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ABSTRACT

Neural operator models for solving partial differential equations (PDEs) often rely
on global mixing mechanisms—such as spectral convolutions or attention—which
tend to oversmooth sharp local dynamics and introduce high computational cost.
We present FINO, a finite-difference—inspired neural architecture that enforces
strict locality while retaining multiscale representational power. FINO replaces
fixed finite-difference stencil coefficients with learnable convolutional kernels and
evolves states via an explicit, learnable time-stepping scheme. A central Local
Operator Block leverage a differential stencil layer, a gating mask, and a linear
fuse step to construct adaptive derivative-like local features that propagate for-
ward in time. Embedded in an encoder—decoder with a bottleneck, FINO cap-
tures fine-grained local structures while preserving interpretability. We establish
(i) a composition error bound linking one-step approximation error to stable long-
horizon rollouts under a Lipschitz condition, and (ii) a universal approximation
theorem for discrete time-stepped PDE dynamics. (iii) Across six benchmarks
and a climate modelling task, FINO achieves up to 44% lower error and up to
around 2x speedups over state-of-the-art operator-learning baselines, demonstrat-
ing that strict locality with learnable time-stepping yields an accurate and scalable
foundation for neural PDE solvers.

1 INTRODUCTION

Partial Differential Equations (PDEs) are fundamental to applied mathematics and engineering, gov-
erning phenomena in fluid dynamics (John & Anderson, 1995), heat conduction, electromagnetism,
structural mechanics, and biology (Edelstein-Keshet, 2005). They describe the evolution of state
variables in space and time, enabling prediction, control, and optimisation of complex systems. An-
alytic solutions for non-linear PDEs are rare; therefore, numerical methods such as finite difference,
finite element (Quarteroni et al., 2006) and finite volume have been developed.

Classical solvers have been studied for more than a century, but remain limited by the trade-off be-
tween accuracy and efficiency (LeVeque, 2007). Finer discretisations improve accuracy but increase
computational cost. Deep learning offers a new route, with two dominant directions. (i) Physics-
informed methods such as PINNs (Raissi et al., 2019) embed PDE equations directly into the
loss, leveraging physical structure to reduce labeled data requirements. However, they often face
optimisation difficulties, especially in high-dimensional settings, and perform poorly on solutions
with discontinuities, sharp gradients, or symmetries. (ii) Operator-learning methods approximate
infinite-dimensional operators from data, learning families of PDEs. Training is expensive, but in-
ference is fast. DeepONet (Lu et al., 2019) and FNO (Li et al., 2020a) are notable examples.

Global operator methods such as FNO capture long-range structure but oversmooth local dynam-
ics. Locality is critical: for hyperbolic PDEs, finite-speed propagation implies that solutions de-
pend only on data within local characteristic regions (LeVeque, 1992). Local kernels can represent
these dynamics efficiently, whereas expressing them globally increases parameter counts. Although
spectral methods like FNO and SFNO can, in theory, approximate local behavior, the uncertainty
principle forces high parameter counts when representing fine-scale features.

While local operators can be represented using global bases (e.g., Fourier or attention), this comes
at a high cost. Capturing localised features requires resolving high frequencies across the entire do-
main, and the uncertainty principle implies that such global approximations demand dense spectral
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representations. Methods like FNO and SFNO must reconstruct the full signal in frequency space,
even when the operator is inherently local—leading to high parameter counts and loss of a locality
bias that many PDEs naturally exhibit.

Recent advances in operator learning follow four main directions, each with trade-offs. (i)
Transformer-based operators capture long-range dependencies via self-attention, but incur quadratic
complexity and offer limited operator-theoretic guarantees. (ii) Graph Neural Operators (GNOs) (Li
et al., 2020b) learn local kernels, but pairwise kernel evaluation is expensive compared to optimised
convolutions, and lacks natural equivariance. (iii) Hybrid U-former designs (Wen et al., 2022) inject
local priors into global architectures by combining CNNs and FNOs, but suffer from high training
overhead and fixed-resolution bottlenecks that suppress high-frequency content. (iv) Localised-
kernel operators (Liu-Schiaffini et al., 2024) extend FNOs with differential and discretisation-
agnostic branches (e.g., DISCO), improving local expressivity at the cost of increased computation,
resolution-sensitive runtime, and stacked discretisation error.

These limitations highlight the need for architectures with an intrinsic local bias that remain efficient
and accurate. The central challenge is to design models that capture fine local features via strictly
local receptive fields—without sacrificing speed or scalability. Such methods are essential for: (1)
Fast computation. Many PDE applications—such as weather forecasting, robotics, and digital-twin
systems—require frequent retraining or real-time inference. This makes fast, efficient computation
essential for practical deployment. (2) Capturing local properties Many PDEs inherently rely on
local interactions, and failing to capture these can significantly degrade accuracy. (3) Generality
Global operator methods often perform poorly on time-independent PDEs, limiting their applica-
bility. (4) Accuracy High precision approximation of fine-scale structures is necessary to ensure
predictive fidelity across diverse PDE families.

Contributions. We propose Finite-difference inspired Neural Operator (FINO), a neural archi-
tecture explicitly inspired by classical finite-difference (FD) schemes. Like traditional FD methods,
FINO discretises the domain into local stencils, but replaces fixed coefficients with learnable convo-
lutional kernels. At its core, a Local Operator Block learns differentiable operators on each stencil,
enforcing a strictly local receptive field and providing a direct correspondence to finite-difference
operators. These learned derivatives are advanced in time using an explicit, learnable time-stepping
update, ensuring interpretability and stability. The resulting FINO block is embedded within an
encoder—decoder structure with down-sampling, skip connections, and up-sampling, enabling the
model to capture multiscale features and reconstruct complete solution trajectories. Unlike recent
local-operator networks, FINO maintains strict locality through stencil-style derivatives and explicit
time-stepping. This avoids global spectral transforms and preserves both speed and interpretability.
Across benchmarks, this design FINO consistently yields faster training, lower inference time, and
higher accuracy than state-of-the-art operator-learning methods. Notable, we emphasise:

@ We introduce FINO, which replaces fixed stencil coefficients with learnable convolutional kernels
and couples them with an explicit, learnable time-stepping scheme, enforcing strictly local receptive
fields while preserving multiscale capacity.

@ We prove that FINO is a universal approximator for discrete-time PDE dynamics. We also derive a
novel error-propagation bound, showing how local approximation error controls long-horizon rollout
stability under mild Lipschitz conditions.

eWe validate FINO on six PDEBench benchmarks (1D advection, diffusion-reaction, compressible
Navier—Stokes; 2D Darcy flow, diffusion—reaction, shallow water) and a climate modelling task,
where it achieves higher accuracy and significantly faster training than state-of-the-art baselines.

