
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PDE SOLVERS SHOULD BE LOCAL: FAST, STABLE
ROLLOUTS WITH LEARNED LOCAL STENCILS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural operator models for solving partial differential equations (PDEs) often rely
on global mixing mechanisms—such as spectral convolutions or attention—which
tend to oversmooth sharp local dynamics and introduce high computational cost.
We present FINO, a finite-difference–inspired neural architecture that enforces
strict locality while retaining multiscale representational power. FINO replaces
fixed finite-difference stencil coefficients with learnable convolutional kernels and
evolves states via an explicit, learnable time-stepping scheme. A central Local
Operator Block leverage a differential stencil layer, a gating mask, and a linear
fuse step to construct adaptive derivative-like local features that propagate for-
ward in time. Embedded in an encoder–decoder with a bottleneck, FINO cap-
tures fine-grained local structures while preserving interpretability. We establish
(i) a composition error bound linking one-step approximation error to stable long-
horizon rollouts under a Lipschitz condition, and (ii) a universal approximation
theorem for discrete time-stepped PDE dynamics. (iii) Across six benchmarks
and a climate modelling task, FINO achieves up to 44% lower error and up to
around 2× speedups over state-of-the-art operator-learning baselines, demonstrat-
ing that strict locality with learnable time-stepping yields an accurate and scalable
foundation for neural PDE solvers.

1 INTRODUCTION

Partial Differential Equations (PDEs) are fundamental to applied mathematics and engineering, gov-
erning phenomena in fluid dynamics (John & Anderson, 1995), heat conduction, electromagnetism,
structural mechanics, and biology (Edelstein-Keshet, 2005). They describe the evolution of state
variables in space and time, enabling prediction, control, and optimisation of complex systems. An-
alytic solutions for non-linear PDEs are rare; therefore, numerical methods such as finite difference,
finite element (Quarteroni et al., 2006) and finite volume have been developed.

Classical solvers have been studied for more than a century, but remain limited by the trade-off be-
tween accuracy and efficiency (LeVeque, 2007). Finer discretisations improve accuracy but increase
computational cost. Deep learning offers a new route, with two dominant directions. (i) Physics-
informed methods such as PINNs (Raissi et al., 2019) embed PDE equations directly into the
loss, leveraging physical structure to reduce labeled data requirements. However, they often face
optimisation difficulties, especially in high-dimensional settings, and perform poorly on solutions
with discontinuities, sharp gradients, or symmetries. (ii) Operator-learning methods approximate
infinite-dimensional operators from data, learning families of PDEs. Training is expensive, but in-
ference is fast. DeepONet (Lu et al., 2019) and FNO (Li et al., 2020a) are notable examples.

Global operator methods such as FNO capture long-range structure but oversmooth local dynam-
ics. Locality is critical: for hyperbolic PDEs, finite-speed propagation implies that solutions de-
pend only on data within local characteristic regions (LeVeque, 1992). Local kernels can represent
these dynamics efficiently, whereas expressing them globally increases parameter counts. Although
spectral methods like FNO and SFNO can, in theory, approximate local behavior, the uncertainty
principle forces high parameter counts when representing fine-scale features.

While local operators can be represented using global bases (e.g., Fourier or attention), this comes
at a high cost. Capturing localised features requires resolving high frequencies across the entire do-
main, and the uncertainty principle implies that such global approximations demand dense spectral

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

representations. Methods like FNO and SFNO must reconstruct the full signal in frequency space,
even when the operator is inherently local—leading to high parameter counts and loss of a locality
bias that many PDEs naturally exhibit.

Recent advances in operator learning follow four main directions, each with trade-offs. (i)
Transformer-based operators capture long-range dependencies via self-attention, but incur quadratic
complexity and offer limited operator-theoretic guarantees. (ii) Graph Neural Operators (GNOs) (Li
et al., 2020b) learn local kernels, but pairwise kernel evaluation is expensive compared to optimised
convolutions, and lacks natural equivariance. (iii) Hybrid U-former designs (Wen et al., 2022) inject
local priors into global architectures by combining CNNs and FNOs, but suffer from high training
overhead and fixed-resolution bottlenecks that suppress high-frequency content. (iv) Localised-
kernel operators (Liu-Schiaffini et al., 2024) extend FNOs with differential and discretisation-
agnostic branches (e.g., DISCO), improving local expressivity at the cost of increased computation,
resolution-sensitive runtime, and stacked discretisation error.

These limitations highlight the need for architectures with an intrinsic local bias that remain efficient
and accurate. The central challenge is to design models that capture fine local features via strictly
local receptive fields—without sacrificing speed or scalability. Such methods are essential for: (1)
Fast computation. Many PDE applications—such as weather forecasting, robotics, and digital-twin
systems—require frequent retraining or real-time inference. This makes fast, efficient computation
essential for practical deployment. (2) Capturing local properties Many PDEs inherently rely on
local interactions, and failing to capture these can significantly degrade accuracy. (3) Generality
Global operator methods often perform poorly on time-independent PDEs, limiting their applica-
bility. (4) Accuracy High precision approximation of fine-scale structures is necessary to ensure
predictive fidelity across diverse PDE families.

Contributions. We propose Finite-difference inspired Neural Operator (FINO), a neural archi-
tecture explicitly inspired by classical finite-difference (FD) schemes. Like traditional FD methods,
FINO discretises the domain into local stencils, but replaces fixed coefficients with learnable convo-
lutional kernels. At its core, a Local Operator Block learns differentiable operators on each stencil,
enforcing a strictly local receptive field and providing a direct correspondence to finite-difference
operators. These learned derivatives are advanced in time using an explicit, learnable time-stepping
update, ensuring interpretability and stability. The resulting FINO block is embedded within an
encoder–decoder structure with down-sampling, skip connections, and up-sampling, enabling the
model to capture multiscale features and reconstruct complete solution trajectories. Unlike recent
local-operator networks, FINO maintains strict locality through stencil-style derivatives and explicit
time-stepping. This avoids global spectral transforms and preserves both speed and interpretability.
Across benchmarks, this design FINO consistently yields faster training, lower inference time, and
higher accuracy than state-of-the-art operator-learning methods. Notable, we emphasise:

We introduce FINO, which replaces fixed stencil coefficients with learnable convolutional kernels
and couples them with an explicit, learnable time-stepping scheme, enforcing strictly local receptive
fields while preserving multiscale capacity.

We prove that FINO is a universal approximator for discrete-time PDE dynamics. We also derive a
novel error-propagation bound, showing how local approximation error controls long-horizon rollout
stability under mild Lipschitz conditions.

We validate FINO on six PDEBench benchmarks (1D advection, diffusion–reaction, compressible
Navier–Stokes; 2D Darcy flow, diffusion–reaction, shallow water) and a climate modelling task,
where it achieves higher accuracy and significantly faster training than state-of-the-art baselines.

2 RELATED WORK

Deep Learning for PDEs. Early deep learning approaches for PDEs, such as PINNs (Raissi et al.,
2019), embed governing equations into the loss function but struggle with generalisation across res-
olutions and domains. Neural operators address this limitation by learning mappings between func-
tion spaces, yielding discretisation-invariant surrogates. DeepONet (Lu et al., 2019) and FNO (Li
et al., 2020a) laid the groundwork for neural operators, providing universal approximation guaran-
tees and efficient spectral modelling of global dependencies. Building on these foundational works,
several FNO variants (Tran et al., 2021; Xiao et al., 2024; Park et al., 2025) have been proposed

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

to further enhance performance, with extensions to adaptive and geometry-aware settings. In par-
allel, graph-based methods such as the Graph Neural Operator (Li et al., 2020b; Brandstetter et al.,
2022) generalise operator learning to non-regular grids, while other directions exploit wavelets,
spectral bases, or integral kernels for multiscale and discretisation-robust approximations (Tripura
& Chakraborty, 2022; Fanaskov & Oseledets, 2023).

