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Abstract

Hierarchical time series are collections of time
series that are formed via aggregation, and thus ad-
here to some linear constraints. The forecasts for hi-
erarchical time series should be coherent, i.e., they
should satisfy the same constraints. In a probabilis-
tic setting, forecasts are in the form of predictive
distributions. Probabilistic reconciliation adjusts
the predictive distributions, yielding a joint recon-
ciled distribution that assigns positive probability
only to coherent forecasts. There are methods for
the reconciliation of hierarchies containing only
Gaussian or only discrete predictive distributions;
instead, the reconciliation of mixed hierarchies, i.e.
mixtures of discrete and continuous time series, is
still an open problem. We propose two different
approaches to address this problem: mixed con-
ditioning and top-down conditioning. We discuss
their properties and we present experiments with
datasets containing up to thousands of time series.

1 INTRODUCTION

Hierarchical time series are collections of time series formed
via aggregation. For example, the aggregation of the regional
levels of tourism yields the national level of tourism; the
aggregation of the sales of individual items yields the sales
of a group of items, and so on. Forecasts for hierarchical
time series should be coherent; for instance, the sum of the
forecasts of the regional tourism levels should match the
forecast for the national tourism level.

Hierarchical forecasts are usually generated in two steps.
First, incoherent forecasts are independently generated for
each time series (base forecasts). Then, they are adjusted
to become coherent (reconciliation). Reconciled forecasts,
besides being coherent, are generally more accurate than
the base forecasts: indeed, forecast reconciliation is a spe-

cial case of forecast combination [Hollyman et al., 2021].
Athanasopoulos et al. [2024] provides a review of method-
ologies and applications of forecast reconciliation.

Most methods [Hyndman et al., 2011, Han et al., 2021,
Di Fonzo and Girolimetto, 2024] only reconcile the point
forecasts. The state-of-the-art method is minT [Wickrama-
suriya et al., 2019], whose coherent forecasts minimize the
expected mean squared error. However, reconciled predic-
tive distributions are needed [Kolassa, 2023] to support
decision making. A principled definition of probabilistic
reconciliation was given by Panagiotelis et al. [2023]. The
probabilistic reconciliation of Gaussian base forecasts and
its relation with minT have been studied by Corani et al.
[2020], Wickramasuriya [2023], while the probabilistic rec-
onciliation of forecasts for count time series has been stud-
ied by Corani et al. [2024], Zambon et al. [2024b,a]. An
alternative research line is constituted by end-to-end models
[Rangapuram et al., 2021, 2023, Olivares et al., 2024, Das
et al., 2023], which produce coherent forecasts for the entire
hierarchy.

An open problem is, however, the reconciliation of mixed hi-
erarchies, whose disaggregated time series have low-count
values, while the aggregated ones are smooth and thus mod-
elled as continuous. This situation is for instance common
in retail [Boylan and Syntetos, 2021, Chap. 6.8] and there
are currently no suitable methods for this case: "the devel-
opment of algorithms to handle mixtures of discrete and
continuous data [...] represents a bold research agenda"
[Athanasopoulos et al., 2024].

We propose two approaches for the probabilistic reconcil-
iation of mixed hierarchies. The first (mixed conditioning)
adopts reconciliation via conditioning [Corani et al., 2020,
Zambon et al., 2024b]. It creates a mixed joint distribu-
tion of all the base forecasts, where the bottom are defined
over counts and the upper over real numbers. The joint
predictive distribution is then conditioned on the hierarchy
constraints, yielding a coherent reconciled distribution that
only includes coherent forecasts. This approach is theoreti-
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cally well-grounded but, for reasons discussed later, is not
suitable for large hierarchies.

We thus propose also a second approach, which we call top-
down conditioning. It works in two steps: first, the upper
base forecasts are reconciled via conditioning, using only
the hierarchical constraints between the upper; then, the
bottom distributions are updated in a probabilistic top-down
fashion. We show that this approach successfully reconciles
hierarchies containing thousands of intermittent bottom time
series, taken from the M5 competition Makridakis et al.
[2022].

The paper is organized as follows. In Sec. 2, we discuss
hierarchical forecasting and probabilistic reconciliation. In
Sec. 3, we show how to reconcile mixed hierarchies via
conditioning, while in Sec. 4 we present the top-down con-
ditioning approach. We present experiments on real datasets
in Sec. 5. The conclusions are in Sec. 6. We provide the
proofs in the appendix.

2 HIERARCHICAL FORECASTING

Hierarchical time series are collections of time series that are
formed via aggregation and therefore satisfy some summing
constraints. For instance, in Fig. 1, the time series u1 is
equal to the sum of the time series u2 and u3, and so on.
The lowest level of the hierarchy contains the bottom time
series, which are denoted by b = [b1, . . . , bm]T . All the
remaining time series are referred to as aggregated or upper
time series, and are denoted by u = [u1, . . . , uk]

T . Finally,
we denote by y =

[
uT , bT

]T ∈ Rn the vector of all the
time series. For simplicity, we do not show the time index.
The hierarchy constraints are expressed as:

y = Sb, with S =

ñ
A

I

ô
, (1)

where I ∈ Rm×m is the identity matrix. S ∈ Rn×m is called
summing matrix and A ∈ Rk×m aggregating matrix. For
the hierarchy of Fig. 1, we have:

A =

1 1 1 1

1 1 0 0

0 0 1 1

 .

The base forecasts are the univariate forecasts produced
independently for each time series. In this work, we assume
the base forecasts to be in the form of predictive distribu-
tions. We denote by pπB and by pπU the base forecast distribu-
tions for the bottom and upper time series and by pπ the base
forecast distribution for the entire hierarchy. Depending on
the context, π denotes either a probability mass function or
a density.

u1

u2

b1 b2

u3

b3 b4

Figure 1: A hierarchy with 4 bottom and 3 upper time series.

Probabilistic reconciliation. Let us introduce the coher-
ent subspace S := {y ∈ Rn : y = Sb}, which is the set
of points that satisfy the hierarchical constraints. The base
forecast distribution is incoherent, since its support is not
contained in S . The aim of probabilistic reconciliation is to
find a joint reconciled distribution π̃ that gives positive prob-
ability only to the points of S. Note that it is sufficient to
compute the reconciled distribution π̃B for the bottom time
series. Indeed, the the reconciled distribution π̃ on the entire
hierarchy is then obtained by extending π̃B in a coherent
way:

π̃(u, b) = π̃B(b) 1u=Ab, (2)

where 1 is 1 if u = Ab and 0 otherwise. In the following,
we will thus only show how to compute π̃B(b).

Probabilistic bottom-up. The simplest reconciliation ap-
proach is the probabilistic bottom-up, obtained by setting:

π̃B = pπB .

The probabilistic bottom-up simply ignores the base fore-
casts of the upper time series, and has therefore limited
accuracy. The marginal distribution of the upper time series
reconciled via bottom-up is given by:

pπbu(u) :=
∑

b: Ab=u

pπB(b). (3)

Reconciliation via conditioning. Reconciliation via con-
ditioning conditions the incoherent distribution pπ on the
hierarchy constraints. If pπ is discrete, the reconciled distri-
bution is given by [Zambon et al., 2024b]:

π̃B(b) := Prob
Ä

pB = b | pU −A pB = 0
ä

∝ pπ(Ab, b). (4)

Also in the continuous case [Zambon et al., 2024b], it can
be shown that π̃B(b) ∝ pπ(Ab, b).

