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Abstract

Modern smartphones often feature asymmetric dual-lens systems, capturing wide-
angle and ultra-wide views with complementary perspectives and details. Motion
and shake can blur the wide lens, while the ultra-wide lens, despite lower resolution,
retains sharper details. This natural complementarity offers valuable cues for video
deblurring. However, existing methods focus mainly on single-camera inputs
or symmetric stereo pairs, neglecting the cross-lens redundancy in mobile dual-
camera systems. In this paper, we propose a practical video deblurring method,
AsLeD-Net, which recurrently aligns and propagates temporal reference features
from ultra-wide views fused with features extracted from wide-angle blurry frames.
AsLeD-Net consists of two key modules: the adaptive local matching (ALM)
module, which refines blurry features using K-nearest neighbor reference features,
and the difference compensation (DC) module, which ensures spatial consistency
and reduces misalignment. Additionally, AsLeD-Net uses the reference-guided
motion compensation (RMC) module for temporal alignment, further improving
frame-to-frame consistency in the deblurring process. We validate the effectiveness
of AsLeD-Net through extensive experiments, benchmarking it against potential
solutions for asymmetric lens deblurring.
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tem on iPhone in practice.

Modern smartphones increasingly feature asymmetric
dual-lens systems, combining wide-angle and ultra-wide
lenses to capture scenes with complementary perspectives
and details (see Figure 1). However, during dynamic
scenes or camera shake, focal length and aperture dif-
ferences introduce blur discrepancies. For example, on the
iPhone 14 Plus, ultra-wide lenses typically have shorter fo-
cal lengths (e.g., 13mm) and smaller apertures (e.g., f/2.4)
compared to wide-angle lenses (e.g., 26mm, f/1.5). The
shorter focal length of ultra-wide lenses results in a deeper
depth of field, reducing defocus blur but making them
more prone to motion blur due to the longer exposure time
required for sufficient light intake. In contrast, wide-angle
lenses with a larger aperture capture more light, allowing for faster shutter speeds and reducing motion
blur while maintaining a shallower depth of field that enhances subject-background separation. These
complementary characteristics provide valuable cues for video deblurring, as shown in Figure 2.

Existing video deblurring methods primarily focus on single-camera inputs or symmetric stereo
pairs. For instance, flow-guided bidirectional propagation methods [8, 21, 40] align features using
deformable convolutions and attention mechanisms, while VRT and RVRT [37, 38] employ spatio-
temporal self-attention to aggregate information across video frames. However, these methods do
not leverage the cross-lens redundancy inherent in mobile dual-camera systems. Although several
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(a) Ultra-wide lens views (Reference frames) (b) Wide lens views (Blurry frames)

(c) Trajectories of blurry f. (d) Trajectories of ref. f. (e) Optical flow of ref. f. (f) Optical flow of ref. f.

(g) Blurry frames (h) Ground truth

(i) DSTNet (j) AsLeD-Net (Ours)

Figure 2: Examples of asymmetric dual-lens video deblurring. (a) Reference frames captured using
the ultra-wide lens. (b) Blurry frames captured using the wide-angle lens. (c-d) Motion discrepancy
visualization through trajectory comparisons (Please zoom in and best viewed on the screen). (e-f)
Optical flow visualization of blurry and reference frames. (g) Input blurry sequences. (h) Ground
truth. (i) Results from a state-of-the-art method (DSTNet) [52]. (j) Our AsLeD-Net results. In this
figure, “f.” is short for frames, and “ref.” is short for reference, respectively. We propose the first deep
learning method for asymmetric dual-lens video deblurring, where ultra-wide lens videos (shorter
focal length) provide motion priors to restore clear wide-lens blurry sequences. This is motivated by
the observation that ultra-wide lenses inherently suffer less motion blur due to their focal properties:
shorter focal lengths reduce perceived motion parallax, enabling more stable scene capture despite
the lower resolution. AsLeD-Net delivers high deblurring accuracy with strong temporal coherence.

