training dataset, SA-1B, features ground
truth where each object is composed of random colors. As
shown in Figure 5(a), the segmentation ground truth for
example image pairs includes a pink background. In these
cases, the model tends to generate outputs with a similar
pink background. Conversely, if we use a prompt with a
black background, as illustrated in Figure 5(b), the result-
ing image is likely to have a black background. A simple
post-processing step can be applied to the output image by
converting it to a grayscale image and then applying a very
low threshold to produce a binary mask.

Furthermore, we finetune1 our model using the training
split of foreground segmentation benchmarks to focus more
on the primary objects while disregarding background ele-
ments such as grass and sky. As evident from Figure 5(d),
the output of the model after fine-tuning is more concise
and refined. This demonstrates the potent capability of au-
toregressive vision models to transfer learning effectively
through a pretrain-then-finetune strategy.

Continual learning. In our preceding experiments, LVMs
are trained with shuffled data to address multiple tasks. To
investigate the impact of the data shuffle operation, we train
a LLaMA-300M model using an ordered concatenation of
multi-task data. Specifically, the training data follow the
sequence of SA-1B, COCO-Pose, and Rain13K. Upon com-
pleting the training for each task, we evaluate the perplexity
of the model across all three tasks and present the results in
Table 5. The results reveal that the model attains low per-
plexity exclusively on the most recently encountered task,
exhibiting subpar performance on the other tasks, regardless
of whether it has undergone training for those specific tasks.

We present visualizations of model inference results in Fig-
ure 6, employing the same task prompts as in previous
sections. Notably, the model tends to prioritize the infer-
ence of its last-trained task for the given inputs, seemingly
disregarding the guidance provided by the task prompts.
These outcomes underscore the significance of the shuffle
operation in the multi-task training of LVMs. Essentially,
LVMs face challenges related to catastrophic forgetting in

1Given the limited number of training images-only a few hun-
dred—we resampled these images 100 times to construct sequen-
tial data akin to what was used during training. The entire fine-
tuning process was completed in approximately 5 minutes.
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Table 3: KD also helps enhance the multi-task performance of LVMs. We assess the effectiveness of KD with balanced
data for three tasks using augmentation. KD demonstrates its usefulness by improving the performance of the student model
across all tasks.

Image Segmentation Pose Estimation Image Deraining
Model KD loss ↓ accuracy ↑ perplexity ↓ loss ↓ accuracy ↑ perplexity ↓ loss ↓ accuracy ↑ perplexity ↓
LLaMA-1B - 4.55 19.72 94.75 4.86 20.77 129.95 5.53 12.20 245.33
LLaMA-300M ✗ 4.68 18.79 107.76 4.94 20.24 140.39 5.63 11.57 271.38
LLaMA-300M ✓ 4.67 18.84 106.81 4.93 20.32 139.27 5.62 11.93 269.04

Table 4: Results on Foreground Segmentation. † indicates we
finetune the autogressive model to generate black background.

Model Foreground Segmentation ↑
Split 0 Split 1 Split 2 Split 3

BEiT (IN-21k) (Bao et al., 2021) 0.38 0.93 0.90 0.95
VQGAN (IN-1k) (Esser et al., 2021) 6.96 10.55 9.59 9.43
MAE-VQGAN (IN-1k) (Bar et al., 2022) 2.22 7.07 5.48 6.28

BEiT (Figures) (Bar et al., 2022) 5.38 3.94 3.20 3.29
VQGAN (Figures) (Bar et al., 2022) 12.56 17.51 14.27 15.06
MAE-VQGAN (Figures) (Bar et al., 2022) 27.83 30.44 26.15 24.25
LVM-3B (Figures) (Bai et al., 2023) 48.94 51.29 47.66 50.82

LLaMA-300M (Laion) 12.46 16.92 12.99 15.76
Distilled LLaMA-300M (Laion) 14.72 17.91 14.55 17.13
Distilled LLaMA-300M (Laion)† 18.58 21.32 19.90 21.08

continual learning scenarios.

