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Path-LLM: A Multi-Modal Path Representation Learning by
Aligning and Fusing with Large Language Models

ABSTRACT
The advancement of intelligent transportation systems has led to

a growing demand for accurate path representations, which are

essential for tasks such as travel time estimation, path ranking,

and trajectory analysis. However, traditional path representation

learning (PRL) methods often focus solely on single-modal road net-

work data, overlooking important physical and regional factors that

influence real-world traffic dynamics. To overcome this limitation,

we introduce Path-LLM, a multi-modal path representation learn-

ing model that integrates large language models (LLMs) into PRL.

Our approach leverages LLMs to interpret both topological and

textual data, enabling robust multi-modal path representations. To

effectively align and merge these modalities, we propose TPalign, a
contrastive learning-based pretraining strategy that ensures align-

ment within the embedding space. We then present TPfusion, a
multimodal fusion module that dynamically adjusts the weight of

each modality before integration. To further optimize LLM training,

we introduce a Two-stage Overlapping Curriculum Learning (TOCL)
approach, which progressively increases the complexity of the train-

ing data. Finally, we evaluate Path-LLM on two real-world datasets

across traditional PRL downstream tasks, achieving up to a 61.84%

improvement in path ranking performance on the Xi’an dataset.

Additionally, Path-LLM demonstrates superior performance in both

few-shot and zero-shot learning scenarios. Our code is available at:

https://anonymous.4open.science/r/Path-LLM-F053.

KEYWORDS
Path representation learning, Large language models, Curriculum

learning, Contrastive Learning

1 INTRODUCTION
Paths are fundamental to numerous real-world intelligent trans-

portation applications and mapping services, such as travel time

estimation [8, 16, 21, 35], path ranking [34, 36, 37], and trajectory

analysis [15, 26, 27, 29]. As web-based transportation systems ex-

pand in both scale and complexity, the demand for accurate path

representations has surged, positioning path representation learn-

ing (PRL) a key research focus [11, 38]. PRL aims to generate gener-

alizable representations of paths, enabling their effective use across

a diverse range of downstream tasks.

Previous PRL methods [32, 33, 35, 36] predominantly rely on

single-modal data, typically focusing on road network graphs that

emphasize the connectivity and spatial relationships between road

segments. However, a high-quality path representation should in-

corporate multiple factors, including physical (e.g., road length and

width) and functional (e.g., road name and type) characteristics,

which capture the essential attributes of paths and are crucial for

downstream tasks. For example, as illustrated in Figure 1, there

are two potential routes from point 𝑆 to 𝐷 : 𝑃1 = ⟨𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5⟩
and 𝑃2 = ⟨𝑒7, 𝑒8, 𝑒6⟩. While both paths cover similar distances, their

differing physical and functional features affect travel efficiency.
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Figure 1: An Example of Two Paths with Multi-modality
Information. Road segments are described using names,
lengths, and types. Road names are often named based on
their geographic location, local landmarks, or road type, of-
fering insights into continuity and significance and function.
Length helps assess each segment’s importance, while type
informs the model about its structural and functional role.

𝑃1, which traverses ‘2nd Ring South Rd’—a major trunk road with

smooth traffic flow and fewer traffic lights—takes just 3 minutes

to travel. In contrast, 𝑃2, which follows ‘Tiyuchang N Rd’ and ex-

periences more interruptions and congestion, takes 10 minutes.

Therefore, it is essential to develop a path representation learn-

ing method that integrates multimodal information to accurately

capture path dynamics.

Recently, large language models (LLMs) have achieved remark-

able success in natural language processing (NLP) [2, 6, 7, 19, 30],

excelling in both textual and sequential modeling. Given that the

physical, regional, and functional information of paths can be ex-

pressed in textual form, and that paths can be represented as se-

quences of road segments—analogous to sentences—LLMs hold

significant potential for advancing path representation learning.

LLMs’ advanced NLP capabilities allow them to effectively handle

the textual information within paths. Additionally, their strong

performance in few-shot and zero-shot tasks demonstrates their

ability to learn path representations with high generalization, even

in data-scarce scenarios such as regions with limited road data.

2024-10-15 12:24. Page 1 of 1–9.
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However, LLMs struggle to model the complex topological struc-

tures inherent in paths, posing two major challenges for PRL, which

are outlined as follows.

(1) How can the topological and textual modalities be ef-
fectively integrated to ensure the model captures both the
spatial structure and semantic features of the paths? Due to
the differences between these modalities, two consecutive road

segments in a path might be spatially close in the topological em-

bedding space but distant in the textual embedding space. For in-

stance, in Figure 1 (a), 𝑒8 and 𝑒6 denote edges on ‘2nd Ring South Rd
East Section’ and ‘Yanta N Rd’, respectively, which are close in the

topological embedding space (cf. Figure 1 (b)), yet their textual em-

beddings are far apart (cf. Figure 1 (c)). Thus, it is crucial to develop

an effective fusion mechanism that ensures the complementarity

of topological and textual information.