Reconciliation via conditioning can be interpreted in a
Bayesian way [Corani et al., 2024]. The distribution of the
bottom-up reconciliation constitutes the prior. It is then up-
dated to incorporate the information contained in pπU . It
treats the forecast pπU as a virtual evidence [Darwiche, 2009,
Ch 3.6], which increases our belief in certain values of the
upper time series. The outcome of the updating is π̃U (u),
which is a compromise [Corani et al., 2024, Zambon et al.,
2024a] between pπbu(u) and pπU (u).



3 MIXED RECONCILIATION VIA
CONDITIONING

Let us now consider a mixed hierarchy, where the bottom
time series have low-count values, while the upper ones are
smooth and thus treated as continuous. We thus assume that
the predictive distributions of the bottom time series are
discrete and the predictive distributions of the upper time
series are continuous. Also in the mixed case, reconciliation
via conditioning is given by Eq. (4).

Proposition 1. For a hierarchy with discrete bottom fore-
cast distributions and continuous upper forecast distribu-
tions, the distribution of the bottom time series reconciled
via conditioning is:

π̃B(b) ∝ pπ(Ab, b). (5)

We prove Prop. 1 in App. A, extending the results of Zambon
et al. [2024b] to the case of mixed-type variables. Here, we
assume for simplicity that all the bottom distributions are
discrete and all the upper ones are continuous. The treatment
of hierarchies with both continuous and discrete time series
on the same level is beyond the scope of this paper.

Sampling from the reconciled distribution. In the case
of mixed hierarchies, the reconciled distribution in Eq. (5)
is only available through samples. Our approach is based
on importance sampling: we first sample from the bottom
base forecast distribution pπB , and then compute the weights
using the upper base forecast distribution pπU , which is a
multivariate Gaussian in our experiments. Here we cannot
use the BUIS algorithm [Zambon et al., 2024b] because we
have a joint base distribution on the upper time series.

Minimal example. We now reconcile a mixed hierarchy
with one upper variable (U ) and two bottom variables (B1

and B2) with base forecasts:

pπB1 = Poisson(15), pπB2 = Poisson(15),

pπU = N (40, 52).

The base, bottom-up, and reconciled distributions for U are
shown in Fig. 2. Since the base forecasts have a positive
incoherence (40-15-15 > 0), reconciliation increases the
means of the bottom distributions (from 15 to 17.8) and
decreases the mean of U (from 40 to 35.6). Reconciliation
also reduces the variance of the predictive distributions: the
variance of pπbu, pπU , and π̃U are respectively 30.1, 25 and
14.9. This intuitive behavior is consistent with the theo-
retical properties of the Gaussian reconciliation [Zambon
et al., 2024a]. Notice that π̃U is discrete, as it is obtained
by summing the discrete samples of the reconciled bottom
distributions.

20 40 60

Bottom−up Mix−cond Base

Figure 2: Predictive distribution of U : bottom-up (discrete),
reconciled (mix-cond, discrete) and base (Gaussian).

Shortcomings in high dimensions. We assume the in-
dependence of the discrete predictive distributions when
creating the joint distribution pπ. This approach is commonly
used given the lack of standard methods, in the discrete
case, to obtain a multivariate predictive distribution from
the marginals. This assumption is viable with a moderate
number of bottom time series, but in high dimension, pπbu

is both too peaked and biased. It is too peaked because of
the independence assumptions, which leads to an overconfi-
dent joint distribution. It is biased because it is obtained by
summing many base forecasts: even for the best algorithms,
the base forecasts for intermittent time series are biased
[Svetunkov and Boylan, 2023]. We noticed in particular that
they tend to be overestimated. If the bottom-up distribution
is unreliable, the distribution reconciled via conditioning
can be worse than the base forecast.

In Fig. 3, we show the distribution of the top level of a
hierarchy with 3049 discrete bottom time series, taken from
the M5 competition [Makridakis et al., 2022]. Because of the
overestimation bias, the mean of the bottom-up distribution
(pπbu, purple) is much larger than the actual value (black
triangle) and has a long right tail. It is also more peaked

3000 4000 5000 6000

Base forecast TD−cond Mix−cond Bottom−up

Figure 3: Predictive distribution for the top time series (M5
dataset, store WI_1): base (pπU , Gaussian), reconciled (TD-
cond and Mix-cond), and bottom-up (pπbu, discrete). The
black triangle is the actual value.



than the base upper forecast (pπU , yellow). Notice also the
large incoherence between pπbu and pπU . Hence, while the
marginal distributions of the bottom time series are good,
the joint distribution is unreliable, and therefore also the
bottom-up distribution pπbu. Reconciliation via conditioning
(Mix-cond), blue in Fig. 3, thus worsens the base forecasts.
Top-down conditioning (TD-cond), which we discuss in the
next section, addresses this problem. It is shown in light blue
in Fig. 3, where it provides a sensible reconciled distribution.

4 RECONCILIATION VIA TOP-DOWN
CONDITIONING

Top-down conditioning is a probabilistic reconciliation ap-
proach that works in two steps: first, the upper base forecasts
are reconciled via conditioning, using only the hierarchical
constraints between the upper variables; then, the bottom
distributions are updated via a probabilistic top-down proce-
dure. Elgavish [2023] presents a similar idea for the Gaus-
sian case, where it admits an analytical solution. We extend
this idea to count time series. First, we formally define the
reconciled distribution via top-down conditioning and we
study its properties. We show that, in the case of hierarchies
with only one upper, the reconciled upper distribution is
exactly the base distribution; if there is more than one upper,
it is given by the upper distribution partially reconciled via
conditioning. We then introduce an algorithm to efficiently
sample from the reconciled distribution.

We only consider strictly hierarchical structures, i.e., hierar-
chies represented by a tree. Moreover, we assume that the
hierarchy is balanced [Di Fonzo and Girolimetto, 2024]; a
precise definition and its implications are given in App. B.1.

Throughout the section we assume that the support of the
upper forecast distribution is included in the support of the
bottom-up distribution. If all bottom forecast distributions
are discrete, then the bottom-up forecast has support on
the natural numbers; we thus assume pπU to be discrete. In
practice, when we run the experiments, the samples from the
upper distribution are truncated and rounded before applying
the algorithm. We report all the proofs in App. B.

4.1 HIERARCHY WITH A SINGLE UPPER

Let us first consider a hierarchy with m bottom and one
upper, where pπ1, . . . , pπm, pπU are the base distributions.

