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Abstract

Since its inception, deep learning has been
overwhelmingly reliant on backpropagation and
gradient-based optimization algorithms in order
to learn weight and bias parameter values. The
Tractable Approximate Gaussian Inference (TAGI)
algorithm was shown to be a viable and scal-
able alternative to backpropagation for shallow
fully-connected neural networks. In this paper,
we are demonstrating how TAGI matches or ex-
ceeds the performance of backpropagation, for
training classic deep neural network architectures.
Although TAGI’s computational efficiency is still
below that of deterministic approaches relying on
backpropagation, it outperforms them on classi-
fication tasks and matches their performance for
information maximizing generative adversarial net-
works while using smaller architectures trained
with fewer epochs.

1 INTRODUCTION

Since its inception, deep learning has been overwhelmingly
reliant on backpropagation and gradient-based optimization
algorithms in order to learn weight and bias parameter val-
ues. The Tractable Approximate Gaussian Inference (TAGI)
algorithm [Goulet et al., 2020] was shown to be a viable
and scalable alternative to backpropagation. Nevertheless,
the method’s performance was so far only demonstrated
for shallow fully-connected neural networks, because its
formulation is not compatible with existing libraries, e.g.,
TensorFlow or Pytorch. In this paper, we demonstrate how
TAGI matches or exceeds the performance of backpropaga-
tion, for classic deep neural network architectures. Section 2
first presents the fundamentals of TAGI on which section 3
builds in order to adapt the approach to convolutional neural
networks (CNN) [LeCun and Bengio, 1995] and generative

adversarial networks (GAN) [Goodfellow et al., 2014]. In
parallel, this same section presents how common tools such
as hidden state normalization [Goodfellow et al., 2016], i.e.
batch normalization [Ioffe and Szegedy, 2015] and layer
normalization [Ba et al., 2016], and observation noise decay
[Neelakantan et al., 2015] can be integrated into the TAGI’s
framework. Finally, section 4 compares the performance
of TAGI with the state-of-the-art (SOTA) performance for
image classification and image generation benchmarks.

2 TAGI

TAGI relies upon two key concepts [Goulet et al., 2020].
First, the joint distribution between the observations and
a neural network’s parameters is approximated by a multi-
variate Gaussian distribution. Learning the parameters, i.e.,
the mean vector and covariance matrix defining the joint
probability density function (PDF) requires two simplifying
assumptions; (1) the product of Gaussian random variables
is also Gaussian with its moments, expected values, covari-
ance, and cross covariances calculated analytically using
moment generating functions, and (2) the non-linear activa-
tions such as rectified linear unit (ReLU), Tanh, and logistic
sigmoid are locally linearized at the expected value of the
input hidden unit, thus the output expected value, covari-
ance, and cross-covariance for the activation unit can be
computed analytically. The second key concept employed
by TAGI has two folds; (1) it requires simplifying the covari-
ance matrices for hidden layers and parameters to a diagonal
structure, and (2) it performs the Gaussian conditional infer-
ence using a recursive layer-wise procedure which allows
for an analytically tractable inference that scales linearly
with respect to the number of weight parameters. Despite
the simplifying assumptions mentioned above, TAGI was
shown to match the performance of feedforward neural net-
works (FNN) trained with backpropagation for regression
and classification benchmarks. In the following section, we
will show how to apply TAGI to deep architecture formula-
tions in order to demonstrate its superiority on benchmark
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problems.

3 FORMULATIONS

The fundamental mathematical operations, i.e., additions,
multiplications and non-linear activations, in deep neural
networks are no different from those in FNN. Therefore, the
mathematical formulation developed for defining the joint
PDF for observations and parameters in FNN can be readily
employed in deeper architectures. This section covers the
specificities related to CNNs and GANs.

3.1 CNN

The main building blocks of CNNs are the convolution and
pooling layers whereas the convolution operation is per-
formed using fixed-size filters whose weights are learned
from data. As the convolution operation [He and Sun, 2015]
involves the same operations as a FNN, i.e., multiplication,
addition and non-linear transformation, TAGI’s mathemat-
ical developments can be directly applied to perform the
operations in the convolution layer. Small changes occur in
the pooling operations which reduce the output size follow-
ing the convolutional layers. Additional changes also take
place in two key tools that are employed with CNNs; hidden
states’ normalization, and observation noise decay.