More recently, attention-based architectures have become increasingly popular in operator learning.
Transformer-style models such as OFormer (Li et al., 2022), GNOT (Hao et al., 2023), and Tran-
solver (Wu et al., 2024) adapt self-attention mechanisms to capture long-range spatial interactions in
PDEs. Within this landscape, HAMLET (Bryutkin et al., 2024) extends neural operators to irregular
geometries through graph transformers, radius-based neighborhoods, and cross-attention for arbi-
trary queries, achieving strong results on PDEBench and Airfoil benchmarks.The Mamba Neural
Operator (Cheng et al., 2024) offers a state-space alternative to transformers, improving computa-
tional efficiency while retaining accuracy. Therefore, these developments allow the trajectory from
grid-restricted spectral methods toward geometry-flexible, transformer-style operator learners with
increasing scalability and robustness.

Local Neural Operators. Early works such as PDE-Net (Long et al., 2018) and PDE-Net 2.0
(Long et al., 2019) introduced learnable kernels to directly identify underlying PDEs from data.
However, these models were not intended for solving PDEs directly—instead, they focused on iden-
tifying the underlying PDE equations from observed data. More recent efforts emphasize incorpo-
rating locality into operator architectures to better resolve fine-scale dynamics and enforce physical
inductive biases. While global methods such as FNO demonstrate strong performance in many set-
tings, they often suffer from over-smoothing and fail to resolve local details. To address these limi-
tations, local neural operators have been proposed, introducing locally supported kernels that align
with the inherent locality of many PDEs, such as hyperbolic systems with finite propagation speeds.
For example, Ye et al. (2024; 2022) augmented FNOs with convolutional layers to embed locality,
while Wen et al. (2023) combined U-Nets with FNOs for improved multi-scale representations. Sim-
ilarly, convolutional neural operators (CNOs) (Raonic et al., 2023) exploit convolutional inductive
biases but remain constrained by equidistant grid discretisations and the need for downsampling,
which risks discarding high-frequency information. To overcome this issue, Liu-Schiaffini et al.
(2024) introduced localised integral and differential kernels, further enhancing performance. How-
ever, most of these approaches rely on hybrid architectures that combine local and global operators,
which increases the training time.

Existing works & comparison to ours. Our work (FINO) is strictly local by construction. It
eliminates global mixing entirely, using only finite-support convolutional stencils and an explicit,
learnable time-stepping scheme. This design enforces compact receptive fields, aligns naturally
with the finite-speed propagation of many PDEs (e.g., hyperbolic systems), and avoids the spectral
inefficiencies and high parameter counts induced by the uncertainty principle.

3 FINITE-DIFFERENCE INSPIRED NEURAL OPERATOR (FINO)

Problem Statement. We consider time-dependent partial differential equations (PDEs) whose so-
lutions are vector-valued functions v∶ T × S × Θ → Rd, where T ⊂ R denotes time, S ⊂ Rn is a
spatial domain, and Θ represents a space of PDE-specific parameters (e.g., coefficients, boundary
conditions). For example, in a heat conduction problem, v(t, s, θ) may denote temperature at time
t, location s ∈ S, under conductivity profile θ ∈ Θ. We define the forward operator Fθ as a parame-
terised time evolution map that advances the solution by one time step: Fθ ∶v(t−ℓ∶t−1, ⋅) ↦ v(t, ⋅),
where ℓ is the number of previous steps required to estimate temporal derivatives (e.g., for explicit
schemes). The discretised version F̊θ is obtained via a high-resolution numerical solver, such as
finite difference or finite volume methods. Our goal is to learn a data-driven emulator F̂θ,ϕ ≈ F̊θ,
parameterised by ϕ, that generalises across different PDE parameters θ. Given a dataset of K sim-

ulated solution trajectories D = {v(k)θk
(0∶tmax, ⋅)}

K

k=1
, we estimate ϕ by minimising a supervised

rollout loss that penalises discrepancies between the predicted and ground-truth states:

ϕ̂ = argmin
ϕ

K

∑
k=1

tmax

∑
t=1
L(F̂θk,ϕ{v

(k)
θk
(t − ℓ∶t − 1, ⋅)}, v(k)θk

(t, ⋅)) ,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where L(⋅, ⋅) is a suitable loss function (e.g., mean squared error) comparing predicted and true
solutions over the spatial domain. Here, {t− ℓ, . . . , t− 1} denotes the past ℓ time steps used as input
to predict the next state at time t.

3.1 THE ANATOMY OF FINO

FINO is motivated by classical finite-difference (FD) schemes and consists of four main compo-
nents: (1) a Local Operator Block that mimics local differential operators, (2) an explicit time-
stepping update, (3) composable neural blocks forming the operator core, and (4) a U-Net–style
encoder–decoder for multiscale modelling. Figure 3.1 provides a visual overview. The architectural
flow is detailed next.

Local Operator Block (LOB). The Local Operator Block (LOB) is designed to approximate spa-
tial differential operators in a strictly local and learnable manner. It draws direct inspiration from
classical finite-difference (FD) methods, where spatial derivatives are estimated using fixed-weight
stencils. In contrast, LOB replaces these fixed coefficients with learnable convolutional filters, en-
abling adaptive, data-driven computation of local derivatives.

The LOB consists of three main components: a learned stencil operation, a gating mechanism, and
a fusion step. The first component performs a learnable convolution that mimics finite-difference
stencils. Given a 4D input tensor u ∈ Rb×i×H×W , where b is the batch size, i is the number of input
channels, and H ×W is the spatial domain, we define the stencil operator S(u) as:

S(u) =
i

∑
c=1

r

∑
p=−r

r

∑
q=−r

wα,c,p,q ub,c,(h+p),(w+q) + bs (1)

This equation defines a convolution with a (2r+1)×(2r+1) kernel centered at each spatial location
(h,w), where r is the stencil radius. The weights wα,c,p,q are learnable parameters, and bs is a bias
term. Compared to traditional finite-difference methods (which use fixed stencils like [1,−2,1]),
this formulation enables the network to learn its own approximation of local derivatives from data.

Not all local derivatives are equally relevant for solving a given PDE. To adaptively select the most
informative derivative features, we introduce a gating mask, computed as:

G(u) = σ(Wg ∗ S(u)) ⊙ S(u) (2)

Here, Wg is a learnable convolutional filter, ∗ denotes convolution, and σ(⋅) is the sigmoid func-
tion. The gating mechanism produces a per-location, per-channel importance mask (values in [0,1])
that modulates the stencil output via element-wise multiplication (⊙). This allows the network to
suppress irrelevant or noisy derivative responses and focus on spatial patterns most useful for the
current PDE.

The final output of the LOB is computed by fusing the gated features using another learnable con-
volution:

∂tUt =Wc ∗G(u) (3)

This step linearly combines the gated stencil responses to form the estimated spatial derivative ∂tUt,
which acts as the core update direction for the PDE. The learnable fusion allows the model to lever-
age directional or cross-derivative terms and synthesise them into a cohesive output.