Table 5: LVM suffers from catastrophic forgetting in
continual learning scenarios. We train a LLaMA-300M
without shuffling training data. The model exhibited pro-
ficient result exclusively on the task corresponding to the
most recently used training data.

Validation perplexity ↓
Data order Segmentation Pose Estimation Deraining

SA-1B 102.06 243.09 1165.21
COCO-Pose 416.21 134.12 2633.08
Rain13K 1449.42 1285.80 287.79

6. Practical LLaMA-80M
To delve deeper into the performance capabilities of efficient
LVMs, we augment our exploration by training LLaMA-
80M models using both data augmentation and KD. To pro-
cure a powerful LLaMA-1B teacher, additional unlabeled
image and video data are integrated into the training process.
Table 6 lists the validation perplexity results of the trained
models, revealing that the LLaMA-80M model trained with
KD surpasses its counterpart trained from scratch.

We also evaluate the image understanding abilities of
LLaMA-80M on ImageNet. Following the self-supervised
MAE framework (He et al., 2022), we replace the VQGAN
encoder with a patch embedding layer and incorporate an

Task Prompt Test Image Output Post Process

(a) LLaMA-300M trained from scratch.
Task Prompt Test Image Output Post Process

(b) LLaMA-300M trained from scratch.
Task Prompt Test Image Output Post Process

(c) Distilled LLaMA-300M.

(d) Finetuned distilled LLaMA-300M.

Figure 5: Generated output and the corresponding foreground
segmentation results after our post processing. Task prompt con-
tains a sequence of images interleaved with annotations, followed
by a test image. Prompts in (a) are with a pink background, in (b)
(c) (d) are with a black background.

average pooling layer followed by a fully connected layer
to perform the image classification task. Surprisingly, our
LLaMA-80M achieves an impressive top-1 accuracy of 83%
on ImageNet. Although this accuracy is lower compared
to some Masked Image Modeling-based methods, it outper-
forms training from scratch approaches. This suggests that
there may be a potential for simultaneous learning of both
generation and understanding tasks, indicating a promising
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Segmentation Pose Estimation Deraining

SA-1B COCO-Pose Rain13KTraining order:

Data source:

Figure 6: Visualization of inference results at different training
stages. Task prompt is the same as in previous visualizations.
The model’s proficiency is focused solely on the most recently
encountered training task, regardless of the provided prompt.

Table 6: Comparison of validation perplexity between
LLaMA-80M models trained with and without KD.

Validation perplexity ↓
Model KD Segmentation Pose Estimation Deraining

LLaMA-1B - 88.33 111.95 230.94
LLaMA-80M ✗ 156.19 164.57 264.56
LLaMA-80M ✓ 147.78 159.78 256.65
LLaMA-80M ✓ ImageNet Top-1 Acc: 83.04

relationship between these two aspects.

7. Related Works
Autoregressive Models. Autoregressive (AR) models are
central to sequence prediction and have undergone signif-
icant evolution. In the realm of natural language process-
ing (NLP), LSTM networks emerged as foundational AR
models, adept at managing long-range dependencies cru-
cial for tasks such as language modeling. The advent of

the transformer architecture (Vaswani et al., 2017; Wang
et al., 2023a; Guo et al., 2022) marked a pivotal change in
AR modeling. Its self-attention mechanisms facilitated a
more efficient and parallel processing approach, which in
turn, catalyzed the advancement of generative pre-training
methodologies (Dai & Le, 2015; Brown et al., 2020) that
predict segments of text based on preceding ones. Capi-
talizing on their triumph in NLP, AR models have been
tailored for generative image modeling tasks (Uria et al.,
2013; Van Den Oord et al., 2016; Parmar et al., 2018). And
many transformer-based AR vision models (Chen et al.,
2020; Bai et al., 2023; Bar et al., 2022; Yu et al., 2021) have
achieved notable comprehension outcomes, thus validating
the efficacy of AR principles for vision-related applications.