(2)How can LLMs be trained tomaintain strong generaliza-
tion capabilities despite discrepancies in training difficulties?
Continuing with the previous point, the degree of discrepancy be-

tween the topological and textual embeddings of different segments

can vary considerably. For example, 𝑒1, 𝑒8, and 𝑒6 are all close in

the topological embedding space (cf. Figure 1 (b)), but the distance

between the textual embeddings of 𝑒6 and 𝑒8 is larger compared

to that between 𝑒1 and 𝑒8 (cf. Figure 1 (c)), making it more chal-

lenging for the model to align topology and textual embeddings.

Therefore, the training process must account for these variations

in alignment difficulty to ensure effective fusion and improve the

model’s generalization performance.

To address these challenges, we propose Path-LLM, a multi-

modal path representation learning model that effectively lever-

ages the power of LLMs to integrate both topological and textual

modalities. To address the first challenge, we propose a contrastive

learning-based pretraining strategy, namely TPalign, and a multi-

modal fusion module, namely TPfusion. To mitigate conflicts be-

tween modalities, TPalign is first used to pretrain the path encoder,

aligning topological and textual modalities within the embedding

space, which lays the groundwork for effective multimodal fusion.

To further enhance information complementarity, we design the

TPfusion module, which employs an adaptive gating mechanism

to dynamically adjust the weight distribution between modalities,

enabling a more refined integration of topological and textual em-

beddings with precise importance balancing. To address the second

challenge, we propose the Two-stage Overlapping Curriculum
Learning method (TOCL), which incorporates two key stages: 1)

single-step overlapping training and 2) two-stage curriculum learn-
ing. The former ensures a smoother transition from easier to more

difficult samples, while the latter helps to prevent catastrophic for-

getting and enhances the model’s generalization capabilities. These

two components are particularly crucial in multimodal training,

where alignment discrepancies between modalities can vary sig-

nificantly. Further details will be discussed in Section 4. Our main

contributions are summarized as follows:

• Wepropose amultimodal path representation learningmodel

Path-LLM, which uses a partially frozen LLM to interpret the

topological, physical, regional, and functional information

of paths. To the best of our knowledge, this is the first work

that introduces LLMs into path representation learning.

• To facilitate multimodal integration, we propose multimodal

align and fusion modules, i.e., TPalign and TPfusion, respec-

tively. Specifically, TPalgin aims to align the textual and

topological embeddings, and then TPfusion can model the

interactions between modalities.

• To improve the model’s generalization capability, we pro-

pose a two-stage overlapping curriculum learning method

to prevent catastrophic forgetting.

• We conduct extensive experiments on two real-world datasets,

Xi’an and Chengdu, across two downstream tasks to evaluate

the performance of Path-LLM. The results demonstrate that

Path-LLM consistently outperforms the baselines in all tasks,

showing superior generalization and fusion capabilities.

2 RELATEDWORK
2.1 Path Representation Learning
Path representation learning (PRL) is an important research field

for understanding and predicting patterns in transportation net-

works. Its main goal is to learn universal low-dimensional em-

beddings that capture both road segment attributes and topolog-

ical information. Compared to the specific tasks-oriented meth-

ods [5, 8, 20, 21, 31, 37], PRL can be applied to a variety of down-

stream tasks such as travel time estimation and path ranking. Re-

cently, several in-depth studies [17, 32, 33, 35] have been conducted

on PRL. PIM [32] is an unsupervised learning framework that re-

lies on high-quality negative samples for training path encoders

through mutual information maximization. However, generating

effective negative samples in data-scarce environments remains a

challenge. WSCCL [33] introduces curriculum learning strategies

but suffers from high model complexity and computational cost,

limiting its application to large-scale datasets. LightPath [35] re-

lies on sparse autoencoders and global local knowledge distillation

methods. In comparison, our method simplifies data preparation

and training processes. JGRM [24] presents a trajectory represen-

tation learning framework based on GPS trajectory modality and

topological route modality based on MLM Loss and Match Loss,

respectively. Although methods such as PIM, WSCCL, and Light-

Path focus solely on the topological modality, and while JGRM

incorporates both GPS trajectory and topological modalities, there

is a noticeable gap in the exploration of path representations that

consider both topological and textual modalities. In response to

this, we propose Path-LLM, a novel approach that integrates both

topological and textual modalities to learn a more comprehensive

and generic path representation.

2.2 Cross Domain Application of LLM
Recent advances in large language models (LLMs) have demon-

strated their potential across various multimodal applications, in-

cluding time series analysis [18, 28, 39] and computer vision tasks [1,

3, 12, 14]. These approaches typically employ domain-specific en-

coders to map data into representations for LLMs, facilitating down-

stream tasks. These methods commonly use domain-specific en-

coders to convert sample data into embeddings for LLMs, aiding

downstream tasks. While the mentioned studies offer valuable in-

sights, their methods are specific to their fields, and cannot be

directly applied to PRL. To our knowledge, no existing research

2024-10-15 12:24. Page 2 of 1–9.
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Figure 2: Path-LLM Overview

systematically focuses on applying LLMs to path representation

learning.

3 PRELIMINARY
In this section, we introduce the basic definitions and concepts

required to understand our proposed path representation learning

framework, including definitions related to road networks, multi-

modal paths, and path representations.

3.1 Basic Definitions
Definition 1. Road Network. A road network is represented

as a graph G = (𝑉 , 𝐸), where 𝑉 is the set of nodes 𝑣𝑖 representing
road intersections, and 𝐸 ⊆ 𝑉 ×𝑉 is an edge set, where 𝑒𝑖 = (𝑣 𝑗 , 𝑣𝑘 )
represents a road segment from 𝑣𝑖 to 𝑣 𝑗 .

