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ABSTRACT

Contrastive language-image pretraining (CLIP) has been found to be vulnerable
to poisoning backdoor attacks where the adversary can achieve an almost per-
fect attack success rate on CLIP models by poisoning only 0.01% of the train-
ing dataset. This raises security concerns on the current practice of pretraining
large-scale models on unscrutinized web data using CLIP. In this work, we ana-
lyze the representations of backdoor-poisoned samples learned by CLIP models
and find that they exhibit unique characteristics in their local subspace, i.e., their
local neighborhoods are far more sparse than that of clean samples. Based on
this finding, we conduct a systematic study on detecting CLIP backdoor attacks
and show that these attacks can be easily and efficiently detected by traditional
density ratio-based local outlier detectors, whereas existing backdoor sample de-
tection methods fail. Our experiments also reveal that an unintentional backdoor
already exists in the original CC3M dataset and has been trained into a popular
open-source model released by OpenCLIP. Based on our detector, one can clean
up a million-scale web dataset (e.g., CC3M) efficiently within 15 minutes using 4
Nvidia A100 GPUs. The code is publicly available in our GitHub repository.

1 INTRODUCTION

Contrastive language-image pretraining (CLIP) (Radford et al., 2021) is a popular self-supervised
learning framework (Chopra et al., 2005; Hadsell et al., 2006; Grill et al., 2020; Chen & He, 2021;
Caron et al., 2021; Bardes et al., 2022) that allows pretraining of large-scale multi-modal models on
web data without human annotations (Radford et al., 2021; Jia et al., 2021). However, in a recent
study by Carlini & Terzis (2022), it was found that CLIP is extremely vulnerable to poisoning back-
door attacks, where an attacker backdoors the victim model by poisoning (adding the trigger to) a
few training samples (Gu et al., 2017; Chen et al., 2017; Liu et al., 2018). Carlini & Terzis (2022)
investigated backdoor attack on CLIP with a patch trigger, and revealed that an attacker can success-
fully attack CLIP by poisoning only 0.01% of the training samples. This poisoning rate is marginal
compared to supervised learning where successful attacks generally require a high poisoning rate of
1% – 10%. Poisoning existing web-scale datasets is also realistic since the curator typically only
maintains a list of hyperlinks to the image. Carlini et al. (2024) have shown that adversaries could
poison 0.01% of web-scale datasets by purchasing expiring domains with $10 USD. This vulnera-
bility poses a major security threat to the current practice of CLIP, considering that many popular
multi-modal models (Alayrac et al., 2022; Liu et al., 2023; Betker et al., 2023; Awadalla et al., 2023)
were pre-trained using CLIP on unscrutinized web data crawled from untrusted sources.

Several backdoor defence techniques for CLIP have been proposed, which are mostly robust training
methods using heavy data augmentations (Bansal et al., 2023; Yang et al., 2023a), or a uni-modal
objective (Yang et al., 2024). These methods train the model directly on the poisoned training
dataset while minimizing the effect caused by the backdoor samples. Although these methods have
demonstrated promising results, an in-depth understanding of the unique characteristics of CLIP
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backdoor attacks is absent in the current literature. A more concerning fact is that no backdoor
sample detection method exists that can help data owners and model developers efficiently clean
up a million-scale web dataset. A backdoor sample detection method is essential for secure CLIP
because (1) it can detect and remove backdoor-poisoned samples from a large-scale dataset once
and for all, and (2) it can help remove noisy or unintentional backdoor samples from the dataset
even when there are no attacks. Moreover, it has been shown theoretically that the detection and
removal of backdoor data is equivalent to robust training under mild assumptions (Manoj & Blum,
2021). However, prior detection works against supervised backdoor attacks revealed that detecting
backdoor samples under extremely low poisoning rates (e.g., 0.01%) is very difficult (Hayase et al.,
2021; Huang et al., 2023). Moreover, existing backdoor sample detection methods (Chen et al.,
2018; Tran et al., 2018; Gao et al., 2019; Hayase et al., 2021; Li et al., 2021; Hou et al., 2024) were
all developed for supervised learning, which might not be applicable for CLIP.

In this paper, we explore the local neighborhood characteristics of backdoor samples in the represen-
tation space and discover one major weakness of CLIP backdoor attacks, i.e., they have a much more
sparse neighborhood than clean samples, making them outliers. Based on this finding, we further
investigate the detectability of CLIP backdoor samples by both existing backdoor sample detection
methods and traditional outlier detection methods. Surprisingly, we find that traditional general-
purpose outlier detection methods can detect CLIP backdoor samples with high accuracy, while
existing backdoor sample detection methods for supervised learning could fail in certain cases. In
particular, classic methods such as distance to the k-th nearest neighbor and isolation forest (iForest)
(Liu et al., 2008) can outperform existing backdoor sample detection methods (Li et al., 2021; Huang
et al., 2023). Performance can be further improved by considering density-focused techniques, such
as the simplified local outlier factor (SLOF) (Schubert et al., 2014) and dimensionality-aware outlier
detection (DAO) (Anderberg et al., 2024).

Our main contributions are as follows:

• We present a systematic study on the detectability of poisoning backdoor attacks on CLIP,
and show that existing detection methods designed for supervised learning can fail on CLIP.

• We reveal one major weakness of CLIP backdoor samples related to the sparsity of their
representation local neighborhood, which facilitates highly accurate and efficient detection
using efficient local density-based detectors. With these detectors, one can clean up a
million-scale poisoned dataset (e.g., CC3M) within 15 minutes using 4 Nvidia-A100 GPUs.

• Our experiments in the clean setting reveal that there exist unintentional (natural) backdoors
in the CC3M dataset, which has been injected into a popular open-source model released
by OpenCLIP.

2 RELATED WORK

Backdoor Attacks. The objective of a backdoor attack is to deceive a victim model to learn a
shortcut correlation between the trigger and a targeted output. The adversary can subsequently ma-
nipulate the predictions of the victim model at the test time with the trigger. Based on the attackers’
and defenders’ capabilities, existing backdoor attacks can be categorized into data-poisoning and
training-manipulation attacks. In data-poisoning attacks, the adversary injects triggers into the de-
fender’s training data, but the defender has full control of the model training. Such attacks simulate
the scenario where the defender utilizes an untrusted web dataset for training. In training manipu-
lation attacks (Lin et al., 2020; Shumailov et al., 2021; Bagdasaryan & Shmatikov, 2021; Nguyen
& Tran, 2021; Doan et al., 2021; Wang et al., 2022), the attacker can manipulate both the training
data and the objective function to implant the trigger and then releases the backdoored model for
the victim to download. This simulates the scenario where the victim downloads pre-trained model
parameters from untrusted open-source platforms. The focus of this work is data poisoning attacks.

Existing backdoor attacks are mostly focused on attacking supervised learning (Gu et al., 2017; Chen
et al., 2017; Liu et al., 2018). For poisoning attacks, the trigger pattern is one main contributing
factor to the success of the attack. The trigger pattern could be a patch (Gu et al., 2017) or a
blending image (Chen et al., 2017). Advanced attacks leverage more complex trigger patterns such
as periodical patterns (Barni et al., 2019), natural reflections (Liu et al., 2020), physical objects (Li
et al., 2020; Wenger et al., 2021), adversarial perturbations (Turner et al., 2018; Zhao et al., 2020),
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GANs (Cheng et al., 2020), Instagram filters (Liu et al., 2019), image generator (Sun et al., 2024)
and image frequency perturbations (Zeng et al., 2021; Li et al., 2023). While injecting the trigger
pattern into training images, the attacker could either alter the corresponding label (known as dirty-
label attacks) or keep the label unchanged (known as clean-label attacks) (Turner et al., 2018; Zhao
et al., 2020). There could also be multiple triggers released by one or more adversaries for the same
dataset (Li et al., 2024b), which is a realistic setting for downloading data from untrusted sources.

Carlini & Terzis (2022) proposed the first poisoning backdoor attacks on CLIP with patch triggers.
Compared to supervised learning, poisoning backdoor attacks on CLIP can achieve a high attack
success rate at a much lower poisoning rate (i.e., 0.01%). Concurrently, targeted poisoning attack in
the finetuning stage (Yang et al., 2023b) and training-manipulation backdoor attacks have also been
developed for CLIP (Jia et al., 2022; Liu et al., 2022; Tao et al., 2023). The main focus of our work
is detecting poisoning backdoor samples in CLIP, for which we follow the same threat model and
experimental setup as Carlini & Terzis (2022).

Backdoor Defense. Backdoor defense can be categorized into 1) trigger synthesis, 2) backdoor
model detection, 3) robust training, and 4) backdoor sample detection methods. Trigger synthesis
aims to recover the trigger patterns used to poison and attack the victim model (Liu et al., 2019;
Wang et al., 2019; Hu et al., 2022). Model detection aims to determine if a trained model contains
backdoors (Chen et al., 2019; Kolouri et al., 2020; Xu et al., 2021; Feng et al., 2023; Kuang et al.,
2024). Note that trigger synthesis and model detection methods will still need backdoor removal
techniques to obtain a robust model. A robust training strategy aims to (pre)train a backdoor-free
model on backdoor-poisoned dataset by robustifying the training procedure of supervised learning
(Li et al., 2021; Borgnia et al., 2021; Huang et al., 2022; Dolatabadi et al., 2022), self-supervised
learning (Li et al., 2024a) or CLIP (Bansal et al., 2023; Yang et al., 2024; 2023a).

