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Abstract

If causal relationships are linear and acyclic and noise terms are independent and
Gaussian, causal orientation is not identified from observational data — even
if faithfulness is satisfied (Spirtes et al., 2002). Shimizu et al. (2006) showed
that acyclic, linear, non-Gaussian (LiNGAM) causal models are identified from
observational data, so long as no latent confounders are present. That holds
even when faithfulness fails. Genin and Mayo-Wilson (2020) refine that result:
not only are causal relationships identified, but causal orientation is statistically
decidable. That means that for every ϵ > 0, there is a method that converges in
probability to the correct orientation and, at every sample size, outputs an incorrect
orientation with probability less than ϵ. These results naturally raise questions
about what happens in the presence of latent confounders. Hoyer et al. (2008) and
Salehkaleybar et al. (2020) show that, although the causal model is not uniquely
identified, causal orientation among observed variables is identified in the presence
of latent confounders, so long as faithfulness is satisfied. This paper refines these
results: although it is possible to converge to the right orientation in the limit,
causal orientation is no longer statistically decidable—it is not possible to converge
to the correct orientation with finite-sample bounds on the probability of orientation
errors, even if faithfulness is satisfied. However, that limiting result suggests several
adjustments to the LiNGAM model that may recover decidability.

1 Introduction

Spirtes et al. [2000] develop the elements of causal discovery from observational data in the linear
Gaussian setting. They show that when functional relationships between variables are linear and
acyclic and noise terms are independent and Gaussian, it is possible to converge to the Markov
equivalence class of the graph generating the data. Although some non-trivial causal information
can be recovered, causal orientation is in general not identified: two linear Gaussian models may
differ in causal orientation and nevertheless generate the exact same distribution over the observed
variables. Identifiability fails even when causal faithfulness is satisfied and no hidden variables are
present. For this reason, it was a significant advance when Shimizu et al. [2006] showed that, when
functional relationships between variables are linear and acylic and noise terms are independent and
non-Gaussian, all causal orientations can be uniquely identified from observational data, even without
assuming faithfulness. However, that early result depends on the absence of unobserved confounders.
Since then, the LiNGAM framework, as it came to be called, has been extended to accommodate
the presence of hidden variables [Hoyer et al., 2008, Salehkaleybar et al., 2020]. Salehkaleybar et al.
[2020] prove that if, in addition to the usual LiNGAM assumptions, we assume causal faithfulness,
then causal ancestry relationships between observed variables are identified even in the presence of
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Table 1: Three Varieties of Decidability
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unobserved confounders. In other words: if two faithful, confounded LiNGAM models generate
the same distribution over the observed variables, then for every pair of observed variables X,Y ,
the models must agree on whether X is causally upstream of Y, Y is upstream of X, or neither is
upstream of the other. Note that the models do not have to agree on which variables are direct causes
of which others, only on which variables are ancestors of which others. Moreover, although all
models generating the same distribution over the observed variables must agree on the causal ancestry
relations between them, they may disagree on the strength of the causal effects (Figure 2).

These identifiability results are exciting theoretical developments. However, identifiability is a weak
criterion and on its own does not entail the existence of a consistent discovery algorithm. Moreover,
distinctions ought to be made between degrees of identifiability. For example, uniform decidability
(elsewhere known as uniform consistency) requires that one be able to determine a priori a sample size
at which the chance of identifying the true orientation is at least 1− α, no matter which causal model
is generating the data. Unfortunately, it is easy to show that there is no uniformly consistent algorithm
for determining the direction of a causal edge, even in unconfounded LiNGAMs (see Example 1 in
Genin and Mayo-Wilson [2020]). Although one could strengthen the LiNGAM assumptions to make
uniform decidability feasible, these assumptions would probably be implausibly strong .2

Decidability in the limit (elsewhere known as pointwise consistency) requires only that for each
causal model that might be generating the data, there be some sample size by which the chance
of outputting the true orientation is at least 1 − α. Note that this is compatible with all kinds of
short-run behavior. For example, Kelly and Mayo-Wilson [2010] show that in the unconfounded
linear Gaussian setting, even in situations in which causal orientation is identifiable, it is possible to
force any consistent discovery procedure to “flip" its judgement about whether X causes Y or vice
versa. That means that for any such procedure, it is possible to find a model in which the procedure
flips between being highly likely to output the correct causal orientation at a smaller sample size and
highly likely to output the incorrect orientation at a larger sample size, with the number of such flips
bounded only by the number of variables in the model.

Genin and Mayo-Wilson [2020] introduce a new notion of decidability that is intermediate between
uniform decidability and decidability in the limit. Statistical decidability requires that a discovery
procedure converge to the true orientation as sample sizes increase and, at every sample size, output
an incorrect orientation with probability at most α. Note that statistical decidability rules out flipping
behavior, but is consistent with suspending judgement at arbitrarily large sample sizes. Genin and
Mayo-Wilson [2020] show that, in the absence of unobserved confounders, causal orientation is
decidable in the LiNGAM setting and therefore, flipping can be avoided. That demonstrates that
statistical decision procedures may exist even when uniform decision procedures do not.