image restoration techniques have been developed for dual-camera setups, including dual-lens
super-resolution [70, 94, 31, 84, 28, 69, 7, 76, 85, 95, 53] and dual-lens stereo matching [12, 64,
90], as well as reference-based image super-resolution [82, 62, 44, 6, 93, 56, 23, 24, 20, 29, 92,
25], video deblurring in an asymmetric dual-lens setting remains unexplored. In this paper, we
introduce Asymmetric dual-Lens video Deblurring (AsLeD), which exploits the complementary
information between blurry and reference videos captured from asymmetric dual-camera systems.
Unlike traditional video deblurring approaches, AsLeD explicitly considers the structural disparities
between the two views to enhance the restoration process.

AsLeD effectively models the relationship between blurry and reference frames in asymmetric
dual-lens settings. At each time step, the two frames share nearly identical content within their
overlapping field of view (FoV) (top and middle rows of the leftmost column in Figure 2). As
the video progresses, neighboring reference frames provide sharp details that help recover regions
beyond the overlapped FoV (bottom row of the leftmost column in Figure 2). By leveraging these
cross-frame correspondences, AsLeD enhances video restoration by utilizing multi-frame redundancy
in asymmetric multi-camera setups.

AsLeD-Net employs a dual-branch architecture built upon the BasicVSR framework to exploit
asymmetric dual-lens characteristics. The base branch uses a bidirectional recurrent design [8, 21] for
temporal feature propagation, while the reference branch processes ultra-wide lens inputs with reduced
motion blur. This asymmetric design incorporates three key modules in the reference branch: (1) The
adaptive local matching (ALM) module: Establishes semantic-aware correspondences between blurry
frames (base branch) and clear reference frames (ultra-wide branch) using K-nearest neighbor feature
aggregation, effectively transferring structural details. (2) The difference compensation (DC) module:
Bridges feature discrepancies between the branches, preserving edge sharpness in fast-moving regions
and enhancing spatial-temporal consistency. (3) The reference-guided motion compensation (RMC)
module: Aligns features across time steps using optical flow guided by ultra-wide reference frames,
eliminating cumulative errors in traditional flow-based warping. The base branch progressively
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fuses ALM-refined features, DC-compensated residuals, and RMC-aligned references via attention-
guided fusion blocks. This hierarchical integration enables the model to leverage the base branch’s
reconstruction capabilities and the reference branch’s blur-insensitive motion priors. As shown in
Figure 2, AsLeD-Net outperforms DSTNet [52], enhancing texture details like the text on the wall
and the coffee shop logo while preserving strong temporal coherence.

The contributions of this work are summarized as follows: (1) We formalize asymmetric dual-lens
video deblurring (AsLeD), leveraging cross-lens redundancy from a sharper ultra-wide reference to
assist a blurry wide view, extending prior dual-lens image deblurring to the video setting. (2) We
present AsLeD-Net with three task-specific modules: ALM for structure-aware K-nearest-neighbor
reference aggregation, DC for cross-view spatial consistency, and RMC for temporal alignment. (3)
AsLeD-Net achieves superior quantitative and qualitative results on AsLeD.

2 Related Works

Video deblurring. Unlike image deblurring [48, 67, 87, 79, 77, 35], video deblurring benefits from
spatio-temporal cues to enhance restoration quality [51, 33, 99, 98, 88, 72, 66, 80, 10, 21, 22, 49,
65, 81, 37, 58, 89]. Deep learning-based methods [3, 2, 97, 96, 54, 55, 36, 78] have become the
dominant approach. Recurrent video deblurring models exploit temporal dependencies for progressive
feature propagation [98, 91, 72, 10, 39, 49, 52, 32]. For example, STRCNN [27], RDN [74], and
IFRNN [49] adopt recurrent architectures for sequential feature refinement. STFAN [100] employs
dynamic filters, while PVDNet [63] integrates a blur-invariant flow estimator. Recent methods
leverage bidirectional propagation for improved restoration [8, 101, 21, 40, 88]. BasicVSR++ [8]
introduces aggressive bidirectional propagation, while RNN-MBP [101] incorporates multi-scale
bidirectional updates. However, error accumulation remains challenging for long-range temporal
modeling [21]. Spatio-temporal transformers enhance video deblurring by capturing long-range
dependencies [37, 40, 39, 37, 38]. Recently, Zhang et al. [89] propose a spatio-temporal sparse
Transformer for efficient video deblurring.