Despite the trend, much of the existing literature primarily
focuses on the advantages of up-scaling model (El-Nouby
et al., 2024; Kolesnikov et al., 2019) and dataset sizes (He
et al., 2022; Bai et al., 2023). While larger models exhibit
superior performance, their heavy architectures demand
extensive computational resources, thereby limiting their
deployment on computation-constrained edge devices. Ad-
dressing this gap, our paper proposes a strategy aimed at
crafting a more compact AR model that leverages data-
efficient training techniques, offering a balance between
performance and computational practicality.

In-context based Multi-task Learning. Learning to per-
form multiple tasks simultaneously is a longstanding chal-
lenge in computer vision. Moving beyond earlier multi-
task learning frameworks that depend on fixed task proto-
cols (Doersch & Zisserman, 2017; Sener & Koltun, 2018),
there are innovative attempts to integrate various vision
tasks under a unified model. For example, Pix2Seq (Chen
et al., 2021) pioneered this direction by treating various
task outputs as elements in a discrete space. Approaches
like Unified-IO (Lu et al., 2022), OFA (Wang et al., 2022),
UViM (Kolesnikov et al., 2022), and Painter (Wang et al.,
2023b) further streamlined this process by converting di-
verse inputs and outputs into sequences of tokens.

Building on this, newer methods draw inspiration from in-
context learning in large language models, eliminating the
task-specific paradigm altogether. These models deduce
tasks directly from the input prompt, with (Pathak et al.,
2016) predicting missing sections of images and (Bar et al.,
2022) merging task examples with a query image to generate
outputs via inpainting. LVM (Bai et al., 2023) extends this
concept, allowing for an expanded input sample set.

Learning from Long-tail distribution. The long-tailed dis-
tribution of sample classes is a prevalent and taxing issue in
computer vision (Zhang et al., 2023). Models trained under
skewed distributions experience a marked performance drop
due to the imbalance in class representation. A straightfor-
ward approach to mitigate this issue is to re-balance the train-
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ing dataset such that each class is equally represented (Kang
et al., 2019). Unlike previous scenarios where imbalances
manifest across individual classes, our focus shifts to the
disparity in the volume of data across various tasks. As a
foundational strategy, we employ simple re-sampling tech-
niques. We further explore traditional data augmentation
methods and demonstrate that they not only contribute to a
more equitable distribution of training samples among tasks,
but also yield compelling results.

Knowledge distillation. Knowledge Distillation (KD) has
emerged as a prominent model compression technique over
the past decade. The core idea of KD involves leveraging
the soft predictions generated by a pre-trained teacher model
to guide the training of a more compact student model (Hin-
ton et al., 2015). Additional loss functions have been pro-
posed in subsequent studies to further enhance KD (Zhao
et al., 2022; Guo et al., 2024; Hao et al., 2024). Beyond
focusing solely on the final output, KD can integrate in-
termediate features through techniques such as pixel-level
matching (Romero et al., 2014; Zhang et al., 2020), attention
alignment (Komodakis & Zagoruyko, 2017), relation match-
ing (Peng et al., 2019; Park et al., 2019; Guo et al., 2021),
or contrastive learning (Tian et al., 2020). Several works
also employ multiple teacher models for distillation (Hao
et al., 2022; Zhu et al., 2018). While the success of KD has
been validated across various applications, its applicability
to LVMs remains relatively unexplored. Our work fills this
gap and confirms the efficacy of KD within the domain of
LVMs.

8. Conclusion and Discussion
This paper researches on developing efficient autoregression-
based general-purpose vision model, oriented towards the
over-reliance on colossal models and extensive balanced
data. Our observation of impaired results when the model
faces unevenly-distributed data across tasks underpins our
data augmentation strategy to automatically enrich the lim-
ited datasets and boost the overall performance of LVMs.
Furthermore,our findings demonstrate the potential of KD to
bridge performance and efficiency for autoregressive LVMs.
This work serves to advance understanding into autoregres-
sive LVMs and provide a basis for designing more efficient
generalist vision models.