Definition 1. Assume that the base forecasts for all the
bottom and the upper time series are conditionally inde-
pendent. We define the reconciled distribution via top-down
conditioning as

π̃TD(b) := pπ1(b1) . . . pπm(bm)
pπU (b1 + · · ·+ bm)

pπbu(b1 + · · ·+ bm)
. (6)

In App. B.2 we show that π̃TD is a probability distribution.
Note that the bottom-up distribution pπbu, defined in Eq. (3),
can be written in this case as

pπbu(u) :=
∑

b1,...,bm:
b1+···+bm=u

pπ1(b1) . . . pπm(bm). (7)

Definition 1 could be easily generalized to include the case
in which we have a joint distribution pπB on the bottom
time series; we leave the study of the correlations between
discrete bottom forecasts for future work. The reconciled
distribution via top-down conditioning has two desirable
properties.

Proposition 2. π̃TD satisfies the following properties:

(i) If (B̃1, . . . , B̃m) ∼ π̃TD =⇒ B̃1 + · · ·+ B̃m ∼ pπU

(ii) Given (b̄1, . . . , b̄m) and (b̌1, . . . , b̌m) such that b̄1 +
· · ·+ b̄m = b̌1 + · · ·+ b̌m, then

π̃TD(b̄1, . . . , b̄m)

π̃TD(b̌1, . . . , b̌m)
=

pπ1(b̄1) . . . pπm(b̄m)

pπ1(b̌1) . . . pπm(b̌m)

The first property explains the name top-down: indeed, the
reconciled upper distribution is exactly the base upper distri-
bution. The second property specifies how the distribution
of the upper is split between the bottom, i.e., proportionally
to the base distribution of the bottom.

Sampling from π̃TD. Let us first consider the case m = 2.
We can rewrite Eq. (6) as

π̃TD(b1, b2) = pπ1(b1) pπ2(b2)
pπU (b1 + b2)

pπbu(b1 + b2)

=
∑
u

pπU (u) ·
pπ1(b1) pπ2(b2)

pπbu(u)
1b1+b2=u

=
∑
u

pπU (u) · pπ(b1, b2 | b1 + b2 = u). (8)

Eq. (8) shows that we can sample from π̃TD in two steps.
First, we sample u from pπU ; then, we sample (b1, b2) from
the base bottom distribution, conditioned on the constraint
b1 + b2 = u. For the latter step, we introduce Alg. 1. It
samples b1 from the marginal distribution of pπ(b1, b2 | b1 +
b2 = u); b2 is then computed as u− b1.

Lemma 1. The output (b1, b2) of Alg. 1 is distributed as

pπ(b1, b2 | b1 + b2 = u).

Analogously, in the general case of m > 2, we need to
sample from pπ(b1, . . . , bm | b1+ · · ·+ bm = u). Since there
are m variables and 1 constraint, the direct generalization of
Alg. 1 would require sampling from a (m− 1)-dimensional
joint distribution, which is not feasible when m is large. We
thus introduce Alg. 2: the key idea is to iteratively split the



Algorithm 1 Top-down sampling (2 bottom)

1: Input: pπ1, pπ2; u
2: Output: sample (b1, b2)

3: Define q1(b1) ∝ pπ1(b1) pπ2(u− b1)
4: b1 ← sample from q1
5: b2 ← u− b1
6: return (b1, b2)

B
(3)
1

B
(2)
1

B
(1)
1 B

(1)
2

B
(2)
2

B
(1)
3 B

(1)
4

u

b
(2)
1 b

(2)
2

b
(1)
1 b

(1)
2 b

(1)
3 b

(1)
4

Figure 4: Auxiliary binary tree (m = 4, L = 3)

variables in two groups, applying each time Alg. 1. For the
sake of clarity, we present the algorithm in the case that
m is a power of 2; however, we show in App. B.7 that the
algorithm can be easily adapted to any m. Let us define
pB1 ∼ pπ1, . . . , pBm ∼ pπm, and assume that all the pBj’s are
independent. We then set L := log2(m) + 1, and we build
an auxiliary binary tree in the following way:

B
(1)
j = pBj , for j = 1, . . . ,m,

B
(l+1)
j = B

(l)
2j−1 +B

(l)
2j , for l = 1, . . . , L− 1,

j = 1, . . . , 2L−l−1.

An example for m = 4 is shown in Fig. 4. For each l and
j, we denote by π

(l)
j the distribution of B(l)

j . In the first

part of Alg. 2, we compute π
(l)
j for each j and l; thanks to

the independence assumption, the distribution of the sum is
given by the convolution, denoted by ∗:

π
(l+1)
j = π

(l)
2j−1 ∗ π

(l)
2j . (9)

In practice, convolutions can be computed efficiently using
the Fast Fourier Transform [Cooley and Tukey, 1965]. In the
second part of Alg. 2, we start from u at the top node of the
auxiliary binary tree, and proceed downward by iteratively
doing conditional sampling using Alg. 1. For example, if
m = 4, we first draw

(
b
(2)
1 , b

(2)
2

)
conditioned on b

(2)
1 +

b
(2)
2 = u, then we draw

(
b
(1)
1 , b

(1)
2

)
conditioned on b

(1)
1 +

b
(1)
2 = b

(2)
1 and

(
b
(1)
3 , b

(1)
4

)
conditioned on b

(1)
3 +b

(1)
4 = b

(2)
2

(Fig. 4).

Lemma 2. The output (b1, . . . , bm) of Alg. 2 is distributed
as

pπ(b1, . . . , bm | b1 + · · ·+ bm = u).

Algorithm 2 Top-down sampling (2L−1 bottom)

1: Input: u; pπ1, . . . , pπm

2: Output: sample (b1, . . . , bm)

3: L← log2(m) + 1

4: ### Compute the π
(l)
j ’s

5: π
(1)
j ← pπj for each j = 1, . . . ,m

6: for l = 1, . . . , L− 1 do
7: for j = 1, . . . , 2L−l−1 do
8: π

(l+1)
j ← π

(l)
2j−1 ∗ π

(l)
2j

9: ### Top-down sampling
10: b

(L)
1 ← u

11: for l = L− 1, . . . , 1 do
12: for j = 1, . . . , 2L−l−1 do
13:

(
b
(l)
2j−1, b

(l)
2j

)
← Alg. 1

(
π
(l)
2j−1, π

(l)
2j ; b

(l+1)
j

)
14: return

(
b
(1)
1 , . . . , b

(1)
m

)
Algorithm 3 Top-down conditioning (1 upper)

1: Input: pπU , pπ1, . . . , pπm; N
2: Output: sample

(
bi1, . . . , b

i
m

)
i=1,...,m

3: Sample
(
ui
)
i=1,...,N

IID∼ pπU

4: for i = 1, . . . , N do
5: bi ← Alg. 2

(
ui; pπ1, . . . , pπm

)
6: return

(
bi
)
i=1,...,N

Finally, we introduce Alg. 3 for sampling from the recon-
ciled distribution via top-down conditioning in case of 1
upper and m bottom time series.

Proposition 3. The output of Alg. 3 is distributed as π̃TD,
defined in Eq. (6).

4.2 HIERARCHY WITH k UPPER

Let us now consider the general case of a hierarchy with m
bottom and k upper. We generalise Definition 1 as follows.