Definition 2. Topological Path. A topological path is defined
as 𝑝 = ⟨𝑒1, 𝑒2, · · · , 𝑒𝐿⟩, which consists of an ordered sequence of edges,
where two consecutive edges 𝑒𝑖 = (𝑣𝑖 , 𝑣𝑘 )and 𝑒𝑖+1 = (𝑣𝑘 , 𝑣𝑖+1) ∈ 𝐸
share a common vertex, denoted as 𝑒𝑖 ∩ 𝑒𝑖+1 = 𝑣𝑘 , and 𝐿 is the length
of path 𝑝 .

Definition 3. Textual Path. Given a topological path 𝑝 , a tex-
tual path is defined as 𝑡 = ⟨𝑎1, 𝑎2, · · · , 𝑎𝐿⟩, which 𝑎𝑖 denotes the
textual description (e.g., road name, type and length, etc.) of edge 𝑒𝑖 .

Definition 4. Edge Representation. In a road network graph,
the topological representation of an edge is denoted by the embedding
ℎ𝑝 ∈ R𝐷𝑝 , which is obtained from graph embedding models such as
Node2Vec [10], and the textual representation of an edge is denoted
by ℎ𝑡 ∈ R𝐷𝑡 that is obtained by text-embeddings-3 1 from OpenAI.

1
https://platform.openai.com/docs/guides/embeddings

3.2 Problem Definitions
In a graph network G, the objective of multimodal path represen-

tation learning for a path set P = {𝑝𝑖 , 𝑡𝑖 }𝑁𝑖=1 is to learn a function

𝐹𝜃 (·) that can generate a generic multi-modal path representation

𝑂 ∈ R𝑀
for each path 𝑝 ∈ P, which can be used for the downstream

tasks. It can be expressed as follows:

𝑂 = 𝐹𝜃 (𝑝, 𝑡) : (R𝐿×𝐷𝑝 ,R𝐿×𝐷𝑡 ) → R𝐿×𝑀 , (1)

where 𝑂 is the learned generic multi-modal path representation,

𝜃 denotes the learnable parameters for the whole model, 𝐿 is the

length of the input path, and𝑀 is the total number of paths used in

the training process. 𝐷𝑝 and 𝐷𝑡 denote the feature dimensions for

the edge embeddings for topological and textual path, respectively,

and𝑀 is the output dimension for path representation.

4 METHODS
This section provides an overview of Path-LLM, which consists of

four key components: a pre-trainedmodality alignmodule (TPalign),

a multimodal fusion module (TPfusion), a frozen pre-trained LLM,

and a two-stage overlapping curriculum learning model (TOCL), as

illustrated in Figures 2 and 4, respectively. The subsequent sections

offer detailed descriptions of each component.

4.1 Input Embeddings
Road segments can be characterized by both spatial relationships

and textual information. This duality offers complementary insights:

topological embeddings elucidate the structural configuration of

the road network, while textual embeddings facilitate the inter-

pretation of human-readable information, such as the functions

and attributes of specific road segments. The following section will

specifically introduce the construction methods for the two types

of embeddings.

2024-10-15 12:24. Page 3 of 1–9.
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Figure 3: Instance-level CL and Feature-level CL.

4.1.1 Textual Path Construction. To capture the key attributes, such
as name, type, and length—for each segment in path 𝑝 , we introduce

LLMs to interpret the textual path. In particular, segment names

offer insights into regional road characteristics; length information

allows the model to assess the significance of each segment within

the overall path. Additionally, road type information aids the model

in understanding the functional and structural properties of various

road segments, thereby enhancing path representations.We retrieve

road segment names, lengths, and types from OpenStreetMap [13].

For a given topological path 𝑝 = ⟨𝑒1, 𝑒2, · · · , 𝑒𝐿⟩, we can obtain the

corresponding textual path 𝑡 = ⟨𝑎1, 𝑎2, · · · , 𝑎𝐿⟩, where𝑎𝑖 represents
the textual information of 𝑒𝑖 .

4.1.2 Modality Embeddings. As shown in the left-most part of

Figure 2, we employ OpenAI’s text-embeddings-3 (T2E) followed by

a 1D Max-Pooling layer as the text encoder, while the edge encoder

combines Node2Vec [10] with a Feed Forward Network (FFN). We

use edge encoder and text encoder to obtain topological embeddings

𝑄𝑝 and textual embeddings 𝑄𝑡 for all road segments in a path,

respectively, as defined in Equations 2 and 3.

𝐻𝑝 = 𝑁𝑜𝑑𝑒2𝑣𝑒𝑐 (𝑝); 𝑄𝑝 = 𝐹𝐹𝑁 (𝐻𝑝 ); (2)

𝐻𝑡 = 𝑇 2𝐸 (𝑡); 𝑄𝑡 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙1𝐷 (𝐻𝑡 ), (3)

where, 𝐻𝑝 ∈ R𝐿×𝐷𝑝
, 𝐻𝑡 ∈ R𝐿×𝐷𝑡

, 𝐷𝑝 and 𝐷𝑡 correspond to the

feature dimensions of the path and text respectively. 𝑄𝑝 ∈ R𝐿×𝑀
,

𝑄𝑡 ∈ R𝐿×𝑀
,𝑀 represents the input dimension of LLM.