Dual-lens image restoration. Asymmetric dual-lens systems, commonly found in smartphones,
consist of an ultra-wide lens and a wide lens with different focal lengths. These systems capture the
same scene with varying FoVs. Typically, the ultra-wide lens (short focal length, large FoV) is the
main lens, while the wide lens (longer focal length, narrower FoV) provides higher resolution within
the overlapped FoV. This configuration enables various vision tasks by leveraging the complementary
imaging capabilities of the two lenses. Previous works have explored dual-lens systems for image
refocusing [1], correspondence estimation [12, 64, 90] and image super-resolution [70, 94, 31, 84,
28, 69, 7, 76, 85, 95, 53], where telephoto images serve as high-resolution references to enhance
wide-angle images. Beyond image super-resolution, other tasks such as image deblurring [46, 61, 59],
novel view synthesis [75, 83, 45], high-dynamic-range imaging [34, 60], and image colorization [15]
have also been investigated, demonstrating the practical benefits of cross-lens redundancy. Among
prior studies, the most similar to ours are Mohan et al. [46], who deblur static dual-lens image pairs by
enforcing cross-view and depth consistency in unconstrained capture settings. Lai et al. [30] deblur
face regions in still photos using a synchronized sharp ultra-wide reference. We extend this line
from images to video by integrating reference-guided cross-view alignment with recurrent temporal
propagation to preserve frame-to-frame coherence.

Reference-based image restoration. Another related topic is reference-based image restoration,
which includes tasks such as reference-based image super-resolution [82, 62, 44, 6, 93, 56, 23, 24,
20, 29, 92, 25], image deblurring [41, 42] and burst image restoration [14, 19, 4, 26, 16, 5, 17, 73, 18,
43, 29]. These tasks leverage auxiliary high-quality images to enhance the restoration of a degraded
input. In this work, we address reference-based video deblurring in the context of asymmetric
dual-lens smartphone cameras. Unlike existing approaches focusing on still images, our method
utilizes cross-lens redundancy in videos to achieve high-quality deblurring, effectively integrating
information from both lenses.

3 Method
3.1 Overview
The proposed AsLeD-Net reconstructs a high-quality video Î ∈ RT×H×W×3 from a blurry input
IB ∈ RT×H×W×3 captured with a wide lens, leveraging a relatively sharper reference video
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Figure 3: Overview of the proposed AsLeD-Net. AsLeD-Net processes blurry video frames from a
wide lens and reference frames from an ultra-wide lens using a dual-branch architecture. The base
branch reconstructs the blurry frames with bidirectional frame propagation [9], while the reference
branch extracts asymmetric information from the ultra-wide frames. Features from both branches are
encoded separately and then refined by ALM, DC, and RMC modules. The concatenated features are
merged through residual blocks and fed to the frame decoder to generate the final clear output.

IRef ∈ RT×H×W×3 taken simultaneously by an ultra-wide len in a dual-lens camera (e.g., iPhone).
The objective is to restore Î to closely match the ground truth IGT , effectively exploiting the
complementary information from the reference view. Here, T , H , and W denote the number
of frames, height, and width, respectively. Following previous video deblurring and restoration
methods [8, 9], we adopt a bi-directional recurrent architecture for its simplicity and efficiency. The
overall framework of our proposed AsLeD-Net is shown in Figure 3.