3.1.1 Pooling layer

Existing methods such as the stochastic max pooling in-
troduced by Peters and Welling [2018] can be directly be
applied with TAGI. In addition to this method, we adapt an
average pooling approach to the context of TAGI, where, as
its name indicates, the output is the average of the activation
units in the pooling kernel. For a K-elements pooling kernel,
the output Gaussian random variable is defined as

Apool = 1
K
(A1 +A2 + · · ·+AK), (1)

3.1.2 Layer and batch normalization

In the context of TAGI, layer normalization [Ba et al., 2016]
can be done using the following principles; For a layer of
Gaussian activation unitsA = [A1 A2 · · ·AA]

ᵀ, the normal-
ization is defined as

Ã =
A(j) − µA

σA
, (2)

where µA and σA are the mean and standard deviation of a
Gaussian mixture reduction [Runnalls, 2007] made from all

activation units, each having a probability 1/A so that

µA = 1
A

∑A
i=1 µAi

σA =

√
1
A

[∑A
i=1 (σAi

)
2
+
∑A
i=1 (µAi

− µA)2
]
.

(3)
The resulting expected value, covariance, and cross-
covariance for the normalized vector of activation units
Ã are given by

µÃ = µA−µA

σA

ΣÃ = 1
σ2
A

ΣA

cov(Ã,A) = 1
σA

ΣA.

(4)

By using the short-hand notation defined by Goulet et al.
[2020] for hidden units at a layer j + 1, i.e. Z+ ≡ Z(j+1),
and for the weights, bias, an hidden units at a layer j, i.e.
{W ,B,Z} ≡ {W (j),B(j),Z(j)}, we can use the terms
from equation 4 in the TAGI’s formulation to update the
covariance between hidden states at successive layers

cov(Z,Z+) = 1
σA

ΣZJµW , (5)

where J is the diagonal Jacobian matrix of the activation
function evaluated at µZ , i.e., J = diag

(
∇zσ(µZ)

)
. The

covariance between the weight and bias parameters at a
layer j and the hidden states at a layer j + 1 are

cov(W ,Z+) = 1
σA

ΣWµA − µA

σA
ΣW

cov(B,Z+) = ΣB.
(6)

The developments of Equations 5 and 6 are provided in
Appendix A. These updated expected value, covariance,
and cross-covariance terms can be directly employed in the
TAGI’s layer-wise recursive inference procedure.

The procedure for batch normalization [Ioffe and Szegedy,
2015] is analogous to the layer normalization except that the
normalization is made for each hidden units, over a batch of
B observations. The Gaussian activation units contributing
to the normalization areAj = [A1

j A
2
j · · ·AB

j ]
ᵀ, so that the

number of activation units A in Equations 3 and 4 is replaced
by the number of observations per batch B.

3.1.3 Observation noise decay

In the original TAGI formulation for FNN, the observation
errors’ standard deviation parameters σV were considered as
constants during the training. Throughout empirical exper-
imentation with CNNs, we noticed that we could improve
the performance when using a decay equation

σeV = η · σe−1
V , (7)

where e is the current epoch and η ∈ (0, 1] is the decay
factor hyperparameter that needs to be learned outside of



the TAGI analytic inference procedure. This approach is
similar to what is done in standard deep neural networks
trained with backpropagation where noise is added to the
gradient [Neelakantan et al., 2015] with a decay schedule.
In the case of gradient-based learning, this noise consists
in discrete samples added to the gradient itself whereas for
TAGI, it consists in additional variance on the output layer
so that the update during the inference step will put more
weight on the prior rather than on the likelihood, with this
effect diminishing with time.