4.2 Align and Fuse
The spatial nature of topological information in path limits LLMs’

interpretation compared to textual data. To address it, we propose

a multimodal fusion module, TPfusion, which aligns these modali-

ties to enhance their interactions. Specifically, we introduce a con-

trastive learning-based pretraining module, TPalign, to align topo-

logical data with textual information. This alignment is essential

for enabling LLMs to interpret path data more meaningfully and

spatially awarely.

4.2.1 Topological and Textual Path Modality Alignment (TPalign).
TPalign performs contrastive learning (CL) tasks at both the in-

stance and feature levels to pretrain the Feed ForwardNetwork (FFN)

of the edge encoder, as shown in Figure 3. At the instance level, it

aligns the textual and topological embeddings of individual road

segments, which focuses on minimizing the distance between tex-

tual embeddings and their corresponding topological embeddings

for the same path, while maximizing the difference between em-

beddings of different paths. This design ensures that LLMs can

better understand and utilize the spatial context in path representa-

tions. At the feature level, it aligns the embeddings across feature

dimensions to facilitate TPfusion better integrating multimodal

information across different feature dimensions.

Specifically, given a road segment 𝑒𝑖 ∈ 𝐸, we denote the positive
embeddings as ℎ𝑖𝑡 and ℎ

𝑖
𝑝 , and negative embeddings as ℎ𝑖𝑡 and ℎ

𝑗
𝑝 ,

where 𝑖 ≠ 𝑗 . Our goal is to bring the positive pair closer in the

embedding space and push the negative pair further apart.

In instance-level CL, we construct positive/negative pairs as

(𝑞𝑖𝑡 , 𝑞𝑖𝑝 ) and (𝑞𝑖𝑡 , 𝑞
𝑗
𝑝 ), where𝑞𝑖𝑝 = 𝐹𝐹𝑁 (ℎ𝑖𝑝 ) and𝑞𝑖𝑡 = 𝑀𝑎𝑥𝑝𝑜𝑜𝑙1𝐷 (ℎ𝑖𝑡 ).

Then, the similarity of one pair embedding can be calculated as

follows.

𝑆 (𝑞𝑚𝑝 , 𝑞𝑛𝑡 ) = Sigmoid(MLP(𝑞𝑚𝑝 | |𝑞𝑛𝑡 )), (4)

where 𝑆 (𝑞𝑚𝑝 , 𝑞𝑛𝑡 ) denotes the similarity function that measures the

similarity of a pair of topological and textual path embeddings of

two edges, 𝑒𝑚 and 𝑒𝑛 , respectively. ·| |· denotes the concatenation
operation, and Sigmoid(·) denotes the Sigmoid function.

Let𝑦 represent the label of pair embeddings, where positive pairs

are assigned a value of 1 and negative pairs are assigned a value

of 0. Then, we construct a set of training data as B = {(𝑞𝑖𝑝 , 𝑞𝑖𝑡 , 𝑦𝑖 )}.
Then, we calculate the instance-level contrastive loss as follows:

Lins = − 1

|B|

|B |∑︁
𝑖=1

[𝑦𝑖 log 𝑆 (𝑞𝑖𝑝 , 𝑞𝑖𝑡 ) + (1 − 𝑦𝑖 ) log log 𝑆 (𝑞𝑖𝑝 , 𝑞𝑖𝑡 )] . (5)

In feature-level CL, we treat the textual embeddings correspond-

ing to all road segments in each batch as a textual feature matrix

𝑄𝑡 ∈ R𝐵×𝑀
. Similar to the instance-level, we can obtain a positive

feature matrix 𝑄+
𝑝 and the negative 𝑄−

𝑝 , where 𝑄𝑝 = [𝑞𝑖𝑝 ]
𝐵

𝑖=1
∈

R𝐵×𝑀
. The column embeddings of matrices 𝑄𝑡 and 𝑄𝑝 are repre-

sented as 𝑐𝑡 and 𝑐𝑝 respectively. For the 𝑗-th pair (𝑐 𝑗𝑡 , 𝑐
𝑗
𝑝 ) within𝑀

columns, we compute the similarity as:

𝐻 (𝑐𝑚𝑝 , 𝑐𝑛𝑡 ) = Sigmoid(MLP(𝑐𝑚𝑝 | |𝑐𝑛𝑡 )), (6)

where 𝐻 (𝑐𝑚𝑝 , 𝑐𝑛𝑡 ) denotes the similarity function that measures the

similarity of a pair of topological and textual path embeddings of

two columns, 𝑐𝑚 and 𝑐𝑛 , respectively.