Backdoor sample detection determines if a data point is infected with the backdoor trigger. It can
leverage either the statistics of the deep features (Tran et al., 2018; Chen et al., 2018; Tang et al.,
2021), sensitivity characteristics to certain perturbations and transformations (Gao et al., 2019; Chen
et al., 2022; Hou et al., 2024) or inference time detection with contrastive prompting (Niu et al.,
2024). Cognitive Distillation (CD) extracts a minimal pattern that allows the model to produce
the same output and uses the norm of the extracted mask to detect whether a training/test sample
is backdoored (Huang et al., 2023). However, it is an optimization-based method that is time-
consuming and of limited scalability for web-scale datasets. Anti-Backdoor Learning (ABL) tracks
sample-specific training loss during training and detects samples of the lowest loss as backdoor
samples (Li et al., 2021). The above defense methods were all developed under supervised learning,
with many relying on the class labels to function, which is not available in CLIP. SafeCLIP is
proposed as end-to-end robust training strategy to obtain a backdoor-free model from potentially
poisoned dataset (Yang et al., 2024). It has two components: one for detecting backdoor data and
one for robust training on safe and risky subsets.

Outlier Detection. Outlier detection is a classic problem in data mining. It aims to find data points
that deviate from the general distribution. It can be categorized into parametric and non-parametric
approaches. The parametric approach makes explicit assumptions about the nature of the underlying
data distribution (Yang et al., 2009; Satman, 2013), while the non-parametric does not. The non-
parametric approach is more suitable for unsupervised settings such as backdoor sample detection.
It include statistical methods (Goldstein & Dengel, 2012; Li et al., 2022b), and ensemble methods
(Lazarevic & Kumar, 2005; Zhao et al., 2021) such as the isolation forest (iForest) (Liu et al.,
2008). Local outlier methods are another type of non-parametric outlier detection methods, such as
k-nearest-neighbor (Ramaswamy et al., 2000), local outlier factor (LOF) (Breunig et al., 2000), and
their improved versions (Tang et al., 2002; Papadimitriou et al., 2003; Latecki et al., 2007; Kriegel
et al., 2008). These methods either explicitly or implicitly assess the density in the vicinity of a
query point (Campos et al., 2016) and data points with low density are usually regarded as outliers.
Local intrinsic dimensionality (LID) is another local measure that describes the growth rate of the
number of data points in the vicinity of the query point (Levina & Bickel, 2004; Houle, 2017). LID
has been used in various machine learning-related applications (Gong et al., 2019; Ansuini et al.,
2019; Pope et al., 2021). Notably, it is used in outlier detections (Houle et al., 2018), detecting
adversarial examples (Ma et al., 2018a) and backdoor samples (in a supervised setting) (Dolatabadi
et al., 2022). In this work, based on our empirical observation, we choose to exploit simplified local
outlier factor (SLOF) (Schubert et al., 2014) and its extension dimensionality-aware outlier detection
(DAO) (Anderberg et al., 2024) for detecting backdoor samples.
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3 PRELIMINARIES

In this section, we first describe poisoning backdoor attacks on CLIP and then introduce three out-
lier detection metrics explored in this work, including simplified local outlier factor (SLOF), local
intrinsic dimensionality (LID), and dimensionality-aware outlier detection (DAO).

3.1 POISONING BACKDOOR ATTACKS ON CLIP

Following existing work (Carlini & Terzis, 2022), we focus on multi-modal Contrastive Language
Image Pretraining (CLIP) (Radford et al., 2021), which learns a joint representation of images and
text from image-text data. Given a image-text dataset D ⊂ X × T that contains pairs of (xi, ti),
where xi is an image, and ti is the associated descriptive caption. The CLIP framework uses an
image encoder fI : X 7→ Rd and a text encoder fT : T 7→ Rd, and projects the image and text
to a joint representation space Rd. The image representation can be obtained by zx

i = fI(xi) and
the text representation is zt

i = fT (ti). For a given batch of N image-text pairs {xi, ti}Ni=1, CLIP
adopts the following training loss function:

− 1

2N

N∑
j=1

log
exp(sim(zx

j , z
t
j)/τ)∑N

k=1 exp(sim(zx
j , z

t
k)/τ)

− 1

2N

N∑
k=1

log
exp(sim(zx

k , z
t
k)/τ)∑N

j=1 exp(sim(zx
j , z

t
k)/τ)

,

where τ is a trainable temperature parameter, and sim(·) is a similarity measure. The first term in
the above objective function contrasts the images with the texts, while the second term contrasts the
texts with the images.

The main focus of our work is detecting poisoning backdoor images in the CLIP pretraining dataset,
as most existing backdoor triggers have been concentrated in the vision domain (Carlini & Terzis,
2022). Poisoning images is also generally more practical than text in web-scale pretraining datasets
(Carlini et al., 2024). We adopt the same threat model and setup as Carlini & Terzis (2022). In
addition to backdoor attacks, we also aim to detect poisoned data in targeted data poisoning attacks
(Biggio et al., 2012; Carlini & Terzis, 2022; Yang et al., 2023b).

Backdoor Attack (BA). For poisoning backdoor attack on CLIP, the adversary could use a function
A(·) to construct a backdoored image-text pair (x′, t′) = A((x, t)). The trigger pattern can be
inserted into the image using x′ = m ⊙ ∆ + (1 − m) ⊙ x, where ⊙ is the element-wise multi-
plication and ∆ is a trigger pattern. This is a general definition of backdoored image commonly
adopted in existing work (Wang et al., 2019). For the associated caption t′ ∈ caption set, one might
use engineered prompt templates (Radford et al., 2021) as the caption set, such as “a photo of a
{target}”, where target is the attacker’s desired output. The attacker could also insert the trigger
to the image where the target is already in the captions t = t′ (without text caption modification),
which is known as a clean-label attack on CLIP. We assume the adversary can inject the poisoned
subset Db = {(x′

i, t
′
i) = A(xi, ti)|t′i ∈ caption set}Mi=1 into defender’s training data. The attacker’s

objective is to control the model to produce a desired output. For example, in the case of using engi-
neered prompt templates for zero-shot classification, the attack is successful if the adversary queries
the victim model with a backdoor image x′ and receives its desired backdoor target as prediction.

Targeted Data Poisoning Attack (TDPA). Unlike backdoor attacks, targeted data poisoning attacks
aim to fool the model by misclassifying a specific sample x′ into a targeted class yt without using a
universal trigger ∆. The poisoned subset is Db = {(x′, t′i)|t′ ∈ caption set}Mi=1 and the caption set
is constructed by finding all captions in D that contains target keyword yt. The adversary’s goal is
to misclassify x′ into yt in the zero-shot classification. Similar to backdoor attacks, we assume the
adversary can poison the training data.

3.2 OUTLIER DETECTION METRICS

We will empirically show in Section 4 that the local neighborhood of a backdoor-poisoned sample
is much more sparse (low density) than that of clean samples. This motivates us to exploit local and
density-based outlier detection metrics to differentiate CLIP backdoor samples. While other metrics
could also be worth investigating, we focus on the following three classic metrics.

Simplified Local Outlier Factor (SLOF). The SLOF (Schubert et al., 2014) is a variant of the
classical Local Outlier Factor (LOF) (Breunig et al., 2000). The ‘local outlier’ refers to a query
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point q that is sufficiently different from other neighboring points in its vicinity. LOF considers the
typical density ratio. For the query point q, if it is less dense than its neighborhoods, then it is more
likely to be an outlier. The classical LOF is based on the reachability distances that require multiple
levels of neighborhood computation. The SLOF provides a simplified version by using the distance
to the k-th nearest neighbor, defined as the following:

SLOFk(q) ≜
1

k

∑
o∈NNk(q)

k -dist(q)
k -dist(o)

,

where k -dist(x) is the distance to a sample x’s k-th nearest neighbor and NNk(·) are the k nearest
neighbors.

Local Intrinsic Dimensionality (LID). The LID metric (Houle, 2017) describes the rate of growth
in the number of data objects encountered as the distance from the reference sample increases. It
measures the intrinsic dimensionality in the vicinity of the query point. Formally, let F be a real-
valued function that is non-zero over some open interval containing r ∈, r ̸= 0.

Theorem 1 (Houle (2017)) If F is continuously differentiable at r, then

LIDF (r) ≜
r · F ′(r)

F (r)
.

We are interested in functions F that satisfy the conditions of a cumulative distribution function
(CDF). The LID at a query point is defined as the limit when the radius r tends to zero:

LID∗
F ≜ lim

r→0+
LIDF (r) .

Henceforth, when we refer to the LID of a function F , or of a point x whose induced distance
distribution has F as its CDF, we will take ‘LID’ to mean the quantity LID∗

F . In practice, the
LID needs to be estimated, such as using maximum likelihood estimation (MLE) (Levina & Bickel,
2004) or Bayesian estimation (Joukhadar et al., 2024). We refer to the estimated value as L̂ID∗.