2In the linear Gaussian setting, Robins et al. [2003] show that uniform consistency is not feasible under
standard assumptions. Zhang and Spirtes [2003] propose a strengthening of these assumptions to ensure uniform
decidability, but Uhler et al. [2013] argues that this rules out a topologically large set of models. Bühlmann et al.
[2014] give conditions strong enough the ensure uniform decidability in the general setting of additive structural
equation models.
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Table 1 sums up: if we have a uniform decision procedure we know that the output of the method
is probably correct at every sample size and we know a priori how large a sample we need for it to
be informative. If we have a decision procedure, we know that the output of the method is probably
correct at every sample size, but we do not know a priori how large a sample we need for it to be
informative. And if we have only a limiting decision procedure, we can never be sure that the output
is correct, although we know it will be probably correct eventually.

Crucially, mere identifiability alone does not entail that a problem is decidable in any of the above
three senses. Therefore, the results of Salehkaleybar et al. [2020] leave open the possibility that the
causal ancestry relationship is not even decidable in the limit. The first main result of this paper is
that the ancestry relationship is indeed decidable in the limit—there exist consistent procedures for
learning the causal ancestry relationship between observed variables. Unfortunately, flipping returns
in the confounded LiNGAM setting, even when we assume causal faithfulness. Although consistent
procedures exist for learning causal orientation, consistent decision procedures do not. Table 2 sums
up these results. However, that result suggests several adjustments to the LiNGAM framework that
could recover decidability. These are discussed in Section 7.

Table 2: Causal Orientation in LiNGAM models

Unconfounded Potentially Confounded
Faithful decidable decidable in the limit
Unfaithful decidable not identified

Genin and Mayo-Wilson [2020] prove the results in the first column.
The result in the upper-right cell is proven in this paper.

2 Technical Preliminaries

We first introduce notation for manipulating matrices. Suppose A is an n× p matrix and U, V are
subsets of {1, . . . , n}, {1, . . . , p}, respectively. Let A[U ;V ] be the result of dropping all rows from A
that are not in U and all columns that are not in V . Let A(U ;V ) be the result of dropping all rows from
A that are in U and all columns that are in V. We write A(i,j) for A({i};{j}) and Aij for A[{i};{j}].
We say A has pairwise linearly independent columns iff no two columns of A are proportional.

LetM be a set of statistical models. We assume there is a function P : M 7→ PM that maps each
model inM to a probability measure over a space Ω of observed outcomes, although we often do
not distinguish between a random vector and the probability measure induced by its distribution
function. Henceforth, we assume Ω = Rp. We lift P (·) to sets of models in the obvious way: if
A ⊆M, let P [A] = {P (M) : M ∈ A}. Let P = P [M]. Let P0 ⊆ P be the probability measures
in P absolutely continuous with Lebesgue measure on Ω. Let P0[M] = P0 ∩ P [M]. If A ⊆ Rnd,
let ∂A be the boundary of A in the usual topology on Rnd. The weak topology on P is defined by
letting a sequence of Borel measures Pn converge weakly to P, written Pn ⇒ P iff Pn(A)→ P (A),
for every A such that P (∂A) = 0. A collection of random vectors (Xn) converges in distribution to
X iff the probability measures induced by the Xn converge weakly to the measure induced by X.
We write cl(·) for the closure operator in the weak topology. We say that a set is locally closed iff it
is the intersection of an open and a closed set. Although every open set and every closed set is also
locally closed, the converse is not true: there are properly locally closed sets which are neither open
nor closed. In metrizable topologies such as the topology of weak convergence, every open set, and
therefore every locally closed set, is a countable union of closed sets. For any natural number k, let
P k
M be the k-fold product measure of PM with itself. This measure describes the probabilities of

events in Rkd when we take k iid samples from PM . If the measures Pn converge weakly to P, the
product measures P k

n also converge weakly to P k (see Theorem 2.8 in Billingsley [1986]).

We define a question Q to be a countable set of disjoint subsets ofM. The elements of Q are called
answers. For all M ∈ ∪Q, let Q(M) denote the unique answer in Q containing M. The answer
to question Q is identified iff P (M) ̸= P (M ′) whenever Q(M) ̸= Q(M ′). Given a question Q,
we define a method λ = ⟨λn⟩n∈N to be a sequence of measurable functions λn : Ωn → Q ∪ {M},
where λn maps samples of size n to answers to the question; a method may also take the value
M to indicate that the data do no fit any particular answer sufficiently well, and so we callM the
uninformative answer. We require that ∂λ−1n (A) has Lebesgue measure zero for all n and every
answer A in the range of λn.
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A method is (pointwise) consistent for Q if for all ϵ > 0 and M ∈ ∪Q, there is n such that
P k
M (λk = Q(M)) > 1 − ϵ for all k ≥ n. We say that Q is decidable in the limit iff there is a

consistent method for Q. Dembo and Peres [1994] give the following sufficient condition for limiting
decidability. For a proof, see their Corollary 2.
Theorem 2.1 (Dembo and Peres [1994]). Q is decidable in the limit if {P (A) : A ∈ Q} is disjoint
and each P (A) is a countable union of sets closed in the weak topology.

Given some α > 0, say that a method λ is an α-decision procedure for Q if (1) λ is consistent for Q
and (2) Pn

M (M /∈ λn) ≤ α for all M ∈ ∪Q and all sample sizes n. In other words: an α-decision
procedure outputs a false hypothesis with probability at most α. A question is statistically decidable
(or simply decidable) if there is an α-decision procedure for α > 0. We give a simple necessary
condition for statistical decidability.
Theorem 2.2. Q is statistically decidable only if P0(A) ∩ clP (B) = ∅ for all A,B ∈ Q.