3.2 GENERATIVE ADVERSARIAL NETWORKS

GANs build on a generative approach to create realizations
from the input covariates distribution f(x). In practice, the
input x typically takes the form of images. The GAN archi-
tecture consists in a discriminator (Dnet) and a generator
(Gnet) network as depicted in Figure 1. The generator net-
work is used to create synthetic data and the discriminator
is a binary classification network that allows distinguish-
ing synthetic (i.e. fake) and real data. The generator takes
random noise as input. Figure 1 presents the schematic rep-
resentation of a GAN where the magenta arrows depict the
dependencies in the network and correspond to the flow of
information during the forward propagation of uncertainty
through the network. The blue arrows running backward
represent the flow of information during the inference pro-
cedure. In Figure 1a, the Dnet takes as input either a fake
image generated from an input noise sample that is passed
to the Gnet, or a real image; once passed through the Dnet,
that image is either classified as fake or real in the output
layer z(O). The parameters of the Dnet are then updated in
the inference step by relying on the true label for that image.
During this inference step, the parameters of the Gnet are

Noise Gnet Fake images

Dnet z(O)

fake

Real images real

(a) Discriminator

Noise Gnet Fake images Dnet z(O) real

(b) Generator

Figure 1: Schematic representation for (a) the discriminator
and (b) the generator network of a GAN. The magenta
arrows correspond to the flow of information during the
forward propagation of uncertainty through the network and
the blue arrows represent the flow of information during the
inference procedure.
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Figure 2: Schematic representation for (a) the discriminator
and (b) the generator network of an infoGAN. The magenta
arrows correspond to the flow of information during the
forward propagation of uncertainty through the network and
the blue arrows represent the flow of information during the
inference procedure.

not updated. For the generator presented in Figure 1b, an
input noise sample is passed to the Gnet in order to return
a fake image that is then passed through the Dnet. We then
update the Gnet’s parameters by forcing the observation for
the output layer of the Dnet, z(O), to be classified as a real
image. Note that although the inference procedure passes
through the Dnet, only the parameters from the Gnet are
updated for the generator.

Information maximizing generative adversarial networks
(InfoGAN) [Chen et al., 2016] allow controlling the latent
space by disentangling interpretable data representations
such as classes, rotation, and width. As a GAN, an infoGAN
consists in two networks: discriminator and generator. With
infoGAN, the discriminator network has two purposes: (1)
distinguishing the fake and real data, and (2) learn the inter-
pretable representations. Figure 2a shows the architecture
of the discriminator where the Pnet is employed to classify
the real and fake data just like in normal GANs, while the
Qnet allows predicting the latent variables associated with
an input image. Both the Pnet and Qnet are outputs from the
shared Dnet taking as input either a real or fake image that
has been created by the Gnet. During inference, the parame-
ters of the Dnet, Pnet and Qnet are updated by relying on the
true label for that image as well as the latent variables in the
case of fake images. The inputs of the generator networks
consist in an input noise sample, a categorical variable vec-
tor (xd), and continuous variable vector (xc). For example,
in the case of the MNIST dataset [LeCun et al., 1998], the
discrete variables represent the digits from 0 to 9 and the
continuous variable can be the width and rotation of each
digit. In practice, xd and xc are randomly generated during



training and can be specifically queried once the training
is completed. Note that again only the Gnet’s parameters
are updated in Figure 2b, even if during inference, the in-
formation has to flow backward through the Pnet, Qnet and
Dnet.

For image datasets, GANs architectures commonly employ
both CNNs and FNNs which involve the operations such
as multiplication, addition and non-linear transformation.
Therefore, TAGI’s mathematical developments can be di-
rectly applied to perform the operations in GAN and info-
GAN architectures without having to rely on any gradient
whatsoever, or to develop any new equations other than
those presented in Section 3.1 for CNNs.

4 BENCHMARKS

In this section, we compare the performance of TAGI
for deep neural networks with existing deterministic or
Bayesian neural networks trained with backpropagation. In
the case of TAGI, the hyperparameters are kept the same for
all benchmarks with a batch size B = 16, a maximal number
of epochs E = 50, a noise discount factor η = 0.975, and
all weights are initialized using the He’s approach [He et al.,
2015]. These hyperparameters are kept constant across all
benchmarks to demonstrate the robustness of the approach
towards them. The only hyperparameter specific to each ex-
periment is the initial observation noise standard deviation
σ0
V . Additionally, for the MNIST [LeCun et al., 1998] and

CIFAR10 [Krizhevsky et al., 2009] datasets, the input data
was first normalized between 0 and 1 and then the mean of
the normalized data was subtracted. For the celebA dataset
[Liu et al., 2015], we preprocess the input data by subtract-
ing the mean and dividing by the standard deviation of the
input data.