Let 𝑧 represent the label of pair embeddings, where the positive

column pair is assigned a value of 1 and the negative pair is assigned

a value of 0. Then, we construct a set of training data as M =

{(𝑐𝑖𝑝 , 𝑐𝑖𝑡 , 𝑧𝑖 )}. The feature-level contrastive loss is computed as:

L
fea

= − 1

|M|

|M |∑︁
𝑖=1

[𝑧𝑖 log 𝐻 (𝑐𝑖𝑝 , 𝑐𝑖𝑡 ) + (1 − 𝑧𝑖 ) log log 𝐻 (𝑐𝑖𝑝 , 𝑐𝑖𝑡 )] . (7)

Finally, the overall training loss is computed as a weighted combi-

nation of the instance-level and feature-level losses:

L = 𝜆Lins + (1 − 𝜆)L
fea
, (8)

where 𝜆 is a hyperparameter that balances the contributions of the

instance-level and feature-level contrastive losses.
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U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Path-LLM: A Multi-Modal Path Representation Learning by Aligning and Fusing with Large Language Models Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

4.2.2 Topological and Textual Path Modality Fusion (TPfusion). To
improve the effective parsing of multimodal information by LLMs,

it is necessary to fuse these two features. However, directly adding

the textual and topological features or applying static weights may

lead to conflicts between the modalities. To address this issue, we

propose a multimodal fusion module, TPfusion, which dynamically

adjusts the contribution of each modality by selectively weighting

different positions. Specifically, the topological and textual embed-

dings 𝑄𝑝 and 𝑄𝑡 are fed into a gated fusion module to compute a

gate value𝐺 ∈ R𝐿×𝑀
based on the linear transformations of both

input features, followed by a sigmoid activation function:

𝐺 = Sigmoid(𝑊𝑝𝑄𝑝 +𝑊𝑡𝑄𝑡 + 𝑏), (9)

where𝑊𝑝 ∈ R𝐿×𝑀
and𝑊𝑡 ∈ R𝐿×𝑀

are learnable weight matrices,

𝑏 ∈ R𝑀
is the bias term. The sigmoid function ensures that the gate

values range between 0 and 1. The final fused representation 𝑄 𝑓 is

obtained by combining 𝑄𝑝 and 𝑄𝑡 using the computed gate values,

where the gate values control the contribution of each modality:

𝑄 𝑓 = 𝐺 ⊙ 𝑄𝑝 + (1 −𝐺) ⊙ 𝑄𝑡 , (10)

where ⊙ denotes the element-wise multiplication operator.

4.3 Pre-Trained and Frozen LLM Block.
We employ a pre-trained GPT-2 model [19] to enhance path rep-

resentation learning, capitalizing on its efficacy in sequential data

processing. To maximize its embedded knowledge while minimiz-

ing computational costs, we utilize a selective fine-tuning strategy,

as inspired by [39].

4.3.1 Freezing Layers: During the training phase, we freeze both
the multi-head self-attention (MHA) and feed-forward network

(FFN) layers in GPT-2. These components have already been trained

to capture general patterns from large-scale language data, and

freezing them prevents overfitting to the current task, while also

reducing the training time and computational complexity. By freez-

ing these layers, we retain the robust representational power of the

pre-trained GPT-2 model.

4.3.2 Fine-tuning Positional Embeddings and Layer Normalization:
To enable the model to adapt to path representation learning, we

fine-tune specific layers that can better capture task-specific infor-

mation. First, we fine-tune the word positional embeddings (WPE),

allowing the model to better encode the sequential nature of paths.

Paths inherently exhibit spatial and topological structures, which

positional embeddings can effectively represent by learning the

relative positions of road segments. Furthermore, we fine-tune the

layer normalization (LN) layers to stabilize training and enhance

model performance, ensuring that gradient updates remain stable

during transformations.

4.3.3 Skipping Input Embeddings: We bypass the original input

embedding layer in GPT-2 and use the fused representation 𝑄 𝑓

from TPfusion as the direct input, then we obtain a universal path

representation 𝑂 ∈ R𝐿×𝑀
.

4.4 Two-stage OverLapping Curriculum
Learning

Fine-tuning large language models (LLMs) for specific tasks, par-

ticularly when integrating multiple modalities, poses a significant

challenge in maintaining generalization capabilities. Traditional

fine-tuning approaches often lead to overfitting on task-specific

data, reducing the model’s ability to generalize across diverse sce-

narios. Additionally, when handling complex multimodal data, the

model may struggle to effectively balance the learning of both

simple and complex examples, further impairing performance. To

address these issues, we propose Two-stage OverLapping Curricu-

lum Learning, termed as TOCL. The overview of TOCL is illustrated

in Figure 4.

4.4.1 Single Step Overlapping Training: In this phase, TOCL adopts

a progressive learning strategy, where the model 𝜃𝑖 is trained incre-

mentally over 𝑁 rounds, with each round introducing increasingly

complex data. Unlike traditional methods, TOCL selects the train-

ing data for each round using a sliding window approach, ensuring

that each round’s data partially overlaps with the previous round’s

data. This overlap allows the model to reinforce previously acquired

knowledge while progressively integrating more challenging data.

The training data is ranked byMean Squared Error (MSE), sorting

paths from the easiest to the most challenging. For each round 𝑖 ,

a window of size 𝛾𝑖 is defined, with start and end indices denoted

by x𝑠𝑡
𝑖

and x𝑒𝑛𝑑
𝑖

respectively. This approach ensures that the model

encounters only simpler data in the early stages and progressively

introduces more complex data as training advances. The data from

round 𝑖 partially overlaps with the data from round 𝑖−1 . This design
aims to allow the model to review previously learned knowledge

in each training round, thereby ensuring a smooth transition to

learning more complex data.