2 RELATED WORK

@ Deep Learning for PDEs. Early deep learning approaches for PDEs, such as PINNs (Raissi et al.,
2019), embed governing equations into the loss function but struggle with generalisation across res-
olutions and domains. Neural operators address this limitation by learning mappings between func-
tion spaces, yielding discretisation-invariant surrogates. DeepONet (Lu et al., 2019) and FNO (Li
et al., 2020a) laid the groundwork for neural operators, providing universal approximation guaran-
tees and efficient spectral modelling of global dependencies. Building on these foundational works,
several FNO variants (Tran et al., 2021; Xiao et al., 2024; Park et al., 2025) have been proposed
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to further enhance performance, with extensions to adaptive and geometry-aware settings. In par-
allel, graph-based methods such as the Graph Neural Operator (Li et al., 2020b; Brandstetter et al.,
2022) generalise operator learning to non-regular grids, while other directions exploit wavelets,
spectral bases, or integral kernels for multiscale and discretisation-robust approximations (Tripura
& Chakraborty, 2022; Fanaskov & Oseledets, 2023).

More recently, attention-based architectures have become increasingly popular in operator learning.
Transformer-style models such as OFormer (Li et al., 2022), GNOT (Hao et al., 2023), and Tran-
solver (Wu et al., 2024) adapt self-attention mechanisms to capture long-range spatial interactions in
PDEs. Within this landscape, HAMLET (Bryutkin et al., 2024) extends neural operators to irregular
geometries through graph transformers, radius-based neighborhoods, and cross-attention for arbi-
trary queries, achieving strong results on PDEBench and Airfoil benchmarks.The Mamba Neural
Operator (Cheng et al., 2024) offers a state-space alternative to transformers, improving computa-
tional efficiency while retaining accuracy. Therefore, these developments allow the trajectory from
grid-restricted spectral methods toward geometry-flexible, transformer-style operator learners with
increasing scalability and robustness.

@ Local Neural Operators. Early works such as PDE-Net (Long et al., 2018) and PDE-Net 2.0
(Long et al., 2019) introduced learnable kernels to directly identify underlying PDEs from data.
However, these models were not intended for solving PDEs directly—instead, they focused on iden-
tifying the underlying PDE equations from observed data. More recent efforts emphasize incorpo-
rating locality into operator architectures to better resolve fine-scale dynamics and enforce physical
inductive biases. While global methods such as FNO demonstrate strong performance in many set-
tings, they often suffer from over-smoothing and fail to resolve local details. To address these limi-
tations, local neural operators have been proposed, introducing locally supported kernels that align
with the inherent locality of many PDEs, such as hyperbolic systems with finite propagation speeds.
For example, Ye et al. (2024; 2022) augmented FNOs with convolutional layers to embed locality,
while Wen et al. (2023) combined U-Nets with FNOs for improved multi-scale representations. Sim-
ilarly, convolutional neural operators (CNOs) (Raonic et al., 2023) exploit convolutional inductive
biases but remain constrained by equidistant grid discretisations and the need for downsampling,
which risks discarding high-frequency information. To overcome this issue, Liu-Schiaffini et al.
(2024) introduced localised integral and differential kernels, further enhancing performance. How-
ever, most of these approaches rely on hybrid architectures that combine local and global operators,
which increases the training time.

Existing works & comparison to ours. Our work (FINO) is strictly local by construction. It
eliminates global mixing entirely, using only finite-support convolutional stencils and an explicit,
learnable time-stepping scheme. This design enforces compact receptive fields, aligns naturally
with the finite-speed propagation of many PDEs (e.g., hyperbolic systems), and avoids the spectral
inefficiencies and high parameter counts induced by the uncertainty principle.

3  FINITE-DIFFERENCE INSPIRED NEURAL OPERATOR (FINO)

Problem Statement. We consider time-dependent partial differential equations (PDEs) whose so-
lutions are vector-valued functions v:7 xS x © — Rd, where 7 c R denotes time, S ¢ R" is a
spatial domain, and © represents a space of PDE-specific parameters (e.g., coefficients, boundary
conditions). For example, in a heat conduction problem, v(¢,s, ) may denote temperature at time
t, location s € S, under conductivity profile § € ©. We define the forward operator Fy as a parame-
terised time evolution map that advances the solution by one time step: Fp: v(t—£:t—1,-) = v(¢,-),
where ¢ is the number of previous steps required to estimate temporal derivatives (e.g., for explicit
schemes). The discretised version Fy is obtained via a high-resolution numerical solver, such as

finite difference or finite volume methods. Our goal is to learn a data-driven emulator f(;@ ~ Fy,

parameterised by ¢, that generalises across different PDE parameters 6. Given a dataset of K sim-
K

ulated solution trajectories D = {vélz)(o:tmax, )}k o we estimate ¢ by minimising a supervised

rollout loss that penalises discrepancies between the predicted and ground-truth states:

K tmax

b= argm(gn Z Z L (]/:\gk,qb{v(glz) (t -0t - 1,-)}, Vé]:)(t, )) ,

k=1 t=1
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where L£(-,-) is a suitable loss function (e.g., mean squared error) comparing predicted and true
solutions over the spatial domain. Here, {t — ¢, ...t — 1} denotes the past ¢ time steps used as input
to predict the next state at time .

3.1 THE ANATOMY OF FINO

FINO is motivated by classical finite-difference (FD) schemes and consists of four main compo-
nents: (1) a Local Operator Block that mimics local differential operators, (2) an explicit time-
stepping update, (3) composable neural blocks forming the operator core, and (4) a U-Net-style
encoder—decoder for multiscale modelling. Figure 3.1 provides a visual overview. The architectural
flow is detailed next.

Local Operator Block (LOB). The Local Operator Block (LOB) is designed to approximate spa-
tial differential operators in a strictly local and learnable manner. It draws direct inspiration from
classical finite-difference (FD) methods, where spatial derivatives are estimated using fixed-weight
stencils. In contrast, LOB replaces these fixed coefficients with learnable convolutional filters, en-
abling adaptive, data-driven computation of local derivatives.

The LOB consists of three main components: a learned stencil operation, a gating mechanism, and
a fusion step. The first component performs a learnable convolution that mimics finite-difference
stencils. Given a 4D input tensor u € RO*HxW \yhere b is the batch size, 7 is the number of input
channels, and H x W is the spatial domain, we define the stencil operator S(u) as:

S(u):ilzi

M-

Wa,c,p,q Wb,c,(h+p),(w+q) T bs (D

=T

This equation defines a convolution with a (2r+ 1) x (2r + 1) kernel centered at each spatial location
(h,w), where 7 is the stencil radius. The weights Waq,e,p,q are learnable parameters, and b, is a bias
term. Compared to traditional finite-difference methods (which use fixed stencils like [1,-2,1]),
this formulation enables the network to learn its own approximation of local derivatives from data.

Not all local derivatives are equally relevant for solving a given PDE. To adaptively select the most
informative derivative features, we introduce a gating mask, computed as:

G(u) :J(Wg *S(u))@S(u) )

Here, W, is a learnable convolutional filter, » denotes convolution, and o(+) is the sigmoid func-
tion. The gating mechanism produces a per-location, per-channel importance mask (values in [0, 1])
that modulates the stencil output via element-wise multiplication (®). This allows the network to
suppress irrelevant or noisy derivative responses and focus on spatial patterns most useful for the
current PDE.