Time Integration Scheme. To advance the solution in time, we adopt an explicit forward Euler
scheme:

Ut+∆t = Ut +∆t ∂tUt, ∆t = θ ∈ R>0 (4)

where ∂tUt is the learned update produced by the previous local operator block, and ∆t is a learnable
scalar parameter shared across the domain. The time-step parameter is initialised to a small positive
value and updated during training. This formulation preserves the causal structure of temporal
evolution and allows the network to learn time dynamics explicitly. Unlike autoregressive models
that directly regress the next frame, this update mimics classical numerical solvers by estimating a
derivative and applying it via time integration, offering interpretability and numerical grounding.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 1: FINO Framework. En-
coders down-sample and decoders up-
sample, with skip connections preserv-
ing original feature information.

FINO Block. The FINO Block encapsulates the ex-
plicit time update from the previous step and enhances
it through nonlinear local transformations. Specifically,
given the updated state from time evolution, we apply a
convolutional layer followed by a ReLU activation:

B(Ut) = ReLU(Wp ∗ [Ut +∆t ∂tUt]). (5)

where Wp is a learnable convolutional kernel. While the
optimal depth is PDE-dependent, we find that using up
to three stacked FINO blocks provides sufficient capacity
for the range of PDEs considered. To increase modelling
capacity, we stack multiple such blocks:

FINOBlockStack(u) = B ○⋯ ○ B ○ B (u) (6)

FINO Architecture. To capture both fine-grained lo-
cal patterns and broader contextual information, FINO
adopts a U-Net–style encoder–decoder architecture.

The encoder progressively downsamples the feature maps using:
xi+1 = P↓(Di(xi)) (7)

whereDi applies FINO Blocks and P↓ is a downsampling operation such as average pooling. At the
bottleneck, we compute:

z = K(xN), with K ∶= FINOBlockStack (8)
The decoder then upsamples and fuses features from the encoder via skip connections:

xi−1 = U(z) + xi, for i = N, . . . ,1 (9)

Finally, the output is projected back to the desired dimensionality using a 1 × 1 convolution:

y ∈ RB×H×W×out channels

3.2 THEORETICAL FOUNDATIONS OF FINO

In this section, we first demonstrate that FINO is a universal approximator and discuss its signifi-
cance. To establish this result, we introduce the following lemma and proposition. The complete
proof and statement of Proposition 1 and Theorem 2 can be found in the Appendix B .
Proposition 1 (Informal, Local-to-Global Error Bound). If a surrogate map Ψθ uniformly approxi-
mates the true PDE one-step map Φ∆t within tolerance ε′, i.e.

∥Ψθ(u) −Φ∆t(u)∥ ≤ ε′ ∀u, (10)
and if Φ∆t is Lipschitz with constant C, then after K time steps we have

∥(Ψθ)K(u0) − (Φ∆t)K(u0)∥ ≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

CK − 1
C − 1 ε′, C ≠ 1,

K ε′, C = 1.

Theorem 2 (Universal Approximation of FINO for Discrete Time–Stepped PDE Dynamics ). For
a final time T =K∆t with integer K ≥ 1, define the exact solution after K steps as

u(T ) = (Φ∆t)
K(u0),

where (Φ∆t)K denotes the K–fold composition.

Then for every compact set U ⊂X and every tolerance ε > 0, there exists a depth–K FD–NET

Ψ
(K)
θ ∶= Ψθ ○ ⋯ ○Ψθ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
K identical blocks

,

such that
sup
u0∈U

∥Ψ(K)θ (u0) − (Φ∆t)
K(u0)∥ ≤ ε.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Proposition 1 is used to bridge the gap between local error and global error in the PDE approxi-
mation. While the classical universal approximation theorem guarantees that a neural network can
approximate a single continuous map, such as the one-step evolution operator Φ∆t, to within some
tolerance ε′, solving a PDE requires iterating this operator K times to reach the final time T =K∆t.
Without an additional control mechanism, these small local errors could accumulate and potentially
blow up over multiple iterations. The proposition provides precisely this control by giving an error
propagation formula: it shows that the global error after K steps is bounded by a geometric factor
depending on the Lipschitz constant C. This ensures stability of the approximation, meaning that as
long as C is moderate—or even less than one in the case of dissipative PDEs—the total accumulated
error remains controlled rather than diverging with the number of steps.

Theorem 2 –the composition error bound –elevates a one–step approximation guarantee into a long–
horizon stability claim for FINO’s autoregressive rollouts. Concretely, if the exact one–step prop-
agator Φ∆t is Lipschitz with constant C and the learned surrogate Ψθ matches it within ε′, then
after K steps the total error is bounded by CK−1

C−1 ε′ (or Kε′ when C = 1). This prevents small per–
step discrepancies from snowballing, providing the missing theoretical link between minimizing the
stepwise training loss and achieving reliable multi–step predictions. In practice, it justifies the pa-
per’s explicit time–stepping with strictly local learned stencils: tightening the per–step fit provably
tightens end–to–end trajectory error, thereby grounding the stable long–horizon rollouts in a precise
stability mechanism.

Training Scheme. We adopt an autoregressive training scheme. At time t, we assemble features
by concatenating the last K ground-truth (or rolled) frames with the spatial coordinates G(x, y),
yielding

Xt(x, y) = concat(ut−K+1∶t(x, y), G(x, y)) ∈ RKV +2. (11)
A convolutional predictor fθ maps these features to the next-frame estimate, ût+1 = fθ(Xt). Let
x(0) = u0∶K denote the initial rolling buffer of K frames. For t =K, . . . ,K +H −1 (horizon H), we
iteratively predict and update the buffer via

ût = fθ(concat(x(t−K), G)),
x(t−K+1) = shift(x(t−K)) ∥ ût,

(13)

where shift(⋅) discards the oldest frame and appends the newest prediction (and ∥ denotes concate-
nation along the time dimension).

Loss Function. We minimise the stepwise mean-squared error accumulated across the full rollout
and backpropagate through the entire unroll:

Lstep(θ) =
K+H−1
∑

t=K−1

1

B

B

∑
b=1
∥û(b)t+1 − u

(b)
t+1∥

2

2
, (14)

where B is the batch size and ∥ ⋅ ∥2 denotes the Euclidean norm over all spatial and channel en-
tries. For monitoring and model selection, we additionally report the full-trajectory MSE over the
evaluation window,

Lfull(θ) =
1

B

B

∑
b=1
∥Û (b)0∶K+H −U

(b)
0∶K+H∥

2

2
, (15)

where U0∶K+H and Û0∶K+H stack the ground-truth and predicted sequences, respectively. As per our
setup, only Lstep contributes to the loss value, while Lfull is used for validation.

4 EXPERIMENTS

We provide the details of the dataset, implementation, experiment results, and ablation studies.

4.1 DATASET AND IMPLEMENTATION DETAILS

Datasets. We conducted experiments on a broad range of PDEs drawn from the PDEBench
(Takamoto et al., 2022) and Climte Modelling (Kissas et al., 2022). Specifically, our evaluation cov-
ered 1D problems including advection, diffusion–reaction, and compressible Navier–Stokes equa-
tions, as well as 2D problems such as Darcy flow, diffusion–reaction, and shallow water equations.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance Evaluation of FINO Against Global, Local, and Transformer-Based Opera-
tors on PDEBench Benchmarks and Climte Modelling. The RMSE reported the results. The best-
performing results are highlighted in green , while the second-best results are indicated in bold.