4.1 MNIST

The first benchmark is the MNIST digit classification task.
Table 1 compares the classification accuracy with the results
from Wan et al. [2013] where both approaches use the same
CNN architecture with 2 convolutional layers (32-64) and
a fully connected layer with 150 hidden units. For this ex-
periment, the initial observation noise standard deviation
σ0
V = 1. Results show that TAGI can already reach a clas-

sification error < 2% after the first epoch and after E = 50
epochs, the performance is slightly better than the results
obtained with backpropagation trained with over 20 times
as many epochs.

In a second experiment on the same dataset, we employ an
infoGAN (see §3.2) in order to test the performance of TAGI
on unsupervised learning tasks. The hyperparameters spe-
cific to this experiment are the two observation noise initial
standard deviations for the output of the Pnet and Qnet that

Table 1: Comparison of the classification performance on
MNIST between a network trained with TAGI and backprop-
agation (BP). (HP: hyperparameters; E, number of epochs,
B, batch size)

Error Rate [%] HP

e = 1 e = E E B

TAGI 1.88 0.64 50 16

BP [Wan et al., 2013] - 0.67 1000 128

are taken as σ0,P
V = σ0,Q

V = 3. As a reference, we employ
the input latent space and infoGAN architecture described in
Chen et al. [2016]. The input latent space includes 62 Gaus-
sian noise variables, one categorical variable xd containing
ten classes, and two continuous variables for representing
the width and rotation of the digit. In the case of TAGI, we
employ the same input latent space with a modification to
the architecture. Specifically, for the Gnet, we use half as
many convolutional filters and half as many hidden units in
the output’s fully connected layer. For the Qnet, we use a
fully connected layer containing 300 hidden units instead of
128. Overall, our architecture contains ≈ 2.1M parameters
versus 13.3M for the network used as reference [Chen et al.,
2016], and we train over 50 epochs whereas they train with
100 epochs. The complete architecture’s details are provided
in Appendix B.2.1.

The results obtained using TAGI are presented in Figures
3a–c while the results obtained with backpropagation are
shown in Figures 3d–f. Note that the results for the MNIST
trained with backpropagation were obtained using the code
from Mohit [2019]. Overall, we denote an advantage for
the network trained with backpropagation as TAGI can only
disentangle 9 out of 10 digits. Moreover, for TAGI, the two
continuous variables forming the latent space do not have
an effect as clear as in the case of backpropagation. The
reason for this sub-par performance is that for TAGI, the
output layer uncertainty is homoscedastic whereas, in the
case of Chen et al. [2016], it is heteroscesastic so that they
optimize both the expected values and variances for the two
continuous variables on the output layer. With its current
formulation TAGI can only handle homoscedastic output
uncertainty which jeopardizes its capacity at disentangling
the latent space with the unsupervised setup where we learn
both the categorical and continuous variables at once.

4.2 CIFAR-10

The second benchmark is the CIFAR-10 image classifica-
tion task. Experiments are conducted for a simple network
with three convolutional layers, as well as for the Resnet18
architecture [He et al., 2016]. For both cases, we also ex-
perimented with the usage of layer and batch normalization.



(a) Digits – Backprop (b) Digits– TAGI

(c) Width – Backprop (d) Width – TAGI

(e) Rotation – Backprop (f) Rotation – TAGI

Figure 3: Comparison of the performance of a backpropa-
gation and TAGI trained InfoGAN applied to the MNIST
dataset. Results present reference digit generation (a,d), and
their control with a latent space consisting of the width (b,e)
and rotation (c,f).