The final output of the LOB is computed by fusing the gated features using another learnable con-
volution:

3,5Uf, = WC * G(ll) (3)

This step linearly combines the gated stencil responses to form the estimated spatial derivative 0, Uy,
which acts as the core update direction for the PDE. The learnable fusion allows the model to lever-
age directional or cross-derivative terms and synthesise them into a cohesive output.

Time Integration Scheme. To advance the solution in time, we adopt an explicit forward Euler
scheme:

Ut+At = Ut+At8tUt, At=9€R>O (4)

where 0,U; is the learned update produced by the previous local operator block, and At is a learnable
scalar parameter shared across the domain. The time-step parameter is initialised to a small positive
value and updated during training. This formulation preserves the causal structure of temporal
evolution and allows the network to learn time dynamics explicitly. Unlike autoregressive models
that directly regress the next frame, this update mimics classical numerical solvers by estimating a
derivative and applying it via time integration, offering interpretability and numerical grounding.
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L0 FINO Block. The FINO Block encapsulates the ex-

ZZ .Izz — \ FINOBIlock f— plicit time update from the previous step and enhances
> 0.

S it through nonlinear local transformations. Specifically,

4 . . .
01 ek given the updated state from time evolution, we apply a
i _ convolutional layer followed by a ReLU activation:

]
B(U,) = ReLU(W, * [Us + AtQ,U,]).  (5)
|

0.4
0.2

%80 05 1.0

1.0

o8 = ES | where W), is a learnable convolutional kernel. While the

08 . ” i optimal depth is PDE-dependent, we find that using up

ZZ iO:l — to three stacked FINO blocl.<s provides. sufficient capagity

T for the range of PDEs considered. To increase modelling
x capacity, we stack multiple such blocks:

Figure 1: FINO Framework. En- FINOBIlockStack(u) = Bo--oB o B (u) (6)

coders down-sample and decoders up- FINO Architecture.
sample, with skip connections preserv-
ing original feature information.

To capture both fine-grained lo-
cal patterns and broader contextual information, FINO
adopts a U-Net-style encoder—decoder architecture.

The encoder progressively downsamples the feature maps using:
xi+1 = P (Di(x:)) 0

where D; applies FINO Blocks and P, is a downsampling operation such as average pooling. At the
bottleneck, we compute:

z=K(xy), with K :=FINOBlockStack (8)
The decoder then upsamples and fuses features from the encoder via skip connections:
x;-1 =U(z)+x;, fori=N,...,1 9)

Finally, the output is projected back to the desired dimensionality using a 1 x 1 convolution:
y e RBxHxonuLchannels

3.2 THEORETICAL FOUNDATIONS OF FINO

In this section, we first demonstrate that FINO is a universal approximator and discuss its signifi-
cance. To establish this result, we introduce the following lemma and proposition. The complete
proof and statement of Proposition 1 and Theorem 2 can be found in the Appendix B .

Proposition 1 (Informal, Local-to-Global Error Bound). If a surrogate map Vg uniformly approxi-
mates the true PDE one-step map ® ¢ within tolerance €', i.e.

[Tg(u) - Pas(u)] < & Yu, (10)
and if ® ay is Lipschitz with constant C, then after K time steps we have
ck-1,
(2" uo) - @2 (o) < { -1 CFE
K¢, C=1.

Theorem 2 (Universal Approximation of FINO for Discrete Time—Stepped PDE Dynamics ). For
a final time T = K At with integer K > 1, define the exact solution after K steps as

K
w(T) = (Par) (uo),
where (® ;)X denotes the K—fold composition.
Then for every compact set U ¢ X and every tolerance € > 0, there exists a depth—-K FD-NET
U = Wgoo Wy,
[ —
K identical blocks
such that X
K
sup H \I/g )(uo) - (@At) (uo)H < e

uQ eu
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Proposition 1 is used to bridge the gap between local error and global error in the PDE approxi-
mation. While the classical universal approximation theorem guarantees that a neural network can
approximate a single continuous map, such as the one-step evolution operator ® A, to within some
tolerance £’, solving a PDE requires iterating this operator K times to reach the final time 7" = K At.
Without an additional control mechanism, these small local errors could accumulate and potentially
blow up over multiple iterations. The proposition provides precisely this control by giving an error
propagation formula: it shows that the global error after K steps is bounded by a geometric factor
depending on the Lipschitz constant C'. This ensures stability of the approximation, meaning that as
long as C' is moderate—or even less than one in the case of dissipative PDEs—the total accumulated
error remains controlled rather than diverging with the number of steps.

Theorem 2 —the composition error bound —elevates a one—step approximation guarantee into a long—
horizon stability claim for FINO’s autoregressive rollouts. Concretely, if the exact one—step prop-
agator ® 4 is Lipschitz with constant C' and the learned surrogate ¥y matches it within €, then
after K steps the total error is bounded by CCIi ’11 ¢’ (or K&’ when C = 1). This prevents small per—
step discrepancies from snowballing, providing the missing theoretical link between minimizing the
stepwise training loss and achieving reliable multi—step predictions. In practice, it justifies the pa-
per’s explicit time—stepping with strictly local learned stencils: tightening the per—step fit provably
tightens end—to—end trajectory error, thereby grounding the stable long—horizon rollouts in a precise
stability mechanism.

Training Scheme. We adopt an autoregressive training scheme. At time ¢, we assemble features
by concatenating the last K ground-truth (or rolled) frames with the spatial coordinates G(x,y),
yielding

Xi(w,y) = concat(us-res14(z,y), G(x,y)) € RV (11)
A convolutional predictor fy maps these features to the next-frame estimate, w41 = fg(Xt). Let

2(9) = 4.5 denote the initial rolling buffer of K frames. Fort = K,..., K + H —1 (horizon H), we
iteratively predict and update the buffer via

Uy = f@(COHC&t(l‘(t_K), G)),
.CI/'(t_K+1) = Shlft(l'(t_K)) ” ﬁt,

where shift(-) discards the oldest frame and appends the newest prediction (and | denotes concate-
nation along the time dimension).

13)

Loss Function. We minimise the stepwise mean-squared error accumulated across the full rollout
and backpropagate through the entire unroll:
K+H-1 1 B
Law® = > 25
t=K-1 D b=1
where B is the batch size and || - |» denotes the Euclidean norm over all spatial and channel en-
tries. For monitoring and model selection, we additionally report the full-trajectory MSE over the
evaluation window,

NOBIRONE

Upyr — Uy 9

; (14)

15)

1 &~ b 2
['full(a) = EZ;HUCE:I)(+H_ (S:I){+H 9’

where Ug. i+ and f]oz Kk +H stack the ground-truth and predicted sequences, respectively. As per our
setup, only Lgp contributes to the loss value, while Lgyy is used for validation.