Dimensionality-Aware Outlier Detection (DAO). DAO (Anderberg et al., 2024) is a criterion that
extends LOF and SLOF using theory in dimensionality characteristics. Specifically, DAO is defined
as the following:

DAOk(q) ≜
1

k

∑
o∈NNk(q)

(
k -dist(q)
k -dist(o)

)L̂ID∗
Fo

.

A DAO score greater than 1 indicates it is likely to be an outlier. It suggests that the query point q
has a local probability measure too small to be consistent with those of its neighbors in the domain.
The DAO criterion is a generalization of SLOF. In essence, SLOF implicitly assumes the underlying
local intrinsic dimensionalities are equal to 1 (LID∗

Fo
= 1) for all data points. This may not always

be realistic for machine learning applications (Ma et al., 2018a;b; Gong et al., 2019; Ansuini et al.,
2019; Pope et al., 2021; Huang et al., 2024; Zhou et al., 2024). As a result, DAO is theoretically
more favorable than SLOF.

4 DETECTING CLIP BACKDOOR ATTACKS

In this section, we begin by discussing the problem definition of backdoor sample detection. We
then show an intuitive example of backdoor representations as local outliers. Finally, we present the
exploration of SLOF, LID, and DAO for CLIP backdoor sample detection.

4.1 BACKDOOR SAMPLE DETECTION

Threat Model. Following previous works (Carlini & Terzis, 2022), we assume the attacker can
poison the defender’s training data but does not have access to the training process. The defender
has full control over the training process but has no prior knowledge of (i) the poisoning rate, (ii)
the trigger pattern, (iii) the target, or (iv) whether an image-text pair is clean or backdoored. The
defender aims to produce the probability of an image-text pair being poisoned.
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Problem Formulation. We denote the training data as D = Dc ∪ Db, the clean subset as
{(xi, ti)}Ni=1 ∈ Dc, and the poisoned subset as {(x′

i, t
′
i)}Mi=1 ∈ Db, respectively. The poisoning

rate is defined as |Db|
|D| = M

M+N . The defender’s goal is to accurately detect pairs (x, t) ∈ Db.

Backdoor sample detection is a binary classification task (‘backdoor’ vs ‘clean’). We consider the
following function g(·) to determine whether an image-text pair (xi, ti) contains backdoor based on
the detection score si:

g(xi, ti) =

{
1 if si > t,

0 if si ≤ t,
(1)

where, t is a threshold, g(·) = 1 indicates a backdoor sample and g(·) = 0 indicates a clean sample.
In practice, the defender can adjust t based on the statistics of the detection score, such as the mean
and standard deviation. Alternatively, the defender might remove certain percentages of data from
the training set. For accurate detection, the most crucial objective is to correctly rank the score s
within the dataset, e.g., assign higher scores to backdoor samples.

4.2 CHARACTERIZING CLIP BACKDOOR SAMPLES

Our goal is to find unique characteristics of CLIP backdoor samples. We find existing methods,
such as ABL (Li et al., 2021) and CD (Huang et al., 2023), are not sufficient to find the distinctive
differences between clean and backdoor samples in CLIP. In this work, we take a different approach
to examine the learned representations of the model. To motivate our approach, in Figure 1a, we
provide an illustrative example of a representation with CLIP trained on backdoor poisoned data
using the patch trigger (Gu et al., 2017). CLIP uses the contrastive learning loss that clusters image-
text pairs with similar contents to the same region. All the backdoor-poisoned samples contain
similar features (the trigger) and are likely to be clustered together in a particular region. Since
the trigger is a strong signal and the model is overconfident about these poisoned samples, the
surrounding subspace has distinctive characteristics compared to clean samples, e.g., they are tightly
clustered and far away from other clean data. This can be observed in Figure 1a.

As a result, to detect poisoned backdoor samples, one might consider using local distance measures,
such as the distance to the k-th nearest neighbors, the k -dist. Consider randomly sampling a batch
of the data (batch size 1024), if the poisoning rate is 0.01% and there is 1 poisoned sample in the
batch, the probability of the rest of the data being clean is 0.99991023. The k-th nearest neighbor is
highly likely to be a clean sample, a larger k -dist. For the clean data, it is likely the clean sample as
well, results in a smaller k -dist. This characteristic makes backdoor representations as outliers. In
Figure 1b, we show a controlled experiment. As the poisoning rate increases, the distribution of the
k -dist stays fairly stable for the clean samples but dramatically decreases for the backdoor samples.
This indicates that as long as the poisoning rate is low, the k-th nearest neighbor for the backdoor
representation is a clean representation, and the backdoor representation is an outlier in the batch.
Hence, with an appropriate locality k, simple k -dist is sufficient to detect these poisoned samples.

An alternative criterion is to use local density measures, where locality is given by k nearest neigh-
bors, whose distance is used to estimate the density. As shown in Figure 1a, data points within
the backdoor region are less dense compared to clean data points, which can be measured with the
density ratio. The ‘local outlier’ (backdoor data point in this case) is sufficiently different from
observations in its vicinity. In classical outlier detection literature, this can be characterized by
the LOF metric (Breunig et al., 2000), SLOF (Schubert et al., 2014) and DAO (Anderberg et al.,
2024). Using Figure 1a as an example, local density outlier detection considers the radius of the k-
neighborhood ball of the query data point (red and green circle with solid line) over the radius of the
k-neighborhood ball of each its nearest neighbors (circles with dash line). A higher ratio indicates
the point of interest is less dense than its neighbors and thus likely to be an outlier.

4.3 DETECTING CLIP BACKDOOR SAMPLES

In this subsection, we describe how to apply local outlier detection methods to detect CLIP backdoor
samples. At a high level, we train a model using an untrusted dataset D, then iterate over each
training data point to extract their representations. We randomly sample a batch of data from the
dataset and then apply outlier detection methods. For each data point, it will produce a score s to
indicate its probability of being a backdoor sample. We present the pseudo-code in Appendix A.
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Figure 1: (a) The CLIP learned presentations are projected into a 2-D space using t-SNE. The red
cross is a backdoor data point, the green dot is a clean data point, and the blue dot is a randomly
sampled data point. The k -dist is the distance to the k-th nearest neighbor, and the circle with the
solid line is the region containing all k nearest neighbors. The circle with a dashed line is the region
containing k nearest neighbors for the k-th neighbors. k is set to 16. (b) The distribution k -dist for
clean and backdoor data with different poisoning rates (PR) within a batch.

Once the backdoor score is obtained for each data point, one might simply remove data that has
abnormally high scores or remove a certain percentage of the data point according to the score.
A practitioner could use the remaining safe subset to train the model from scratch with standard
training to obtain a backdoor-free model or alternatively use a robust training strategy as a double
security measure. The most important aspect is to accurately detect backdoor samples, which is the
main focus of this work. Since removing too much data from the training set might degrade the
performance of the model, the score for backdoor samples should be distinctively higher compared
to the clean data. Otherwise, if we remove a small portion of the untrustworthy data points, it might
not be sufficient to remove all poisoned samples.

5 EXPERIMENTS

For all our experiments, we adopt the open-source implementation of CLIP (i.e., OpenCLIP) (Il-
harco et al., 2021), ResNet-50 (RN50) (He et al., 2016), and ViT-B-16 (Dosovitskiy et al., 2021) as
the vision encoder, and choose hyperparameters following existing works (Carlini & Terzis, 2022).
Details are in Appendix B.1. We conduct our experiment on the CC3M dataset (Sharma et al., 2018).
The evaluation is conducted on ImageNet (Deng et al., 2009) with the zero-shot classifier (Radford
et al., 2021). Note that evaluation with CC3M and ImageNet is recommended by Carlini & Terzis
(2022) for studying the backdoor poisoning attacks against CLIP. We provide evaluations with a
larger dataset, the CC12M (Changpinyo et al., 2021), in Appendix B.7, which shows a consistent
performance for local outlier methods.