The details regarding the 3-layers convolutional network are
presented in Appendix B.1.2. Note that we only apply the
data augmentation techniques including random cropping
and horizontal flipping [Osawa et al., 2019] to the Resnet18
architecture for the comparison purpose with the neural net-
works trained with backpropagation. In the case of TAGI,
the initial observation noise standard deviation was set to the
same value as for the MNIST experiment, i.e., σ0

V = 1. Ta-
ble 2 presents the classification error rate for TAGI-trained
networks as well as the results from several papers using
deterministic as well as Bayesian methods for the same
network architectures. Note that in the case of Resnet18
network, the results presented are the average from three
runs.

First, for the 3-layer convolutional architecture, the results
show that TAGI matches the SOTA performance while us-
ing a lower number of epochs for the experiments with the
batch normalization and without normalization. TAGI out-
performs the SOTA performance for the experiment with
the layer normalization. Second, for the Resnet18 archi-
tecture, TAGI outperforms deterministic and Bayesian ap-
proach with a third of the epochs for training. Note that the
performance of TAGI still matches the performance of MC-
dropout and VOGN even if we employ half as many convolu-
tional filters in the Resnet18 architecture, i.e., Resnet18half.

Table 3 presents the predictive uncertainty calibration met-
rics [Guo et al., 2017] for the Resnet18 and Resnet18half
architecture. The results show that for the Resnet18, TAGI
performs poorly on the NLL and ECE criteria, yet, for the
same criteria, it performs on par with other methods for the
Resnet18half. One of reason behind this limitation is that
TAGI is currently limited to using homoscedastic observa-
tion noise parameters σV , which is not the case for existing
methods relying on backpropagation. Despite this limita-
tion, none of the backpropagation-based methods match the
AUROC criterion obtained with TAGI.

4.3 CELEBA

In the last experiment, we applied infoGAN to the CelebA
dataset for which we downsampled the original images from
3×224×224 to 3×32×32. The hyperparameters specific
to this experiment are the two observation noise initial stan-
dard deviations for the output of the Pnet and Qnet that are
taken as σ0,P

V = 3 and σ0,Q
V = 8. As a reference, we use the

input latent space and the infoGAN architecture described in
Chen et al. [2016]. The input latent space contains a Gaus-
sian noise vector including 128 variables along with ten
categorical variables xd each having ten classes. The speci-
fications of the architecture used with TAGI is presented in
Appendix B.2.2. Overall the TAGI-trained architecture con-
tains approximately 0.7M parameters in comparison with
4.1M for the architecture which serves here as reference.
Results for the infoGan trained with backpropagation were
obtained using the code from Mohit [2019].

Figure 4 compares a sample of the training images with
those generated with both the architecture from Chen et al.
[2016] trained with backpropagation over 100 epochs, and
with an architecture containing six times fewer parameters
trained with TAGI over 50 epochs. These results show that
despite using a smaller network, TAGI performs at par with
the larger network trained with backpropagation.

Figure 5 presents the variations in images for the latent
variable controlling the hair colour. Again, TAGI performs
at par with the larger network trained with backpropagation.
Other latent variables such as the gender, azimuth, hairstyle,
and contrasts are presented in Appendix D



Table 2: Comparison of the classification performance on CIFAR-10 between a network trained with TAGI and backprop-
agation (BP), BP with layer normalization (-LN), BP with batch normalization (-BN), MC-dropout, and VOGN. (HP:
hyperparameters; E: number of epochs; B: batch size ; DA: data augmentation).

Error rate [%] HP

Architecture Method e = 1 e = E E B

3 conv.

TAGI 44.3 23.6 50 16
TAGI-LN 41.4 22.6 50 16

TAGI-BN 42.6 22.0 50 16

BP [Wan et al., 2013] - 23.5 150 128

BP-LN [Ren et al., 2016] - 27.9 100 100

BP-BN [Ren et al., 2016] - 21.9 100 100

Resnet18

TAGI 65.9 13.8 50 16

(DA)

BP [Osawa et al., 2019] - 14.0 160 128

MC-dropout [Osawa et al., 2019] - 17.2 161 128

VOGN [Osawa et al., 2019] - 15.7 161 128

Resnet18half
(DA) TAGI 65.9 14.9 50 16

Table 3: Comparison of the predictive uncertainty calibration performance on CIFAR-10 between a network trained with
TAGI and backpropagation (BP), BP, MC-dropout, and VOGN. (HP: hyperparameters; E: number of epochs; B: batch
size ; NLL: Negative Log-Likelihood; ECE: Expected Calibration Error; AUROC: Area Under the Receiver Operating
Characteristics). See Table 15 for standard deviations.