4 EXPERIMENTS
We provide the details of the dataset, implementation, experiment results, and ablation studies.

4.1 DATASET AND IMPLEMENTATION DETAILS

Datasets. We conducted experiments on a broad range of PDEs drawn from the PDEBench
(Takamoto et al., 2022) and Climte Modelling (Kissas et al., 2022). Specifically, our evaluation cov-
ered 1D problems including advection, diffusion—reaction, and compressible Navier—Stokes equa-
tions, as well as 2D problems such as Darcy flow, diffusion—reaction, and shallow water equations.
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Table 1: Performance Evaluation of FINO Against Global, Local, and Transformer-Based Opera-
tors on PDEBench Benchmarks and Climte Modelling. The RMSE reported the results. The best-
performing results are highlighted in green , while the second-best results are indicated in bold.

Dataset U—Net FNO UFNO FFNO  Transolver LocalFNO FNIO (ours) Improvement
Advection (1D) 0.05257  0.00530 0.00968 0.00683 0.00937 - 0.00296 44.15 %
CNS (1D) 12.56934  0.34053 0.44692 0.29493 0.72094 - 0.1946 34.02%
Diffusion-Reaction (1D)  0.03812  0.02884 0.00891 0.01409 0.00686 - 0.00575 16.18%
Darcy Flow (2D) 0.01117  0.02575 0.06929 0.02482 0.01987 0.02051 0.01158 -3.67%
Diffusion Reaction (2D)  0.05979  0.01055 0.01443 0.01314 0.01485 0.00346 0.00214 38.15 %
Shallow Water (2D) 0.11974  0.01448 0.01500 0.01191 0.00586 0.00438 0.00259 40.87 %
Climate Modelling (2D) 1.0126 0.01536  0.00810 - 0.18575 0.01508 0.00715 11.73 %
GT UNet FNO UFNO FFNO Transolver FINO
1.0
s : 17.5
OZ’ 06 -HK-. | 'W.-..... 15.0
g 04 . 125
- 0.2 10.0
0.0 . |
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Figure 2: Visual comparison of baseline methods and FINO on 1D CNS and 2D Darcyflow.

In addition, we evaluated our method on a climate modelling dataset. Further details about the
datasets are provided in the Appendix C.1.

Baselines and Training details. We compared our method against three representative categories
of approaches: (i) Global operator methods: FNO (Li et al., 2020a), FFNO (Tran et al., 2021); (ii)
Local operator + Global methods: U-Net (Ronneberger et al., 2015), UFNO (Wen et al., 2022),
Local FNO (Liu-Schiaffini et al., 2024); (iii) Transformer-based methods: Transolver (Wu et al.,
2024). All models were trained for 400 epochs using a single NVIDIA A100 40GB GPU and the
climate modelling was trained for 500 epochs. We followed the default training protocols from
PDEBench unless otherwise specified. We report the RMSE in Table 1.

4.2 EXPERIMENT RESULTS

Numerical Results Table 1 shows numerical result in all datasets. For 1D PDEs, FINO consis-
tently achieves the lowest error across all three datasets, reflecting its design as a local operator
method. These problems are characterized by strong local structures, where pointwise updates are
driven by local derivatives, and FINO benefits directly from its purely local design. In the Advection
equation, which is dominated by sharp, locally transported features, FINO achieves the best RMSE
(0.00296), improving on the strongest baseline (FNO, 0.00530) by 44.15%. This substantial margin
highlights the strong alignment between FINO’s locality and the underlying transport dynamics. In
the more complex CNS dataset, FINO again obtains the lowest RMSE (0.1946), outperforming the
best competing method (FFNO, 0.29493) by 34.02%, indicating that local update rules remain ad-
vantageous even for challenging 1D fluid dynamics. Similarly, in the Diffusion—Reaction system,
FINO achieves the best performance (0.00575), improving on Transolver (0.00686) by 16.18%,
demonstrating robustness in coupled local processes such as diffusion and reaction. Overall, across
all 1D tasks, FINO delivers consistent gains, with the most pronounced improvements observed
in problems governed by strong local transport mechanisms. Its finite-difference-inspired locality
translates directly into more accurate step-by-step updates and significantly lower RMSE.
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Figure 3: Spatiotemporal comparison of LocalFNO and FINO predictions on the 2D Shallow Water
equation benchmark. Each row shows model rollouts at successive time steps.
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Figure 4: Comprehensive evaluation of FINO compared to baseline operator networks. (a): Error vs.
number of composition blocks for the 1D advection task. (b): Data-scaling performance comparison
of FINO and FNO. (c): Training vs. inference time across architectures.

For the 2D tasks, we distinguish between time-independent and time-dependent datasets. On the
time-independent Darcy Flow benchmark, all global spectral/transform models underperform, while
the purely local U-Net achieves the best RMSE (0.01117). FINO is very close to U-Net with
0.01158 (-3.67% relative to U-Net), indicating that local operators are more effective than global
ones in steady-state elliptic problems where global mixers tend to oversmooth fine-scale hetero-
geneity. In contrast, across all time-dependent 2D datasets, U-Net becomes the worst-performing
baseline, while FINO consistently achieves the best results: Diffusion—Reaction (0.00214, 38.15%
better than LocalFNO) and Shallow Water (0.00259, 40.87% better than LocalFNO). In the climate
modelling task, FINO (0.00715) outperforms UFNO (0.00810) by 11.73% because climate evolu-
tion is dominated by local advection—diffusion updates. Global models tend to oversmooth sharp
gradients, while FINO’s local time stepping preserves fine-scale features and controls error growth.
Unlike U-Net, which lacks an explicit temporal update, FINO structured locality ensures more sta-
ble and accurate rollouts in time-dependent dynamics. These results from 2D time-dependent PDE
highlight that time-dependent dynamics benefit from operators that implement accurate local tem-
poral updates grounded in PDE structure. In Appendix C.2, we report additional evaluation metrics.
From the data perspective, we include normalized RMSE (nRMSE) and maximum error. From
the physics perspective, we present the RMSE of conserved value, RMSE of Fourier-space in low,
medium, high-frequency regimes.

Visualisation Results. Figure 2 shows the visualisation results on 1D CNS and 2D Da. FINO pre-
serves sharp structures in CNS and produces smooth, consistent Darcy fields, closely matching the
ground truth. Unlike global methods, which succeed in CNS but fail in Darcy flow, FINO performs
well across both time-dependent and time-independent PDEs. Figure 3 Spatiotemporal rollout com-
parison on a 2D time dependent PDE. Each column shows the solution field at different time steps
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(T = 0s to 1.0s), while rows correspond to the ground truth (GT), Local FNO, and our proposed
FINO. FINO produces stable long-horizon predictions that remain visually and quantitatively con-
sistent with the ground truth, demonstrating its improved accuracy and robustness in modeling PDE
dynamics. Figure 5 compares the ground truth and predicted global surface pressure fields. FINO
produces reconstructions that closely align with the reference, accurately capturing large-scale spa-
tial variations and preserving fine regional structures without introducing spurious artifacts. The
smoothness and consistency of the predicted fields highlight the model’s robustness in handling
climate-scale PDE data, demonstrating its ability to generalize to complex, real-world geophysical
patterns. More visualization can be found in Appendix C.2.