Limitation and future direction. While it is now possi-
ble to generate outputs for various vision tasks using cor-
responding prompts at test time, the conversion of visual
results into quantifiable outputs warrants further exploration.
For instance, post-processing techniques can generate fore-
ground segmentation outputs, and in theory, color mapping
can produce COCO-pose compatible outputs for keypoint
detection. However, when faced with more complex tasks,
it is difficult to generate quantifiable outputs from output

images. Addressing this challenge represents a valuable
research direction. Finding effective ways to derive quan-
tifiable outputs for different tasks from VQGAN-decoded
images is an area that requires further study.

In addition, our model can generate reasonable output only
for those specific tasks it was trained on. For example, when
trained with dataset including segmentation, video, pose
estimation, and de-raining, our model can only generate
resonable output on such tasks. Corresponding examples
are shown in the Figure 16 and Figure 17 in appendix. We
observed that the model can handle multiple tasks but only
when similar tasks are present in the training data.
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A. Training Configurations
A.1. Model architecture

In our main paper, we employ three LVMs with different parameters. These models are structured based on LLaMA (Touvron et al.,
2023a). The detailed architecture configurations are outlined in Table 7.

Table 7: Detailed configurations of used models.

Model Hidden dim. MLP dim. #heads #layers

LLaMA-1B 2048 5504 16 22
LLaMA-300M 1024 2688 8 22
LLaMA-80M 768 3072 12 12

A.2. Training details

Our training strategy adheres to the implementation of LVM (Bai et al., 2023), with slight adjustments made for efficient training with
8-16 A100 GPUs. Our models are trained based on the InternLM framework (Team, 2023). The optimization details are summarized in
Table 8. Table 9 presents the time consumption and memory requirements for training each model.

Table 8: Detailed configurations for training efficient LVMs. We attain a consistent equivalent batch size across different
models by adjusting the number of employed GPUs, mini-batch size, and gradient accumulation steps.

Config Value

optimizer AdamW
learning rate 1.5e-4
weight decay 0.1
optimizer momentum β1, β2=0.9, 0.95
equivalent batch size (tokens) 262144
learning rate schedule cosine
warmup steps #total steps * 0.0056
final learning rate 1.5e-5
context length 2048
data augmentation RandomResizedCrop

Table 9: Training time and memory requirements of each LVM. The equivalent batch size is calculated as the product of the
number of utilized GPUs, mini-batch size, and gradient accumulation steps, resulting in a uniform value of 262144 across
various models.

Model Teacher #GPUs Mini batch (tokens) #gradient accum. Time (hours) Memory (GB)

LLaMA-1B - 16 32768 4 324 70
LLaMA-300M - 16 65536 2 126 70
LLaMA-300M LLaMA-1B 16 65536 2 235 80
LLaMA-80M - 8 131072 2 65 69
LLaMA-80M LLaMA-1B 8 65536 4 82 49

A.3. Dataset

Our full training involves diverse datasets, including Rain13K, SA-1B, COCO-pose, HDvila-100m, and LAION datasets. To ensure data
balance, data augmentation is applied to extend the Rain13K and COCO-pose datasets.

Rain13K (16.96%; 14.02 billion tokens). Rain13K serves as the most commonly utilized training dataset for rain removal, consisting of
five distinct rain removal datasets. The original dataset comprises 13,712 clean-rain image pairs. We filtered the data and generated a
subset for training.

SA-1B (35.05%; 28.97 billion tokens). SA-1B is a large-scale multimodal dataset designed for training general-purpose object
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segmentation models. It comprises 1.1 billion high-resolution, diverse, and privacy-protected images, along with corresponding high-
quality segmentation masks. We selected a portion of the data for training.

COCO-Pose (12.92%; 10.68 billion tokens). COCO-Pose is a dataset for human pose detection. The original version is a subset of
COCO dataset and has 250K images, with annotations for 17 human keypoints, such as eyes, hands, legs, foots, etc. COCO keypoints
dataset can be used to train and evaluate various human pose detection models.