Definition 2. Let pπ1, . . . , pπm be the conditionally indepen-
dent base distributions of the bottom, and pπU the multivari-
ate distribution of the upper. We further assume conditional
independence between upper and bottom. The reconciled
distribution via top-down conditioning is given by

π̃TD(b) :=
pπ1(b1) . . . pπm(bm)

pπbu(Ab)
pπU (Ab). (10)

We recall that the bottom-up distribution is defined as
pπbu(u) :=

∑
b: Ab=u

pπB(b). This sum is non-empty only
if u satisfies the hierarchy constraints. For example, in the
case of the hierarchy of Fig. 1, if u1 ̸= u2 + u3, then
{b : Ab = u} = ∅, and therefore pπbu(u) = 0.



Since the hierarchy is balanced, we can consider the sub-
hierarchy given by only the upper time series (App. B.1).
Hence, following the notation of Sec. 2, we can write

u = Suulow, (11)

where ulow is the set of upper time series on the lowest
level of the hierarchy. We then denote by uupp the set of all
the other upper time series, so that uupp = Auulow. In the
example of Fig. 1, we have ulow = [u2, u3]

T , uupp = [u1],
and Au = [1 1]. Prop. 2 can be generalized as follows.

Proposition 4. The distribution π̃TD in Def. 2 satisfies the
following properties:

(i) If B̃ ∼ π̃TD =⇒ AB̃ ∼ pπU (u) 1uupp=Auulow

(ii) Given b̄ and b̌ such that Ab̄ = Ab̌, then

π̃TD

(
b̄
)

π̃TD

(
b̌
) =

pπ1(b̄1) . . . pπm(b̄m)

pπ1(b̌1) . . . pπm(b̌m)

Note that the distribution of AB̃ in (i) can be written as

pπU (A
uulow, ulow) 1uupp=Auulow , (12)

which corresponds to the formula of reconciliation via con-
ditioning (2), with A,u, b replaced by Au,uupp,ulow. This
provides the intuition for the algorithm to sample from π̃TD

in case of hierarchies with more than one upper (Alg. 4).
First, we reconcile only the upper forecasts, by conditioning
on the constraints between the upper. Note that reconcil-
iation via conditioning is not an arbitrary choice, but is
implied by the properties of π̃TD, as discussed above. If
the base forecast for the upper time series is a multivariate
Gaussian, reconciliation via conditioning can be done ana-
lytically [Corani et al., 2020, Zambon et al., 2024a]. We can
then sample from the partially reconciled distribution on the
lowest level of the upper, and apply Alg. 2 for each of the
lowest upper.

Proposition 5. The output of Alg. 3 is distributed as π̃TD,
defined in Eq. (10).

Algorithm 4 Top-down conditioning (k upper)

1: Input: A; pπU , pπ1, . . . , pπm; N
2: Output: sample

(
bi1, . . . , b

i
m

)
i=1,...,m

3: Su ← sub-hier(A)
4: π̃U low ← cond-reconc(Su, pπU )

5: Sample
(
ui
1, . . . , u

i
klow

)
i=1,...,N

IID∼ π̃U low

6: for i = 1, . . . , N do
7: for j = 1, . . . , klow do
8: b̄(j) ← Alg. 2

(
ui
j ; pπ1, . . . , pπm

)
9: bi ←

(
b̄(1), . . . , b̄(klow)

)
10: return

(
bi
)
i=1,...,N

n m T ȳu ȳb

Syph-small 10 9 209 26 3
Syph 54 53 209 97 2

M5 3060 3049 1941 {3448, 718, 387} 1

Table 1: Datasets characteristics: n is the total number of
time series, m the number of bottom time series, T the
length of the time series , ȳb and ȳu the mean of the bot-
tom and upper time series. For M5, the three values of ȳu
correspond to the three upper levels of the hierarchy (store,
category, department).

5 EXPERIMENTS

We consider three different hierarchical datasets. We start
with the Syph dataset, available from the R package ZIM
[Yang et al., 2018]. It provides the weekly number of syphilis
cases in the US from 2007 to 2010. The hierarchy has 53
bottom time series (one for each state) and one upper time
series, the total number of cases in the US. We then consider
a reduced version of this dataset (Syph-small), which con-
tains only the nine states of the South Atlantic region and
their total.

We also consider the high-dimensional dataset of the M5
competition [Makridakis et al., 2022]. It contains daily sales
data referring to 10 different stores. The hierarchy of each
store has the same structure: 3049 bottom time series (single
items) and 11 upper time series, obtained by aggregating the
items by department, product category, and store (Fig. 5).
We independently reconcile each store and we eventually
report the average results.

Tab.1 reports the main characteristics of the datasets. In all
datasets, the mean values of the time series justify modelling
the bottom time series as counts and the upper time series
as continuous.

We always consider the reconciliation of one-step-ahead
forecasts. We perform 52 reconciliations on Syph and Syph-
small and 14 reconciliations on M5 adopting a rolling-origin
approach, i.e., at each iteration we increase the time series of
one time step, re-compute the base forecasts and reconcile
them. The number of reconciled bottom time series is hence
9 x 52 = 486 on Syph-small, 53 x 52 = 2756 on Syph and 10
(stores) x 3049 (bottom) x 14 = 426’860 on M5.

Methods. We compute the base forecasts using ADAM
[Svetunkov and Boylan, 2023], available from the R pack-
age smooth [Svetunkov, 2023]. It is a state-space model for
probabilistic forecasting of both intermittent and smooth
time series. On intermittent time series, it returns the pre-
dictive distributions in the form of positive samples. The
samples are continuous; we round them to predict count
time series, as done by Svetunkov and Boylan [2023]. For
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Hobbies 2
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Figure 5: M5 Store-hierarchy. The store is in red, categories are in orange, departments are in yellow.

smooth time series, we use ADAM with a Gaussian predic-
tive distribution.

We compare different reconciliation approaches against the
base forecast, which is our baseline. All methods are im-
plemented in the R package bayesRecon1 [Azzimonti et al.,
2023].

The first is the Gaussian reconciliation (Gauss), which we
implement as follows. We approximate each bottom base
forecast with a Gaussian distribution. We then obtain the
joint predictive density for the bottom time series assuming
them to be independent. We adopt a multivariate normal
as joint density for the upper time series. As in [Corani
et al., 2020], its mean is the mean of the base forecasts of
the upper time series and its covariance matrix is equal to
the covariance of the 1-step-ahead residuals, estimated via
shrinkage [Wickramasuriya et al., 2019]. We also assume
independence between the forecast of bottom and upper time
series. After these approximations, we have a joint Gaussian
distribution over bottom and upper time series, which we
reconcile analytically following Corani et al. [2020].

We also test a variant of Gauss, designed to yield only posi-
tive values. We set to zero the reconciled bottom samples
that are negative. We then sum up such truncated bottom
samples to obtain the reconciled distribution for the entire
hierarchy. This approach yields samples that are positive
and coherent, but biased. We refer to this as Gauss-T, where
the T stands for truncated.

The third method is mixed conditioning (Mix-cond), which
we implement as follows. As for Gauss, we model the pre-
dictive density of the upper time series as a joint multivariate
normal distribution. We then model the bottom joint distri-
bution over counts as the product of discrete distributions
and we perform reconciliation as discussed in Sec. 3.