Proof of Theorem 2.2. Suppose for a contradiction that PM ∈ P (A) ∩ cl(P (B)) is absolutely con-
tinuous with Lebesgue measure and λ is an α-decision procedure for Q. Since λ is consistent for
Q, there must be n such that Pn

M (λ−1n (A)) > 1 − α. Since ∂λ−1n (A) has Lebesgue measure zero
and Pn

M is absolutely continuous with Lebesgue measure on Rnp, Pn
M (∂λ−1n (A)) = 0.3 There-

fore, there are (Mi) in B such that Pn
Mi

(A) → Pn
M (A). But then there is some Mj ∈ B such that

Pn
Mj

(Mj /∈ λn) > α. Contradiction.

It is worth introducing some intuitive language for questions Q with only one (usually non-exhaustive)
answer A ⊆M. We say that A is statistically verifiable iff Q = {A} is decidable. Say that A is
statistically refutable iff Q = {M \ A} is decidable. For partial converses of Theorems 2.1 and
2.2, see Genin and Kelly [2017]. Essentially, the converses hold straightforwardly if all distributions
are assumed absolutely continuous with Lebesgue measure.

The fundamental result of this paper is that the question of whether (observed) X is an ancestor of
(observed) Y or vice-versa, while decidable in the limit, is not decidable. The former follows from
Corollary 6.7 and an appeal to Theorem 2.1. The latter is proven by showing that you can approximate
to an arbitrary degree of precision the distribution over (X,Y ) generated by a faithful LiNGAM
in which X → Y by a sequence of distributions (Xm, Ym) generated by faithful but confounded
LiNGAMs in which Xm ← Ym (see Figure 3 and Lemma 6.2). Undecidability follows by appeal to
Theorem 2.2.

3 Acyclic Linear Causal Models

An acyclic linear causal model in d variables4 M is a triple ⟨X, e, A⟩, where X = ⟨Xi⟩ is a vector
of d random variables, e = ⟨e1, e2, . . . , ed⟩ is a random vector of d exogenous noise terms, and B is
a d× d matrix such that

1. Each variable Xi is a linear function of variables earlier in the order, plus an unobserved
noise term ei:

Xi =
∑
j<i

AijXj + ei;

2. the noise terms e1, . . . , ed are mutually independent.

In matrix notation, we have that X = AX+ e. Because no Xi causes itself, A has only zeroes along
its diagonal. By virtue of the causal order, A is lower triangular, i.e. all elements above the diagonal
are zero. The random vector X also admits a “dual” representation: X = Be, where B = (I−A)−1.
To see that B always exists, note that the determinant of triangular matrix is equal to the product
of its diagonal entries. Since the inverse of a lower triangular matrix is lower triangular, the matrix
B is also lower triangular, however its diagonal elements are all equal to one. If M = ⟨X, e, A⟩,
let |M | be equal to the length of the vector X. Moreover, let X(M), e(M), A(M) and B(M) be

3It is a basic fact that if µ << ν then µn << νn.
4In the following d refers to the total number of (potentially hidden) variables and p ≤ d to the number of

observed variables.
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X, e, A and (I −A)−1, respectively. The relationship between A(M) and B(M) will be made more
perspicuous in the following.

Write j →M i as a shorthand for Aij(M) ̸= 0. The relation→M defines a directed acyclic graph
G(M) over the vertices {1, . . . , |M |}. A causal path of length m from i to j in G(M) is a sequence
of vertices π = (v1, . . . , vm) such that v1 = i, vm = j and vi →M vi+1. Let Πn

ij(M) be the set of
all causal paths of length n from i to j in G(M). Let Πij(M) be the set of all causal paths from
i to j in G(M). Let Π(M) be the set of all causal paths in G(M). Write i ⇝M j as a shorthand
for Πij(M) ̸= ∅. Write j ◦M i when j ̸⇝M i and j ̸ ⇝M i. If π = (v1, . . . , vn) is a sequence of
vertices in {1, . . . , |M |}, let the path product×M

π be the product of all causal coefficients along
the path π in G(M), i.e.×M

π =
∏n

i=1 Avi+1,vi(M). Note that if π ∈ π(M) iff×M
π ̸= 0.

It is easy to verify that
Ak

ij(M) =
∑

π∈Πk
ji(M)

×Mπ.

In other words, Ak
ij(M) is the sum of all path products for paths of length k from i to j. So Ak

ij(M) ̸=
0 implies j ⇝M i. The converse is not necessarily true, since non-zero path products may sum to
zero. By a result of Carl Neumann’s, B(M) =

∑|M |
k=0 A

k(M).5 So Bij(M) =
∑

π∈Πji(M)×M
π.

In other words, Bij(M) is the sum of all path products for paths from i to j. So Bij(M) ̸= 0 implies
j ⇝M i. The converse does not necessarily hold since non-zero path products may sum to zero. We
say that model M is faithful if the total causal effect from Xi to Xj is nonzero if there is a causal
path from Xi to Xj . In other words: M is faithful if Bij(M) ̸= 0 whenever j ⇝M i.