HDvila-100m (1.25%; 1.03 billion tokens). HDvila-100m is a large-scale video-language multimodal dataset containing 100 million
high-resolution, diverse, and video clips and 100 million automatically generated text descriptions. The dataset covers a wide range of
topics and includes both video segments and corresponding text captions. The video segments are 10 seconds long, the text captions are
produced by an automatic speech recognition system. We exclusively utilized a subset of the video data to endow our model with the
capability for continuous inference.

LAION-400M (33.83%; 27.96 billion tokens). LAION-400M is a large-scale multimodal dataset containing 400 million English
image-text pairs. It covers a wide range of topics and includes both text descriptions and corresponding images. We adopt a subset of this
dataset in our experiments.

B. Continual Learning.
B.1. Additional results

In our ablation study on data shuffling, we observe catastrophic forgetting in LVMs within an ordered data setting. To further investigate,
we assess the impact of rescaling the learning rate at the beginning of each task, a configuration more aligned with the standard continual
learning setting. The summarized training configurations are presented in Table 10.

Table 11 presents quantitative results for both scenarios—without and with learning rate rescaling—while Figure 7 showcases the
corresponding visualizations. In both settings, the results indicate the presence of catastrophic forgetting in LVMs during continual
learning scenarios. Moreover, the adoption of learning rate rescaling results in improved performance on the last-trained task but
exacerbates forgetting of other tasks.

Table 10: Learning rate configuration for the continual learning setting. The setup labeled as “w/o learning rate rescaling”
corresponds to the experiment detailed in the main paper.

Learning rate scale at task #
Learning rate configuration Task 1 (SA-1B) Task 2 (COCO-Pose) Task 3 (Rain13K)

w/o learning rate rescaling 1.5e-4∼8e-5 8e-5∼5e-5 5e-5∼1.5e-5
w/ learning rate rescaling 1.5e-4∼1.5e-5 1.5e-4∼1.5e-5 1.5e-4∼1.5e-5

Table 11: Performance of LVMs in continual learning scenarios. We train LLaMA-300M models without shuffling the
training data. Two distinct learning rate scheduling schemes were employed. Under each scheme, the LVM exhibits signs of
catastrophic forgetting.

Loss ↓ Accuracy ↑ perplexity ↓
Data Segmentation Pose Est. Deraining Segmentation Pose Est. Deraining Segmentation Pose Est. Deraining

w/o learning rate rescaling
SA-1B 4.62 5.49 7.07 19.17 16.54 1.42 102.06 243.09 1165.21
COCO-Pose 6.02 4.89 7.88 10.29 20.69 0.57 416.21 134.12 2633.08
Rain13K 7.28 7.16 5.70 4.45 5.99 11.79 1449.42 1285.80 287.79

w/ learning rate rescaling
SA-1B 4.62 5.48 7.11 19.29 16.65 1.34 101.52 241.59 1213.27
COCO-Pose 6.22 4.88 7.98 9.23 20.84 0.54 510.03 132.78 2880.20
Rain13K 7.98 7.78 5.67 2.88 3.92 11.91 2925.92 2403.03 281.81
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DerainingPose EstimationSegmentation

SA-1B COCO-Pose Rain13K

w/o learning rate rescale 

SA-1B COCO-Pose Rain13K

w/ learning rate rescale 

Figure 7: Visualization of inference results of model at various training stages. Catastrophic forgetting is evident in scenarios
with and without learning rate rescaling.

14



Data-efficient Large Vision Models through Sequential Autoregression

B.2. Offline training

In Figure 8, we compare the inference results of the offline trained LLaMA-1B model on the entire dataset using different prompts but the
same inputs. In contrast to the continual learning scenario, the model trained with shuffled data demonstrates successful recognition of the
given prompts. These results underscore the ability of the model to adeptly handle multi-task scenarios with distinct prompts.

Segmentation Pose Estimation DerainingData source:

Seg. Pose est. Deraining Seg. Pose est. DerainingPrompt type:

Figure 8: Visualization of inference results of LLaMA-1B with different prompts on the same inputs.
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C. Full Results of LLaMA-80M.
We train an LLaMA-80M model employing KD and present its performance in terms of perplexity in the main paper.