The base branch, identical to BasicVSR, reconstructs blurry videos IB captured with a wide lens,
using bidirectional frame propagation based on optical flow to extract features FBase. To exploit
the unique properties of the AsLeD task, we introduce a second reference branch, which processes
ultra-wide lens inputs with reduced motion blur. Since reference and blurry frames have different
FoV and contain varying information, we center-crop and resize the reference frames to match the
blurry frame size. We leverage the reference branch to extract asymmetric reference information
despite potential colour discrepancies due to lens differences.

For the blurry frame IBt and its corresponding reference frame IRef
t at time t, we first feed them to

separate feature encoders with non-shared weights to obtain feature representations FB
t and FRef

t ,
each consisting of N1 residual blocks. These features are then processed by the ALM, DC, and RMC
modules, which transfer structural details from the reference frames, bridge feature discrepancies
while preserving edge sharpness in fast-moving regions, and align features across time steps using
optical flow guided by the ultra-wide reference frames. After concatenation, the outputs FALM

t ,
FDC
t , and FRMC

t are merged with the base branch’s output FBase
t by feeding them to residual

blocks, resulting in Ft. Finally, Ft is input into a frame decoder, composed of N2 residual blocks, to
generate the final reconstructed result Ît, with a residual connection from the input added.

Our approach does not assume perfect geometric calibration or strict cross-view alignment. Instead,
AsLeD-Net learns content-aware feature alignment that tolerates cross-lens baselines and photometric
shifts, enabling reference guidance under realistic dual-lens configurations. In practice, we retain
cross-view geometric and photometric discrepancies and rely on content-aware, data-driven feature
alignment, while ensuring frame-level temporal synchronization.
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3.2 Adaptive Local Matching

Motion blur erases high-frequency details and disrupts spatial coherence, leading to texture ambiguity
and structural distortions. Recovering these details is particularly challenging due to the ill-posed
nature of the problem. To address this issue, we exploit the complementary information available in
reference frames, which are captured under similar conditions but with less or no blur. These frames
retain rich structural cues that can guide the restoration of the blurry frame, providing a more robust
mechanism for handling local details. The core idea is to adaptively leverage the reference frame’s
features based on local context, enabling more accurate restoration of the blurred image.

Without loss of generality, we focus on the time step t to illustrate the ALM module. Given the
extracted blurry frame feature FB

t ∈ RC×H×W at timestamp t, the ALM module aims to refine
these blurry local features by incorporating the complementary reference feature FRef

t ∈ RC×H×W

captured under similar conditions but with less blur. These deep features can be represented as a set
of H ×W local representations, each of size C-dimensional. To match the blurry frame with the
reference features, we first compute a similarity map St to measure the cosine similarity between
each blurry local feature F

B(i)
t and each reference feature F

Ref(j)
t

S
(i,j)
t = cos

(
F

B(i)
t , F

Ref(j)
t

)
=

F
B(i)
t

⊤
F

Ref(j)
t

∥FB(i)
t ∥ · ∥FRef(j)

t ∥
, (1)

where i ∈ {1, . . . , NB
t } and j ∈ {1, . . . , NRef

t }, and NB
t and NRef

t represent the number of local
representations in the blurry and reference frames, respectively. S

(i,j)
t represents the similarity

between the i-th blurry local representation and the j-th reference local representation.

For each blurry local representation, we select its K-nearest neighbors from the reference features
and fuse these local representations into a reference representation ϕ

(i)
t,ref

ϕ
(i)
t,ref =

K∑
k=1

α
(k)
t × F

Ref(k)
t , (2)

where
∑K

k=1 α
(k)
t = 1, α(k)

t > 0, and α
(k)
t is obtained using the softmax function. The reference

representations then adaptively refine the corresponding blurry features. Finally, the blurry and
reference representations are concatenated and processed by an adaptive layer gθ to obtain the fused
local representations

FALM
t = gθ([(ϕt,ref , F

B
t )]), (3)

where ϕt,fuse represents the fused local representations, and gθ denotes the adaptive fusion layer. The
cosine similarities in Eq. (1) form a query-reference affinity used to rank reference tokens; the top-K
are aggregated with softmax-normalized weights. The adaptive layer gθ in Eq. (3) is a lightweight
1×1 convolution applied to the concatenated [ϕt,ref , F

B
t ], enabling content-aware fusion with low

overhead. This process facilitates information fusion by incorporating relevant reference features to
enhance the blurry frame representation.