Dataset U–Net FNO UFNO FFNO Transolver LocalFNO FNIO (ours) Improvement

Advection (1D) 0.05257 0.00530 0.00968 0.00683 0.00937 - 0.00296 44.15 %
CNS (1D) 12.56934 0.34053 0.44692 0.29493 0.72094 - 0.1946 34.02%

Diffusion-Reaction (1D) 0.03812 0.02884 0.00891 0.01409 0.00686 – 0.00575 16.18%

Darcy Flow (2D) 0.01117 0.02575 0.06929 0.02482 0.01987 0.02051 0.01158 -3.67%
Diffusion Reaction (2D) 0.05979 0.01055 0.01443 0.01314 0.01485 0.00346 0.00214 38.15 %

Shallow Water (2D) 0.11974 0.01448 0.01500 0.01191 0.00586 0.00438 0.00259 40.87 %
Climate Modelling (2D) 1.0126 0.01536 0.00810 - 0.18575 0.01508 0.00715 11.73 %

UNet FNO UFNO FFNO Transolver FINOGT

GT UNet FNO UFNO FFNO Transolver FINOLocalFNO

1.0

0.8

0.6

0.4

0.2

0.0

17.5

15.0

12.5

10.0

0.15

0.10

0.05

1.0

0.8

0.6

0.4

0.2

0.0

1.00.50.0 1.00.50.0 1.00.50.0 1.00.50.0 1.00.50.0 1.00.50.0 1.00.50.0

1.00.50.0 1.00.50.0 1.00.50.0 1.00.50.0 1.00.50.0 1.00.50.0 1.00.50.0 1.00.50.0

1D
 C

N
S

2D
 D

ar
cy

flo
w

Figure 2: Visual comparison of baseline methods and FINO on 1D CNS and 2D Darcyflow.

In addition, we evaluated our method on a climate modelling dataset. Further details about the
datasets are provided in the Appendix C.1.

Baselines and Training details. We compared our method against three representative categories
of approaches: (i) Global operator methods: FNO (Li et al., 2020a), FFNO (Tran et al., 2021); (ii)
Local operator + Global methods: U-Net (Ronneberger et al., 2015), UFNO (Wen et al., 2022),
Local FNO (Liu-Schiaffini et al., 2024); (iii) Transformer-based methods: Transolver (Wu et al.,
2024). All models were trained for 400 epochs using a single NVIDIA A100 40GB GPU and the
climate modelling was trained for 500 epochs. We followed the default training protocols from
PDEBench unless otherwise specified. We report the RMSE in Table 1.

4.2 EXPERIMENT RESULTS

Numerical Results Table 1 shows numerical result in all datasets. For 1D PDEs, FINO consis-
tently achieves the lowest error across all three datasets, reflecting its design as a local operator
method. These problems are characterized by strong local structures, where pointwise updates are
driven by local derivatives, and FINO benefits directly from its purely local design. In the Advection
equation, which is dominated by sharp, locally transported features, FINO achieves the best RMSE
(0.00296), improving on the strongest baseline (FNO, 0.00530) by 44.15%. This substantial margin
highlights the strong alignment between FINO’s locality and the underlying transport dynamics. In
the more complex CNS dataset, FINO again obtains the lowest RMSE (0.1946), outperforming the
best competing method (FFNO, 0.29493) by 34.02%, indicating that local update rules remain ad-
vantageous even for challenging 1D fluid dynamics. Similarly, in the Diffusion–Reaction system,
FINO achieves the best performance (0.00575), improving on Transolver (0.00686) by 16.18%,
demonstrating robustness in coupled local processes such as diffusion and reaction. Overall, across
all 1D tasks, FINO delivers consistent gains, with the most pronounced improvements observed
in problems governed by strong local transport mechanisms. Its finite-difference-inspired locality
translates directly into more accurate step-by-step updates and significantly lower RMSE.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

G
T

Lo
ca

l F
N

O
FI

N
O

T =0 T = 0.1s T = 0.2s T = 0.3s T = 0.6s T = 0.8s T = 1.0s

Figure 3: Spatiotemporal comparison of LocalFNO and FINO predictions on the 2D Shallow Water
equation benchmark. Each row shows model rollouts at successive time steps.

Figure 4: Comprehensive evaluation of FINO compared to baseline operator networks. (a): Error vs.
number of composition blocks for the 1D advection task. (b): Data-scaling performance comparison
of FINO and FNO. (c): Training vs. inference time across architectures.

For the 2D tasks, we distinguish between time-independent and time-dependent datasets. On the
time-independent Darcy Flow benchmark, all global spectral/transform models underperform, while
the purely local U-Net achieves the best RMSE (0.01117). FINO is very close to U-Net with
0.01158 (–3.67% relative to U-Net), indicating that local operators are more effective than global
ones in steady-state elliptic problems where global mixers tend to oversmooth fine-scale hetero-
geneity. In contrast, across all time-dependent 2D datasets, U-Net becomes the worst-performing
baseline, while FINO consistently achieves the best results: Diffusion–Reaction (0.00214, 38.15%
better than LocalFNO) and Shallow Water (0.00259, 40.87% better than LocalFNO). In the climate
modelling task, FINO (0.00715) outperforms UFNO (0.00810) by 11.73% because climate evolu-
tion is dominated by local advection–diffusion updates. Global models tend to oversmooth sharp
gradients, while FINO’s local time stepping preserves fine-scale features and controls error growth.
Unlike U-Net, which lacks an explicit temporal update, FINO structured locality ensures more sta-
ble and accurate rollouts in time-dependent dynamics. These results from 2D time-dependent PDE
highlight that time-dependent dynamics benefit from operators that implement accurate local tem-
poral updates grounded in PDE structure. In Appendix C.2, we report additional evaluation metrics.
From the data perspective, we include normalized RMSE (nRMSE) and maximum error. From
the physics perspective, we present the RMSE of conserved value, RMSE of Fourier-space in low,
medium, high-frequency regimes.

Visualisation Results. Figure 2 shows the visualisation results on 1D CNS and 2D Da. FINO pre-
serves sharp structures in CNS and produces smooth, consistent Darcy fields, closely matching the
ground truth. Unlike global methods, which succeed in CNS but fail in Darcy flow, FINO performs
well across both time-dependent and time-independent PDEs. Figure 3 Spatiotemporal rollout com-
parison on a 2D time dependent PDE. Each column shows the solution field at different time steps

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(T = 0s to 1.0s), while rows correspond to the ground truth (GT), Local FNO, and our proposed
FINO. FINO produces stable long-horizon predictions that remain visually and quantitatively con-
sistent with the ground truth, demonstrating its improved accuracy and robustness in modeling PDE
dynamics. Figure 5 compares the ground truth and predicted global surface pressure fields. FINO
produces reconstructions that closely align with the reference, accurately capturing large-scale spa-
tial variations and preserving fine regional structures without introducing spurious artifacts. The
smoothness and consistency of the predicted fields highlight the model’s robustness in handling
climate-scale PDE data, demonstrating its ability to generalize to complex, real-world geophysical
patterns. More visualization can be found in Appendix C.2.

4.3 ABLATION STUDIES

Number of FINO Blocks. Figure 4 (a) shows how the accuracy increases as the composition of
FINO blocks in the FINO increases for the 1D advection PDE. A single block yields the lowest, but
as the model depth grows to four blocks, the error steadily drops to 0.00294. This indicates that
additional depth enhances the model’s capacity to capture fine-grained local dynamics, while gains
begin to saturate after two blocks.