For the CLIP single trigger backdoor attack (STBA), we follow the existing work by Carlini &
Terzis (2022) which uses a 16 × 16 patch trigger (Gu et al., 2017) and ‘banana’ as the target la-
bel. We also explore commonly used triggers in supervised learning, including Blend with a hello
kitty image(Chen et al., 2017), periodical signal pattern (SIG) (Barni et al., 2019), image filter with
Nashville style (Liu et al., 2019), WaNet (Nguyen & Tran, 2021), and BLTO (Sun et al., 2024).
Additionally, we evaluate multiple trigger setting (Li et al., 2024b), where attacker(s) can release
multiple triggers (MTBA) to attack a single target or multiple targets. We use 3 triggers: the Patch,
Nashville style, and WaNet. The multi-trigger settings are denoted as MT-S (single target) and MT-
M (multiple targets). We also investigate the clean-label setting (Turner et al., 2018), where the patch
trigger is only inserted into images with a caption already containing the target. For targeted data
poisoning attack (TDPA), we randomly select an image and construct the caption set with captions
in the training set that contains the keyword ‘banana’. In terms of poisoning rate, existing work
(Carlini & Terzis, 2022) already demonstrates that a 0.01% poisoning rate is sufficient for the patch
trigger and TDPA on the ResNet-50. For other triggers, we conducted a coarse grid search to find
the minimal poisoning rate to guarantee a high attack success rate (ASR).
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For backdoor sample detection, we evaluate local outlier detection (k -dist, LID, SLOF, DAO),
comparing it with other backdoor data detection methods and the classical global outlier detection
method isolation forest (iForest) (Liu et al., 2008). Note that since most of the existing detection
methods are based on supervised learning, we only include the state-of-the-art methods that are
applicable to CLIP, including ABL (Li et al., 2021) and Cognitive Distillation (CD) (Huang et al.,
2023). For LID outlier detection (Houle et al., 2018), we use the maximum likelihood estimation as
estimator (Levina & Bickel, 2004). We also compare with the backdoor data detection components
in SafeCLIP (Yang et al., 2024), and follow their hyperparameter setting. On the same hardware
setting, it would take 15 minutes for local outlier methods to run the detection, while CD costs 11.2
hours and ABL takes 4.1 hours. See Appendix B.1 for more details on the experimental settings. We
use the area under the ROC curve (AUC) as the main performance metric. The AUC can be seen as
the probability a backdoor sample has a higher score than a normal sample. We provide the analysis
on the sensitivity to k for all local outlier methods in Appendix B.2. It shows that k -dist, SLOF, and
DAO are robust to different values of k. Additional results using the false positive rate at 95% true
positive rate (FPR@95) in Appendix B.7, demonstrating findings consistent with those presented
in this section. Yang et al. (2024) discussed that SafeCLIP is not robust to poisoning rates higher
than 0.5%. In Appendix B.5, we demonstrate that local outlier detection methods can consistently
identify poisoned data even with a poisoning rate of up to 10%.

5.1 DETECTION PERFORMANCE EVALUATION

Table 1 compares the detection performance of different outlier detection methods and shows among
all, the local outlier detection methods, k -dist, SLOF, and DAO are the most effective and efficient,
even compared to dedicated backdoor sample detection methods ABL, CD and SafeCLIP. The iFor-
est also achieves a non-trivial performance. The LID detection, however, is not robust to different
triggers and architectures. Overall, the results indicate that CLIP backdoor samples are indeed evi-
dent outliers in the representation space and can be effectively detected.

Table 1: Comparing the AUC (%) of different outlier detection methods against different backdoor
attacks. The poisoning rates are minimized based on a coarse grid search to guarantee a non-trivial
attack success rate (ASR). Clean Acc (CA) and ASR are measured by the top-1 zero-shot accuracy
(%) on ImageNet. The best results are boldfaced.

Vision
Encoder

Threat
Model Trigger Poisoning

Rate (%)
CA
(%)

ASR
(%) ABL CD Safe

CLIP LID iForest k -dist SLOF DAO

RN50

STBA

Patch 0.01 17.0 100.0 27.86 97.17 83.42 99.29 99.73 99.75 99.86 99.86
Clean Label 0.07 17.1 95.0 63.50 48.68 46.93 88.23 94.01 96.75 97.10 97.06

Nashville 0.1 16.7 78.7 61.69 98.33 46.37 61.07 99.35 99.51 99.61 99.62
WaNet 0.1 16.2 83.8 56.07 99.19 85.82 57.07 99.55 99.82 99.85 99.85
Blend 0.1 16.8 75.9 60.07 99.64 57.01 54.94 99.80 99.82 99.88 99.88
SIG 0.1 16.3 67.3 56.88 99.06 82.15 54.03 99.62 99.67 99.69 99.69

BLTO 0.1 16.7 98.3 58.88 97.60 84.25 43.04 99.81 99.85 99.86 99.86
MTBA MT-S 0.1 16.5 79.5 47.32 99.34 80.98 94.87 99.59 99.59 99.66 99.67

MT-M 0.1 16.2 74.7 53.24 95.33 78.10 97.11 98.32 98.50 98.74 98.76
TDPA - 0.01 16.8 100.0 55.37 99.99 81.71 80.60 99.95 99.96 99.96 99.96

ViT
B-16

STBA

Patch 0.1 15.2 99.8 29.19 8.40 85.88 45.36 88.39 98.48 96.42 95.27
Clean Label 0.07 15.7 19.0 57.78 50.30 44.24 70.28 54.73 69.22 71.48 70.82

Nashville 0.1 15.7 41.4 58.91 95.36 61.77 25.52 92.41 99.06 97.71 96.83
WaNet 0.1 15.2 12.2 34.53 45.69 84.60 38.65 89.81 98.45 96.59 95.59
Blend 0.1 15.7 95.8 65.43 96.36 47.57 12.92 89.24 99.68 88.43 84.50
SIG 0.1 15.3 82.9 57.20 80.05 61.35 17.60 89.82 99.33 97.33 96.06

BLTO 0.1 6.4 13.2 29.19 77.87 83.39 88.84 78.26 91.24 94.36 94.34

MTBA MT-S 0.1 15.3 28.5 23.85 61.89 82.05 73.16 87.66 95.50 96.59 96.61
MT-M 0.1 15.2 36.2 30.29 51.70 79.64 77.92 73.11 78.28 86.16 86.81

TDPA - 0.01 15.5 100.0 58.79 54.63 92.03 79.00 81.88 95.71 98.51 98.16

Compared to SafeCLIP, local outlier methods are more robust to different trigger types. SafeCLIP
can achieve 83% to 85% on some triggers (Patch, WaNet, and SIG), local outlier methods can
consistently reach 97% to 99% for various attacks. Interestingly, compared to ViT-B-16, RN50
shows slightly better detection performance for local outlier methods. In practice, since the defender
controls the training process, they can use RN50 for detection to remove potentially poisoned data
from the dataset, after which the purified dataset can be used to train any other encoders.
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Comparing the two dedicated backdoor sample detection methods for supervised learning, ABL and
CD, the latter one shows a considerably better performance. However, it performs badly against
clean-label attacks using ResNet-50, with only 48.68% AUC. A possible explanation is that in a
dirty-label setting, all the captions are changed according to the template, and the model learns a
strong signal (keyword) that behaves similarly to supervised learning. In a clean-label setting, how-
ever, the captions are unchanged, and the model learns a diverse set of captions. This difference
might affect the optimization of the mask for CD. ABL uses sample-specific loss values for the
detection score, e.g., a lower loss value indicating a backdoor. However, in every iteration of con-
trastive learning, the data points are sampled randomly. Thus, there could be noise in the loss as the
distance to negative pairs depends on the randomly sampled data.

5.2 OUTLIER FILTERING AS A DEFENSE

It has been theoretically shown that robust learning on an untrustworthy dataset is equivalent to the
effective detection and removal of poisoned data points (Manoj & Blum, 2021). Given accurate
detection, this simple strategy can effectively mitigate the threat of backdoor attack. However,
determining how many samples to remove is a challenging question. Here, we experiment to remove
10% of the data from a poisoned CC3M dataset according to the detection score using DAO. To test
the defense effect of filtering, we retrain the CLIP model from scratch on the remaining 90% of the
purified data. We plot the distributions of the DAO scores of backdoor vs. clean samples in Figure
2. The ‘Threshold’ line marks the 10% cutoff point, where samples on the left side of the line will
be kept while those on the right will be removed from the dataset. The score distributions of other
detection metrics are provided in Appendix B.7. The performance and robustness of the retrained
model are reported in Table 2.

Table 2: Defense performance of backdoor sample filtering using DAO for filtering rate 10% on
poisoned CC3M. The results are presented in the form of clean zero-shot accuracy (%) / attack
success rate (%) on the ImageNet validation set. Results are based on the ResNet-50 as the vision
encoder.

Dataset Patch Clean Label Nashville WaNet Blend SIG MT-S MT-M TDPA

Poisoned 17.0 / 100.0 17.1 / 95.0 16.7 / 78.7 16.2 / 83.8 16.8 / 75.9 16.3 / 67.3 16.5 / 79.5 16.2 / 74.7 16.8 / 100.0
Purified 16.2 / 0.0 16.7 / 0.0 16.1 / 9.6 16.7 / 0.5 15.8 / 0.6 16.4 / 0.2 16.7 / 0.6 16.4 / 15.00 16.3 / 0.0
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Figure 2: The distributions of the DAO detection score on poisoned CC3M using ResNet-50 as the
vision encoder.