4.4.2 Two-Stage Curriculum: TOCL further introduces a two-stage

training strategy to balance both complex and fundamental knowl-

edge retention. As illustrated in Figure 4, this process is divided

into two phases: (1) Stage 1 (Round 1 to 𝐾): In the first 𝐾 rounds,

the model is progressively trained on all data using the single-step

overlapping approach. This phase allows the model to build a strong

foundation by gradually increasing the complexity of the training

data; (2) Stage 2 (Rounds 𝐾 + 1 to 𝑁 ): From round 𝐾 + 1 to round

𝑁 , the model is trained on all data again. This ensures that the

model not only retains and understands complex knowledge but

also consolidates basic knowledge.

5 EXPERIMENTS
5.1 Datasets and Settings
We conduct experiments on real-world datasets from the cities of

Chengdu and Xi’an. The original datasets, released by Didi, consist

of GPS trajectories recorded by taxis in the two cities. We obtain

the urban road networks from OpenStreetMap to perform map-

matching on the trajectories. We remove paths shorter than 10

segments. Ultimately, the Chengdu dataset contains 4,315 road

segments and 121,526 paths, while the Xi’an dataset includes 3,392

road segments and 94,917 paths.
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Figure 4: The Training Process of TOCL

We divide each city’s dataset into training, testing, and validation

sets with a ratio of 8:1:1. We use GPT-2 as the base LLM for develop-

ment, and all models are implemented using PyTorch [25]. We set

the training process to 40 epochs. All experiments are conducted

on Linux server with an NVIDIA RTX3090 24GB GPU. Our code is

available at: https://anonymous.4open.science/r/Path-LLM-F053.

5.2 Downstream Tasks
In our study, we conduct experimental analysis on two downstream

tasks:

Travel Time Estimation (TTE): We extract the travel time for

each path from the original trajectory data. We make predictions

using a fully connected layer, as described below:

𝑦TTE = FCTTE (𝑂) . (11)

To evaluate the performance of TTE, we use Mean Absolute Er-

ror (MAE) [33], Mean Absolute Percentage Error (MAPE) [33] and

Mean Absolute Relative Error (MARE) [33]. Lower values of these

metrics indicate better performance.

Path Ranking: We consider the path used by drivers in historical

trajectories as the optimal path. Then, for each optimal path, we

generate multiple candidate paths connecting the same origin and

destination using path finding algorithm [23]. Finally, we calculate

the Jaccard similarity coefficient between the optimal path and each

candidate path to determine the ranking score:

𝐽 (𝐴, 𝐵) = |𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 | , (12)

where𝐴 and 𝐵 represent two sets, while |𝐴∩𝐵 | and |𝐴∪𝐵 | denotes
the size of their intersection and union, respectively. Similar to

TTE, we use a fully connected layer to predict the ranking score.

In addition to MAE, we also use the Kendall rank correlation coeffi-

cient (𝜏 ), and Spearman’s rank correlation coefficient (𝜌) as metrics

for path ranking evaluation:

𝜏 =
𝑁con − 𝑁dis

𝑛(𝑛 − 1)/2 , (13)

𝜌 = 1 −
6

∑𝑛
𝑖=1 𝑑

2

𝑖

𝑛(𝑛2 − 1)/2
, (14)

where 𝑁con and 𝑁
dis

represent the number of concordant and dis-

cordant pairs in the two rankings, respectively. In Equation 14, 𝑑𝑖
represents the difference in rank for the 𝑖-th path in both rankings.

For instance, if the true rank of 𝑝𝑖 is 1 and the predicted rank is 3,

then 𝑑𝑖 = 1 − 3 = −2.

5.3 Baselines
We compare with 8 path representation learning baselines. The

details of methods are described as follows:

• Node2vec [10] is a graph embedding algorithm designed

to learn continuous representations of nodes in a graph,

effectively capturing both structural roles and community

affiliations.

• Toast [4] is a road network representation framework that

obtains effective road segment representations through traf-

fic context aware skip-grammodule and trajectory-enhanced

transformer module.

• PIM [32] is an unsupervised path representation learning

method that first employs curriculum learning to generate

negative samples, followed by leveraging both global and

local mutual information maximization to learn effective

path representations.

• Trembr [9] is a representation learning framework based on

a recurrent neural network, which incorporates the Road2Vec

model to learn road segment embeddings.

• PathRank [36] is a supervised path representation learning

method that employs Gated Recurrent Units (GRU) to model

path sequences.

• HMTRL [22] utilizes a spatiotemporal graph neural network

to capture autocorrelation and employs an attention module

to generate route representations.

• START [17] is a self-supervised framework that utilizes a

Graph Attention Network to convert road network features

into segment embeddings.

2024-10-15 12:24. Page 6 of 1–9.
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Table 1: Overall accuracy in travel time estimation and path ranking tasks.We use ‘↑’ (and ‘↓’) to indicate that larger (and smaller)
values are better. For each task, we highlight the best and second-best performance in bold and underline. “Improvement”
quantifies the enhancements achieved by Path-LLM over the best baseline.