Figure 5: Ground truth (top) and pre-
dicted (bottom) global surface pres-
sure. FINO accurately reconstructs
large-scale patterns and regional vari-
ations, producing smooth, consistent
fields that closely match the reference.

Data Size. Figure 4 (b) compares FINO and FNO among
different dataset size (1k, 5k, 9k, 10k). As the dataset
grows, both models reduce their RMSE. However, FINO
consistently outperforms FNO across all sizes, and its ad-
vantage is particularly pronounced in low-data regimes
(1k–5k samples), highlighting FINO’s stronger data effi-
ciency and generalization under data scarcity.

Training and Inference Time. Figure 4 (c) presents
a comparison of training and inference times across all
evaluated architectures. Transformer-based methods and
U-FNO exhibit significantly higher computational cost,
requiring prolonged training durations and slower infer-
ence speeds—often making them impractical for deploy-
ment or iterative scientific workflows. In contrast, FINO
achieves the fastest inference time, clocking in at just
4–5 seconds per evaluation, and maintains competitive
training efficiency relative to FNO and LocalFNO. This
remarkable speed advantage stems from FINO’s strictly
local convolutional design and lightweight architecture,
which avoids the overhead of global attention or spectral
transforms. These results highlight FINO’s suitability for
real-world use cases where rapid model execution and re-
training are critical—such as in-the-loop simulations, un-

certainty quantification, or interactive PDE exploration. FINO offers an attractive balance between
accuracy and computational efficiency

5 CONCLUSION

We introduced FINO, a neural operator framework inspired by classical finite-difference schemes,
which leverages local learned stencils and explicit time integration to model PDE dynamics effi-
ciently and interpretably. Our work reinforces a central premise: locality matters in neural PDE
solvers. By constraining the architecture to use compact, learnable spatial stencils and an explicit
forward Euler scheme, FINO retains interpretability while achieving strong empirical and theoret-
ical performance. Our theoretical analysis establishes connections between local approximation
error and global rollout stability, offering provable guarantees for long-horizon predictions. Empir-
ically, FINO consistently outperforms competitive baselines—including global operators like FNO
and Transformer-based models—across several datasets. Notably, FINO achieves up to 44% lower
RMSE and 2× faster inference. These results suggest that hybridising classical numerical insights
with modern learning yields principled, efficient, and generalisable PDE surrogates. FINO offers a
scalable blueprint for designing neural operators grounded in locality, stability, and interpretability.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers. arXiv
preprint arXiv:2202.03376, 2022. 3

Andrey Bryutkin, Jiahao Huang, Zhongying Deng, Guang Yang, Carola-Bibiane Schönlieb, and An-
gelica Aviles-Rivero. Hamlet: Graph transformer neural operator for partial differential equations.
arXiv preprint arXiv:2402.03541, 2024. 3

Chun-Wun Cheng, Jiahao Huang, Yi Zhang, Guang Yang, Carola-Bibiane Schönlieb, and Angelica I
Aviles-Rivero. Mamba neural operator: Who wins? transformers vs. state-space models for pdes.
arXiv preprint arXiv:2410.02113, 2024. 3

Leah Edelstein-Keshet. Mathematical models in biology. SIAM, 2005. 1

Vladimir Sergeevich Fanaskov and Ivan V Oseledets. Spectral neural operators. In Doklady Math-
ematics, volume 108, pp. S226–S232. Springer, 2023. 3

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu,
Ze Cheng, Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator
learning. In International Conference on Machine Learning, pp. 12556–12569. PMLR, 2023. 3

D John and JR Anderson. Computational fluid dynamics: the basics with applications. Mechanical
engineering series, pp. 261–262, 1995. 1

Georgios Kissas, Jacob H Seidman, Leonardo Ferreira Guilhoto, Victor M Preciado, George J Pap-
pas, and Paris Perdikaris. Learning operators with coupled attention. Journal of Machine Learning
Research, 23(215):1–63, 2022. 6, 18

R LeVeque. Numerical methods for conservation laws. birkhäuser, basel 1990. 1992. 1

Randall J LeVeque. Finite difference methods for ordinary and partial differential equations: steady-
state and time-dependent problems. SIAM, 2007. 1

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’
operator learning. arXiv preprint arXiv:2205.13671, 2022. 3

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020a. 1, 2, 7

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differ-
ential equations. arXiv preprint arXiv:2003.03485, 2020b. 2, 3

Miguel Liu-Schiaffini, Julius Berner, Boris Bonev, Thorsten Kurth, Kamyar Azizzadenesheli, and
Anima Anandkumar. Neural operators with localized integral and differential kernels. arXiv
preprint arXiv:2402.16845, 2024. 2, 3, 7

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. In
International conference on machine learning, pp. 3208–3216. PMLR, 2018. 3

Zichao Long, Yiping Lu, and Bin Dong. Pde-net 2.0: Learning pdes from data with a numeric-
symbolic hybrid deep network. Journal of Computational Physics, 399:108925, 2019. 3

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-
tifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019. 1, 2

Seungtae Park, Heejoon Jeon, and Hyung Ju Hwang. Enhancing fourier neural operators with cnns
architectures: Pooling, groupwise convolution and inverted block. Neurocomputing, 634:129905,
2025. 2

Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical mathematics, volume 37. Springer
Science & Business Media, 2006. 1

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019. 1, 2

Bogdan Raonic, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci, Rima Alai-
fari, Siddhartha Mishra, and Emmanuel de Bézenac. Convolutional neural operators for robust
and accurate learning of pdes. Advances in Neural Information Processing Systems, 36:77187–
77200, 2023. 3

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015. 7

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,
Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine
learning. Advances in Neural Information Processing Systems, 35:1596–1611, 2022. 6, 16, 17,
18

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
operators. arXiv preprint arXiv:2111.13802, 2021. 2, 7

Tapas Tripura and Souvik Chakraborty. Wavelet neural operator: a neural operator for parametric
partial differential equations. arXiv preprint arXiv:2205.02191, 2022. 3

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson. U-
fno—an enhanced fourier neural operator-based deep-learning model for multiphase flow. Ad-
vances in Water Resources, 163:104180, 2022. 2, 7

Gege Wen, Zongyi Li, Qirui Long, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M
Benson. Real-time high-resolution co 2 geological storage prediction using nested fourier neural
operators. Energy & Environmental Science, 16(4):1732–1741, 2023. 3

Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A fast
transformer solver for pdes on general geometries. arXiv preprint arXiv:2402.02366, 2024. 3, 7

Zipeng Xiao, Siqi Kou, Hao Zhongkai, Bokai Lin, and Zhijie Deng. Amortized fourier neural
operators. Advances in Neural Information Processing Systems, 37:115001–115020, 2024. 2

Ximeng Ye, Hongyu Li, Peng Jiang, Tiejun Wang, and Guoliang Qin. Learning transient partial
differential equations with local neural operators. arXiv e-prints, pp. arXiv–2203, 2022. 3

Ximeng Ye, Hongyu Li, Jingjie Huang, and Guoliang Qin. On the locality of local neural operator in
learning fluid dynamics. Computer Methods in Applied Mechanics and Engineering, 427:117035,
2024. 3

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

APPENDIX

In this appendix, we provide additional details regarding our methodology and a more comprehen-
sive description of the dataset used in our experiments.