4.3 ABLATION STUDIES

Number of FINO Blocks. Figure 4 (a) shows how the accuracy increases as the composition of
FINO blocks in the FINO increases for the 1D advection PDE. A single block yields the lowest, but
as the model depth grows to four blocks, the error steadily drops to 0.00294. This indicates that
additional depth enhances the model’s capacity to capture fine-grained local dynamics, while gains
begin to saturate after two blocks.

Data Size. Figure 4 (b) compares FINO and FNO among

Ground Truth surface pressure (kPa) . different dataset size (1k, 5k, 9k, 10k). As the dataset

TN e s S T e = . grows, both models reduce their RMSE. However, FINO

[, consistently outperforms FNO across all sizes, and its ad-

4 eima ®  vantage is particularly pronounced in low-data regimes

NALAEREEE 40 &0 (1k=5k samples), highlighting FINO’s stronger data effi-
i = W, ciency and generalization under data scarcity.

37.5°N

7.5°N - SE- &

825°S e B e
0° 30°E 60°E 90°E120°E150°E 180° 150°W20°W00° W 60°W30°W

Predicted surface pressure (kPa) Training and Inference Time. Figure 4 (c) presents

o1 | R RS e[ °  a comparison of training and inference times across all
37.5°N e - _ o evaluated architectures. Transformer-based methods and
7oy R - A = a1 U-FNO exhibit significantly higher computational cost,
255 |- (| A 0 S e e Tequiring prolonged training durations and slower infer-
s257s [t e % ence speeds—often making them impractical for deploy-

82.5°5 R < = o
0° 30°E 60°E 90°E120°EI50°E 180°150°W20°W90°W60°W30°W

st ment or iterative scientific workflows. In contrast, FINO
achieves the fastest inference time, clocking in at just
Figure 5: Ground truth (top) and pre- 4—§ 'seconds.per evalua}tion, and maintains competiti\{e
dicted (bottom) global surface pres- training efficiency relative to FNO and LocalFNO. Thls
remarkable speed advantage stems from FINO’s strictly
large-scale patterns and regional vari- locgl convplutional design and lightweigh.t architecture,
ations, producing smooth, consistent which avoids the overhead 'of global attention or §pectral
fields that closely match the reference. transforms. These results highlight FINO’s suitability for
real-world use cases where rapid model execution and re-
training are critical—such as in-the-loop simulations, un-
certainty quantification, or interactive PDE exploration. FINO offers an attractive balance between
accuracy and computational efficiency

sure. FINO accurately reconstructs

5 CONCLUSION

We introduced FINO, a neural operator framework inspired by classical finite-difference schemes,
which leverages local learned stencils and explicit time integration to model PDE dynamics effi-
ciently and interpretably. Our work reinforces a central premise: locality matters in neural PDE
solvers. By constraining the architecture to use compact, learnable spatial stencils and an explicit
forward Euler scheme, FINO retains interpretability while achieving strong empirical and theoret-
ical performance. Our theoretical analysis establishes connections between local approximation
error and global rollout stability, offering provable guarantees for long-horizon predictions. Empir-
ically, FINO consistently outperforms competitive baselines—including global operators like FNO
and Transformer-based models—across several datasets. Notably, FINO achieves up to 44% lower
RMSE and 2x faster inference. These results suggest that hybridising classical numerical insights
with modern learning yields principled, efficient, and generalisable PDE surrogates. FINO offers a
scalable blueprint for designing neural operators grounded in locality, stability, and interpretability.
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APPENDIX

In this appendix, we provide additional details regarding our methodology and a more comprehen-
sive description of the dataset used in our experiments.

A SUPPLEMENTARY INFORMATION

A.1 PRELIMINARIES: FINITE DIFFERENCE METHOD

In this section, we provide a brief introduction to the finite difference method (FDM). Partial Dif-
ferential Equations (PDESs) are inherently complex, requiring various advanced numerical methods.
One classical approach is the finite difference method, which approximates partial derivatives by
converting them into arithmetic operations (addition, subtraction, multiplication, and division) ap-
plied to discrete function values sampled on a computational grid. In numerical analysis for PDEs, a
stencil is a structured set of points around a specific node used to approximate derivatives and other
key quantities. Stencils underpin many numerical PDE methods, such as the five-point stencil for
second-order spatial derivatives and the Crank—Nicolson stencil for time-dependent problems.

Finite difference methods approximate partial differential equations (PDEs) by replacing derivatives
with linear combinations of function values on a discrete grid. For instance, a central difference
approximation of the first derivative in the z-direction at (i, ) is given by:

Qul -, Wiy ~Uim1g. S
0x s ; 2 Ax
and the second derivative by:
9*u o Wir1,g — 205 + Ui ' (S.2)
0x? i Ax?

Higher accuracy requires larger stencils. For example, a fourth-order central difference for the first
derivative is:

Ju
or

_ Uir i + 8Ui1 i — BUi—15 + Uiz j S3)
i,j 12 Ax '

In two dimensions, a common five-point stencil for the Laplacian V2 is:

Uirl,j = 2y + Uiy | Wijel = 2i + Ui
Az? Ay? ’

Vzui’j N (S4)

Such stencils provide a flexible and systematic way to handle a variety of PDEs by reducing deriva-
tive calculations to simple arithmetic on grid values.

B THE ANATOMY OF FINO

In this section, we present the full statements of Proposition 1 and Theorem 1, as given in the main
paper, together with their complete proofs. The proof of Proposition 1 relies on the following two
lemmas.

Lemma 3 (Composition Error Estimate). Let ® a; denote the exact evolution operator for time step
At, such that

w(tne1,) = @At(u(tn, ))7 where t,, = n/At. (S.5)

Then, for every integer n > 0, we have

u(tn,) = (Par)" (ulto,")), (S.6)

where (Pa.)" denotes the n-fold composition of ® ay.

12
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Proof. We proceed by induction on n. Let P(n) denote the desired statement.
Base case (n = 0). By definition, ¢y = 0, and thus
(®a:)°(ulto,")) = w(0,-) = u(to, ). (S.7)
Hence, P(0) holds.
Inductive step. Assume the claim holds for some k& > 0, i.e.,
u(tr,) = (2ae)* (ulto,")). (S.8)
Then, for k& + 1, we have
u(ths,r) = Pac(ulty,)) = (I)At((q)At)k(u(tOv'))) = (Dae)" (ulto,)). (5.9
Thus, P(k + 1) also holds.
By the principle of mathematical induction, the statement is true for all n > 0. O
Lemma 4. Suppose eq = 0 and the sequence satisfies the recurrence
eni1 < Cen+e’ forallmn>0.
Then, for every integer k > 1, we have

ck-1

er < (1+O+C’2+...+Ck—1)€' _ o

e (assuming C # 1).

Proof. We proceed by induction on k.
Base case (k = 1). From the recurrence, we have

e1 < Ceg+e = C-0+¢" = €.
This matches the claimed bound since 1+ C17! = 1.
Inductive step. Assume the claim holds for some k£ > 1, i.e.,

er < (1+C+C* 4+ CF e,
Then, using the recurrence,

epi1 < Cep+e’ < C’(l +C+C%*+ 4 C’“_l)s' +¢'.
Factorizing &’ gives
ere1 € (C+C% 4+ CP+1) e =(1+C+C*+-+CF) e

Thus the claim also holds for & + 1.
By induction, the bound holds for all integers & > 1. O

Proposition 5 (Local-to-Global Error Bound). Let Wy and ® ¢ be two maps on a Banach space
satisfying:

||\Il@(u) - <I>A(u)|| <e"  forall uin the relevant norm and for some constants €' > 0.