An acyclic linear causal model M is non-Gaussian (a LiNGAM) if in addition to satisfying (1) and
(2), each of the noise terms is non-Gaussian. Let LINd be the class of all acyclic linear causal models
on d variables, and let LNGd, FLNGd respectively denote the classes of non-Gaussian models and
faithful non-Gaussian models. Similarly, LIN, LNG and FLNG respectively represent the classes of
all acyclic linear causal models, all acyclic linear non-Gaussian models, and all faithful acyclic linear
non-Gaussian models over some finite number of variables. It is sometimes reasonable to introduce a
priori constraints on the maximum size of a coefficient in a LiNGAM model. For example, if c is the
number of particles in the universe, let FLNGc be the set {M ∈ FLNG : maxi,j |Bij(M)| < c}. Let
FLNGc

d be FLNGc ∩ FLNGd.

4 Parsimonious Models

Let O be the set of all probability distributions on Rp. We are interested in when the same vector
of observed random variables could have arisen from distinct causal models. Accordingly, say
that a random vector O = (O1, . . . , Op) ∈ O admits a LiNGAM model M ∈ LNGd if there
is a permutation α of (1, . . . , d) such that Oi = Xα−1(i)(M) for 1 ≤ i ≤ p. In other words:
O = (O1, . . . , Op) admits M if there is a way to order the d variables of X(M) such that the first p
are identical with O1, . . . , Op. We say that the permutation α embeds O into M. If α embeds O into
M, then

O = BO(M)eO(M),

where BO(M) is the first p rows of PαB(M)Pα, eO(M) is Pαe(M) and Pα is the permutation
matrix corresponding to α. Extend the causal order over the elements of M to the Oi by setting
Oi ⇝M Oj if α−1(i)⇝M α−1(j) and Oi ◦M Oj if α−1(i) ◦M α−1(j).

Say that O admits a LiNGAM model if there is d such that O admits M ∈ LNGd. We say that a
model M ∈ LNGd is parsimonious for O if O admits M and O admits no M ′ in LNGf with f < d.
It is immediate that if O admits a LiNGAM model, it admits some parsimonious LiNGAM model.
For A ∈ {LNGd, LNGc

d, FLNGd, FLNGc
d} Let OA ⊂ O be the set

{O ∈ O : (∃M ∈ A)M is parsimonious for O}.
5The spectral radius ρ(A) of a square matrix A is the largest absolute value of its eigenvalues. Neumann’s

result states that if ρ(A) < 1 then (I − A)−1 exists and is equal to
∑∞

k=0 A
k. Since the eigenvalues of a

triangular matrix are exactly its diagonal entries, ρ(B(M)) = 0 for any acylic linear causal model M . By
acyclicity, there are no paths longer than |M |, so

∑
k>d A

k = 0.
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Figure 1: If M is the left-hand model and O = (X1, X2), then BO(M) =

(
1 0 0

ab+ c 1 b

)
and the

second and third columns are proportional. The right-hand model is in fewer variables and generates
the same distribution over O.

For A ∈ {LNG, LNGc, FLNG, FLNGc} Let OA≤d
= ∪j≤d OAj

and OA≥d
= ∪j≥d OAj

. Let
OA<d

,OA>d
be defined similarly. Finally, let OA = OA≥p

.

The following Lemma says that if M is faithful and parsimonious for O then no column of BO(M)
is proportional to any other. The proof idea is expressed by Figure 1: by adjusting the edge coefficient
from X1 to X2, it is possible to “absorb" L into the noise term of X2 without changing the distribution
of (X1, X2) or violating the LiNGAM model assumptions. The proof is a relatively straightforward
generalization of the example, but since it is rather lengthy we relegate it to the Supplementary
Material. A related result is given by Salehkaleybar et al. [2020, Theorem 11].

Lemma 4.1. Suppose that O admits faithful M ∈ LNGd and that some column of BO(M) is
proportional to another. Then there is M ′ ∈ LNGd−1 such that (i) O admits M ′ and (ii) Oi ⇝M Oj

iff Oi ⇝M ′ Oj and (iii) M ′ is faithful.

Lemma 4.1 raises a question about the converse: is it also the case that if BO(M) has no two
proportional columns, then M is parsimonious for O? The following Theorem from Kagan et al.
[1973] allows us to answer the question in the affirmative. We will appeal to this Theorem several
times in the following.

Theorem 4.2. Suppose that X = Ae = Bf , where A and B are p × r and p × s matrices and
e = (e1, . . . , er), f = (f1, . . . , fs) are random vectors with independent components. Suppose that
no two columns of A are proportional to each other. If the i-th column of A is not proportional to
any column of B, then ei is normally distributed.

Theorem 4.3. Suppose that faithful M ∈ LNGd. Then, M is parsimonious for O = (O1, . . . , Op)
iff no column of BO(M) is proportional to any other.

Proof of Theorem 4.3. The left to right implication is immediate from Lemma 4.1. To prove the
converse, suppose that M is not parsimonious for O. Then, O admits some M ′ ∈ LNGf with f < d.
Moreover O = BO(M)eO(M) = BO(M ′)eO(M ′), where BO(M) is an p×d matrix and BO(M ′)
is a p × f matrix. By Theorem 4.2, every column of BO(M) is proportional to some column of
BO(M ′). Since the latter has fewer columns, there must be two distinct columns of BO(M) that are
proportional to the same column of BO(M ′) and, therefore, to each other.

