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ABSTRACT

Recent literature has explored the potential of fine-tuning LLMs on domain-
specific corpora to improve performance on respective domains. However, the
risk of memorizing and leaking sensitive information when these models learn
from third-party custom fine-tuning data poses significant potential harm to indi-
viduals and organizations. To this end, as well as the widespread use of domain-
specific LLMs in many high-stake domains, it is imperative to explore whether,
and to what degree, domain-specific LLMs memorize fine-tuning data. Through a
series of experiments, these models exhibit significant capacities for memorizing
fine-tuning data, which results in significant privacy leakage. Furthermore, our in-
vestigations reveal that randomly removing certain words and rephrasing prompts
show promising performance in mitigating memorization.

1 INTRODUCTION

With the widespread adoption of large language models (LLMs) (Brown et al.,2020; [Touvron et al.,
2023a}; |Chowdhery et al., 2022)), customizing LLMs in high-stakes, real-world settings has become
increasingly important. A number of domain-specific LLMs (Han et al.| 2023} |Huang et al.| 2023
Singhal et al., [2022) have been proposed to enhance LLMs in certain domains, which demonstrate
improved performances compared to general models. Following the “’pre-training and fine-tuning”
paradigm, a user can further fine-tune general LLMs on their own data to personalize its performance
for the user’s desired downstream task (Jiang et al.,2024;|Cheng et al.,[2023). For example, if a third-
party business wants to deploy a customer service chatbot in their domain, then finetuning using their
conversation data on top of a pre-trained LLM could be an effective and efficient solution.

While the flexibility of LLMs in this paradigm has great potential value for various domains, it also
raises risks such as privacy leakage, as LLMs can easily expose sensitive information like social
security numbers (Kim et al., 2023} [Lukas et al., [2023), or regurgitate large parts of training docu-
ments (Carlini et al., 2022} |Ozday1i et al.l [2023). Such privacy leakage is typically associated with
memorization, a tendency that LLMs to output entire sequences from their training data verbatim.
This phenomenon has been frequently studied in pre-trained LLMs (Hartmann et al., 2023) but re-
mains less explored in domain-specific models. In this work, we conduct a series of investigations
focused on the memorization of fine-tuning data. These data are actually of higher concern than
pre-training data, since most pre-training datasets are large public corpora with limited privacy con-
cerns, while fine-tuning sets are small, targeted, and potentially very private. Our goal is to ascertain
whether, and to what degree, domain-specific LLMs memorize and leak individual fine-tuning data.

Through experiments that use prefixes from training data to prompt Llama-2 (Touvron et al.,2023b)
and Medalpaca (Han et al.,[2023)), we aim to evaluate the similarity between the tokens generated by
these models and the ground truth in the data with multiple metrics. The findings reveal that Medal-
paca exhibits a significant capacity for memorizing fine-tuning data. Furthermore, a comparative
analysis of Medalpaca and Llama on their respective training datasets highlights that fine-tuning
data is more likely to be memorized due to its smaller volume of samples. Finally, we demonstrate
that randomly removing some words and rephrasing prompts can effectively mitigate memorization.
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These collective findings underscore the significant memorization of fine-tuning data in domain-
specific LLMs. This issue significantly poses risks for using these LLMs in high-stakes domains,
highlighting the need for more advanced and tailored strategies to address these privacy leakage
effectively. Straightforward methods like prompt modification may not be sufficient in this context.

2 RELATED WORK

Domain-specific LLMs. Motivated by the huge success of LLMs, researchers have started to adapt
large language models to specific domains such as medicine (Singhal et al.| 2022} |Han et al.| 2023
Li et al.; 2023), finance (Wu et al., 2023 |Yang et al.,2023), mathematics () and law (Cui et al.,2023;
Huang et al} [2023). These domain-specific LLMs can be trained in two ways: either from scratch
or by adapting existing general LLMs through continued fine-tuning (Gururangan et al.; 2020)), with
the latter being a more efficient method due to the foundational benefits provided by the general
LLMs. In this paper, we primarily focus on the second category due to its prevalence in real-world
scenarios.