NLL ECE AUROC HP

Architecture Method e = E e = E e = E E B

Resnet18

TAGI 0.588 0.143 0.980 50 16

(DA)

BP [Osawa et al., 2019] 0.55 0.082 0.877 160 128

MC-dropout [Osawa et al., 2019] 0.51 0.166 0.768 161 128

VOGN [Osawa et al., 2019] 0.477 0.04 0.876 161 128

Resnet18half
(DA) TAGI 0.541 0.046 0.978 50 16

5 DISCUSSION

For the infoGAN experiments, the results have shown that
TAGI can reach a performance at par with a network trained
with backpropagation while using significantly smaller ar-
chitectures and a lower number of epochs. We opted for this
approach because TAGI’s implementation is not yet opti-
mized for computational efficiency so the current computing
time is approximately one order of magnitude higher than
when training the same deterministic neural network using
backpropagation.

Throughout the experiments, TAGI employs far fewer hy-
perparameters than traditional neural networks trained with
backpropagation. Moreover, TAGI’s robustness toward these

hyperparameter values allows keeping most of them con-
stant across various tasks. The main hyperparameters that
still need to be adapted with the size of the network em-
ployed are the initial output noise standard deviations, σ0

V .
In the future, these hyperparameters could be passed as hid-
den states that are learned online like other weights and
bias, while simultaneously adding the capacity to model
heteroscedastic output noise variance.

In addition, we can improve the classification performance
with the same architecture by using smaller batch sizes,
which, however, decreases the potential for parallelization.
The same applies, for larger batch sizes where the losses in
classification performance is compensated by an increase
in computation parallelization. A systematic study of the



(a) Sample training images from the
CelebA dataset.

(b) Backpropagation (100 epochs) (c) TAGI (50 epochs)

Figure 4: Comparison of a sample of training images (a) with the synthetic images generated using infoGAN with (b) the
architecture presented in Chen et al. [2016] trained with backpropagation, and with (c) a network six times smaller trained
with TAGI.

(a) Backpropagation (100 epochs)

(b) TAGI (50 epochs)

Figure 5: Comparison of the capacity to control the latent
space for hair colour for (a) the architecture presented in
Chen et al. [2016] and trained with backpropagation, and
(b) a network six times smaller trained with TAGI.

effect of batch sizes remains to be explored.

6 CONCLUSION

This paper demonstrates the applicability of TAGI to deep
neural networks. The results obtained from different tasks
confirm that TAGI is able to perform analytical inference for
the parameters of deep neural network. Although the compu-
tational efficiency is still below that of standard approaches
relying on backpropagation, TAGI outperforms these ap-
proaches on classification tasks and match the performance

for infoGANs while using smaller architectures trained with
fewer epochs. Future code developments oriented toward
efficiency should reduce that gap.
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APPENDIX

A CROSS-COVARIANCES FOR LAYER
NORMALIZATION

Assuming that Z,W , andB are independent on each other,

cov
(
Z,Z+

)
= cov

(
Z, 1

σA
WA− µA

σA
W +B

)
= 1

σA
cov (Z,WA)−

���
���

�: 0
µA
σA

cov (Z,W ) +���
��: 0

cov (Z,B)

= 1
σA

[
cov (Z,A)µW +

���
���

�: 0

cov (Z,W )µA

]

= 1
σA

cov (Z,Z)JµW ,

(8)
where A = J (Z − µZ) + σ(Z) with σ(.) being the activation
function.

cov
(
W ,Z+

)
= cov

(
W , 1

σA
WA− µA

σA
W +B

)
= 1

σA
cov (W ,WA)− µA

σA
cov (W ,W ) +���

���: 0

cov (W ,B)

= 1
σA

[
���

���
�: 0

cov (W ,A)µW + cov (W ,W )µA

]
− µA

σA
cov (W ,W )

= 1
σA

cov (W ,W )µA − µA
σA

cov (W ,W ) .