A SUPPLEMENTARY INFORMATION

A.1 PRELIMINARIES: FINITE DIFFERENCE METHOD

In this section, we provide a brief introduction to the finite difference method (FDM). Partial Dif-
ferential Equations (PDEs) are inherently complex, requiring various advanced numerical methods.
One classical approach is the finite difference method, which approximates partial derivatives by
converting them into arithmetic operations (addition, subtraction, multiplication, and division) ap-
plied to discrete function values sampled on a computational grid. In numerical analysis for PDEs, a
stencil is a structured set of points around a specific node used to approximate derivatives and other
key quantities. Stencils underpin many numerical PDE methods, such as the five-point stencil for
second-order spatial derivatives and the Crank–Nicolson stencil for time-dependent problems.

Finite difference methods approximate partial differential equations (PDEs) by replacing derivatives
with linear combinations of function values on a discrete grid. For instance, a central difference
approximation of the first derivative in the x-direction at (i, j) is given by:

∂u

∂x
∣
i,j
≈ ui+1,j − ui−1,j

2∆x
, (S.1)

and the second derivative by:

∂2u

∂x2
∣
i,j

≈ ui+1,j − 2ui,j + ui−1,j

∆x2
. (S.2)

Higher accuracy requires larger stencils. For example, a fourth-order central difference for the first
derivative is:

∂u

∂x
∣
i,j
≈ −ui+2,j + 8ui+1,j − 8ui−1,j + ui−2,j

12∆x
(S.3)

.

In two dimensions, a common five-point stencil for the Laplacian ∇2u is:

∇2ui,j ≈
ui+1,j − 2ui,j + ui−1,j

∆x2
+ ui,j+1 − 2ui,j + ui,j−1

∆y2
. (S.4)

Such stencils provide a flexible and systematic way to handle a variety of PDEs by reducing deriva-
tive calculations to simple arithmetic on grid values.

B THE ANATOMY OF FINO

In this section, we present the full statements of Proposition 1 and Theorem 1, as given in the main
paper, together with their complete proofs. The proof of Proposition 1 relies on the following two
lemmas.

Lemma 3 (Composition Error Estimate). Let Φ∆t denote the exact evolution operator for time step
∆t, such that

u(tn+1, ⋅) = Φ∆t(u(tn, ⋅)), where tn = n∆t. (S.5)

Then, for every integer n ≥ 0, we have

u(tn, ⋅) = (Φ∆t)
n(u(t0, ⋅)), (S.6)

where (Φ∆t)n denotes the n-fold composition of Φ∆t.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Proof. We proceed by induction on n. Let P (n) denote the desired statement.

Base case (n = 0). By definition, t0 = 0, and thus

(Φ∆t)0(u(t0, ⋅)) = u(0, ⋅) = u(t0, ⋅). (S.7)

Hence, P (0) holds.

Inductive step. Assume the claim holds for some k ≥ 0, i.e.,

u(tk, ⋅) = (Φ∆t)k(u(t0, ⋅)). (S.8)

Then, for k + 1, we have

u(tk+1, ⋅) = Φ∆t(u(tk, ⋅)) = Φ∆t((Φ∆t)k(u(t0, ⋅))) = (Φ∆t)k+1(u(t0, ⋅)). (S.9)

Thus, P (k + 1) also holds.

By the principle of mathematical induction, the statement is true for all n ≥ 0.

Lemma 4. Suppose e0 = 0 and the sequence satisfies the recurrence

en+1 ≤ C en + ε′ for all n ≥ 0.
Then, for every integer k ≥ 1, we have

ek ≤ (1 +C +C2 +⋯ +Ck−1) ε′ = Ck − 1
C − 1 ε′ (assuming C ≠ 1).

Proof. We proceed by induction on k.

Base case (k = 1). From the recurrence, we have

e1 ≤ C e0 + ε′ = C ⋅ 0 + ε′ = ε′.

This matches the claimed bound since 1 +C1−1 = 1.

Inductive step. Assume the claim holds for some k ≥ 1, i.e.,

ek ≤ (1 +C +C2 +⋯ +Ck−1) ε′.
Then, using the recurrence,

ek+1 ≤ Cek + ε′ ≤ C(1 +C +C2 +⋯ +Ck−1) ε′ + ε′.
Factorizing ε′ gives

ek+1 ≤ (C +C2 +⋯ +Ck + 1) ε′ = (1 +C +C2 +⋯ +Ck) ε′.
Thus the claim also holds for k + 1.

By induction, the bound holds for all integers k ≥ 1.

Proposition 5 (Local-to-Global Error Bound). Let Ψθ and Φ∆t be two maps on a Banach space
satisfying:

∥ΨΘ(u) −ΦΛ(u)∥ ≤ ε′ for all u in the relevant norm and for some constants ϵ′ ≥ 0.
(This comes from the fact that we can approximate each local map Φ∆t by ΨΘ(u) to within ϵ′ ) and
Lipschitz, i.e.

∥Φ∆t(v) −Φ∆t(w)∥ ≤ C ∥v −w∥ ∀ v,w,
for some constants ϵ′ ≥ 0 and C > 0. Define the iterates

uk+1 = Ψθ(uk), ũk+1 = Φ∆t(ũk), u0 = ũ0.

Then after K steps,

∥(Ψθ)K(u0) − (Φ∆t)K(u0)∥ ≤
CK − 1
C − 1 ϵ′ (for C ≠ 1),

, where (Ψθ)K(u0) means the K-fold composition of the map ΨΘ starting from u0. and if C = 1
the right-hand side is simply K ϵ′.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Proof. By definition: ∥uk+1 − ũk+1∥ = ∥Ψθ(uk) −Φ∆t(ũk)∥. We first rewrite

Ψθ(uk) −Φ∆t(ũk) = (Ψθ(uk) −Φ∆t(uk)) + (Φ∆t(uk) −Φ∆t(ũk)), (S.10)

By Triangle inequality and equation S.10 : We get

∥uk+1 − ũk+1∥ ≤ ∥Ψθ(uk) −Φ∆t(uk)∥ + ∥Φ∆t(uk) −Φ∆t(ũk)∥. (S.11)

By the assumption that ∥Ψθ(u) − Φ∆t(u)∥ ≤ ϵ′ and ∥Φ∆t(v) − Φ∆t(w)∥ ≤ C ∥v − w∥. Equation
S.11 can be further simplified as ∥uk+1 − ũk+1∥ ≤ ϵ′ +C ∥uk − ũk∥. Let ek = ∥uk − ũk∥. Then

ek+1 ≤ C ek + ϵ′

. By Lemma 4, we get ek ≤ (1 +C +C2 +⋯ +Ck−1) ε′ = Ck−1
C−1 ε′ (assuming C ≠ 1). After K

steps, we get

∥(ΨΘ)K(u0) − (ΦΛ)K(u0)∥ = eK ≤
CK − 1
C − 1 ϵ′.

Theorem 6 (Universal Approximation of FINO for Discrete Time–Stepped PDE Dynamics). Let
G ⊂ Rd be a finite spatial grid with m nodes, and let

X ∶= Rm×c, ∥u∥ ∶=
⎛
⎝

1

mc

m

∑
i=1

c

∑
ℓ=1
∣ui,ℓ∣2

⎞
⎠

1/2

,

denote the Banach space of grid–based states. Let Φ∆t ∶ X → X be the exact one–step evolution
operator of a semi–discrete PDE, assumed to be Lipschitz stable:

∥Φ∆t(v) −Φ∆t(w)∥ ≤ C ∥v −w∥, ∀v,w ∈X, (S.12)

for some constant C ≥ 1.