3.3 Difference Compensation
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Figure 4: Overview of the difference compensation
(DC) module.

In AsLeD, while blurry and reference images
share structural consistency, focus, exposure,
and sensor processing differences create subtle
feature mismatches, making direct concatena-
tion suboptimal. The DC module provides a
simple yet effective solution by adaptively modeling residual information. It ensures that only benefi-
cial details are aggregated while preserving spatial consistency. Unlike complex alignment-based
approaches, the DC module efficiently refines blurry features with relevant reference information,
preventing artifacts and enhancing deblurring with minimal computational overhead.

Given the blurry frame feature FB
t and its corresponding reference frame feature FRef

t at time t, the
goal of the DC module is to refine the blurry features by effectively leveraging reference information.
As shown in Figure 4, we predict the difference between the blurry feature FB

t and the reference
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feature FRef
t , enhancing the residual information et to facilitate effective feature aggregation and

adaptive refinement. The difference compensation between FRef
t and FRef

t can be summarized as

et = FB
t − FRef

t , êt = f(et), FDC
t = FB

t + êt, (4)

where et represents the residual feature that captures useful differences between the blurry and
reference features, and f(·) denotes the cascaded residual blocks. This progressive refinement
adaptively integrates reference information while preserving spatial consistency, ensuring effective
feature aggregation for improved deblurring.

3.4 Reference-Guided Motion Compensation
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Figure 5: Overview of the reference-guided motion com-
pensation (RMC) module.

In the base branch of AsLeD-Net, opti-
cal flow is computed between the current
and previous blurry frames for warping.
While this approach has its merits, it of-
ten introduces limitations that degrade de-
blurring performance. Specifically, both
the current and previous blurry frames
may contain significant motion blur and
noise, leading to inaccuracies in optical
flow estimation. These imperfections can cause misalignment during warping, resulting in artifacts or
an inability to capture fine motion details, ultimately reducing the quality of deblurring.

To address these issues, we propose the RMC module, which estimates optical flow between the
current blurry frame and a sharper reference frame (previous or next) rather than between consecutive
blurry frames. It leverages two complementary motions: temporal flow within the base view and
cross view flow guided by the sharper reference; the latter accounts for differences in field of view,
perspective, and resolution, is more reliable under heavy blur, and reduces misalignment to improve
motion tracking. As is shown in Figure 5, given the current blurry frame IBt and the previous reference
frame IRef

t−1 , we first use SpyNet [57] to estimate the initial optical flow OInit
t−1 between these two

frames. However, this initial flow estimate may not be sufficiently accurate due to factors such as
noise, motion blur, or misalignment, which can affect the precision of the optical flow calculation. To
improve the flow estimate, we concatenate the current blurry frame IBt and the initial flow estimate
OInit

t−1 , then feed this concatenated pair to residual blocks to refine the flow. This refined flow is
expected to capture fine details and correct the misalignment introduced by the initial estimation

OInit
t−1 = SpyNet(IBt , IRef

t−1 ), ORefined
t−1 = f

(
[IBt , OInit

t−1 ]
)
. (5)

The refined flow is not directly supervised; it is learned implicitly via end-to-end reconstruction loss,
in line with prior video restoration designs where flow acts as an auxiliary representation to facilitate
motion compensation rather than a target itself.

After refining the optical flow, we perform warping using the refined flow and the current blurry frame
IBt . The result is then combined with the residual information to obtain the motion-compensated
feature FRMC

t , which is more accurate in capturing the motion and structural details of the scene.
This process ensures that the reference frame’s motion is effectively transferred to the blurry frame,
improving alignment and reducing artifacts. The above process can be formalized as

FRMC
t = warp(IBt , ORefined

t−1 ) + f(IBt ). (6)

By refining the optical flow and leveraging the residual information, the RMC module ensures a more
precise alignment between the current blurry frame and the reference frame, leading to improved
deblurring performance.