Method

Xi’an Chengdu

Travel Time Estimation Path Ranking Travel Time Estimation Path Ranking

MAE ↓ MARE ↓ MAPE ↓ MAE ↓ 𝜏 ↑ 𝜌 ↑ MAE ↓ MARE ↓ MAPE ↓ MAE ↓ 𝜏 ↑ 𝜌 ↑
Node2vec 5.926 0.300 34.801 0.175 0.551 0.614 4.539 0.309 38.367 0.28 0.519 0.571

Toast 5.786 0.295 33.742 0.180 0.629 0.672 6.151 0.424 61.585 0.320 0.394 0.415

PIM 4.512 0.228 24.892 0.143 0.664 0.737 3.450 0.241 27.934 0.192 0.570 0.628

Trembr 4.814 0.247 29.505 0.089 0.676 0.747 4.211 0.299 35.598 0.149 0.666 0.735

PathRank 4.696 0.234 25.735 0.155 0.667 0.735 3.610 0.255 30.854 0.231 0.618 0.674

HMTRL 4.516 0.228 25.786 0.164 0.676 0.749 3.557 0.246 28.897 0.259 0.653 0.721

START 4.642 0.234 26.313 0.116 0.682 0.753 3.328 0.229 26.237 0.231 0.671 0.739

LightPath 4.424 0.223 24.346 0.076 0.693 0.760 3.304 0.225 26.142 0.204 0.560 0.627

Path-LLM 4.179 0.207 20.885 0.029 0.766 0.819 3.096 0.213 23.290 0.093 0.706 0.772
Improvement 5.86% 7.17% 14.22% 61.84% 10.55% 7.76% 6.30% 5.33% 10.91% 37.58% 4.96% 4.27%

• LightPath [35] is a scalable and lightweight path represen-

tation learning framework based on sparse path encoder and

relational reasoning.

5.4 Results and Analysis
5.4.1 Overall Performance. Table 1 presents the performance com-

parison of Path-LLM with all baseline models across two datasets

under two downstream tasks. Overall, Path-LLM outperforms all

the baselines in both datasets and across all evaluation metrics,

demonstrating the superiority of our model. Specifically, we make

the following observations.

Node2Vec performs poorly on downstream tasks across both

datasets due to its limitations of graph embedding methods in cap-

turing spatial relationships along a path. Both Toast and PathRank

utilize bidirectional Gated Recurrent Unit (GRU) to capture sequen-

tial information. However, since Toast is primarily designed for

trajectory representation learning, its architecture is more focused

on modeling movement patterns. PIM relies on the construction of

high-quality negative samples for their effectiveness, which results

in the performance instability across different datasets and tasks.

The performance of Trembr and HMTRL demonstrate the advan-

tages of sequence modeling approaches in handling long sequence

data. LightPath and START both employ contrastive learning ap-

proaches, and their performance surpasses that of most baseline

models, indicating the significant advantage of contrastive learning

in capturing distinctive features for path representation. However,

their reliance solely on the road network topology modality may

constrain their performance in complex paths. In contrast, Path-

LLM integrates multi-modal information of paths, enabling a mul-

tifaceted understanding of paths that enhances the richness and

accuracy of path representations, as well as improving performance

across various tasks.

5.4.2 Zero-shot Travel Time Estimation. To evaluate the transfer-
ability of Path-LLM across different cities, we conduct the follow-

ing zero-shot travel time estimation experiments: (1) Chengdu→
Xi’an: the model is trained on the Chengdu dataset and evaluated

on the Xi’an dataset; (2) Xi’an → Chengdu: the model is trained

on the Xi’an dataset and evaluated on the Chengdu dataset. These

experiments aim to evaluate the generalization capability of Path-

LLM on unseen datasets, particularly in cross-city scenarios where

variations in the physical characteristics and regional features of

paths may impact the model’s performance. From the results in

Table 2, it is evident that Path-LLM demonstrates significantly su-

perior zero-shot performance compared to other baseline models.

5.4.3 Few-shot Travel Time Estimation. Evaluating the few-shot

learning capability of Path-LLM under data-scarce conditions is also

a key focus of our study. To simulate such scenarios, we conduct

few-shot time estimation experiments on the Xi’an and Chengdu

datasets, using 5% and 30% of the data samples, respectively, as

shown in Table 3 and Table 4. The results show that Path-LLM

exhibits robust generalization ability, even when the training data

is extremely limited.

5.4.4 Albation Studies. To evaluate the contribution of each com-

ponent in Path-LLM, we conduct a comparative analysis between

the full model and several variants:

• w/o Topology: This variant excludes the topological modality,

relying only on the textual modality.

• w/o Text: This variant omits the textual modality, and uses

only the topological modality as input.

• w/o TPfusion: This variant replaces the multimodal fusion

module TPfusion with a linear layer.

• w/o TPalign: This variant removes the TPalign task, retaining

only the TPfusion module.

• w/o TOCL: This variant randomly splits the dataset, and

trains the model using randomly sampled batches.

We measure the performance of these variants across the Xi’an

dataset on TTE and PR tasks, and the results are presented in Table

5. Based on the results, we make the following observations: (1)

The variant w/o Topology significantly reduces performance, em-

phasizing the importance of topological information in both PR

and TTE tasks; (2) The variant w/o Text also leads to performance

2024-10-15 12:24. Page 7 of 1–9.
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Table 2: Zero-shot learning in TTE task.