We close this section with an easy corollary of Lemma 4.1, which we will appeal to in the following.

Corollary 4.4. Suppose that O admits faithful M ∈ LNG. Then there is faithful M ′ ∈ LNG such
that (i) O admits M ′ (ii) M ′ is parsimonious for O and (iii) Oi ⇝M Oj iff Oi ⇝M ′ Oj .

Proof of Corollary 4.4. Suppose O admits faithful M ∈ LNG that is not parsimonious for O. By
repeated appeal to Lemma 4.1, we must eventually arrive at some M ′ that is parsimonious for O,
either because no column of BO(M) is proportional to any other (see Theorem 4.3), or because
M ′ ∈ LNGp has no latent variables.
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X1 X2

ϵ3

ϵ1 ϵ2

X1 X2

ϵ1

aϵ3 ϵ2

c

a b

ac+b
a

1 − b
a

Figure 2: Note that the exogenous noise terms ϵ1, ϵ3 switch places. Although the left and right-hand
models generate the same distribution over (X1, X2) they disagree on the total causal effect of X1

on X2 whenever b ̸= 0. When ac = −b, the lhs model is unfaithful and the models disagree, not only
on the size of the effect, but on the presence of an edge.

5 Causal Identifiability

The essence of Shimizu et al. [2006] is that if a vector of p observed variables admits a model in p
variables, that model is unique. For a simple proof, see Theorem 2.3 in Genin and Mayo-Wilson
[2020].

Theorem 5.1. Suppose that = (O1, . . . , Op) admits M,M ′ ∈ LNGp, then M = M ′.

Unfortunately, that is no longer the case when latent variables are present. Of course, if O admits
a LiNGAM without latents, it also admits one with latents. Figure 1 yields such an example: in
the left-hand model the causal relationship is mediated by L and in the right-hand model the causal
relationship is unmediated. That situation is not too worrisome, since the total causal effect X1 on X2

is the same in both circumstances. What is more worrisome is that the vector of observed variables
O may admit two LiNGAM models that differ on the effects of interventions. An example, due to
Salehkaleybar et al. [2020], is given in Figure 2. The good news is that if a set of observed variables
admits two faithful LiNGAM models, the models must agree on the ancestor relationship between
them. Although this is shown already by Salehkaleybar et al. [2020, Lemma 5], the following is a
simple proof that does not rely on facts about independent component analysis.

Theorem 5.2. Suppose that O = (O1, . . . , Op) admits faithful M,M ′. Then Oi ⇝M Oj iff
Oi ⇝M ′ Oj

Proof of Theorem 5.2. By Corollary 4.4 there are faithful LiNGAMs F, F ′ such that 1. O admits
F, F ′; 2. Oi ⇝M Oj iff Oi ⇝F Oj ; 3. Oi ⇝M ′ Oj iff Oi ⇝F ′ Oj and 4. BO(F ) and BO(F ′)
both have pairwise linearly independent columns. By (1) and (2), it suffices to prove that Oi ⇝F Oj

iff Oi ⇝F ′ Oj . But since the situation is symmetrical, it suffices to prove that Oi ⇝F Oj only if
Oi ⇝F ′ Oj .

Suppose for a contradiction that Oi ⇝F Oj but Oi ̸⇝F ′ Oj . Let α be a permutation embedding O
in F . Let B,C be BO(F ), BO(F ′), respectively. Let e, f be eO(F ), eO(F ′), respectively. Then

O = Be = Cf .

Since Oi ̸⇝F ′ Oj , Cji = 0. Moreover, Cii = 1 By faithfulness of F , Oi ⇝F Oj implies that
Bji ̸= 0. By Theorem 4.2, there must be a column k ̸= i and real number a ̸= 0 such that
Bik = aCii ̸= 0 but Bjk = aCji = 0. Since Bik ̸= 0, it follows that α−1(k) ⇝F α−1(i).
Since Oi ⇝F Oj by assumption, it follows that α−1(i) ⇝F α−1(j). By transitivity of ⇝F ,
α−1(k)⇝F α−1(j). However, Bjk = 0. So F is unfaithful. Contradiction.

For A ∈ {LNG, LNGc, LNGc
d, FLNG, FLNGc, FLNGc

d}, let Oi→j
A be the set

{O ∈ OA : (∃M ∈ A)O admits M and Oi →M Oj}.

Define Oi⇝j
A ,Oi◦j

A analogously, replacing→M with⇝M and ◦M , respectively. In light of Theorem
5.2, Oi⇝j

FLNG, O
i ⇝j
FLNG and Oi◦j

FLNG are disjoint.
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X1 X2

U1 + V1 U2 + V2

X1,m X2,m

J1,m U2

J2,m U1

1 1

−1 2−1 + 1
m 1

Figure 3: The (X1,m, X2,m), which lie in O1←2
FLNGc

4
, converge in probability to (X1, X2), lying in

O1→2
FLNGc

2
. Note that although error terms approach Gaussianity and the model approaches unfaithful-

ness, no term in the sequence is unfaithful and no noise term is Gaussian. For definitions of error and
exogenous terms, see the proof of Lemma 6.2.