Finally, we consider the top-down conditioning method (TD-
cond). We adopt the same joint base distribution of Mix-
cond, but we reconcile it using the methods of Sec. 4. In
particular we use Alg. 3 on Syph-small and Syph, which
contain a single upper variable, and Alg. 4 on M5, which
contains multiple upper variables.

1The vignette "Reconciliation of M5 hierarchy with mixed-
type forecasts" in the package partially reproduces the results.

The implementation of Mix-cond and TD-cond reconciles
a store of the M5 hierarchy (3060 time series) in a median
time of 11.2 (Mix-cond) and 10.9 (TD-cond) seconds on a
M1 Mac laptop.

Indicators. We assess the point forecasts using the mean
scaled absolute error (MASE) [Hyndman, 2006]. Follow-
ing [Kolassa, 2016], we use the median as point forecast
when computing the MASE. We score the 90% prediction
intervals using the mean interval score (MIS) [Gneiting,
2011]. We assess the marginal predictive distributions us-
ing the ranked probability score (RPS) [Kolassa, 2016] and
the joint predictive distribution using the energy score (ES)
[Panagiotelis et al., 2023]. We compute RPS and ES using
the scoringRules R package [Jordan et al., 2019]. We do not
compute the ES for the M5 dataset, since the energy score
has computational and sampling issues in high dimensions
[Pinson and Tastu, 2013].

We report the improvement over the base forecasts using the
skill score values and averaging them across experiments.
For instance, the skill score of Gauss on ES is:

Skill% (ES, Gauss) = 100 · ES(base) - ES(Gauss)
(ES(base) + ES(Gauss))/2

.

A positive skill score implies an improvement with respect
to the base forecasts.

Results. On Syph-small, Mix-cond outperforms the other
approaches (Tab. 2), as expected in low dimensions. TD-
cond is not very suitable for this dataset, as it does not
exploit the information of the joint bottom-up distribution
(which is tenable in this case) to revise the upper base fore-
cast. The Gaussian approaches provide a poor approxima-
tion for count distributions and thus they have low perfor-
mance, especially on the bottom time series. Their positive
skill scores on the upper time series are due to a reduction
of variance compared to the base forecasts. The Gauss-T
improves the prediction intervals (scored by MIS) compared
to Gauss. However, the overall performance of both Gauss
and Gauss-T is generally poor and we no longer comment
on them.

On Syph, the best-performing approach is either Mix-cond
or TD-cond, depending on the indicator. Besides the average



Gauss Gauss-T Mix-cond TD-cond

Syph-small
MASE Bottom -61.7 -61.7 -2.5 -4.3

Upper 13.3 -2.6 23.8 -0.8
MIS Bottom -45.4 -2.8 4.4 -6.3

Upper 41.7 34.0 42.3 12.8
RPS Bottom -56.7 -52.5 4.4 -3.3

Upper 26.3 21.3 29.0 4.9
ES 9.5 6.2 12.0 2.3

Syph
MASE Bottom -87.4 -80.4 -0.2 1.3

Upper -8.7 -62.5 -5.6 0.0
MIS Bottom -79.9 -37.0 2.9 4.4

Upper 19.9 -43.0 20.2 -1.0
RPS Bottom -91.8 -88.1 17.6 -4.6

Upper 4.4 -53.4 7.0 0.0
ES -1.6 -36.1 1.0 3.0

M5
MASE Bottom -69.1 -66.7 0.5 2.8

Upper -34.9 -118.6 -29.9 -0.5
MIS Bottom -47.8 -20.3 4.9 10.6

Upper -34.3 -150.9 -37.6 3.6
RPS Bottom -55.8 -50.5 8.3 14.7

Upper -33.2 -127.8 -30.0 1.3

Table 2: Mean skill scores on Syph-small, Syph and M5
datasets.

value of the indicators, it is worth looking at their variability.
In Fig.6, we show the boxplot of the skill scores of the ES
on the 52 reconciliations of Syph and Syph-small.

On Syph-small, Mix-cond yields the highest distribution of
the skill scores. The performance of Gauss is better on this
dataset than on the others since there are few bottom time
series, and the Gaussian reconciliation works well on the
upper time series. On Syph, however, TD-cond has both the
highest median and the lowest variance of energy score; it
is arguably the preferable approach.

In Fig.7 we illustrate the difference between Mix-cond and
TD-cond in two examples of reconciliation. As already
pointed out, both approaches return a positive, discrete rec-
onciled distribution for the upper time series. This happens
even if the upper base forecasts have a tail of negative values,
as in Fig.7. The upper reconciled distribution of Mix-cond
has lower variance than the base forecasts. This is beneficial
in the first example, in which both the bottom-up and the

Figure 6: Boxplots of the skill scores on the energy score
(ES) on Syph-small and Syph datasets. The means are shown
as dashed lines and the medians as solid lines. Means and
medians are different due to the presence of outliers. The
Gauss-T method is not shown for reasons of space.

Base forecast Mix−cond TD−cond

Syph−small

0 25 50 75 100

Syph

0 50 100 150 200

Figure 7: Base forecasts, reconciled distributions (Mix-cond,
TD-cond), and actual values (black triangles) for Syph-small
and Syph dataset.

base forecasts provide valuable information. In the second
example, referring to Syph, this yields instead a distribution
that is peaked around a wrong value.

On M5, Mix-cond performs poorly (Tab. 2) for the reasons
discussed in Sec. 3. TD-cond, instead, shows a convincing
performance from different viewpoints. On average, it pro-
vides a solid improvement on the predictive distribution of
the bottom time series and a moderate improvement on the
upper time series; the latter is due to the Gaussian recon-
ciliation applied on the 11 upper time series. Moreover, it
is more reliable than the competitors, having a much lower



Figure 8: Boxplots of the skill scores on the RPS on M5
datasets. The means are shown as dashed lines and the
medians as solid lines. Means and medians are different
due to the presence of outliers. For each method, the left
boxplot refers to the bottom, the right one to the upper.

variability of the skill scores on both bottom and upper time
series (Fig. 8). Note the different scales of the axes in Fig. 6
and Fig. 8.

6 CONCLUSION

We presented two principled methods for the probabilistic
reconciliation of mixed-type hierarchical forecasts. Mixed
conditioning extends previous work on reconciliation via
conditioning, but is only effective in moderately-sized hi-
erarchies because of the shortcomings of the bottom-up
distribution in high dimensions. Weakening the assumption
of conditional independence between the bottom predic-
tive distributions is a promising direction to overcome the
problem; we leave this study for future work. The second
method is top-down conditioning, which can be sensibly
used to reconcile large mixed hierarchies. First, the upper
forecasts are reconciled via conditioning; in this work, we
used Gaussian reconciliation because we assumed the upper
forecasts to be jointly Gaussian, but this is not an intrinsic
limitation of our method. Then, the bottom forecasts are
reconciled via a probabilistic top-down procedure. We in-
troduced top-down conditioning under the assumptions that
all the bottom forecasts are discrete and all the upper are
Gaussian; moreover, we assumed that the time series are or-
ganized into a balanced hierarchy. We leave for future work
the extension to more general linearly constrained multiple
time series, or to cases in which different types of forecasts
are on the same level of the hiearchy.
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Appendix

Lorenzo Zambon1 Dario Azzimonti1 Nicolò Rubattu1 Giorgio Corani1

1Dalle Molle Institute for Artifcial Intelligence (IDSIA), USI-SUPSI, Lugano, Switzerland

A MIXED CONDITIONING

A.1 MIXED TYPE DISTRIBUTIONS AND DENSITIES

We recall here some basic notions about distributions and densities, as we need them in Sec. A.2 to derive the formula of
reconciliation via conditioning in the mixed case.