As shown in Table 2, removing outlier data points can significantly reduce the ASR to less than 1%,
except for Nashville and MT-M, which are slightly higher. This defense effectiveness is somewhat
expected, as it shows in Figure 2 that most backdoor samples are separable from the clean ones.
Interestingly, filtering 10% of the data points does not significantly affect the clean performance.
Additional results for zero-shot classification and linear probing on other datasets are in Appendix
B.3. They are consistent with the results shown in this section. This indicates the existence of a
considerable proportion of noisy data and anomalies in web-crawled datasets like CC3M. Through
the above experiment, we highlight the necessity and benefit of purifying a large-scale web dataset
using local outlier detectors like SLOF and DAO. In Figure 3a, we present the sensitivity of the de-
fense performance to different filtering percentages. For the patch trigger, removing 1% is sufficient
to mitigate the backdoor threat. Additional results for other triggers are in Appendix B.3. They show
that removing 5% is sufficient to mitigate the backdoor threat of different kinds of triggers. In prac-
tice, the defender can dynamically adjust the threshold to achieve a suitable performance-security
trade-off. Alternatively, backdoor detection can be combined with a robust training strategy (Yang
et al., 2023a; 2024) to train on the purified (safe) and removed (risky) subsets.
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5.3 DETECTING UNINTENTIONAL BACKDOORS IN CC3M

With the local outlier detectors, we show that they can be applied to detect noisy samples and
even unintentional backdoor attacks from the CC3M dataset (Sharma et al., 2018). We extract the
representation of each CC3M image using our pre-trained CLIP and rank the outlierness of the
images based on their DAO outlier score. We then manually check the top-ranked images and
identify two types of anomalies: 1) meaningless images and 2) suspicious images with extremely
high occurrences.
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(a) Patch (b) Unavailable image (c) Our pre-trained (d) OpenCLIP
Figure 3: (a) Defence performance for varying filtering percentages. (b) An example of the unavail-
able images. (c-d) The recovered trigger pattern of the birthday cake image on our pre-trained CLIP
(b) and a model (c) released by OpenCLIP that uses ResNet-50 as the vision encoder.

One example of meaningless images is the “this image is no longer available.” image. One example
is illustrated in Figure 3b. Note that the captions and URLs of these images are still available, which
inevitably causes a mismatch between the image content and the caption. This is the reason why
removing outliers from CC3M does not affect the CLIP’s performance (see Table 2). This indicates
that even if the dataset is not poisoned, local outlier methods could still be applied to identify and
remove the noisy samples.

We noticed several “suspicious” images that have similar content and the same caption “the birthday
cake with candles in the form of number icon.” We cannot show these examples here due to license
restrictions. However, one can search online with the caption to see what these images look like.
These images appear 798 times in the dataset, which roughly accounts for 0.03% of the entire
dataset. We suspect this image is a natural (unintentional) backdoor trigger and has been learned
into models trained on the Conceptual Captions dataset. To confirm this conjecture, we utilize
two models: 1) our pre-trained CLIP model on CC3M, and 2) one pre-trained model released by
OpenCLIP (Ilharco et al., 2021) which uses ResNet-50 as the vision encoder and is trained on
CC12M (Changpinyo et al., 2021). We apply an adapted trigger recovery method based on Neural
Cleanse (Wang et al., 2019) to distill a trigger pattern from both our pre-trained CLIP model and
the OpenCLIP released model. The technical details of the trigger recovery method are described
in Appendix B.4. We reveal the recovered triggers in Figure 3c and 3d, respectively. It shows that
the birthday cake trigger has been successfully recovered on both models. The trigger recovered
from our pre-trained CLIP and the OpenCLIP pre-trained model can achieve an ASR of 92.38% and
98.92% when attached to ImageNet test images in zero-shot classification. This not only confirms
the existence of unintentional backdoors in web-scale datasets but also their possible existence in
popular open-source multi-modal models.

6 CONCLUSION

In this work, we studied the local neighborhood characteristics of poisoning backdoor attacks on
CLIP. We revealed one unique characteristic of CLIP backdoor attacks, which is related to the spar-
sity of their local representation subspace caused by the low poisoning rate. Based on this finding,
we showed that traditional local outlier detection methods like SLOF and DAO can effectively de-
tect different types of backdoor triggers. With the detectors, one can filter out poisoning backdoor
data and noisy images from the CC3M dataset, and all can be done efficiently within 15 minutes
using 4 Nvidia A100 GPUs and achieve near-perfect detection performance. Finally, we showed
the existence of unintentional backdoor attacks in web-crawled datasets, which have already been
pre-trained into popular open-source models. Our work verifies the necessity and benefit of data
purification and we hope it may help inspire further research toward secure data curation and CLIP.
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REPRODUCIBILITY STATEMENT

There are two factors that impact the reproducibility of this work. The first factor is whether it
is possible to reproduce the results. To facilitate this, we will make the source code openly avail-
able. However, due to the dynamic nature of web-scale datasets, some URLs may expire, making
it challenging to reproduce the exact clean accuracy. Despite this, the attack success rate and de-
tection results will remain unaffected. In this work, we successfully reproduced the results reported
by Carlini & Terzis (2022), except for clean accuracy, as we could not access the complete CC3M
dataset. We were only able to obtain 2.3 million image-text pairs from the CC3M dataset due to ex-
pired URLs. With the open-source code, evaluation results on the attack success rate and detection
performance are fully reproducible.

The second factor is the computational resources required. Carlini & Terzis (2022) thoroughly in-
vestigated backdoor poisoning attacks against CLIP and recommended the best experimental setup,
which we followed, using the CC3M dataset for evaluation in Section 5.1 and 5.2. However, pre-
training still demands significant computational power, requiring approximately 100 GPU hours (on
Nvidia A100) per attack. In our experiments, we expanded the evaluation beyond patch triggers
used by Carlini & Terzis (2022) to include a broader range of backdoor triggers. This extension,
covering 9 types of attacks with 2 types of encoders, requires an estimated 1,800 GPU hours. The
detection evaluations including baseline methods took additional 288 GPU hours (16 × 18), and
filtering and retraining the models required 900 GPU hours. Results presented in Appendix B.7 for
running detection on CC12M requires 400 GPU hours per attack, and detection requires 64 GPU
hours. We evaluated 8 backdoor attacks, which would require 3,712 GPU hours. Therefore, to fully
reproduce the results in this paper, we estimate a total of 6,700 GPU hours would be necessary.
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A BACKDOOR SAMPLE DETECTION ALGORITHM

Algorithm 1 Backdoor Sample Detection With Local Outlier Methods

1: Input: Vision encoder fI , Text encoder fT , Dataset D, locality parameter k
2: f = train(fI , fT , D) ▷ Standard training on an untrustworthy dataset.
3: for i to length(D) do
4: (x, t) = sample(D) ▷ Random sample a batch of data point from the dataset
5: zx = fI(x) ▷ extract vision representations
6: zt = fT (t) ▷ extract text representations
7: z = concatenate(zx, zt) ▷ Reference points for neighborhood selection
8: zi = f(xi) ▷ extract representations for the image of interest
9: si = detection(zi, z, k) ▷ k -dist, SLOF, LID, or DAO

10: end for
11: Output: backdoor score s

In Algorithm 1 (line No.9), we use the image embedding as the query point and all other image
embeddings and text embeddings as reference points. The LID has been used in detecting adversarial
examples (Ma et al., 2018a) as well as detection of backdoor data with class-wise reference points
(Dolatabadi et al., 2022), which is not possible in CLIP. In Algorithm 1, instead of using class-wise
reference points, we use random sample points for LID. In both works, it has been shown that a
higher LID score for a query point means it is more likely to be a backdoor or adversarial example.
Similarly, for SLOF and DAO, the higher the score, the more likely the data point is a backdoor
sample. As a result, we directly use the LID or the outlier factor as the score to determine if the data
point is poisoned.

For all outlier detection methods and LID, we use minibatch sampling to generate scores for each
data point due to efficiency. While using the entire dataset is possible, it can be prohibitively costly
for large-scale datasets. An alternative approach is to treat each batch of data as a sliding window
in data streams and apply techniques like iLOF (Pokrajac et al., 2007) or MiLOF (Salehi et al.,
2016). Existing literature suggests that minibatch sampling is sufficient to characterize the local
neighborhood (Ma et al., 2018a). Our empirical evaluations also support this, indicating that using
randomly sampled subsets as reference points is adequate for local outlier detection methods.

B EXPERIMENTS

In this section, we present our experimental setting in Appendix B.1, the sensitivity study to the
locality parameters for local outlier methods in Appendix B.2, and additional filtering as a defense
result in Appendix B.3. In Appendix B.4, we present the detailed descriptions for the trigger syn-
thesis method used to obtain the results in Section 5.3. Finally, we show the sensitivity study to
a higher poisoning rate in Appendix B.5 and additional results for the detection performance in
Appendix B.7.

B.1 EXPERIMENT SETTING

We conducted our experiments on Nvidia A100GPUs with PyTorch implementation. Each exper-
iment distribution is conducted with data distributed in a parallel setting across 4 GPUs. We used
automatic mixed precision due to its memory efficiency. Open-source code is available here*.

For all experiments, we chose hyperparameters following existing work (Carlini & Terzis, 2022)
and the open-source implementation OpenCLIP† (Ilharco et al., 2021). We use a learning rate of
0.001, with AdamW optimizer (Loshchilov & Hutter, 2019), weight decay is set to 0.2, batch size of
1024 and train for 30 epochs. We use ResNet-50 (He et al., 2016) and ViT (Dosovitskiy et al., 2021)
for the image encoder and transformer (Vaswani et al., 2017) for the text encoder. The embedding
dimension is set to 1024 for ResNet-50 and 512 for ViT. We use the same data augmentation as the
implementation by OpenCLIP. We conduct our experiment on CC3M (Sharma et al., 2018) dataset.