4 Experiments
4.1 Experimental Settings
Datasets. We use the RealMCVSR dataset [31] for our experiments. Originally designed for multi-
view video super-resolution, RealMCVSR consists of triplets captured with ultra-wide, wide-angle,
and telephoto lenses. In this setup, the wide-angle and telephoto videos share the same spatial
dimensions as the ultra-wide video but have ×2 and ×4 higher resolutions, respectively. For the
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AsLeD task, we adapt the dataset by using the ultra-wide video as the reference input and the wide-
angle video as the blurry input. Since the wide-angle video has twice the resolution of the ultra-wide
video, we center-crop and upsample the ultra-wide frames to match its resolution. We follow the
original data split of the RealMCVSR dataset. To simulate motion blur, we generate blurred frames by
the widely used technique of averaging multiple consecutive frames of the video captured by different
lenses [65, 48, 47, 71, 50]. We generate blurry frames for training by averaging every 7 consecutive
frames, simulating varying motion blur intensities. We synthesize motion blur by averaging seven
consecutive frames for both training and testing, a widely used approximation that does not fully
model real-world blur. For real captures, we use an iPhone 14 Plus whose two lenses introduce a
physical baseline and distinct imaging characteristics, yielding cross-view shifts and photometric
differences. We intentionally avoid spatial or color pre-alignment and ensure frame-level temporal
synchronization with the DoubleTake APP. Note that RealMCVSR is captured on iPhone 12 Pro Max,
whereas our real tests use iPhone 14 Plus, introducing cross-device differences in optics and ISP to
assess generalization. Evaluations on these real videos demonstrate robust generalization beyond the
averaging assumption.

Implementation details. We use 7 frames as input during training, with a mini-batch size of 4 and
an input frame resolution of 128× 128. We apply data augmentation techniques to the training data,
including horizontal flips and random rotations of 90◦, 180◦, and 270◦. AsLeD-Net is trained for
300K iterations using the Adam optimizer with a Cosine Annealing learning rate scheduler. Network
architecture parameters are set to N1 = 1 and N2 = 30. The number of channels is 64, and K in ALM

is set to 3. Supervision is enforced using the Charbonnier loss [71] via L =

√
∥Î − IGT ∥2 + ε2,

where ε is set to 1 × 10−3 in our experiments. We omit the subscript t for simplicity. The initial
learning rate for AsLeD-Net is 1× 10−4. Training is conducted on an NVIDIA RTX 3090 GPU.

Inference settings. We evaluate the reconstructed results using PSNR, SSIM, and LPIPS on the RGB
channels to assess fidelity and perceptual quality.

4.2 Quantitative and Qualitative Comparisons

Table 1: Quantitative evaluation on the RealMCVSR
testset. We mark the best and the second best results
in bold and underline, respectively. #Params means the
number of network parameters (M). Time costs (ms)
are measured on blurred frames with a resolution of
256× 256 using an NVIDIA GTX 1080 Ti GPU.

Method
RealMCVSR Costs

PSNR↑ SSIM↑ LPIPS↓ #Params Time

Blur frame 18.22 0.8009 0.4319 - -

MIMOUNet 24.50 0.8937 0.4042 6.8 23.1
MIMOUNet++ 24.70 0.8894 0.4074 16.1 47.4
NAFNet 24.80 0.9047 0.4109 67.9 52.9
Restormer 24.90 0.9045 0.3875 26.1 116.9
IFIRNN 24.75 0.8984 0.3434 4.1 7.6
DBN 25.05 0.9050 0.3763 15.3 4.2
EDVR 25.15 0.9088 0.3773 23.6 320.1
BasicVSR 25.10 0.9117 0.2885 6.2 55.8
BasicVSR++ 25.60 0.9121 0.2207 9.5 57.1
DSTNet 25.70 0.9134 0.2604 7.5 22.1
RefVSR 25.58 0.9124 0.2156 4.8 268.3