A count variable X can only assume non-negative integer values; thus it has range N = {0, 1, 2, . . . }. The distribution of X
is represented by the probability mass function (pmf) πX , which assigns a probability to each point of the range. Hence

Prob (X ∈ G) =
∑
x∈G

πX(x), (13)

for any G ⊂ N. The pmf is the density of X with respect to the counting measure C over N, defined as C(G) =
∑

j∈N 1{j∈G}.
Indeed, the sum in Eq. (13) is the integral of the pmf with respect to the measure C [Billingsley, 2017].

A real-valued random variable Y is absolutely continuous (in the following, just continuous) if its distribution is absolutely
continuous with respect to the Lebesgue measure L. The distribution of Y is then represented by its density πY with respect
to L, such that:

Prob (Y ∈ F ) =

∫
F

πY (y) dy. (14)

for any measurable F ⊂ R.

We now introduce the mixed case. Let
Z = (X1, . . . , Xm, Y1, . . . , Yk)

be a random vector, where the Xi’s are discrete and the Yj’s are continuous. We denote by πZ the density of Z with respect
to the product measure Cm ⊗ Lk. Hence, for any measurable G ⊂ Rm and F ⊂ Rk, we have

Prob (Z ∈ G× F ) =
∑
x∈G

∫
F

dy πZ(x, y). (15)

Note that the sum over G in Eq. (15) is well-posed as πZ(x, y) ̸= 0 only for countably many x’s. See Billingsley [2017] for
a detailed discussion of measures and densities.

A.2 PROOF OF PROPOSITION 1

Let us assume that the forecast distribution for the bottom time series is discrete, while for the upper is continuous. We
denote by pπ the density of pY =

Ä
pU , pB

ä
with respect to Lk ⊗ Cm, so that, for any measurable F ⊂ Rk and G ⊂ Rm:

Prob
Ä

pU ∈ F, pB ∈ G
ä
=

∑
b∈G

∫
F

du pπ(u, b).
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We now define Z := pU −A pB; since pU is continuous, Z is continuous too1. For any set H ⊂ Rk and w ∈ Rk, we denote
by Hw := {x : x−w ∈ H}. We have that

Prob
Ä
Z ∈ F, pB ∈ G

ä
= Prob

Ä
pU −A pB ∈ F, pB ∈ G

ä
=

∑
b∈G

Prob
Ä

pU −A pB ∈ F, pB = b
ä

=
∑
b∈G

Prob
Ä

pU ∈ FAb, pB = b
ä

=
∑
b∈G

∫
FAb

du pπ(u, b)

=
∑
b∈G

∫
F

dz pπ(z+Ab, b),

where we used the change of variables z = u−Ab in the integral. Hence, the density of
Ä
Z, pB

ä
with respect to Cm ⊗ Lk

is:
π(Z, xB)(z, b) := pπ(z+Ab, b). (16)

Note that the event
¶

pY ∈ S
©

coincides with {Z = 0}. As in Zambon et al. [2024b], we derive the expression of the

reconciled distribution as the conditional density of pB given Z = 0 [Çinlar, 2011, Chapter 4]:

π̃(b) =
π(Z, xB)(0, b)∑
x π(Z, xB)(0,x)

=
π̂(Ab, b)∑
x π̂(Ax,x)

∝ π̂(Ab, b),

provided that
∑

x π̂(Ax,x) > 0.

1Let F ⊂ Rk be a measurable set such that L(F ) = 0. Then

Prob (Z ∈ F ) = Prob
Ä

pU −A pB ∈ F
ä

=
∑
b∈N

Prob
Ä

pB = b, pU ∈ FAb

ä
≤

∑
b∈N

Prob
Ä

pU ∈ FAb

ä
= 0,

as L(FAb) = 0 for any b (the Lebesgue measure is invariant under translations) and pU is continuous.



B TOP-DOWN

In this section, for better readability, we sometimes use the integral notation even if the distributions are not continuous but
discrete: e.g., we write

∫
π(x, y) dy instead of

∑
y π(x, y).

B.1 BALANCED HIERARCHIES

Following Di Fonzo and Girolimetto [2024], we say that a hierarchy is balanced if each level of the hierarchy is complete.
For example, the hierarchy in Fig. 9a is not balanced: the time series u1 is equal to the sum of u2, u3, and b5, and therefore
the intermediate level is not complete. Note that any unbalanced hierarchy can be made balanced by duplicating some nodes.
In this example, we can obtain a balanced hierarchy by adding the node u4, which is just a copy of b5 (Fig. 9b).

b1 b2 b3 b4 b5

u2 u3

u1

(a) Unbalanced hierarchy

b1 b2 b3 b4 b5

u2 u3 u4

u1

(b) Balanced hierarchy

Figure 9: The unbalanced hierarchy (left) is made balanced by duplicating the node b5 (right)

If a hierarchy is balanced, there exists a set of “lowest upper time series” ulow, such that any other upper time series is
the sum of some lowest upper, and each bottom is child of only one of the lowest upper. For example, it is easy to see
that such a set does not exist for the hierarchy of Fig. 9a, while ulow = [u2, u3, u4] for the hierarchy of Fig. 9b. For any
balanced hierarchy, we can consider the sub-hierarchy given by only the upper time series: the set of bottom time series of
this sub-hierarchy is given by ulow, so that there exists a matrix Su such that u = Suulow.

The assumption that the hierarchy is balanced is required by the top-down conditioning reconciliation approach. Indeed, it is
needed for the first step of the algorithm, where the upper forecasts are reconciled via conditioning (lines 3-4 of Alg. 4);
note that any hierarchy with only one upper time series is trivially balanced.

All the hierarchies used in the experiments in Sect. 5 are balanced. However, this is not a strong requirement, since any
hierarchy can be made balanced by duplicating some bottom time series (Fig. 9).

B.2 PROOF THAT π̃TD IS A PROBABILITY DISTRIBUTION

First, it is trivial from Eq. (6) that π̃TD(b) ≥ 0 for any b. Moreover, from Eq.(7) follows that, for any b such that
pπbu(b1 + · · · + bm) = 0, we have pπ1(b1) . . . pπm(bm) = 0; hence, for any b such that the denominator is equal to 0, the
numerator is also 0. We implicitly define π̃TD as 0 on such b. Finally, π̃TD is normalized:∑

b1,...,bm

π̃TD(b1, . . . , bm) =
∑

b1,...,bm

pπ1(b1) . . . pπm(bm)
pπU (b1 + · · ·+ bm)

pπbu(b1 + · · ·+ bm)

=
∑
u

∑
b1,...,bm:

b1+···+bm=u

pπ1(b1) . . . pπm(bm)
pπU (b1 + · · ·+ bm)

pπbu(b1 + · · ·+ bm)

=
∑
u

pπU (u)

pπbu(u)

∑
b1,...,bm:

b1+···+bm=u

pπ1(b1) . . . pπm(bm)

=
∑
u

pπU (u)

pπbu(u)
pπbu(u) =

∑
u

pπU (u) = 1.