6 The Topology of Latent Confounding

When O = (O1, . . . , Op) admits a LiNGAM model without latents, Genin and Mayo-Wilson [2020,
Theorem 4.1] prove that orientation hypotheses are topologically well-separated:

Lemma 6.1. Oi→j
LNGc

p
,Oi←j

LNGc
p

are open and Oi◦j
LNGc

p
is closed in the weak topology on OLNGc

p
.

The situation changes when we allow for latent variables.

Lemma 6.2. Oi→j
FLNGc

p
is not disjoint from cl(Oi←j

FLNGc
p+2

) in the weak topology on OFLNGc . Moreover,
there are distributions in the intersection that are absolutely continuous wrt Lebesgue measure.

Proof of Lemma 6.2. Let p = 2. Let U1, U2,W1,W2, Z1, Z2 be mutually independent, absolutely
continuous random variables. Suppose that all variables except Z1, Z2 are non-Gaussian. Let
V1 = Z1 + Z2 and let V2 = Z1 − Z2. By the Lukacs-King theorem, V1, V2 are independent. Let
X = (X1, X2) = (U1 + V1, U1 + U2 + 2Z1). By reference to the lhs model in Figure 3, it is clear
that X ∈ OFLNGc

2
. Moreover, X is absolutely continuous wrt Lebesgue measure on R2.

For m > 2, let X1,m = U1 + V1 +
1
m (W1 +W2 + U2) and X2,m = U1 + U2 + 2Z1 +

2
mW1. Let

Xm = (X1,m, X2,m). It is clear that the Xm converges in probability, and therefore in distribution,
to X. It remains to show that the Xm lie in OFLNGc

4
, which we do by reference to the rhs model in

Figure 3. Let J1,m = Z1 +
1
mW1 and J2,m = Z2 +

1
mW2. Then J1,m, J2,m, U1, U2 are independent

and non-Gaussian. Let eTm = (J2,m, U1, J1,m, U2). Let Am =

0 1 −1 −1 + 1
m

0 0 2 1
0 0 0 0
0 0 0 0

 and

Bm =

1 1 1 1
m

0 1 2 1
0 0 1 0
0 0 0 1

 . It is easy to check that Bm = (I−Am)−1. Let Mm = ⟨Bmem, Am, em⟩.

By inspection of Bm, Mm is faithful. Since the entries of Am are smaller than c, Mm ∈ FLNGc
4.

Letting Cm be the first two rows of Bm, it is easy to verify that (X1,m, X2,m)T = Cmem. By
Theorem 4.3, since, for m > 2, no column of Cm is proportional to any other, Mm is parsimonious
for Xm. Therefore, Xm ∈ OFLNGc

4
.

In the following, we will appeal extensively to the following Lemma, given by Kagan et al. [1973].

Lemma 6.3. Suppose the k-dimensional random vectors en have independent components. Consider
the sequence of p-dimensional random vectors Xn = Ben, where B is a p × k matrix. If the
Xn converge in distribution to X, then X = Be, where e is a k-dimensional random vector with
independent components.

The following is a straightforward Corollary of Lemma 6.3.

Corollary 6.4. Suppose the k-dimensional random vectors en have independent components. Con-
sider a sequence of p-dimensional random vectors Xn = Bnen, where the Bn are p× k matrices
and Bn → B. If the Xn converge in distribution to X, then X = Be, where e is a k-dimensional
random vector with independent components.
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Proof of Corollary 6.4. It is a standard fact that if |Xn−Yn| converge in probability to 0 and the Xn

converge in distribution to X, then the Yn also converge in distribution to X. Clearly, |Bnen −Ben|
converge in probability to 0. By assumption, the Bnen converge in distribution to X. It follows that
Ben converge in distribution to X. By Lemma 6.3, X = Be, where e is a k-dimensional random
vector with independent components.

Theorem 6.5. For d ≥ p, OFLNGc
>d

is open in the weak topology on OFLNGc .

Proof of Theorem 6.5. Let e ≤ d < f Suppose for a contradiction that the On ∈ FLNGc
e converge

in distribution to O ∈ FLNGc
f . Let M ∈ FLNGc

f be parsimonious for O and Mn ∈ FLNGc
e be

parsimonious for On. Let Bn = BOn
(Mn) and A = BO(M). Let en = eOn

(Mn) and e =
eO(M). While B is a p× f matrix, each of the Bn are p× e matrices. By the Bolzano-Weierstrass
theorem, since the Bn are uniformly bounded, there is a p×e matrix B and a convergent subsequence
Bnm

→ B. By assumption, Bnm
enm

converge in distribution to O. By Corollary 6.4, O = Bf
where f is a vector of independent components. Therefore O = Ae = Bf . By 4.2 every column
of A must be proportional to some column of B. Since A has strictly more columns than B, two
columns of A must be proportional to the same column of B and, therefore, to each other. But then,
by Theorem 4.3, M is not parsimonious for O. Contradiction.

We have shown that for every O ∈ FLNGc
f , there is an open set separating O from FLNGc

e. Since
e < f was taken to be arbitrary, there is such an open set Eg separating O from each FLNGc

g
with p ≤ g < f. Since there are only finitely many of the Eg, the intersection of the Eg is open
and separates O from OFLNGc

≤d
. That shows that for every O ∈ OFLNGc

>d
, there is an open set EO

separating O from OFLNGc
≤d

. Therefore, OFLNGc
>d

= ∪O∈OFLNGc
>d

EO is a union of open sets and,
therefore, open in OFLNGc .