*https://github.com/HanxunH/Detect-CLIP-Backdoor-Samples
†https://github.com/mlfoundations/open clip
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Due to the expired and invalid links, we only obtained 2.3M image-text pairs, so the reproduced
clean performance is slightly lower than the result reported by OpenCLIP. This is normal as the
number of data can significantly affect the performance of CLIP (Radford et al., 2021). The eval-
uation is conducted on ImageNet (Deng et al., 2009) with a zero-shot classifier using the prompt
template (Radford et al., 2021).

For backdoor triggers, we use a 16× 16 patch with interleaving black and white pixels. In addition
to this patch trigger, we evaluate several commonly used triggers in supervised backdoor studies,
including Blend with a hello kitty image(Chen et al., 2017), periodical signal pattern (SIG) (Barni
et al., 2019), image filter with Nashville style (Liu et al., 2019), and WaNet (Nguyen & Tran, 2021).
We also evaluate multiple trigger settings (Li et al., 2024b), where attackers can deploy multiple
triggers (MTBA) to target a single entity or multiple entities. Specifically, we use three triggers: the
Patch, Nashville style, and WaNet. The multi-trigger settings are denoted as MT-S (single target) and
MT-M (multiple targets). Additionally, we investigate the clean-label setting (Turner et al., 2018),
where the patch trigger is inserted only into images whose captions already contain the target. An
example of trigger patterns used in the experiments is shown in Figure 4.

Patch Clean Label Nashville WaNet Blend SIG

Figure 4: Examples of the 5 different triggers used in the experiments. The patch and clean label
attacks use a 16 by 16 patch as the trigger. The clean label attack only applies the trigger to images
with captions that contain the keyword specified by the adversary. The Nashville converts the image
using the filter template “Nashville.” The WaNet applies grided noise to the image. The SIG uses a
periodical pattern as the trigger. The blend attack creates an overly transparent Hello Kitty image.

For the targeted data poisoning attack (TDPA), we randomly select an image and construct the
caption set using captions from the training set that contain the target keyword. We chose ‘banana’
as the target for all attacks because it is an ImageNet class and appears frequently in CC3M.

For backdoor detection, we evaluate local outlier detection and compare it with other backdoor data
detection methods. Note that since the existing detection methods are based on supervised learning,
we only include the state-of-the-art methods that are feasible in SSL, including ABL (Li et al., 2021)
and Cognitive Distillation (CD) (Huang et al., 2023). For CD, we find that in SSL, backdoor data has
a higher L1 norm of the mask instead of lower in a supervised setting. As a result, we use a higher
L1 norm of the mask to indicate it is more likely to be a backdoor data. We use 100 optimization
steps, α set to 0.001 and β set to 100 for CD. For ABL, we use the average loss value for the first 10
epochs for each sample. For iForest (Liu et al., 2008), we set the number of trees in the ensemble
to 100. For LID, the k is set to 16. For k -dist, SLOF and DAO, the k is set to 16. We use batch
size of 2048 for running the detection algorithm. For SafeCLIP (Yang et al., 2024), we follow the
same hyperparameter setting suggested by the original paper. For warmup training, we perform 5
epochs of uni-modal training followed by 1 epoch of multi-modal training. The learning rate is set
to 5 × 10−6. The time cost for each detection method on CC3M with the same hardware setting is
in Table 3. For all methods, the time cost does not include pre-training time for obtaining the initial
model for extracting the representation.

Table 3: Time cost measures the wall time (in hours) for running each detection method on the same
hardware. Results are based on ResNet-50 as the vision encoder on CC3M dataset.

ABL CD SafeCLIP LID iForest k -dist SLOF DAO

4.1 11.2 0.2 0.2 0.3 0.2 0.2 0.2
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B.2 SENSITIVITY TO THE LOCALITY

Local outlier methods rely on the locality hyper-parameter k to determine the neighborhood size
and could be sensitive to the hyper-parameter. Here, we analyze the sensitivity of different local
outlier detection methods to locality k by fixing the batch size to 2048 while testing varying k in
[16, 32, 64, 128, 256]. Note that setting k too large is not ideal as it will break the assumption of
locality. Therefore, we only examine k up to 256. We plot the detection AUC results in Figure 5. It
is evident that the detection performance of k -dist, SLOF, and DAO is much more stable than LID.
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Figure 5: The detection AUC (%) of different local outlier methods under varying locality k. The
batch size is set to 2048 for all experiments.

B.3 ADDITIONAL FILTERING RESULTS

We present zero-short evaluation results on 7 commonly used datasets, including CIFAR
(Krizhevsky et al., 2009), Food101 (Bossard et al., 2014), GTSRB (Stallkamp et al., 2012), Ima-
geNet (Deng et al., 2009), StanfordCars (Cars) (Krause et al., 2013), STL10 (Coates et al., 2011),
in Table 4. We follow the standard zero-shot classification setup and use the template provided by
Radford et al. (2021) for each evaluation dataset. We also report the linear probing performance on
these datasets in Table 5. Results in Tables 4 and 5 are consistent with Section 5.2. Removing 10%
of the samples on CC3M using DAO does not affect the performance of the model.

Table 6 compares filtering-based defense strategies with robust training methods, including RoCLIP
(Yang et al., 2023a) and SafeCLIP (Yang et al., 2024). Both methods use unimodal self-supervised
objectives alongside the image-text contrastive objective, which is known to enhance CLIP’s per-
formance (Li et al., 2022a). For a fair comparison, we also included self-supervised objectives with
nearest neighbors (denoted as CLIP+NN) during retraining on the purified subset. As shown in
Table 6, retraining CLIP on the purified subset with its original objective effectively mitigates back-
door threats. Incorporating self-supervised objectives further enhances performance and strengthens
defenses against backdoor attacks. Note that once potentially poisoned data is removed, any robust
retraining method, such as RoCLIP or SafeCLIP, can be applied. The backdoor detection technique
can be integrated with other defense strategies.

In Figure 6, we show the CA and ASR with varying filtering percentages. It can be observed that
removing different percentages of samples does not significantly affect the CA. Removing 5%–10%
samples according to the backdoor scores can effectively mitigate the backdoor threat. In practice,
the practitioner could adjust the threshold dynamically to achieve the best performance-security
trade-off.
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Table 4: Performance of backdoor sample filtering using DAO with filtering rate 10% on poisoned
CC3M. The results are presented in the form of clean zero-shot accuracy (%) on the 7 validation set.
Results are based on the ResNet-50 as the vision encoder.

Attack Dataset CIFAR10 CIFAR100 FOOD101 GTSRB ImageNet Cars STL10 Average

BadNets Poisoned CC3M 30.7 10.7 10.5 6.2 17.0 1.4 75.4 21.7
Purified CC3M 32.5 10.9 10.8 9.0 16.2 1.1 74.2 22.1

Clean
Label

Poisoned CC3M 36.6 12.1 11.2 6.3 17.2 1.1 68.6 21.9
Purified CC3M 37.7 12.2 11.2 4.7 16.7 1.0 74.6 22.6

Nashville Poisoned CC3M 37.4 11.6 10.4 8.2 16.7 1.3 71.9 22.5
Purified CC3M 36.3 12.4 11.1 6.0 16.1 1.0 67.0 21.4

WaNet Poisoned CC3M 26.4 11.4 11.1 5.2 16.3 1.0 73.0 20.6
Purified CC3M 30.5 11.0 9.8 4.8 16.7 1.1 69.3 20.5

Blend Poisoned CC3M 31.5 13.5 10.0 4.8 16.8 1.4 72.3 21.5
Purified CC3M 29.3 13.4 10.2 5.3 15.9 1.0 72.0 21.0

SIG Poisoned CC3M 31.2 13.2 11.9 5.9 16.3 1.2 73.6 21.9
Purified CC3M 29.4 10.8 10.1 6.5 16.4 1.0 73.0 21.0

MT-S Poisoned CC3M 36.5 11.6 10.9 4.6 16.6 1.1 72.3 21.9
Purified CC3M 32.8 11.4 12.0 5.3 16.7 1.5 72.3 21.7

MT-M Poisoned CC3M 30.6 10.9 11.4 4.7 16.2 1.0 74.0 21.2
Purified CC3M 32.2 12.1 12.5 8.3 16.4 1.2 72.9 22.2

Table 5: Performance of backdoor sample filtering using DAO with filtering rate 10% on poisoned
CC3M. The results are presented in the form of clean linear prob accuracy (%) on the 7 validation
set. Results are based on the ResNet-50 as the vision encoder.