Ours 26.34 0.9167 0.1614 8.8 248.7

We compare the proposed AsLeD-Net
against a diverse set of baseline methods
to evaluate its effectiveness for the AsLeD
task. These baselines encompass a wide
range of potential approaches, aiming to
cover as many varied and rich method-
ologies as possible: (1) Single-image de-
blurring and restoration methods: includ-
ing MIMOUNet [13], MIMOUNet++ [13],
NAFNet [11], and Restormer [86]. (2)
Video deblurring and restoration meth-
ods: including IFIRNN [49], DBN [65],
EDVR [71], BasicVSR [9], and Ba-
sicVSR++ [8]. (3) Reference-based
video restoration method: specifically Re-
fVSR [31]. Notably, some of these meth-
ods are not initially designed for deblur-
ring. For approaches primarily intended
for super-resolution tasks, we remove the
upsampling operation and instead apply a
convolutional layer to generate the final output directly. We meticulously re-train all baseline methods
on our dataset to ensure a fair and comprehensive comparison using the publicly available code. How-
ever, due to limited computational resources (with only a 3090 GPU and 1080 Ti GPUs available), we
cannot reproduce specific potential video deblurring methods. We plan to incorporate more advanced
and computationally demanding methods when sufficient computational resources are available.

Quantitative results. As shown in Table 1, our proposed AsLeD-Net consistently achieves the best
performance across PSNR, SSIM, and LPIPS metrics. Our method outperforms the second-best
DSTNet by 0.64 dB in PSNR (26.34 vs. 25.70 dB), demonstrating superior noise reduction and
detail preservation. Compared to widely-used methods like BasicVSR++ (25.60 dB) and EDVR
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Figure 6: Qualitative comparison of AsLeD performance on the RealMCVSR dataset.
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Figure 7: Qualitative comparison of AsLeD performance on real-world blurry scenes captured using
an iPhone 14 Plus. More results can be found in the supplementary material.

Ground truth frame Blur frame Restormer NAFNet EDVR DBN BasicVSR++ DSTNet AsLeD-Net Ground truth

Figure 8: Temporal consistency comparison on the AsLeD task, where temporal profiles are extracted
along horizontal (in blue) and vertical (in green) directions of the reconstructed frames.

Ground truth frame Blur frame O. F. Restormer O. F. NAFNet O. F. EDVR O. F.

DBN O. F. BasicVSR++ O. F. DSTNet O. F. AsLeD-Net (Ours) O. F. Ground truth O. F.
Figure 9: Temporal consistency comparison on the AsLeD task. The optical flow (O. F.) are estimated
using the pre-trained RAFT [68].

(25.15 dB), our approach achieves gains of 0.74 dB and 1.19 dB, respectively. For SSIM, AsLeD-Net
achieves 0.9167, improving upon DSTNet (0.9134), BasicVSR++ (0.9121), and RefVSR (0.9124),
indicating enhanced structural consistency. Moreover, our method sets a new benchmark in LPIPS
(0.1614), significantly surpassing the closest competitor, RefVSR (0.2156), with a 0.0542 reduction,
demonstrating the perceptual quality of our restored frames.

Computational cost results. As shown in Table 1, our AsLeD-Net achieves superior performance
on the RealMCVSR dataset but comes with a higher model complexity (8.8M parameters) and
longer inference time (248.7 ms) compared to lightweight models like IFIRNN (4.1M, 7.6 ms) and
DBN (15.3M, 4.2 ms). This limitation hinders its applicability in real-time or resource-constrained
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scenarios. This limitation indicates that our method might not be optimal for real-time or resource-
constrained applications. In future work, we plan to explore model compression techniques, such
as knowledge distillation and lightweight architecture designs, to reduce computational costs while
maintaining high restoration quality.