As a special case, Theorem 6.5 entails that OFLNGc
>p

is open. By Genin and Kelly [2017, Theorem
4.1], this means that it is statistically verifiable whether an unobserved confounder must be introduced
in order to accommodate the distribution of O, at least when all distribution are assumed to be
absolutely continuous wrt Lebesgue measure. As expected, the hypothesis of un-confoundedness
is statistically testable. On the other hand, the precise hypothesis FLNGc

d is neither statistically
verifiable nor refutable, even under the background assumption that the distribution O was generated
by some model in FLNGc. To see this, note that for d > p, FLNGc

d is neither open nor closed, since
more parsimonious models can approximate simpler models. Therefore, it is properly locally closed.
Although it is neither verifiable nor decidable, it is decidable in the limit by Theorem 2.1.6 We shall
see that the same is true for the hypothesis of orientation Oi⇝j

FLNGc . The following shows that if we
knew exactly how many latent variables were necessary to accommodate the observed distribution,
orientation hypotheses would be topologically well-separated.

Theorem 6.6. For d ≥ p, Oi⇝j
FLNGc

d
,Oi ⇝j

FLNGc
d

are open and Oi◦j
FLNGc

d
is closed in the weak topology on

OFLNGc
d
.

Proof of Theorem 6.6. Suppose for a contradiction that the On ∈ Oi̸⇝j
FLNGc

d
converge in distribution

to O ∈ Oi⇝j
FLNGc

d
. Let M ∈ FLNGc

d be parsimonious for O and Mn ∈ FLNGc
d be parsimonious

for On. Let Bn = BOn(Mn) and A = BO(M). Let en = eOn(Mn) and e = eO(M). By
the Bolzano-Weierstrass theorem, since the Bn are uniformly bounded, there is a p × e matrix
B and a convergent subsequence Bnm → B. By assumption, Bnmenm converge in distribution
to O. By Corollary 6.4, O = Bf where f is a vector of independent components. Therefore
O = Ae = Bf . Since (Bn)ji = 0 for all n, Bji = 0. Moreover, Bii = 1. Since A and B have equal
dimensions, by Theorem 4.2 there must be a column k such that Ajk = 0 and Aik ̸= 0. But then
Ok ⇝M Oi and Oi ⇝M Oj and, therefore, Ok ⇝M Oj . But since Ajk = 0, M must be unfaithful.
Contradiction. We have shown that Oi⇝j

FLNGc
d

is open in the weak topology on OFLNGc
d
. Since the

situation is symmetrical, Oi ⇝j
FLNGc

d
is also open. Since Oi◦j

FLNGc
d

is the complement of Oi⇝j
FLNGc

d
∪ Oi ⇝j

FLNGc
d
,

it is closed in OFLNGc
d
.

6Recall that, in metrizable spaces such as the weak topology, every locally closed set is a countable union of
closed sets.
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Corollary 6.7. Oi⇝j
FLNGc , Oi ⇝j

FLNGc ,Oi◦j
FLNGc are disjoint countable unions of sets closed in OFLNGc .

Proof of Corollary 6.7. In general if A is open/closed in a subspace, it is the intersection of an
open/closed set with the subspace. By Theorem 6.5, OFLNGc

d
is locally closed in OFLNGc . By Theorem

6.6,Oi⇝j
FLNGc

d
,Oi ⇝j

FLNGc
d
,Oi◦j

FLNGc
d

are either open or closed inOFLNGc
d
. Therefore,Oi⇝j

FLNGc
d
,Oi ⇝j

FLNGc
d
,Oi◦j

FLNGc
d

are locally closed in OFLNGc . It follows that each of Oi⇝j
FLNGc , Oi ⇝j

FLNGc ,Oi◦j
FLNGc is a countable union of

locally closed sets. In a metrizable space such as the weak topology, each open set, and therefore each
locally closed set, is a countable union of closed sets. Therefore, each of Oi⇝j

FLNGc , Oi ⇝j
FLNGc ,Oi◦j

FLNGc is
a countable union of closed sets. They are disjoint by Theorem 5.2.

7 Main Result and Discussion

We are now in position to state and prove the main results. Let M be the set of all pairs
⟨M,α⟩, where M ∈ FLNGc and α is a permutation of {1, . . . , |M |}. Let P (⟨M,α⟩) =
(Xα−1(1)(M), . . . ,Xα−1(p)(M)). Let Mi⇝j = {⟨M,α⟩ ∈ M : α−1(i) ⇝M α−1(j)} and
Mi◦j = {⟨M,α⟩ ∈ M : α−1(i) ◦M α−1(j)}.

Theorem 7.1. The question Q = {Mi⇝j ,Mi◦j ,Mi ⇝j} is identified and decidable in the limit, but
not statistically decidable.

Proof of Theorem 7.1. It is immediate from defintions that P (Mi⇝j) = Oi⇝j
FLNGc , P (Mi ⇝j) =

Oi ⇝j
FLNGc and P (Mi◦j) = Oi◦j

FLNGc . Since Oi⇝j
FLNGc , Oi ⇝j

FLNGc ,Oi◦j
FLNGc are disjoint by Theorem 5.2, the

question is identified. Since they are each countable unions of closed sets (by Corollary 6.7), Theorem
2.1 implies that Q is decidable in the limit. By Theorem 2.2 and Lemma 6.2, Q is not decidable.