Attack Dataset CIFAR10 CIFAR100 FOOD101 GTSRB ImageNet Cars STL10 Average

BadNets Poisoned CC3M 75.0 51.3 54.8 67.3 49.2 17.00 90.6 57.9
Purified CC3M 75.5 51.5 53.4 69.4 48.3 16.6 89.1 57.7

Clean
Label

Poisoned CC3M 75.0 51.5 54.5 65.9 49.1 16.5 89.8 57.4
Purified CC3M 74.0 51.7 54.2 69.2 48.2 16.2 89.8 57.6

Nashville Poisoned CC3M 74.2 52.5 54.2 66.8 49.2 15.8 90.0 57.5
Purified CC3M 75.2 51.2 53.8 68.0 48.2 16.7 89.7 57.5

WaNet Poisoned CC3M 75.0 51.8 54.3 67.0 49.0 16.2 90.1 57.6
Purified CC3M 74.8 51.4 54.5 64.6 48.4 16.1 89.9 57.1

Blend Poisoned CC3M 75.4 51.7 54.4 66.5 49.5 16.6 90.2 57.8
Purified CC3M 74.4 51.6 53.6 66.0 48.5 16.5 90.0 57.2

SIG Poisoned CC3M 75.1 51.6 54.2 67.1 49.0 16.1 90.8 57.7
Purified CC3M 73.5 50.9 53.9 64.7 48.1 16.4 89.9 56.8

MT-S Poisoned CC3M 74.2 50.0 54.4 66.4 49.2 16.6 90.0 57.3
Purified CC3M 68.0 48.5 47.1 63.1 46.6 16.3 90.2 54.2

MT-M Poisoned CC3M 75.3 51.8 54.7 68.0 49.3 15.3 90.0 57.8
Purified CC3M 68.9 50.8 52.3 69.7 47.7 17.5 89.7 56.7

Table 6: Defense performance of backdoor sample filtering using DAO for filtering rate 10% on
poisoned CC3M. The results are presented in the form of clean zero-shot accuracy (%) / attack
success rate (%) on the ImageNet validation set. Results are based on the ResNet-50 as the vision
encoder. The best results in terms of clean zero-shot accuracy and attack success rate are in boldface.

Dataset Method Patch Clean Label Nashville WaNet Blend SIG MT-S MT-M TDPA

Poisoned
CLIP 17.0 / 100.0 17.1 / 95.0 16.7 / 78.7 16.2 / 83.8 16.8 / 75.9 16.3 / 67.3 16.5 / 79.5 16.2 / 74.7 16.8 / 100.0

RoCLIP 12.8 / 0.1 12.7 / 0.0 12.5 / 14.6 12.6 / 13.4 12.2 / 51.4 12.3 / 48.2 12.8 / 2.0 12.2 / 13.9 15.2 / 100.0
SafeCLIP 17.2 / 0.0 17.0 / 19.9 16.7 / 54.5 17.4 / 9.4 17.6 / 53.6 16.5 / 68.7 16.8 / 32.6 17.1 / 30.9 17.2 / 100.0

Purified
(Ours)

CLIP 16.2 / 0.0 16.7 / 0.0 16.1 / 9.6 16.7 / 0.5 15.8 / 0.6 16.4 / 0.2 16.7 / 0.6 16.4 / 15.00 16.3 / 0.0
CLIP+NN 17.4 / 0.0 17.5 / 0.0 17.4 / 0.3 17.6 / 0.1 17.5 / 0.0 17.6 / 0.1 17.9 / 0.1 17.6 / 0.2 17.7 / 0.0
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Figure 6: The attack success rate (ASR) and clean accuracy (CA) were evaluated using zero-shot
classifications on ImageNet with varying filtering percentages. Results are based on ResNet-50 as
the vision encoder.

B.4 TRIGGER SYNTHESIS

In this subsection, we present the trigger synthesis method we used to recover the trigger on the
birthday cake images that are presented in Section 5.3. Since existing methods are designed for
supervised learning, we need to make adaptations in order to use them for CLIP. Inspired by Neural
Cleanse (Wang et al., 2019) and Cognitive Distillation (Huang et al., 2023), we use the following
objective:

argmin
m,∆

sim(fI(x
′), zt) + α∥m∥1 + β(TV (m) + TV (∆)) (2)

x′ = m⊙∆+ (1−m)⊙ x, (3)

where m ∈ [0, 1]w×h is a learnable 2D input mask that does not include the color channels, ∆ ∈
[0, 1]3×w×h is the trigger pattern, ⊙ is the element-wise multiplication applied to all the channels,
TV (·) is the total variation loss, zt = fT (t) is the embedding of the target caption, fI is the image
encoder and sim(·) is the similarity measure.

For the birthday cake images, the target caption is “the birthday cake with candles in the form of
number icon.” We perform the trigger synthesis using the equations above on the CC3M dataset
and run for optimization 250 steps, α is set to 0.0001, and β to 70. We use Adam (Kingma & Ba,
2014) as the optimizer for m and ∆, the learning rate is set to 0.05, β1 and β2 are set to 0.1. m is
initialized using 1, and ∆ is initialized using a birthday cake example.

(a) ASR is 45.37% (b) ASR is 13.09%.

Figure 7: (a-b) The synthesized patterns with “a photo of great white shark” as the target caption.

The trigger synthesis might appear to be similar to a targeted universal adversarial attack and might
not validate that the birthday cake is a real backdoor. To address this, we provide a counter-example.
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This trigger synthesis is not effective in creating a strong targeted-universal adversarial attack. We
use one of the ImageNet classes as the target and the prompt template “a photo of {target}” as
the target caption. We repeat the experiment presented in the main paper with the exact same hy-
perparameters except the ∆ initialized with random values. We conducted this experiment twice.
The recovered triggers are shown in Figure 7. These triggers only achieve an ASR of 45.37% and
13.09%. Not as high as the birthday cake example (92.38%). The high ASR of the birthday cake
example makes it highly susceptible to being a backdoor trigger.

B.5 SENSITIVITY TO POISONING RATES

In this subsection, we examine the sensitivity of local outlier detection methods to varying poisoning
rates. The results are presented in Table 7. With our default setting of k = 16, k -dist shows the most
robustness against changes in the poisoning rate. SLOF and DAO remain relatively stable up to a
5% poisoning rate. When the poisoning rate significantly increases to 10%, increasing the locality
k to 256 substantially improves performance compared to k = 16. This is expected since a higher
poisoning rate increases the likelihood that the k nearest neighbors will include poisoned samples,
necessitating an adjustment in the locality k. We present the embedding space visualization with
the control experiments to increase the number of backdoor samples within the batch in Figure 8.
It can be observed that with an increase in the locality parameter k, the local outlier methods can
accurately identify backdoor samples when the poisoning rate is significantly higher.
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(a) 1 backdoor sample and k = 16.
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(b) 30 backdoor samples and k = 64.

Figure 8: The t-SNE plot of the embedding space with various numbers of backdoor samples for a
batch of 1024 data points.

In real-world web-scale datasets, poisoning more than 5% of the data is highly unlikely. Carlini
et al. (2024) indicates that while poisoning 0.01% of a dataset is relatively inexpensive, poisoning
0.1% would drastically increase the cost from $10 USD to $10,000 USD. Poisoning 5% to 10%
of a web-scale dataset would be extremely costly. Therefore, we believe that the default choice of
k=16 is appropriate. However, using k=256 as a default is also feasible, as detection performance
remains stable for k between 16 and 256, as demonstrated in Appendix B.2. Unlike SafeCLIP
(Yang et al., 2024), which identified difficulties in detecting backdoor samples when the poisoning
rate exceeds 0.5%, local outlier detection remains robust to poisoning rates as high as 10%, although
such scenarios are unrealistic in practice.

Table 7: Results of sensitivity towards poisoning rate for local methods. All results are based on the
Patch trigger. Results are reported as area under the ROC curve. The default k is 16.

Poisoning Rate LID k -dist SLOF DAO

0.01% 99.29 99.75 99.86 99.86
0.1% 69.82 100.00 100.00 100.00
1% 0.29 100.00 100.00 100.00
5% 0.01 100.00 99.87 99.66
10% 1.18 95.39 63.00 64.88

10% (k=256) 0.00 100.00 99.99 99.98
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LID is shown to be sensitive to poisoning rates. Interestingly, in the case of a 10% poisoning rate,
LID detection shows an AUC of 0.0, suggesting that all poisoned samples have a low LID score at
higher poisoning rates. In contrast, at lower poisoning rates, poisoned samples tend to have higher
LID scores. This indicates that LID detection is not robust to changes in the poisoning rate.

B.6 WHITE-BOX ADAPTIVE ATTACKS

In this subsection, we provide an analysis of local outlier detection methods against white-box adap-
tive attacks, i.e., the attacker is aware of our detection strategy and attempts to evade our detection.
We assume the attacker can control the training process to regularize the outlier scores so that the
trigger is small. This is the unrealistic setting for data poisoning attacks, but such analysis could
provide insights into the robustness of local outlier detection methods.

To evade the detection, the attacker may add a regularization term to the original training objective,
forcing the model to generate smaller outliers for the backdoor samples. Formally, it is defined as
the following:

LCLIP(z
x, zt) + SLOF(zx

′
), x′ ∈ Db,

where zx and zt are the image and text embeddings, respectively, and SLOF(zx
′
) denotes the Local

Outlier Factor score of the backdoor-poisoned samples x′ in the backdoor dataset Db. This objective
allows the attacker to minimize the outlier score of the poisoned samples during pretraining.

Table 8: Comparing the AUC (%) of different outlier detection methods against adaptive attacks.
Clean Acc (CA) and ASR are measured by the top-1 zero-shot accuracy (%) on ImageNet. The best
results are boldfaced.