Qualitative results. We present visual comparison results on the RealMCVSR dataset in Figures 6
and 7. AsLeD-Net excels in preserving fine texture details, consistently outperforming methods such
as Restormer, NAFNet, EDVR, DBN, DSTNet, and BasicVSR++. It effectively retains architectural
details, such as grid-like window patterns and building facades, which are often blurred by other
methods. As shown in Figure 7, AsLeD-Net produces sharper, more legible Chinese characters on
signs and enhances clarity in real-world iPhone 14 Plus captures, revealing finer details in street signs
and logos, thus improving text readability and recognition for practical applications.

Temporal consistency. We present the temporal consistency analysis in Figure 8 and Figure 9,
highlighting the superior performance of our method in preserving motion coherence and fine details
across consecutive frames. Compared to baselines, our method maintains smoother transitions and
finer details in the temporal profiles, ensuring better motion consistency and reducing artifacts such as
flickering. The estimated optical flow using RAFT [68] closely matches the ground truth and exhibits
sharper, more well-defined structures than baselines. This demonstrates our model’s ability to capture
temporal coherence.

4.3 Ablation Study
Table 2: Ablation study of three core components
in AsLeD-Net on RealMCVSR. We replace the
removed components with the residual blocks,
ensuring parameter consistency.

Method
Core Components RealMCVSR

ALM DC RMC PSNR↑ SSIM↑
(a) ✗ ✗ ✗ 25.40 0.9120
(b) ✓ ✗ ✗ 25.72 0.9137
(c) ✗ ✓ ✗ 25.69 0.9138
(d) ✗ ✗ ✓ 25.79 0.9143

(e) ✗ ✓ ✓ 25.89 0.9145
(f) ✓ ✗ ✓ 25.84 0.9140
(g) ✓ ✓ ✗ 25.75 0.9139

(h) ✓ ✓ ✓ 26.34 0.9167

We conduct experiments on RealMCVSR in terms
of PSNR/SSIM. Due to space limitations, please
refer to the supplementary material.

Table 2 ablates the three core components. Each
single module improves the baseline (25.40 PSNR
/ 0.9120 SSIM). RMC yields the largest single
module gain (25.79 / 0.9143). Adding RMC to
ALM or DC brings further gains, and using all
three achieves the best result (26.34 / 0.9167).
This shows that temporal alignment is pivotal,
while ALM and DC provide complementary spa-
tial refinement. Within context aggregation, our
ALM with k = 3 attains the best PSNR/SSIM
and outperforms DAT and MASA SR under the same protocol. For latency sensitive settings, an
ALM+RMC variant offers a favorable speed and quality tradeoff. Notably, ALM+DC without RMC
(25.75 / 0.9139) yields only limited uplift, indicating that temporal alignment is the dominant bottle-
neck under realistic motion. Taken together with the ALM study (where k=3 peaks), these results
suggest that structure aware reference matching and temporal propagation mitigate complementary
error modes, namely cross view misalignment and blur induced motion ambiguity, and that a reduced
ALM+RMC configuration is a practical choice when latency is critical.

5 Conclusion

In this paper, we propose AsLeD-Net, a practical video deblurring method that leverages the com-
plementary perspectives of asymmetric dual-lens systems. By aligning and propagating temporal
reference features from ultra-wide views and fusing them with blurry wide-angle frames, AsLeD-Net
effectively addresses cross-lens redundancy. Key modules such as the ALM module and the DC
module ensure refined feature alignment and spatial consistency, while the RMC module enhances
temporal alignment. Through extensive experiments, we validate the effectiveness of AsLeD-Net,
showcasing its superiority over existing methods for deblurring asymmetric lens systems.

Our method performs well across various blur levels and scenarios, but frame averaging for training
has limitations in simulating real-world motion blur, especially in high-motion and high-contrast
scenes, and is frame rate-dependent; see the supplementary material for details.

Acknowledgment. This project is supported by the National Research Foundation, Singapore, under
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