Extraction of Training Data. There is extensive work studying how large language models memo-
rize training data and attacks inferring information under various threat models. Research has shown
the feasibility of extracting different types of information including individual sentences (Carlini
et al., [2020), inserted canaries (Carlini et al., 2018} |Parikh et al., [2022} [Béguelin et al., [2019) as
well as n-grams (McCoy et al.| [2021). Prior work studied the leakage of PII in masked language
models (Lee et al.|[2022), large language models (Huang et al.|[2022; Rocher et al.,[2019) and Smart
Reply classification models (Jayaraman et al.l 2022). In addition to demonstrating that language
models leak training data, other efforts focus on understanding the causes for such leakage. Jagiel-
ski et al.| explore the causes of memorization such as training data ordering, i.e., samples can have
different privacy risks independent of their content. [Tirumala et al.| study the effect of memorization
across variables such as dataset size, learning rate, and model size. In response, there is also exten-
sive work studying how to improve the security and privacy of LLMs against these attacks through
red-teaming (Wang et al., 2023} |Chen et al., 2024b)), more powerful alignment (Huang et al., [2024;
Chen et al., [2024c) and certified decoding (Xiang et al.,|2024; |Chen et al.| [20244a). In our work, we
delve deeper into the extraction fine-tuning data from domain-specific LLMs.

3 EXPERIMENTAL SETUP

3.1 MODELS

In our study, we conducted extensive experiments to extract fine-tuning data from a renowned
domain-specific model named Medalpaca (Han et al.,2023)). It represents a family of large language
models designed for medical tasks, fine-tuned on the LLaMA (Touvron et al.,|2023a) model using
medical datasets. It is available in various sizes, including 7 billion, 13 billion, and variants fine-
tuned with LoRA (Hu et al.l[2021). The main goal of this model family is to improve performance in
medical question-answering and dialog tasks. Furthermore, we extracted training data from LLaMA
to analyze the differences in memorization between general LLMs and domain-specific ones.

3.2 DATASETS

We carry out our experiments on primary datasets compassing two primary categories:

Domain-specific Dataset. Medical Meadow (Han et al.,2023)) is derived from two primary sources:
the first includes a collection of existing medical NLP datasets reformatted into an instruction-tuning
format, and the second encompasses a crawl of diverse Internet resources. Each subset focuses
on distinct facets of medical knowledge and practice, establishing a comprehensive framework for
training and evaluation More details about Medical Meadow are displayed in Appendix [A.T]

Public Text Corpus. C4 (Raffel et al., |2019) is a large public NLP dataset created by taking a
single month’s scrape of the Common Crawl corpus. It is refined through filtering heuristics that
eliminate duplicates, placeholders, nonsensical text, and non-English content, resulting in a clean
and high-quality resource. This dataset is commonly used for pre-training large language models
such as T5 (Raffel et al., 2020), GPT-3 (Brown et al.,[2020), and LLaMA (Touvron et al., 2023a)).
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3.3 EVALUATION METRICS

To quantitatively assess the memorization capabilities of LLMs in the aforementioned datasets, we
prompt the model with a 50-token prefix sourced from the fine-tuning dataset and utilize greedy
decoding for further generation. This approach represents a form of attribute inference (Wu et al.,
2016). Subsequently, we assess the discrepancy between the generated tokens and the reference
text using several widely recognized metrics. Given the absence of a deterministic threshold of
memorization, we compare the performance across the training and test sets for each metric.

Perplexity (Brown et al.| [1993). Nasr et al| point out that models often exhibit higher confidence
for examples included in their training or fine-tuning datasets, indicating potential memorization
(Carlini et al.,2021). Building on this observation, we adopt perplexity (PPL) as a metric to evaluate
how well LLMs can predict or memorize the subsequent tokens. Concretely, given a sequence of
tokens 1, . .., x,, perplexity is defined as

1 n
P =exp <_n ZIngO(Ii‘ivla e 795@—1)) .
i=1

That is, if perplexity is low, then the model exhibits low uncertainty regarding the generated tokens.

ROUGE (Lin| 2004} |Ganesan, 2018). ROUGE, an n-gram matching metric, is widely used in ma-
chine translation and text generation benchmarks (An et al.| 2023)). It measures the quality of gen-
erated tokens by comparing it to a reference text, focusing on the overlap of content as determined
by lexical matching. In our experiments, we choose ROUGE-L recall, precision, and F1-score.

Embedding Similarity. Embedding similarity serves as a straightforward metric for assessing the
similarity between generated content and the reference text. A high degree of similarity between
the embeddings of generated tokens and the reference text suggests that the model has memorized
the sample. The effectiveness of this metric is closely tied to the quality of the embedding model
selected. Concretely, we employ the “bge-small—en’ﬂ model from BAAI in our experiments.

4 MEASURING MEMORIZATION

4.1 PROBLEM DEFINITION

Here, we use data extraction to measure memorization in domain-specific LLMs. It includes two es-
sential steps: the creation of tailored input prompts and the assessment of memorization in generated
tokens. Following (Carlini et al.|[2022)), we engage an open-source LLM, denoted as M, for which
we have access to its model weights 6 and fine-tuning dataset X. For each string s € X, we partition
it into a prefix p and suffix x, i.e., s = [p||x]. We then prompt model M with prefix p to generate
new tokens, which can be denoted as M(p) = «’. Finally, the similarity between the generated
suffix &’ and the ground truth suffix x is examined to assess the model’s capacity for memorization.