B.3 PROOF OF PROPOSITION 2

(1) Let (B̃1, . . . , B̃m) ∼ π̃TD, and Ũ := B̃1 + · · ·+ B̃m. Then, the distribution of Ũ is given by

πŨ (u) =
∑

b1,...,bm:
b1+···+bm=u

π̃TD(b1, . . . , bm)

=
∑

b1,...,bm:
b1+···+bm=u

pπ1(b1) . . . pπm(bm)

pπbu(b1 + · · ·+ bm)
pπU (b1 + · · ·+ bm)

=
∑

b1,...,bm:
b1+···+bm=u

pπ1(b1) . . . pπm(bm)

pπbu(u)
pπU (u)

=
pπU (u)

pπbu(u)

∑
b1,...,bm:

b1+···+bm=u

pπ1(b1) . . . pπm(bm)

= pπU (u).

Note that this holds only for u belonging to the support of the bottom-up distribution, i.e. u such that pπbu(u) ̸= 0, as
remarked in Sec. 4.

(2) Let b̄1 + · · ·+ b̄m = u = b̌1 + · · ·+ b̌m. Then

π̃TD(b̄1, . . . , b̄m)

π̃TD(b̌1, . . . , b̌m)
=

pπ1(b̄1) . . . pπm(b̄m) pπU (u)

pπbu(u)
· pπbu(u)

pπ1(b̌1) . . . pπm(b̌m) pπU (u)

=
pπ1(b̄1) . . . pπm(b̄m)

pπ1(b̌1) . . . pπm(b̌m)
.

B.4 PROOF OF LEMMA 1

The distribution of the output (b1, b2) of Alg. 1 is given by

π(b1 |u) =
pπ1(b1) pπ2(u− b1)∑
b pπ1(b) pπ2(u− b)

,

π(b2 | b1, u) = 1b2=u−b1 .

Hence

π(b1, b2 |u) = π(b2 | b1, u)π(b1 |u)

=
pπ1(b1) pπ2(u− b1)∑
b pπ1(b) pπ2(u− b)

1b2=u−b1

=
pπ1(b1) pπ2(b2)∑
b pπ1(b) pπ2(u− b)

1u=b1+b2

= pπ(b1, b2 | b1 + b2 = u).

B.5 PROOF OF LEMMA 2

For each l = 1, . . . , L− 1 and j = 1, . . . , 2L−l−1, consider b(l)2j−1, b
(l)
2j from line 13 of Alg. 2. From Lemma 1, we have

π
(
b
(l)
2j−1, b

(l)
2j

∣∣ b(l+1)
j

)
=

π
(l)
2j−1

(
b
(l)
2j−1

)
π
(l)
2j

(
b
(l)
2j

)
∑

b π
(l)
2j−1(b)π

(l)
2j

(
b
(l+1)
j − b

) 1
b
(l+1)
j = b

(l)
2j−1+b

(l)
2j

=
π
(l)
2j−1

(
b
(l)
2j−1

)
π
(l)
2j

(
b
(l)
2j

)
π
(l+1)
j

(
b
(l+1)
j

) 1
b
(l+1)
j = b

(l)
2j−1+b

(l)
2j
, (17)



where the denominator in second equation is the result of the convolution in line 8 of Alg. 2. If we denote by b(l) =(
b
(l)
1 , . . . , b

(l)

2L−l

)
, for each l = 1, . . . , L, we obtain

π
(
b(l)

∣∣ b(l+1)
)
=

2L−l−1∏
j=1

π
(
b
(l)
2j−1, b

(l)
2j

∣∣ b(l+1)
j

)

=

∏2L−l

j=1 π
(l)
j

(
b
(l)
j

)∏2L−l−1

j=1 π
(l+1)
j

(
b
(l+1)
j

) 2L−l−1∏
j=1

1
b
(l+1)
j = b

(l)
2j−1+b

(l)
2j
, (18)

where the second equation is the result of plugging-in Eq. (17). Hence

π
(
b(1), b(2), . . . , b(L)

∣∣u) =

L−1∏
l=1

π
(
b(l)

∣∣ b(l+1)
)
π
(
b(L)

∣∣u)

=
L−1∏
l=1

∏2L−l

j=1 π
(l)
j

(
b
(l)
j

)∏2L−l−1

j=1 π
(l+1)
j

(
b
(l+1)
j

) 2L−l−1∏
j=1

1
b
(l+1)
j = b

(l)
2j−1+b

(l)
2j
· 1

b
(L)
1 =u

=

∏m
j=1 π

(1)
j

(
b
(1)
j

)
π
(L)
1

(
b
(L)
1

) L−1∏
l=1

2L−l−1∏
j=1

1
b
(l+1)
j = b

(l)
2j−1+b

(l)
2j
· 1

b
(L)
1 =u

, (19)

where we use Eq. (18) and line 10 of Alg. 2 in the second equation, and the third equation is the result of a telescoping
product. Therefore

π
(
b
(1)
1 , . . . , b(1)m

∣∣u) = π
(
b(1)

∣∣u)
=

∫
π
(
b(1), b(2), . . . , b(L)

∣∣u) db(2) . . . db(L)

=

∫ ∏m
j=1 π

(1)
j

(
b
(1)
j

)
π
(L)
1

(
b
(L)
1

) L−1∏
l=1

2L−l−1∏
j=1

1
b
(l+1)
j = b

(l)
2j−1+b

(l)
2j
· 1

b
(L)
1 =u

db(2) . . . db(L)

=

∏m
j=1 π

(1)
j

(
b
(1)
j

)
π
(L)
1 (u)

1
b
(1)
1 +···+b

(1)
m =u

. (20)

Since π
(1)
j = pπj , for all j = 1, . . . ,m, and π

(L)
1 = π

(1)
1 ∗ · · · ∗ π

(1)
m = pπbu, we conclude from Eq. (20) that

π
(
b
(1)
1 , . . . , b(1)m

∣∣u) =

∏m
j=1 pπj

(
b
(1)
j

)
pπbu(u)

1
b
(1)
1 +···+b

(1)
m =u

= pπ
(
b
(1)
1 , . . . , b(1)m | b

(1)
1 + · · ·+ b(1)m = u

)
.

B.6 PROOF OF PROPOSITION 3

From Lemma 2 follows that, for all i = 1, . . . , N :

π
(
bi |ui

)
=

pπ1(b
i
1) . . . pπm(bim)

pπbu(ui)
1bi1+···+bim=ui .



Since ui ∼ pπU , we have

π(bi) =

∫
π(bi, ui) dui

=

∫
π
(
bi |ui

)
π(ui) dui

=

∫
pπ1(b

i
1) . . . pπm(bim)

pπbu(ui)
1bi1+···+bim=ui π(ui) dui

=
pπ1(b

i
1) . . . pπm(bim)

pπbu(bi1 + · · ·+ bim)
π(bi1 + · · ·+ bim)

= π̃TD(b
i).