Figure 9 provides additional visualization of the generated images. The efficient 80M model exhibits significant potential in handling
prompted image autoregressive tasks, and the performance is further enhanced when KD is applied. We posit that by incorporating more
high-quality data and extending the training schedule, these efficient models can achieve practical success in the future.

Table 12: Comparison of validation performance between LLaMA-80M models trained with and without KD.

Loss ↓ Accuracy ↑ perplexity ↓
Data KD Segmentation Pose Est. Deraining Segmentation Pose Est. Deraining Segmentation Pose Est. Deraining

LLaMA-1B - 4.48 4.71 5.47 19.89 21.45 12.46 88.33 111.95 230.94
LLaMA-80M ✗ 5.04 5.10 5.60 16.08 19.03 12.05 156.19 164.57 264.56
LLaMA-80M ✓ 4.99 5.07 5.57 16.30 19.04 12.13 147.78 159.78 256.65
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Figure 9: Visualization of inference results from the efficient LLaMA-80M model.
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D. Single-image Inpainting
Figure 10 illustrates the visualization of single-image inpainting. For each input sequence, comprised of 256 tokens representing a single
image, the last 128 tokens are removed. Pretrained LVMs are then employed to predict the removed tokens. Subsequently, the generated
tokens are concatenated with the initial 128 tokens, and the VQGAN decoder is utilized to obtain the inpainted image.
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Figure 10: Visualization of image inpainting results. Input of the top half of each image to LVMs to generate the inpainted
bottom half.
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E. Additional results of KD
We provide more results using the LLaMA-300M models trained with and without KD, which corresponds to the same model presented in
Table 3 of the main paper. The evaluation includes pose estimation datasets, specifically Leeds Sports Pose (LSP) (Johnson & Everingham,
2011) in Figure 11, and Occluded Human (OCHuman) (Zhang et al., 2019) in Figure 12. Additionally, we present testing results on the
deraining task using rain100H (Yang et al., 2017) in Figures 13 and Figures 14, and rain1400 (Fu et al., 2017a) in Figure 15.
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Query w/o KD w/ KD Query w/o KD w/ KD Query w/o KD w/ KD

Figure 11: Visualization on the LSP (Leeds Sports Pose) dataset. LLaMA-300M model trained with KD (the third column)
obtains better results compared to the model trained without KD.
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Query w/o KD w/ KD Query w/o KD w/ KD Query w/o KD w/ KD

Figure 12: Visualization on the OCHuman (Occluded Human) dataset. LLaMA-300M model trained with KD (the third
column) obtains better results compared to the model trained without KD.
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Query w/o KD w/ KD GT

Figure 13: Visualization on the rain100H dataset. LLaMA-300M model trained with KD (the third column) obtains exhibits
greater similarity to the ground truth compared to the model trained without KD.
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Query w/o KD w/ KD GT

Figure 14: Visualization on the rain100H dataset. LLaMA-300M model trained with KD (the third column) obtains exhibits
greater similarity to the ground truth compared to the model trained without KD.
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Query w/o KD w/ KD GT

Figure 15: Visualization on the rain1400 dataset. LLaMA-300M model trained with KD (the third column) obtains exhibits
greater similarity to the ground truth compared to the model trained without KD.
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Prompt Output

Frame predictions: considering dynamic objects and camera motion.

Frame predictions: zoom in.

Frame predictions: zoom out.

Figure 16: The HD-VILA-100M video data is integrated into the training process of our LLaMA-1B, enabling it to handle
frame predictions.
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Prompt Output

Depth estimation: image to depth.

Inpainting: partially masked image to orignial image.

Colorization: gray-scale image to color-scale image.

Object replication.

Dehazing.

Figure 17: For tasks that are not included in its training, the LLaMA-1B struggles to generate satisfactory output and resorts
to repeating the last available image. For the novel dehazing task, it was mistakenly interpreted as a segmentation task.
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