4.2 EXPERIMENTAL RESULTS

Does domain-specific LLMs memorize fine-tuning data? In Table[I] we analyze the performance
of memory extraction across various models using the metrics described before, on both training and
testing sets of Medalpaca. The results highlight several important findings. Firstly, it is observed that
Medalpaca-7B and Medalpaca-13B consistently exhibit higher confidence and accuracy across all
metrics when prompted with prefix bootstraps from the training set, indicating notable memorization
behavior. To gain further insights into the performance improvements, it is noteworthy that LLaMA-
2-7B and LLaMA-2-13B show comparable performance on training and test datasets. Interestingly,
their performance closely mirrors that of Medaplaca on test sets. This similarity hints at a relation
between enhanced performance and the model’s memorization during fine-tuning. Furthermore,
Medalpaca-13B outperforms its smaller counterpart, Medalpaca-7B, in all metrics, demonstrating
that an increase in model size correlates with a higher level of memorization of fine-tuning data.

How many words can the model memorize? Additionally, we also measure the length of exact
matches between the generated text and the suffix « in the target string s in Table 2] This analysis

'https://huggingface.co/BA Al/bge-small-en
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highlights Medalpaca’s remarkable memorization capacity regarding training samples. For example,
Medaplaca-13B can accurately predict the next five tokens for nearly half of the training samples.
This observation suggests that the tendency for memorization intensifies as the model size increases.

Is fine-tuning data more likely to be memorized? Due to the small and private nature of domain-
specific fine-tuning data, we aim to conduct a detailed comparison of how LLaMA-1-7B and its
fine-tuned variant, Medalpaca-7B, memorize information from training and fine-tuning data respec-
tively. Table[3|demonstrates that Medalpaca-7B exhibits a higher degree of memorization compared
to LLaMA-1-7B. This observation suggests that the fine-tuned LLMs pose a greater risk of uninten-
tionally memorizing fine-tuning data and leaking sensitive information.

Table 1: Performance of memory extraction across various models Medalpaca. “train” refers to the
Wikidoc-Patient-Information dataset utilized by Medalpaca for training, and “test” corresponds
to the USMLE dataset used for benchmarking. Both datasets originate from Medical Meadow.

| Medalpaca-7B | Medalpaca-13B  LLaMA-2-7B | LLaMA-2-13B

Metrics

| train test | train test | train  test | train test
Perplexity | 2.89 3.41 2.31 3.27 3.21 3.44 3.32 3.43
ROUGE-L precision 1 0.52 0.43 0.63 0.47 0.36 0.41 0.41 0.39
ROUGE-L recall 1 0.63 0.47 0.65 0.47 0.41 0.47 0.52 0.48

ROUGE-L F1-score 1 0.52 0.44 0.59 0.45 0.38 043 | 045 0.40
Embedding similarity 1 | 0.95 0.91 0.97 0.90 0.72  0.71 0.76 0.79

Table 2: Performance of word-by-word matches between model-generated text and target text with
various lengths. We displays the ratio of interval samples to the total number of samples here.

| Medalpaca-7B | Medalpaca-13B  LLaMA-2-7B | LLaMA-2-13B

Matching length

| train test | train test | train  test | train test
> Two words 0.52 0.08 0.70 0.14 0.08 0.05 0.16 0.07
> Three words 0.32 0.02 0.56 0.06 0.02 0.02 0.12 0.04
> Five words 0.22 0.00 0.48 0.02 0.00 0.00 0.10 0.02
> Seven words 0.14 0.00 0.38 0.00 0.00 0.00 0.04 0.00
> Ten words 0.06 0.00 0.24 0.00 0.00 0.00 0.02 0.00

Table 3: Comparison of memorization capability between general LLM and domain-specific LLM.

Metrics | Medalpaca-7B | LLaMA-1-7B
Perplexity | 2.89 3.45
ROUGE-L precision 1 0.52 0.21
ROUGE-L recall 1 0.63 0.31
ROUGE-L Fl-score 1 0.52 0.20
Embedding similarity 0.95 0.85

5 MITIGATING MEMORIZATION

5.1 PROBLEM DEFINITION

Based on our exploration in earlier sections, a natural question arises: Given the potential for signif-
icant memorization in domain-specific LLMs, what methods can be employed to mitigate this risk?
In this section, we take initial steps to answer the question by implementing some preprocessing
techniques on the prompt, aimed at reducing memorization. These methods include randomly re-
moving words and rephrasing the prompt. To study the memorization of domain-specific terms,
we selecte samples from the training set and utilize a Named Entity Recognition (NER) modeﬂ to

“https://huggingface.co/d4data/biomedical-ner-all
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identify biomedical terms in each sample. Subsequently, we extract the prefix that precedes certain
specific terms, using this as the input prompt. The extraction’s success is evaluated based on whether
the generated tokens includes the corresponding domain-specific term.