Method Trigger Poisoning Rate Clean Acc ASR k-dist SLOF DAO

Standard Patch 0.01% 17.00 100.0 99.75 99.86 99.86
Adaptive Attack Patch 0.01% 15.94 100.0 100.0 100.0 100.0

The results are reported in the table 8. It clearly shows that this adaptive strategy does not circumvent
our detection method; in fact, it even improves our detection performance. This is because forcing
the poisoned backdoor samples to mimic the density profile of clean samples is only effective within
a specific neighborhood in the feature space. To fully evade detection, an attacker would need to
account for all possible neighborhoods generated by various combinations of data points—a task that
is computationally infeasible given the scale of web datasets, which often contain millions or even
billions of samples. Therefore, our detection method remains robust even against adaptive attacks
that attempt to minimize the outlier scores of poisoned samples. This reinforces the effectiveness
of our approach in real-world settings where attackers may employ sophisticated strategies to hide
backdoor triggers.

B.7 ADDITIONAL DETECTION RESULTS

In this section, we present the result of FPR@95 in Table 9, which is the false positive rate at
95% true positive rate. This is a complementary metric to the AUC score. In practice, it’s difficult
to set a threshold that achieves exactly a 95% true positive rate when removing backdoor data.
Therefore, AUC, which represents the probability of a backdoor sample having a higher score than
a clean sample, is the preferred metric for detecting backdoor samples. Nevertheless, we report the
FPR@95 here. The results are consistent with Section 5.1 of the main paper, where local outlier
methods consistently perform well. When using RN50 as the encoder, local outlier methods only
show an FPR@95 above 1% for Clean Label and MT-M attacks. As demonstrated in Section 5.3,
even with clean datasets, these methods detect noisy data (counted as false positives) that do not
benefit pretraining. A slightly higher FPR does not impact clean data performance during removal
and retraining, as demonstrated in Section 5.2 and Appendix B.3.

We present the detection results for the CC12M (Changpinyo et al., 2021) and RedCaps (Desai et al.,
2021) dataset with RN50 as an image encoder in Table 10 and 11. It can be observed the local outlier
detection consistently outperforms other baselines. The findings are consistent as in Section 5.1 in
the main paper.
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We provide extended results on the distributions of backdoor scores using ABL, CD, LID, k -dist,
Isolation Forest, and SLOF in Figures 9–16. Results are based on using RN50 as the image encoder.

Table 9: The detection performance is evaluated using the FPR@95, and results are reported with
percentage (%). The best results are boldfaced.

Vision
Encoder

Threat
Model Trigger Poisoning

Rate (%)
CA
(%)

ASR
(%) ABL CD Safe

CLIP LID iForest k -dist SLOF DAO

RN50

STBA

Patch 0.01 17.0 100.0 99.48 13.67 52.62 3.06 0.44 0.32 0.25 0.28
Clean Label 0.07 17.1 95.0 87.06 95.55 98.03 50.81 23.83 12.75 11.23 11.45

Nashville 0.1 16.7 78.7 87.81 0.24 84.18 97.98 0.36 0.29 0.27 0.27
WaNet 0.1 16.2 83.8 89.78 1.88 46.54 98.82 0.74 0.26 0.30 0.32
Blend 0.1 16.8 75.9 90.01 0.0 74.06 99.51 0.03 0.03 0.03 0.03
SIG 0.1 16.3 67.3 92.01 0.07 49.23 99.59 0.07 0.03 0.04 0.05

MTBA MT-S 0.1 16.5 79.5 94.69 0.51 50.65 36.80 0.28 0.23 0.21 0.20
MT-M 0.1 16.2 74.7 93.08 25.85 51.83 16.92 6.42 5.85 4.36 4.30

TDPA - 0.01 16.8 100.0 89.25 0.01 60.42 99.97 9.46 0.05 0.06 0.06

ViT
B-16

STBA

Patch 0.1 15.2 99.8 99.02 99.04 38.49 98.63 48.78 6.23 22.91 30.33
Clean Label 0.07 15.7 19.0 91.39 89.09 97.47 79.07 92.92 84.17 79.08 79.76

Nashville 0.1 15.7 41.4 90.52 25.18 69.41 99.90 34.64 1.23 12.77 20.04
WaNet 0.1 15.2 12.2 98.38 85.09 43.41 99.67 44.67 4.83 22.06 32.54
Blend 0.1 15.7 95.8 84.61 7.09 77.21 99.94 42.71 0.07 62.72 71.68
SIG 0.1 15.3 82.9 91.64 99.79 70.13 99.94 42.00 0.15 13.00 23.89

MTBA MT-S 0.1 15.3 28.5 99.74 93.95 49.03 90.01 53.58 28.40 21.60 20.80
MT-M 0.1 15.2 36.2 99.62 92.25 57.23 81.13 79.04 68.86 56.07 55.10

TDPA - 0.01 15.5 100.0 86.63 72.59 32.53 99.98 0.05 6.10 5.72 6.82

Table 10: Results for CC12M dataset. The detection performance is evaluated using the AUC, and
results are reported with percentage (%). The best results are boldfaced.

Threat
Model Trigger Poisoning

Rate (%)
CA
(%)

ASR
(%) ABL CD Safe

CLIP LID iForest k -dist SLOF DAO

STBA

Patch 0.01 27.1 100.0 48.02 98.34 88.70 99.27 99.53 99.37 99.50 99.54
Clean Label 0.07 27.7 91.5 62.98 78.29 40.88 65.12 86.72 87.86 89.73 89.66

Nashville 0.1 20.5 99.3 56.63 99.07 25.87 58.66 99.84 99.72 99.85 99.85
WaNet 0.1 24.8 92.3 57.66 98.52 88.34 52.42 99.62 99.50 99.66 99.69
Blend 0.1 26.8 96.0 58.97 99.65 30.32 48.46 99.81 99.82 99.83 99.83
SIG 0.1 26.1 61.7 58.65 99.36 58.14 49.94 99.61 99.63 99.67 99.66

MTBA MT-S 0.1 14.5 99.4 50.82 99.56 84.81 80.49 99.80 99.78 99.84 99.84
MT-M 0.1 14.7 98.9 57.43 97.47 74.03 95.24 99.02 99.15 99.30 99.33

TDPA - 0.01 26.7 100.0 46.76 99.60 86.03 80.69 99.98 100.0 99.98 99.98

Table 11: Results for RedCaps dataset. The detection performance is evaluated using the AUC, and
results are reported with percentage (%). The best results are boldfaced.

Threat
Model Trigger Poisoning

Rate (%)
CA
(%)

ASR
(%) ABL CD Safe

CLIP LID iForest k -dist SLOF DAO

STBA

Patch 0.01 29.9 96.9 41.01 93.27 78.05 93.93 93.55 93.56 93.74 93.75
Clean Label 0.07 30.4 94.9 70.15 57.04 44.66 78.87 85.41 87.58 89.25 89.07

Nashville 0.1 29.7 85.4 69.28 98.23 6.22 69.26 99.16 99.29 99.40 99.38
WaNet 0.1 28.0 35.8 64.83 96.53 76.53 54.3 99.78 99.84 99.89 99.88
Blend 0.1 30.0 98.3 70.34 99.55 35.57 61.14 99.86 99.88 99.93 99.93
SIG 0.1 29.5 97.9 69.35 93.57 68.76 69.48 99.89 99.90 99.91 99.91

MTBA MT-S 0.1 29.5 83.0 61.16 95.92 63.33 86.71 97.37 97.55 97.73 97.73
MT-M 0.1 27.7 83.9 63.43 90.67 58.98 94.51 96.38 96.71 97.04 97.02

TDPA - 0.01 30.0 100.0 51.71 99.93 89.66 81.83 99.71 99.88 99.95 99.96
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Figure 9: The distribution of backdoor scores using ABL on the CC3M dataset.
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Figure 10: The distribution of backdoor scores using CD on the CC3M dataset.
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Figure 11: The distribution of backdoor scores using SafeCLIP on the CC3M dataset.
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Figure 12: The distribution of backdoor scores using LID on the CC3M dataset.
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Figure 13: The distribution of backdoor scores using iForest on the CC3M dataset.
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Figure 14: The distribution of backdoor scores using k -dist on the CC3M dataset.
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Figure 15: The distribution of backdoor scores using SLOF on the CC3M dataset.
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Figure 16: The distribution of backdoor scores using DAO on the CC3M dataset.

28


	Introduction
	Related Work
	Preliminaries
	Poisoning Backdoor Attacks on CLIP
	Outlier Detection Metrics

	Detecting CLIP Backdoor Attacks
	Backdoor Sample Detection
	Characterizing CLIP Backdoor Samples
	Detecting CLIP Backdoor Samples

	Experiments
	Detection Performance Evaluation
	Outlier Filtering as a Defense
	Detecting Unintentional Backdoors in CC3M

	Conclusion
	Backdoor Sample Detection Algorithm
	Experiments
	Experiment Setting
	Sensitivity to the Locality
	Additional Filtering Results
	Trigger Synthesis
	Sensitivity to Poisoning Rates
	White-box Adaptive Attacks
	Additional Detection Results