For a final time T =K∆t with integer K ≥ 1, define the exact solution after K steps as

u(T ) = (Φ∆t)
K(u0),

where (Φ∆t)K denotes the K–fold composition.

Then for every compact set U ⊂X and every tolerance ε > 0, there exists a depth–K FD–NET

Ψ
(K)
θ ∶= Ψθ ○ ⋯ ○Ψθ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
K identical blocks

,

such that
sup
u0∈U

∥Ψ(K)θ (u0) − (Φ∆t)
K(u0)∥ ≤ ε.

In other words, the class of FINO is dense in the set of discrete solution operators of Lipschitz–stable
PDEs on compact subsets of X .

Proof. Step 1 (Semigroup expansion). By Lemma 3, the exact solution at time tn = n∆t is

u(tn, ⋅) = (Φ∆t)
n(u(t0, ⋅)). (S.13)

In particular, the target operator at time T = K∆t is ΦK
∆t. Therefore, it suffices to approximate the

one-step map Φ∆t and then compose K times.

Step 2 (Compactness of the reachable set). Define the compact “reachable” set

V ∶=
K−1
⋃
j=0
(Φ∆t)

j(U).

Continuity of Φ∆t implies by induction that each image (Φ∆t)j(U) is compact, hence V is compact.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Step 3 (One-step uniform approximation by an FINO block). Since X is finite-dimensional and
Φ∆t ∶ V → X is continuous on the compact set V , the classical Universal Approximation Theorem
for feed-forward networks (e.g., Cybenko 1989; Hornik, Stinchcombe & White 1989) ensures that
for any ε′ > 0 there exists a (finite) neural network Fθ ∶ V →X with

sup
u∈V
∥Fθ(u) −Φ∆t(u)∥ ≤ ε′. (S.14)

An FD–NET one-step block Ψθ (a residual Euler update u ↦ u +∆tNθ(u) with a finite convo-
lutional/ReLU stack Nθ) is a special case of such a feed-forward map from X to X . Hence, by
increasing width/depth of the block, we can realize equation S.14 with Ψθ in place of Fθ:

sup
u∈V
∥Ψθ(u) −Φ∆t(u)∥ ≤ ε′. (S.15)

Step 4 (Error recursion). Let u0 = ũ0 ∈ U and define the two sequences

uk+1 = Ψθ(uk), ũk+1 = Φ∆t(ũk), k = 0,1, . . . ,K − 1.
Set ek ∶= ∥uk − ũk∥. Adding and subtracting Φ∆t(uk) and using equation S.12 and equation S.15,
we obtain

ek+1 = ∥Ψθ(uk) −Φ∆t(ũk)∥ ≤ ∥Ψθ(uk) −Φ∆t(uk)∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤ ε′

+∥Φ∆t(uk) −Φ∆t(ũk)∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤C ek

≤ C ek + ε′,

with e0 = 0.

Step 5 (Geometric accumulation). By Lemma 4 (Geometric Error Lemma) and Proposition 5 ,
the recursion ek+1 ≤ Cek + ε′ with e0 = 0 yields

ek ≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ck − 1
C − 1 ε′, C ≠ 1,

k ε′, C = 1,
for all k = 1, . . . ,K.

In particular,

∥Ψ(K)θ (u0) −ΦK
∆t(u0)∥ = eK ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩

CK − 1
C − 1 ε′, C ≠ 1,

K ε′, C = 1.
(S.16)

Step 6 (Choice of the local tolerance). Given any ε > 0, choose

ε′ ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ε
C − 1
CK − 1 , C ≠ 1,

ε/K, C = 1.

By equation S.16, this guarantees eK ≤ ε uniformly for all u0 ∈ U . Since equation S.15 can be
enforced by increasing the size of the one-step FINO block, the theorem follows.

C EXPERIMENT RESULTS

C.1 DATASET AND IMPLEMENTATION DETAIL

8 1D Advection
Governing PDE.

∂tu(t, x) + β ∂xu(t, x) = 0, (t, x) ∈ (0,2] × (0,1). (S.17)

Initial data.
u(0, x) = u0(x), x ∈ (0,1). (S.18)

Parameters. β ∈ R is the constant transport (advection) speed and we choose β = 4.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Closed-form solution. By the method of characteristics, the solution is a rigid shift of the initial
profile:

u(t, x) = u0(x − βt) . (S.19)

Discretization and split.

• Spatial grid: Offical 1024 × 1024 and a downsample factor by 8

• Temporal samples: 200 snapshots; first 10 used as inputs, remaining 190 as prediction
targets and downsample a factor by 5.

• Dataset split: 9000 training / 1000 testing samples.

8 1D Diffusion–Reaction
Governing PDE.

∂tu(t, x) = ν ∂xxu(t, x) + ρu(t, x)(1 − u(t, x)) , x ∈ (0,1), t ∈ (0,1], (S.20)

with initial data
u(0, x) = u0(x), x ∈ (0,1), (S.21)

and periodic boundary conditions on [0,1]:

u(t,0) = u(t,1), ∂xu(t,0) = ∂xu(t,1), t ∈ (0,1]. (S.22)

Dynamics. The reaction term ρu(1 − u) can drive near–exponential transients, producing fast
time–scale phenomena that stress both numerical solvers and learning surrogates.

Initialization. To avoid ill-posed or degenerate starts, the prescribed profile is rectified and nor-
malized:

u0(x) ←
∣u0(x)∣

maxx∈(0,1) ∣u0(x)∣
,

so that u0 ∈ [0,1] and ∥u0∥∞ = 1.

Discretization and split.

• Spatial grid: Offical 1024 × 1024 and a downsample factor by 8

• Temporal samples: 200 snapshots; first 10 used as inputs, remaining 190 as prediction
targets and downsample a factor by 5.

• Dataset split: 9000 training / 1000 testing samples.

8 1D CNS
The equations governing compressible fluid dynamics describe the evolution of density, momentum,
and energy of a fluid system. They are written as

∂tρ +∇ ⋅ (ρv) = 0, (S.23)

ρ(∂tv + v ⋅ ∇v) = −∇p + η∆v + (ζ + η
3
)∇(∇ ⋅ v), (S.24)

∂t(ϵ + ρ∥v∥2
2
) + ∇ ⋅[(ϵ + p + ρ∥v∥2

2
)v − v ⋅σ′] = 0, (S.25)

For the details of the notation and description, we refer to PDEBench (Takamoto et al., 2022)

Discretization and split.

• Spatial grid: Offical 1024 × 1024 and a downsample factor by 8

• Temporal samples: 100 snapshots; first 10 used as inputs, remaining 90 as prediction targets
and downsample a factor by 5.

• Dataset split: 9000 training / 1000 testing samples.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

8 2D Darcy Flow
Governing PDE. On the unit square Ω = (0,1)2, the steady 2D Darcy flow is

−∇⋅(a(x, y)∇u(x, y)) = f(x, y), (x, y) ∈ Ω, (S.26)

with homogeneous Dirichlet boundary condition

u(x, y) = 0, (x, y) ∈ ∂Ω. (S.27)

Here a(x, y) denotes the diffusion coefficient and u(x, y) the solution field.