(9)

cov
(
Z,Z+

)
= cov

(
B, 1

σA
WA− µA

σA
W +B

)
=
���

���
��: 0

1
σA

cov (B,WA)−
���

���
�: 0

µA
σA

cov (B,W ) + cov (B,B)

= cov (B,B) .
(10)

B MODEL ARCHITECTURES

This appendix contains the specifications for each model architec-
ture in the experiment section. D refers to a layer depth; W refers
to a layer width; H refers to the layer height in case of convolu-
tional or pooling layers; K refers to the kernel size; P refers to the
convolutional kernel padding; S refers to the convolution stride;
σ refers to the activation function type; ReLU refers to rectified
linear unit; lReLU refers to leaky rectified linear unit.

B.1 CLASSIFICATION

B.1.1 MNIST

B.1.2 CIFAR10

https://github.com/Natsu6767/InfoGAN-PyTorch
https://github.com/Natsu6767/InfoGAN-PyTorch


Table 4: Configuration details for the CNN applied to the
MNIST classification problem.

Layer D ×W ×H K ×K P S σ

Input 1× 28× 28 - - - -
Convolutional 32× 27× 27 4× 4 1 1 ReLU
Pooling 32× 13× 13 3× 3 0 2 -
Convolutional 64× 9× 9 5× 5 0 1 ReLU
Pooling 64× 4× 4 3× 3 0 2 -
Fully connected 150× 1× 1 - - - ReLU
Output 11× 1× 1 - - - -

Table 5: Configuration details for the CNN applied to the
CIFAR10 classification problem.

Layer D ×W ×H K ×K P S σ

Input 3× 32× 32 - - - -
Convolutional 32× 32× 32 5× 5 2 1 ReLU
Pooling 32× 16× 16 3× 3 1 2 -
Convolutional 32× 16× 16 5× 5 2 1 ReLU
Average pooling 32× 8× 8 3× 3 1 2 -
Convolutional 64× 8× 8 5× 5 2 1 ReLU
Average pooling 64× 4× 4 3× 3 1 2 -
Fully connected 64× 1× 1 - - - ReLU
Output 11× 1× 1 - - - -

B.2 INFOGAN

B.2.1 MNIST

Table 6: Configuration details for Dnet in the experiment on
the MNIST Dataset. The leaky rate for lReLU is set to 0.2.

Layer D ×W ×H K ×K P S σ

Input 1× 28× 28 - - - -
Convolutional 32× 28× 28 3× 3 1 1 lReLU
Batch normalization 32× 28× 28 - - -
Average pooling 32× 14× 14 3× 3 1 2 -
Convolutional 64× 14× 14 3× 3 1 1 lReLU
Batch normalization 64× 14× 14 - - -
Average pooling 64× 7× 7 3× 3 1 2 -
Output 512× 1× 1 - - - lReLU

Table 7: Configuration details for Pnet in the experiment on
the MNIST Dataset.

Layer D ×W ×H K ×K P S σ

Input 512× 1× 1 - - - -
Output 1× 1× 1 - - - -

Table 8: Configuration details for Qnet in the experiment on
the MNIST Dataset.

Layer D ×W ×H K ×K P S σ

Input 512× 1× 1 - - - -
Fully connected 300× 1× 1 - - - ReLU
Output 13× 1× 1 - - - -

Table 9: Configuration details for Gnet in the experiment on
the MNIST Dataset.

Layer D ×W ×H K ×K P S σ

Input 75× 1× 1 - - - -
Fully connected 3072× 1× 1 - - - ReLU
Transposed convolutional 64× 7× 7 3× 3 1 1 ReLU
Transposed convolutional 32× 14× 14 3× 3 1 2 ReLU
Output 1× 28× 28 3× 3 1 2 -

B.2.2 CelebA

Table 10: Configuration details for Dnet in the experiment
on the CelebA Dataset. The leaky rate for lReLU is set to
0.2.