5.2 EXPERIMENT RESULTS

As illustrated in Table 4] both randomly removing a substantial number of words and rephrasing
prompts effectively mitigate memorization, offering a promising approach for mitigating memo-
rization in domain-specific models. Nonetheless, it’s crucial to maintain essential information and
semantic coherence when modifying prompts. Inconsistent alterations may cause the model to pro-
duce nonsensical outputs, undermining the intended outcomes.

Table 4: Performance of prompt modification in mitigating memorization. ~Original Prompt” rep-
resents the prefix p directly from the training string s. “TailClip Prompt” involves removing a
few words from the end of the ’Original Prompt”. ”10% randomized deletion” and ”20% random-
ized deletion” signify removing 10% and 20% of words randomly from the “Original Prompt”.
”Rephrased Prompt” indicates modifying the ’Original Prompt” with a rephrasing model.

Prompt processing method \ Medalpaca-7B \ Medalpaca-13B

Original Prompt 0.65 0.80
TailClip Prompt 0.52 0.55
10% randomized deletion 0.72 0.75
20% randomized deletion 0.41 0.55
Rephrased Prompt 0.25 0.25

6 CONCLUSION

Domain-specific LLMs pose risks in practical applications due to their tendency to memorize sensi-
tive information during fine-tuning. This study explores their memorization concerning fine-tuning
data. Through comprehensive evaluation, we observe significant memory retention in Medaplaca,
with this trend becoming more prominent as model sizes increase. Additionally, we show that re-
moving certain words at random and rephrasing prompts can effectively mitigate this memorization.
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A DETAILS OF DATASETS

A.1 DETAILS OF MEDICAL MEADOW

Table 5: Details about Medical Meadow. For information regarding other, already published data,
please refer to the respective original publication.

Dataset Source Description n

Finetuning

Medical Flash Cards Anki Flashcards Rephrased Q&A pairs derived 33,955
from the front and back sides of
medical flashcards

Stack Exchange Academia Q&A pairs generated from ques- 39,633
tions and their top-rated answers
Biology 7,482
Fitness 3,026
Health 1,428
Bioinformatics 906
Wikidoc Living Textbook Q&A pairs generated from para- 67,704

graphs, where questions were
formulated from rephrased para-
graph titles, and answers were ex-
tracted from paragraph text
Patient Informa- Q&A pairs generated from para- 5,942
tion graph headings and associated
text content

Evaluation
USMLE Step 1 Multiple choice questions from 119
the USMLE self-assessment with
image-based questions excluded
Step 2 120
Step 3 135

A.2 DETAILS OF PUBLIC DATASETS

Common Crawl. Common Craw is a nonprofit organization that provides a large and open web
crawl data repository for public use. It collects web pages from the internet every month and stores
them on Amazon Web Services. Common Crawl’s data can be used for various research and inno-
vation purposes, such as natural language processing, network analysis, and social science.

C4. C4 (Raffel et all, [2020) is a public dataset created by Google Research and Google Brain
containing a large amount of natural English text. C4 cleanses the data of Common Crawl with
a number of filters to remove content that is not suitable for training language models, such as
pornography, violence, and machine-generated or translated text. C4 can be used to train LLMs
such as TS5 (Raffel et al., [2020) and GPT-3 (Brown et al.| 2020) to improve their cross-domain
knowledge and generalization.

3https://commoncrawl.org

10


https://apps.ankiweb.net
https://data.stackexchange.com/
https://www.wikidoc.org/index.php/Main_Page
https://www.usmle.org/sites/default/files/2021-10/Step_1_Sample_Items.pdf
https://www.usmle.org/sites/default/files/2021-10/Step2_CK_Sample_Questions.pdf
https://www.usmle.org/sites/default/files/2021-10/Step3_Sample_Items.pdf

	Introduction
	Related Work
	Experimental Setup
	Models
	Datasets
	Evaluation Metrics

	Measuring memorization
	Problem Definition
	Experimental Results

	Mitigating memorization
	Problem Definition
	Experiment Results

	Conclusion
	Details of datasets
	Details of Medical Meadow
	Details of Public datasets