Methods Path-LLM LightPath START PathRank Trembr HMTRL

Metric MAE MARE MAPE MAE MARE MAPE MAE MARE MAPE MAE MARE MAPE MAE MARE MAPE MAE MARE MAPE

Chengdu→ Xi’an 7.412 0.363 34.890 9.810 0.557 73.057 9.730 0.473 44.425 9.983 0.479 43.602 12.518 0.616 53.885 10.594 0.550 84.841

Xi’an→ Chengdu 5.116 0.359 42.251 6.474 0.424 45.175 8.801 0.625 78.613 7.289 0.473 42.797 7.896 0.573 74.545 7.071 0.460 45.548

Table 3: Few-shot learning in TTE task on 5% label data.

Methods Path-LLM LightPath START PathRank Trembr HMTRL

Metric MAE MARE MAPE MAE MARE MAPE MAE MARE MAPE MAE MARE MAPE MAE MARE MAPE MAE MARE MAPE

Chengdu 3.649 0.251 29.705 3.728 0.259 30.793 4.170 0.291 36.331 4.662 0.304 30.692 4.983 0.357 43.500 4.607 0.299 28.983

Xi’an 4.481 0.222 23.265 4.807 0.241 26.955 5.515 0.278 31.651 7.160 0.381 49.656 6.164 0.294 29.746 7.357 0.395 52.901

Table 4: Few-shot learning in TTE task on 30% label data.

Methods Path-LLM LightPath START PathRank Trembr HMTRL

Metric MAE MARE MAPE MAE MARE MAPE MAE MARE MAPE MAE MARE MAPE MAE MARE MAPE MAE MARE MAPE

Chengdu 3.292 0.227 25.987 3.387 0.234 25.966 3.527 0.243 28.026 3.514 0.242 27.523 3.894 0.255 24.746 3.648 0.251 29.234

Xi’an 4.332 0.218 23.651 4.584 0.230 25.435 4.799 0.256 28.825 6.131 0.302 30.626 5.080 0.276 31.187 4.880 0.254 28.145

Table 5: Performance of Variants of Path-LLM

Methods

Travel Time Estimation Path Ranking

MAE MARE MAPE MAE 𝜏 𝜌

w/o Topology 4.418 0.222 24.135 0.032 0.699 0.752

w/o Text 4.304 0.217 22.559 0.032 0.720 0.788

w/o TPfusion 4.519 0.226 24.449 0.030 0.716 0.787

w/o TPalign 4.226 0.212 22.025 0.032 0.729 0.793

w/o TOCL 4.238 0.213 22.756 0.030 0.723 0.789

Path-LLM 4.179 0.207 20.885 0.029 0.766 0.819

degradation, demonstrating the value of textual data in providing

semantic insights and effectively leveraging pre-trained models for

prior knowledge utilization; (3) The variant w/o TPfusion signifi-

cantly reduces the performance of TTE predictions, highlighting

the critical role of the TPfusion module in achieving effective mul-

timodal data fusion. Additionally, The variant w/o TPalign results

in performance declines, indicating that proper alignment between

textual and topological embeddings is essential for maximizing

the effectiveness of TPfusion in multimodal integration; (4) The

variant w/o TOCL causes substantial degradation, showcasing the

advantages of gradual learning for understanding multimodal path

sequences.

5.4.5 Impact of Hyper-parameters. In this section, we explore how

different hyper-parameters affect the performance of Path-LLM.

Specifically, we evaluate the effects of textual embedding size 𝐷𝑡 ,

topological embedding size 𝐷𝑝 , LLM input embedding size𝑀 and

batch size 𝐵. Figure 5 presents the MAE results from the TTE task

using Xi’an dataset. Similar trends are observed for the other tasks

evaluated. The results indicate that increasing the text embedding

size from 1536 to 3072 leads to a decline performance, and a topolog-

ical embeddings size of 𝐷𝑝 achieves the best results. Increasing the

LLM input embeddings results in performance degradation, likely

due to the increased parameter count which makes fine-tuning

more challenging. When the batch size 𝐵 is increased from 4 to 8,

the MAE decreases significantly, but further increases offer only

1536 30724.160

4.165

4.170

4.175

(a) Textual embedding size 𝐷𝑡

768 1024 1280 16004.140

4.166

4.192

4.220

(b) Topological embedding size 𝐷𝑝

768 1024 12804.159

4.169

4.179

4.189

(c) LLM input size𝑀
4 8 16 244.130

4.157

4.182

4.210

(d) Batch size 𝐵

Figure 5: Effects of hyper-parameters.

marginal improvements. Therefore, setting 𝐵 = 8 is the optimal

choice when computational resources are limited.

6 CONCLUSIONS
In this work, we propose Path-LLM, a novel multi-modal path

representation learning model that utilizes LLMs to integrate the

topological, physical, regional, and functional characteristics of

paths. We propose TPalign, a contrastive pretraining strategy to

reduce modal conflicts by aligning multimodal embeddings. We also

design TPfusion that dynamically adjusts modality importance. To

train LLMs effectively, we introduce TOCL, a curriculum learning

approach that gradually increases data complexity. Extensive exper-

iments demonstrate the superior performance of Path-LLM. In the

future, we aim to further explore multi-modal representation tech-

niques for paths to achieve more comprehensive representations,

which are critical for intelligent transportation systems.
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