(This comes from the fact that we can approximate each local map ® p; by Vo (u) to within €' ) and
Lipschitz, i.e.
®at(v) - Par(w)| < Cllv-w| Vo,w,
Sor some constants ¢’ > 0 and C > 0. Define the iterates
uge1 = Vo(ug), Uger = Par(x), uo = do-
Then after K steps,

K
-1
CC—l e (forC#1),

, where (W)X (ug) means the K-fold composition of the map Ve starting from ug. and if C = 1
the right-hand side is simply K €'.

[(T9) " (uo) = (@ar)™ (uo)| <

13
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Proof. By definition: |ug+1 — Qg1 = H\I/g(uk) DA || We first rewrite
o(ur) - Pac(in) = (Polur) - Par(ur)) + (Pac(ur) - Par(in)), (S.10)
By Triangle inequality and equation S.10 : We get

Jurer = Gt ]| < [Wo(ur) = ac(ur)| + | Pac(ur) - Pac(in)|- (S.11)

By the assumption that | ¥g(u) - @At(u)H <€ and [®at(v) = Par(w)| < C v -w]|. Equation
S.11 can be further simplified as |ug+1 — Gg1| < € + C |ug — Gyl Let e = |ug — tg||. Then

ers1 <Cep + €
.ByLemma4, wegete, < (1+C+C%+--+CF1)e = %5’ (assuming C' # 1). After K
steps, we get
ck-1,

H(\I/@))K(UO) - ((I)A)K(uo)” = exg < o1 €.

O

Theorem 6 (Universal Approximation of FINO for Discrete Time—Stepped PDE Dynamics). Let
G c R? be a finite spatial grid with m nodes, and let

m e 1/2
X=R"™ :=( Z Uz,f|2) 7

denote the Banach space of grid—based states. Let ®a, : X — X be the exact one—step evolution
operator of a semi—discrete PDE, assumed to be Lipschitz stable:

[®at(v) = Pac(w)| < Clo-w|,  Vo,welX, (8.12)
for some constant C > 1.

For a final time T = K At with integer K > 1, define the exact solution after K steps as

K
u(T) = (®a¢) " (uo),
where (P ;)X denotes the K—fold composition.

Then for every compact set U c X and every tolerance € > O, there exists a depth—-K FD-NET
K
Ui = wyeowy,
|
K identical blocks
such that X
K
sup | \I/é )(uo) —(@ar) (uo)| < e
ugeU

In other words, the class of FINO is dense in the set of discrete solution operators of Lipschitz—stable
PDEs on compact subsets of X.

Proof. Step 1 (Semigroup expansion). By Lemma 3, the exact solution at time t,, = nAt is
w(tn,) = (®ar)" (ulto,")). (S.13)

In particular, the target operator at time 7' = K At is ft. Therefore, it suffices to approximate the

one-step map P and then compose K times.

Step 2 (Compactness of the reachable set). Define the compact “reachable” set

IDl(q)At)j(u)-

Continuity of ®»; implies by induction that each image (®;)? (1) is compact, hence V is compact.

14
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Step 3 (One-step uniform approximation by an FINO block). Since X is finite-dimensional and
®das 1V — X is continuous on the compact set V), the classical Universal Approximation Theorem
for feed-forward networks (e.g., Cybenko 1989; Hornik, Stinchcombe & White 1989) ensures that
for any &’ > 0 there exists a (finite) neural network Fp : V — X with

sug |Fo () — @ar(u)] < €. (S.14)
ue
An FD-NET one-step block ¥y (a residual Euler update v — u + At Nyp(u) with a finite convo-

lutional/ReLLU stack Np) is a special case of such a feed-forward map from X to X. Hence, by
increasing width/depth of the block, we can realize equation S.14 with Wy in place of Fjp:

sup | Wo(u) = Bay(w)] < <" (.15)

Step 4 (Error recursion). Let uy = 1y € U and define the two sequences
g1 = Wo(ug), U1 = Pac(Un), k=0,1,...,K -1

Set ey, := |uy — Ug|. Adding and subtracting ®a¢(uy) and using equation S.12 and equation S.15,
we obtain

ere1 = |Wolur) — Pac(in)]| < |Wolur) - Pae(un)|+|Par(ur) - Pac(@n)| < Cep+e',

<e’ <Cey

with eg = 0.

Step 5 (Geometric accumulation). By Lemma 4 (Geometric Error Lemma) and Proposition 5,
the recursion e, 1 < Cey, + &’ with eg = 0 yields

crh-1,
a<lo1 9 foralk-1,.. K
ke, C=1,
In particular,
ck-1
=, C#1,
|95 (uo) - @&, (uo)| = ex < { -1 (S.16)
K¢, C=1.

Step 6 (Choice of the local tolerance). Given any € > 0, choose

Cc-1
—, C=1
g’ = aCK—l’ ’
e/K, C=1

By equation S.16, this guarantees ex < € uniformly for all uy € . Since equation S.15 can be
enforced by increasing the size of the one-step FINO block, the theorem follows. O

C EXPERIMENT RESULTS

C.1 DATASET AND IMPLEMENTATION DETAIL

* 1D Advection
Governing PDE.

Opu(t,x) + B Oyult,z) =0, (t,z) € (0,2] x (0,1). (S.17)

Initial data.
u(0, ) = up(x), xz€(0,1). (S.18)

Parameters. 3 € R is the constant transport (advection) speed and we choose (3 = 4.
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Closed-form solution. By the method of characteristics, the solution is a rigid shift of the initial
profile:

u(t,z) = ug(x - Bt). (S.19)
Discretization and split.

* Spatial grid: Offical 1024 x 1024 and a downsample factor by 8

* Temporal samples: 200 snapshots; first 10 used as inputs, remaining 190 as prediction
targets and downsample a factor by 5.

* Dataset split: 9000 training / 1000 testing samples.

X 1D Diffusion—Reaction
Governing PDE.

Ou(t,x) = vOpault,x) + pu(t,z)(1-u(t,z)),  we(0,1), 1€ (0,1], (8.20)

with initial data
u(0,z) = uo(x), z€(0,1), (S.21)

and periodic boundary conditions on [0, 1]:

u(t,0) = u(t, 1), Ozu(t,0) = Ozu(t, 1), te(0,1]. (S.22)

Dynamics. The reaction term pu(1l — u) can drive near—exponential transients, producing fast
time—scale phenomena that stress both numerical solvers and learning surrogates.

Initialization. To avoid ill-posed or degenerate starts, the prescribed profile is rectified and nor-
malized:
|uo ()]

maXge(0,1) |U0(33)‘ ’

ug(z) «

so that ug € [0,1] and |Jug e = 1.

Discretization and split.