B.7 EXTENSION OF ALGORITHM 2 TO GENERIC m

We now consider the case of a hierarchy with one upper and m bottom time series, but we drop the assumption that m is a
power of 2. In this case, we proceed as follows. Let M be the smallest power of 2 greater or equal to m, i.e. M = 2⌈log2(m)⌉,
and let L := log2(M) + 1. We build a binary tree with L levels as in Sec. 4.1. In this case however the “missing” bottom
nodes have distribution given by a Dirac’s delta centered in 0, denoted by δ0:

B
(1)
j = pBj , for j = 1, . . . ,m,

B
(1)
j = δ0, for j = m+ 1, . . . ,M,

B
(l+1)
j = B

(l)
2j−1 +B

(l)
2j , for l = 1, . . . , L− 1, j = 1, . . . , 2L−l−1.

An example for m = 3 is shown in Fig. 10. As in Sec. 4.1, we also denote by π
(l)
j the distribution of B(l)

j , so that

π
(1)
j (bj) = pπj(bj), for j = 1, . . . ,m,

π
(1)
j (bj) = 1bj=0, for j = m+ 1, . . . ,M,

π
(l+1)
j = π

(l)
2j−1 ∗ π

(l)
2j , for l = 1, . . . , L− 1, j = 1, . . . , 2L−l−1.

B
(3)
1

B
(2)
1

B
(1)
1 = pB1 B

(1)
2 = pB2

B
(2)
2

B
(1)
3 = pB3 B

(1)
4 = δ0

Figure 10: Binary tree (m = 3, L = 3)

We can then run Alg. 2 with π
(1)
1 , . . . , π

(1)
M , and only keep the first m terms of the sample (b1, . . . , bm, bm+1, . . . , bM ).

Indeed, from Lemma 2

π(b1, . . . , bM |u) =
π
(1)
1 (b1) . . . π

(1)
M (bM )

pπbu(1:M)(u)
1u=b1+···+bM

=
pπ1(b1) . . . pπm 1bm+1=0 . . . 1bM=0

pπbu(1:M)(u)
1u=b1+···+bM ,



where

pπbu(1:M) = π
(1)
1 ∗ · · · ∗ π

(1)
M

= pπ1 ∗ · · · ∗ pπm ∗ δ0 ∗ · · · ∗ δ0
= pπ1 ∗ · · · ∗ pπm = pπbu(1:m).

By integrating out bm+1, . . . , bM , we obtain

π(b1, . . . , bm |u) =
∫

π(b1, . . . , bM |u) dbm+1 . . . dbM

=

∫
pπ1(b1) . . . pπm(bm)1bm+1=0 . . . 1bM=0

pπbu(1:m)(u)
1u=b1+···+bM dbm+1 . . . dbM

=
pπ1(b1) . . . pπm(bm)

pπbu(1:m)(u)
1u=b1+···+bm

Remark 1. In practice, since π ∗ δ0 = π for any distribution π, when we run the algorithm there is no need to compute any
of the convolutions with the “missing” nodes. For example, for the binary tree of Fig. 10, when we reach B

(2)
2 we can stop

as we have B
(1)
3 = B

(2)
2 .

B.8 PROOF OF PROPOSITION 4

(1) Let B̃ ∼ π̃TD, and Ũ := AB̃. Then, the distribution of Ũ is given by

πŨ (u) =
∑

b: Ab=u

π̃TD(b)

=
∑

b: Ab=u

pπ1(b1) . . . pπm(bm)

pπbu(Ab)
pπU (Ab)

=
∑

b: Ab=u

pπ1(b1) . . . pπm(bm)

pπbu(u)
pπU (u)

= 1uupp=Auulow

pπU (u)

pπbu(u)

∑
b: Ab=u

pπ1(b1) . . . pπm(bm)

= 1uupp=Auulow pπU (u).

Note that the indicator function is necessary, since 1/pπbu(u) can be pulled out of the sum only if pπbu(u) ̸= 0, which
holds if uupp = Auulow.

(2) Let Ab̄ = u = Ab̌. Then

π̃TD(b̄)

π̃TD(b̌)
=

pπ1(b̄1) . . . pπm(b̄m) pπU (u)

pπbu(u)
· pπbu(u)

pπ1(b̌1) . . . pπm(b̌m) pπU (u)

=
pπ1(b̄1) . . . pπm(b̄m)

pπ1(b̌1) . . . pπm(b̌m)
.

B.9 PROOF OF PROPOSITION 5

We need to prove that (
b̄(1), . . . , b̄(klow)

)
∼ pπ1(b1) . . . pπm(bm)

pπbu(Ab)
pπU (Ab). (21)

We denote b̄(j) =
(
b̄
(j)
1 , . . . , b̄

(j)
mj

)
, for all j = 1, . . . , klow, and we drop the superscript i for better readability. First, from

line 8 of Alg. 4, and from Lemma 2, we have that

b̄(j) |uj ∼
pπ
(
b̄
(j)
1

)
. . . pπ

(
b̄
(j)
mj

)
pπbu(uj)

1
uj=b̄

(j)
1 +···+b̄

(j)
mj

,



and therefore

π
(
b̄(1), . . . , b̄(klow)

∣∣u1, . . . , uklow

)
=

pπ1(b1) . . . pπm(bm)

pπbu(u1) . . . pπbu(uklow
)

1
u1=b̄

(1)
1 +···+b̄

(1)
m1

. . . 1
uklow

=b̄
(klow)

1 +···+b̄
(klow)
mklow

. (22)

Moreover, from line 4 of Alg. 4 and Eq. (4):

π(u1, . . . , uklow
) ∝ pπU

(
Auulow, ulow), (23)

where ulow = (u1, . . . , uklow
). Joining Eq. (22) and Eq. (23), and integrating out u1, . . . , uklow

, we obtain

π
(
b̄(1), . . . , b̄(klow)

)
=

∫
π
(
b̄(1), . . . , b̄(klow)

∣∣u1, . . . , uklow

)
π(u1, . . . , uklow

) dulow

∝ pπ1(b1) . . . pπm(bm)

∫
pπU

(
Auulow, ulow)1

u1=b̄
(1)
1 +···+b̄

(1)
m1

. . . 1
uklow

=b̄
(klow)

1 +···+b̄
(klow)
mklow

pπbu(u1) . . . pπbu(uklow
)

dulow

= pπ1(b1) . . . pπm(bm)

∫
pπU

(
Auulow, ulow)1

u1=b̄
(1)
1 +···+b̄

(1)
m1

. . . 1
uklow

=b̄
(klow)

1 +···+b̄
(klow)
mklow∑

b(j): b
(j)
1 +···+b(j)mj

=uj

j=1,...,klow

pπ(b
(1)
1 ) . . . pπ(b

(1)
m1) . . . pπ(b

(klow)
1 ) . . . pπ(b

(klow)
mklow

)
dulow

∝ pπ1(b1) . . . pπm(bm)

pπbu(Ab)
pπU (Ab).
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