Layer D ×W ×H K ×K P S σ

Input 3× 32× 32 - - - -
Convolutional 32× 32× 32 3× 3 1 1 lReLU
Batch normalization 32× 32× 32 - - -
Average pooling 32× 16× 16 3× 3 1 2 -
Convolutional 32× 16× 16 3× 3 1 1 lReLU
Batch normalization 32× 16× 16 - - -
Average pooling 32× 8× 8 3× 3 1 2 -
Convolutional 64× 8× 8 3× 3 1 1 lReLU
Batch normalization 64× 8× 8 - - -
Average pooling 64× 4× 4 3× 3 1 2 -
Output 256× 1× 1 - - - lReLU



Table 11: Configuration details for Pnet in the experiment
on the CelebA Dataset.

Layer D ×W ×H K ×K P S σ

Input 256× 1× 1 - - - -
Output 1× 1× 1 - - - -

Table 12: Configuration details for Qnet in the experiment
on the CelebA Dataset.

Layer D ×W ×H K ×K P S σ

Input 256× 1× 1 - - - -
Fully connected 256× 1× 1 - - - ReLU
Output 110× 1× 1 - - - -

Table 13: Configuration details for Gnet in the experiment
on the CelebA Dataset.

Layer D ×W ×H K ×K P S σ

Input 238× 1× 1 - - - -
Fully connected 1024× 1× 1 - - - ReLU
Transposed convolutional 64× 4× 4 3× 3 1 1 ReLU
Transposed convolutional 64× 8× 8 3× 3 1 2 ReLU
Transposed convolutional 32× 16× 16 3× 3 1 2 ReLU
Transposed convolutional 32× 32× 32 3× 3 1 2 ReLU
Transposed convolutional 32× 32× 32 3× 3 1 1 ReLU
Output 3× 32× 32 3× 3 1 2 -



C SUPPLEMENTARY RESULTS FOR CLASSIFICATION

Table 14: Comparison of the classification performance on CIFAR-10 between a network trained with TAGI and backprop-
agation (BP), BP, MC-dropout, and VOGN on residual networks over three runs. (HP: Hyperparameters; E: number of
epochs; B: batch size ; DA: data augmentation).

Error rate [%] HP

Architecture Method e = 1 e = E E B

Resnet18

TAGI 65.9± 0.667 13.8± 0.921 50 16

(DA)

BP [Osawa et al., 2019] - 14.0± 0.257 160 128

MC-dropout [Osawa et al., 2019] - 17.2± 0.208 161 128

VOGN [Osawa et al., 2019] - 15.7± 0.195 161 128

Resnet18half
(DA) TAGI 65.9± 0.4 14.9± 0.7 50 16

Table 15: Comparison of the predictive uncertainty calibration performance on CIFAR-10 between a network trained
with TAGI and backpropagation (BP), BP, MC-dropout, and VOGN over three runs. (HP: Hyperparameters; E: number of
epochs; B: batch size ; NLL: Negative Log-Likelihood; ECE: Expected Calibration Error; AUROC: Area Under the Receiver
Operating Characteristics).

NLL ECE AUROC HP

Architecture Method e = E e = E e = E E B

Resnet18

TAGI 0.588 ± 0.09 0.143±0.08 0.98±0.001 50 16

(DA)

BP [Osawa et al., 2019] 0.55±0.01 0.082±0.002 0.877±0.001 160 128

MC-dropout [Osawa et al., 2019] 0.51±0 0.166±0.025 0.768±0.004 161 128

VOGN [Osawa et al., 2019] 0.477±0.006 0.04±0.002 0.876 ±0.002 161 128

Resnet18half
(DA) TAGI 0.541±0.04 0.046±0.001 0.978±0.003 50 16



D CELEBA LATENT SPACE VARIATIONS

(a) Gender – Backpropagation (b) Gender – TAGI

(c) Azimuth – Backpropagation (d) Azimuth – TAGI

(e) Hair style – Backpropagation (f) Hair style – TAGI

(g) Contrast – Backpropagation (h) Constrast – TAGI

Figure 6: Comparison of the capacity to control the latent space for the architecture presented in Chen et al. [2016] and
trained with backpropagation, and a network six times smaller trained with TAGI over half as many epochs.
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