* Spatial grid: Offical 1024 x 1024 and a downsample factor by 8

* Temporal samples: 200 snapshots; first 10 used as inputs, remaining 190 as prediction
targets and downsample a factor by 5.

* Dataset split: 9000 training / 1000 testing samples.

* 1D CNS
The equations governing compressible fluid dynamics describe the evolution of density, momentum,
and energy of a fluid system. They are written as

Op+V-(pv) =0, (5.23)
p(Ov+v-Vv)=-Vp+nAv+(C+ 1) V(V-v),  (S:24)
at(e+%)+v-[(e+p+ %)v—v-a']=0, (S5.25)

For the details of the notation and description, we refer to PDEBench (Takamoto et al., 2022)

Discretization and split.

* Spatial grid: Offical 1024 x 1024 and a downsample factor by 8

* Temporal samples: 100 snapshots; first 10 used as inputs, remaining 90 as prediction targets
and downsample a factor by 5.

* Dataset split: 9000 training / 1000 testing samples.
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* 2D Darcy Flow
Governing PDE. On the unit square 2 = (0, 1)?, the steady 2D Darcy flow is

~V-(a(z,y) Vu(z,y)) = f(z,y), (2,9)€Q,
with homogeneous Dirichlet boundary condition
u(z,y) =0, (z,y) € O0.
Here a(z,y) denotes the diffusion coefficient and u(x, y) the solution field.
Operator-learning objective. We aim to learn the solution operator

Stavu,  (z.y)eQ

(5.26)

(8.27)

(S.28)

so that, given a, the predictor returns the corresponding solution u of equation S.26—equation S.27.

Data protocol. Following the PDEBench setup Takamoto et al. (2022):

* Forcing. A spatially uniform load f(z,y) = 8 with 5 = 1.0.
* Splits. 9000 training samples and 1000 test samples.

* Resolution. Fields are provided on the official grid 128 x 128 and downsampled by a factor

of two.

% 2D Shallow—Water
Governing PDEs.

Oth + 0y (hu) + 0y (hv) =0,
Oy (hu) + 0y (v’ h + $g,h*) = — g, hO,b,
O (h) + 0y (v’h + 3g,h) = — g, hOyb.

State and coefficients.

* h(x,y,t): water depth.

o (u(z,y,t), v(x,y,t)): depth-averaged velocities in the x- and y-directions.

* b(z,y): bathymetry (spatially varying bed elevation).

* g,: gravitational acceleration.
Domain and time horizon.

* Spatial domain 2 = [-2.5, 2.5]2.

* Time interval ¢ € [0,1]s.

Initial condition (radial dam-break).

2.0, 2 +y2 <,
h(0,z,y) = Y r~U(0.3,0.7).
1.0, 2+y2 >,

Learning objective (solution operator).

S: hlte[O,t’] — hlte[tQT]’ (1’73/) € Q,
with ¢’ = 0.009s and 7' = 1.000s.

Discretization and split.

* Spatial grid: Offical 128 x 128 and downsample factor by 2.

(S.29)
(S.30)
(S.31)

» Temporal samples: 101 snapshots; first 10 used as inputs, remaining 91 as prediction tar-

gets.
* Dataset split: 900 training / 100 testing samples.
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Table S.1: Comparison of baselines and FINO on 1D PDE benchmarks—advection, compressible
Navier—Stokes (CNS), and diffusion—reaction — measured by normalised RMSE (nRMSE) , max
error and conservation RMSE (cRMSE). The best results are highlighted in green .

METHOD advection (1D) CNS (1D) diffusion-reaction (1D)

nRMSE| maxerror)] cRMSE| | nRMSE| maxerror] cRMSE| | nRMSE| maxerror] cRMSE|
UNet 0.09246 0.50268 0.03269 0.8123 50.83448  15.34809 | 0.07399 0.21527 0.05359
FNO 0.00892 0.11371 0.00032 | 0.23532 4.78869 0.0879 0.05484 0.0521 0.03036
UFNO 0.0175 0.26239 0.00129 | 0.37418 5.42717 0.17281 0.01705 0.02608 0.01026
FFNO 0.01198 0.17062 0.00083 | 0.16448 4.55828 0.06288 | 0.02685 0.0304 0.01511
Trasnsovler 0.01555 0.17913 0.00083 | 0.35738 8.22922 0.22427 | 0.01347 0.03871 0.00963
FINO 0.0049 0.09395 0.00036 | 0.14635 3.53841 0.0654 0.01137 0.04157 0.00729

Improvement | 45.07 % 17.38 % 12.5 % 11.02% 22.37% 4.01% 15.60 -59.4 24.30

% 2D Diffusion-Reaction

State variables. u = u(z,y,t) (activator), v = v(x, y,t) (inhibitor).

Governing PDEs.
0wt = Dy, (Opg + Oyy) u+ Ry (u, v), (S.32a)
0t = Dy (Opg + Oyy) v + Ry (u,v). (S.32b)
Reaction terms.
Ry(u,v) =u—-u®-k-v, (S.33a)
Ry(u,v) =u—-wv. (S.33b)

Parameters and domain.

« Diffusion coefficients: D, =1 x 1073, D, =5x 1073,
* Coupling constant: k =5 x 1073,
s Space-time: Q = [-1,1]%, t€[0,5].

Operator learning target.

S {U’?U}té[o,t’] — {u7 U}té(t’,T]a (xay) € Q7 (834)
with ¢/ =0.045s and T = 5.000s.

Discretization and splits.

* Spatial grid: Official grid 128 x 128 and a downsample factor by 2.
» Temporal resolution: 101 frames (inputs: 10; prediction horizon: 91).

* Dataset size: 900 training and 100 testing trajectories, following the PDEBench proto-
col (Takamoto et al., 2022).

* 2D Climate Modelling (Kissas et al., 2022) use daily global fields from the NOAA PSL
NCEP/NCAR Reanalysis to construct a paired dataset of near-surface air temperature (input) and
surface pressure (target). Samples span ten calendar years split into two five-year blocks (2000-
2004 train; 2005-2009 test), with leap days removed, on a co-registered 72 x 72 latitude—longitude
grid covering [-90°,90°] x [0°,360°). The task is to learn a black-box operator

G:C(X,R) - C(X,R)
mapping temperature to pressure for each day. We provide recommended preprocessing (regridding,

normalization, area weighting), evaluation metrics, and caveats regarding physical ill-posedness and
topographic effects.
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Table S.2: Comparison of baselines and FINO on 2D PDE benchmarks—advection, compressible
Navier—Stokes (CNS), and diffusion—reaction — measured by normalised RMSE (nRMSE) , max
error and conservation RMSE (cRMSE). The best results are highlighted in green .