Theorem 7.1 shows that learning causal orientation in faithful, but potentially confounded, LiNGAM
models is a difficult problem. Not so difficult that it is impossible to construct consistent methods,
but difficult enough that no consistent method can guarantee a finite-sample bound on the probability
of orientation errors. In view of the positive results given by Genin and Mayo-Wilson [2020] in
the unconfounded setting, this negative result is something of a disappointment. However, the
example in Figure 3 suggests several different adjustments to the LiNGAM framework that may
recover decidability. The first is the well-trodden path of strong faithfulness. As m grows, the
direct path from U2 to X1,m comes closer and closer to cancelling the path via X2,m. Strengthening
faithfulness would preclude this possibility. But faithfulness is already a controversial assumption and
strengthenings would do nothing to appease its critics. Moreover, Uhler et al. [2013] show that strong
versions of faithfullness can rule out a topologically large set of models. The second path of escape
is to strengthen the assumption of non-Gaussianity. As m grows, J1,m and J2,m converge to the
Gaussians Z1 and Z2. Assuming that noise terms are bounded away from Gaussianity would preclude
this possibility. The third possibility is to require that no error term have a Gaussian component. A
random variable X has a Gaussian component if it can be expressed as the sum Y + Z where Y,Z
are independent and Z is Gaussian. It is clear that the error terms in Figure 3 violate this condition
— indeed properties of the Gaussian are essential to ensuring that V1 and V2, and therefore U1 + V1

and U2 + V2 are independent. In light of uniqueness results by Kagan et al. [1973] (see particularly
their Theorem 10.3.6) it is likely that requiring that noise terms have no Gaussian component would
recover decidability. Moreover, the assumption of no Gaussian components does not strike this author
as significantly less plausible than the assumption of non-Gaussianity.

In recent years, the field of causal discovery has produced many exciting new identifiability results
under a variety of modeling assumptions. But demonstrating identifiability proves only that a problem
is not completely hopeless — it is only the first step in understanding how difficult a problem is.
Success notions intermediate between uniform decidability and decidability in the limit can help
structure the search for "Goldilocks" modeling assumptions: neither so weak as to preclude short-run
bounds on error nor so strong as to secure uniform convergence. Moreover, it is the hope of this
author that the topological methods exhibited here prove useful in these future investigations.

10



Acknowledgments and Disclosure of Funding

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy – EXC number 2064/1 – Project number 390727645. I am grateful to
Conor Mayo-Wilson and the anonymous reviewers for their careful reading and helpful comments
and suggestions.

References
Patrick Billingsley. Probability and measure. John Wiley & Sons, second edition, 1986.

Peter Bühlmann, Jonas Peters, and Jan Ernest. CAM: Causal additive models, high-dimensional
order search and penalized regression. The Annals of Statistics, 42(6):2526–2556, 2014.

Amir Dembo and Yuval Peres. A topological criterion for hypothesis testing. The Annals of Statistics,
22(1):106–117, 1994.

Konstantin Genin and Kevin T Kelly. The Topology of Statistical Verifiability. In Proceedings of
Theoretical Aspects of Rationality and Knowledge (TARK), 2017. URL https://arxiv.org/
abs/1707.09378v1.

Konstantin Genin and Conor Mayo-Wilson. Statistical Decidability in Linear, Non-Gaussian Models.
In NeurIPS 2020:Workshop on Causal Discovery and Causality-Inspired Machine Learning, 2020.

Patrik O. Hoyer, Shohei Shimizu, Antti J. Kerminen, and Markus Palviainen. Estimation of causal
effects using linear non-Gaussian causal models with hidden variables. International Journal of
Approximate Reasoning, 49(2):362–378, 2008.

A. M. Kagan, Y. V. Linnik, and C. R. Rao. Characterization Problems in Mathematical Statistics.
John Wiley & Sons, 1973.

Kevin T. Kelly and C. Mayo-Wilson. Causal Conclusions that Flip Repeatedly and Their Justification.
In Proceedings of the Twenty Sixth Conference on Uncertainty in Artificial Intelligence (UAI),
pages 277–286, 2010.

James M Robins, Richard Scheines, Peter Spirtes, and Larry Wasserman. Uniform consistency in
causal inference. Biometrika, 90(3):491–515, 2003.

Saber Salehkaleybar, AmirEmad Ghassami, Negar Kiyavash, and Kun Zhang. Learning linear non-
gaussian causal models in the presence of latent variables. Journal of Machine Learning Research,
21(39):1–24, 2020.

Shohei Shimizu, Patrick O. Hoyer, Aapo Hyvarinen, and Antti J. Kerminen. A linear non-Gaussian
acyclic model for causal discovery. The Journal of Machine Learning Research, 7:2003–2030,
2006.

Peter Spirtes, Clark N. Glymour, and Richard Scheines. Causation, Prediction, and Search. The MIT
Press, 2000.

Caroline Uhler, Garvesh Raskutti, Peter Bühlmann, and Bin Yu. Geometry of the faithfulness
assumption in causal inference. The Annals of Statistics, 41(2):436–463, 2013.

Jiji Zhang and Peter Spirtes. Strong faithfulness and uniform consistency in causal inference. In
Proceedings of the Nineteenth conference on Uncertainty in Artificial Intelligence (UAI), pages
632–639, 2003.

11