METHOD Darcy Flow (2D) Diffusion Reaction (2D) Shallow Water (2D)
nRMSE| maxerror] c¢RMSE| | nRMSE| maxerror] cRMSE| | nRMSE| maxerror] cRMSE|]
UNet 0.05412 0.1699 0.01352 | 0.87007 0.2265 0.02115 | 0.11552 0.75481 0.03397
FNO 0.13772 0.22714 0.02368 | 0.19243 0.09539 0.00154 | 0.01393 0.13625 0.00058
UFNO 0.39773 0.56864 0.05821 0.23746 0.06644 0.00617 | 0.01518 0.2161 0.00074
FFNO 0.13121 0.25059 0.01976 | 0.19817 0.14103 0.00829 | 0.01145 0.12899 0.00069

Trasnsovler | 0.10777 0.26815 0.0144 0.24379 0.10434 0.00869 | 0.00565 0.12001 0.00066

LocalFNO 0.10662 0.21291 0.02042 | 0.05492 0.05488 0.00077 | 0.00422 0.09241 0.00038

FINO 0.05764 0.16731 0.01252 | 0.03645 0.03772 0.00014 0.0025 0.03976 0.00013
Improvement | -6.50% -1.52% -7.4% 33.63% 31.27% 81.82% 40.76 56.97 65.79

Table S.3: Comparison of baselines and FINO on PDEBench— compressible Navier—Stokes
(CNS), 2D Diffusion—Reaction and Shallow Water — measured by RMSE in Fourier space, low
frequency regime (fRMSEL) , RMSE in Fourier space, middle frequency regime (fRMSEM) and
RMSE in Fourier space, high frequency regime (fRMSEH); lower is better. The best results are
highlighted in green while the second best results are in bold font.

METHOD CNS (1D) Diffusion Reaction (2D) Shallow Water (2D)
fRMSEL|, fRMSEM| fRMSEH| fRMSEL|, fRMSEM| fRMSEH| | fRMSEL| fRMSEM| fRMSEH|
UNet 4.42510 0.18985 0.03155  0.01446 0.00605 0.00153 0.03164 0.00874 0.00197
FNO 0.11258 0.04998 0.00706 0.00161 0.00120 0.00064 0.00060 0.00067 0.00148
UFNO 0.15604 0.05499 0.00682 0.00393 0.00127 0.00036 0.00300 0.00153 0.00078
FFNO 0.09931 0.04275 0.00686 0.00361 0.00115 0.00044 0.00224 0.00109 0.00043

Trasnsovler 0.27045 0.08406 0.01283 0.00393 0.0015 0.00053 0.00074 0.00061 0.00043

LocalFNO - - - 0.00053 0.00044 0.00021 0.00042 0.00050 0.00033
FINO 0.06596 0.03021 0.00864 0.00024 0.00026 0.00014 0.00013 0.00027 0.00022
Improvement | 33.58% 29.33% -26.69% 54.72% 40.91% 33.33% 69.05% 46% 33.33%

C.2 ADDITIONAL NUMERICAL RESULTS AND VISULISATIONS

Table S.1 compares baseline methods (U-Net, FNO, UFNO, FFNO, Transolver) with the proposed
FINO model on three 1D PDE benchmarks: advection, compressible Navier—Stokes (CNS), and
diffusion—reaction. Evaluation is based on three complementary error metrics: normalized RMSE
(nRMSE), which ensures scale independence; maximum error, which captures the local worst-case
discrepancy and serves as a proxy for stability in time-stepping; and conservation RMSE (cRMSE),
which measures the deviation from conserved physical quantities. Across all tasks, FINO consis-
tently outperforms baselines by large margins. For advection, FINO achieves the lowest nRMSE
(0.0049), reducing error by 45.07% relative to the strongest baseline, while also improving stability
and conservation. In CNS, FINO delivers the best nRMSE (0.146) and cRMSE (0.065), yielding
11.02% and 22.37% improvements, respectively. In the diffusion—reaction system, FINO again
provides the lowest nRMSE (0.01137) and cRMSE (0.00729), with a 24.30% gain. These results
demonstrate that FINO not only improves accuracy but also enhances stability and preserves key
physical invariants across disparate PDE regimes.

Table S.2 reports results on three challenging 2D PDE benchmarks—Darcy Flow, diffu-
sion—reaction, and Shallow Water—using normalized RMSE (nRMSE) for scale-independent ac-
curacy, maximum error as a proxy for stability, and conservation RMSE (cRMSE) to quantify devi-
ations from conserved physical quantities. FINO consistently achieves state-of-the-art performance
across all tasks. For Darcy Flow, it attains second-best results closely behind UNet. Since Darcy
flow is a time-independent PDE and other global method or Local plus Global method perform
poorly. In contrast, FINO achieves a very similar performance with UNet. In 2D diffusion-reaction,
FINO delivers substantial gains with the lowest errors across all three metrics (nRMSE = 0.03645,
cRMSE = 0.00014), surpassing LocalFNO by up to 81.8% in conservation accuracy. In 2D shal-
low water, FINO again outperforms all baselines by a wide margin, achieving nRMSE = 0.0025,
maximum error = 0.0398 and cRMSE = 0.00013, reflecting improvements of 40—-65%. Since 2D
Diffusion Reaction and Shallow Water both have a long time domain, such strong performance in-
dicates FINO can achieve a stable and accurate result in a long time domain. These results highlight
FINO’s robustness across diverse PDE regimes, combining local accuracy, numerical stability, and
strong adherence to physical conservation laws.
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2D Climate Modelling

(a) Surface air temperature (K) (C) Predicted surface pressure (kPa)
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Figure S.1: Comparison of full-resolution predictions and baseline on the climate modeling bench-
mark. (a) Input surface air temperature field. (b) Ground-truth surface pressure. (c) Predicted surface
pressure from FINO. (d) Absolute error map between prediction and ground truth.

Table S.3 evaluates baselines and FINO on PDEBench using Fourier space errors across three
regimes—low (fRMSEL), middle (fRMSEM), and high frequency (fRMSEH)—to measure the fi-
delity of capturing multi-scale dynamics. In contrast with RMSE and nRMSE, which provide a
metric view of the data. These Fourier space errors provide a physical view. Lower values indicate
better accuracy in representing frequency components. On CNS, FINO delivers the best perfor-
mance in the low and middle frequency bands, reducing error by 33.6% and 29.3% compared to
the strongest baselines, though it is slightly less competitive in the high-frequency regime. For 2D
diffusion—reaction, FINO achieves substantial improvements across all bands, with an 81.8% rel-
ative gain in the high-frequency regime, highlighting its ability to preserve fine-scale oscillatory
structures. In the Shallow Water system, FINO again attains the lowest errors across all frequency
bands, with improvements of 69% in low frequencies, 46% in middle frequencies, and 33% in high
frequencies, demonstrating superior resolution of both large-scale flows and small-scale turbulent
components. These results emphasize FINO’s strong capacity to resolve multi-scale PDE dynamics
in Fourier space, outperforming both spectral and local baselines across diverse regimes.

D USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of the paper, LLMs were used to polish part of the writing.
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1D advection
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Figure S.2: Visualization of 1D advection across different baselines on two samples.

2D Diffusion-Reaction (activator)
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Figure S.3: Qualitative Comparison of 2D Diffusion—Reaction (Activator) Across GT, Local FNO,

and our method
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2D Diffusion-Reaction (inhibitor)
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Figure S.4: Qualitative Comparison of 2D Diffusion—Reaction (inhibitor) Across GT, Local FNO,
and our method
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