Operator-learning objective. We aim to learn the solution operator

S ∶ a↦ u, (x, y) ∈ Ω, (S.28)

so that, given a, the predictor returns the corresponding solution u of equation S.26–equation S.27.

Data protocol. Following the PDEBench setup Takamoto et al. (2022):

• Forcing. A spatially uniform load f(x, y) ≡ β with β = 1.0.
• Splits. 9000 training samples and 1000 test samples.
• Resolution. Fields are provided on the official grid 128× 128 and downsampled by a factor

of two.

8 2D Shallow–Water
Governing PDEs.

∂th + ∂x(hu) + ∂y(hv) = 0, (S.29)

∂t(hu) + ∂x(u2h + 1
2
grh

2) = − gr h∂xb, (S.30)

∂t(hv) + ∂y(v2h + 1
2
grh

2) = − gr h∂yb. (S.31)

State and coefficients.

• h(x, y, t): water depth.
• (u(x, y, t), v(x, y, t)): depth-averaged velocities in the x- and y-directions.
• b(x, y): bathymetry (spatially varying bed elevation).
• gr: gravitational acceleration.

Domain and time horizon.

• Spatial domain Ω = [−2.5, 2.5]2.
• Time interval t ∈ [0,1] s.

Initial condition (radial dam–break).

h(0, x, y) =
⎧⎪⎪⎨⎪⎪⎩

2.0,
√
x2 + y2 < r,

1.0,
√
x2 + y2 ≥ r,

r ∼ U(0.3, 0.7).

Learning objective (solution operator).

S ∶ h∣
t∈[0,t′] z→ h∣

t∈[t′,T ], (x, y) ∈ Ω,

with t′ = 0.009 s and T = 1.000 s.
Discretization and split.

• Spatial grid: Offical 128 × 128 and downsample factor by 2.
• Temporal samples: 101 snapshots; first 10 used as inputs, remaining 91 as prediction tar-

gets.
• Dataset split: 900 training / 100 testing samples.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table S.1: Comparison of baselines and FINO on 1D PDE benchmarks—advection, compressible
Navier–Stokes (CNS), and diffusion–reaction — measured by normalised RMSE (nRMSE) , max
error and conservation RMSE (cRMSE). The best results are highlighted in green .

METHOD advection (1D) CNS (1D) diffusion-reaction (1D)
nRMSE↓ max error↓ cRMSE↓ nRMSE↓ max error↓ cRMSE↓ nRMSE↓ max error↓ cRMSE↓

UNet 0.09246 0.50268 0.03269 0.8123 50.83448 15.34809 0.07399 0.21527 0.05359
FNO 0.00892 0.11371 0.00032 0.23532 4.78869 0.0879 0.05484 0.0521 0.03036

UFNO 0.0175 0.26239 0.00129 0.37418 5.42717 0.17281 0.01705 0.02608 0.01026
FFNO 0.01198 0.17062 0.00083 0.16448 4.55828 0.06288 0.02685 0.0304 0.01511

Trasnsovler 0.01555 0.17913 0.00083 0.35738 8.22922 0.22427 0.01347 0.03871 0.00963
FINO 0.0049 0.09395 0.00036 0.14635 3.53841 0.0654 0.01137 0.04157 0.00729

Improvement 45.07 % 17.38 % 12.5 % 11.02% 22.37% 4.01% 15.60 -59.4 24.30

8 2D Diffusion–Reaction

State variables. u = u(x, y, t) (activator), v = v(x, y, t) (inhibitor).

Governing PDEs.

∂tu =Du (∂xx + ∂yy)u +Ru(u, v), (S.32a)
∂tv =Dv (∂xx + ∂yy) v +Rv(u, v). (S.32b)

Reaction terms.

Ru(u, v) = u − u3 − k − v, (S.33a)
Rv(u, v) = u − v. (S.33b)

Parameters and domain.

• Diffusion coefficients: Du = 1 × 10−3, Dv = 5 × 10−3.

• Coupling constant: k = 5 × 10−3.

• Space–time: Ω = [−1,1]2, t ∈ [0,5].

Operator learning target.

S ∶ {u, v}t∈[0,t′] z→ {u, v}t∈(t′,T ], (x, y) ∈ Ω, (S.34)

with t′ = 0.045 s and T = 5.000 s.
Discretization and splits.

• Spatial grid: Official grid 128 × 128 and a downsample factor by 2.

• Temporal resolution: 101 frames (inputs: 10; prediction horizon: 91).

• Dataset size: 900 training and 100 testing trajectories, following the PDEBench proto-
col (Takamoto et al., 2022).

8 2D Climate Modelling (Kissas et al., 2022) use daily global fields from the NOAA PSL
NCEP/NCAR Reanalysis to construct a paired dataset of near-surface air temperature (input) and
surface pressure (target). Samples span ten calendar years split into two five-year blocks (2000–
2004 train; 2005–2009 test), with leap days removed, on a co-registered 72 × 72 latitude–longitude
grid covering [−90○,90○] × [0○,360○). The task is to learn a black-box operator

G ∶ C(X,R) → C(X,R)

mapping temperature to pressure for each day. We provide recommended preprocessing (regridding,
normalization, area weighting), evaluation metrics, and caveats regarding physical ill-posedness and
topographic effects.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table S.2: Comparison of baselines and FINO on 2D PDE benchmarks—advection, compressible
Navier–Stokes (CNS), and diffusion–reaction — measured by normalised RMSE (nRMSE) , max
error and conservation RMSE (cRMSE). The best results are highlighted in green .

METHOD Darcy Flow (2D) Diffusion Reaction (2D) Shallow Water (2D)
nRMSE↓ max error↓ cRMSE↓ nRMSE↓ max error↓ cRMSE↓ nRMSE↓ max error↓ cRMSE↓

UNet 0.05412 0.1699 0.01352 0.87007 0.2265 0.02115 0.11552 0.75481 0.03397
FNO 0.13772 0.22714 0.02368 0.19243 0.09539 0.00154 0.01393 0.13625 0.00058

UFNO 0.39773 0.56864 0.05821 0.23746 0.06644 0.00617 0.01518 0.2161 0.00074
FFNO 0.13121 0.25059 0.01976 0.19817 0.14103 0.00829 0.01145 0.12899 0.00069

Trasnsovler 0.10777 0.26815 0.0144 0.24379 0.10434 0.00869 0.00565 0.12001 0.00066
LocalFNO 0.10662 0.21291 0.02042 0.05492 0.05488 0.00077 0.00422 0.09241 0.00038

FINO 0.05764 0.16731 0.01252 0.03645 0.03772 0.00014 0.0025 0.03976 0.00013
Improvement -6.50% -1.52% -7.4% 33.63% 31.27% 81.82% 40.76 56.97 65.79

Table S.3: Comparison of baselines and FINO on PDEBench— compressible Navier–Stokes
(CNS), 2D Diffusion–Reaction and Shallow Water — measured by RMSE in Fourier space, low
frequency regime (fRMSEL) , RMSE in Fourier space, middle frequency regime (fRMSEM) and
RMSE in Fourier space, high frequency regime (fRMSEH); lower is better. The best results are
highlighted in green while the second best results are in bold font.

METHOD CNS (1D) Diffusion Reaction (2D) Shallow Water (2D)
fRMSEL↓ fRMSEM↓ fRMSEH↓ fRMSEL↓ fRMSEM↓ fRMSEH↓ fRMSEL↓ fRMSEM↓ fRMSEH↓

UNet 4.42510 0.18985 0.03155 0.01446 0.00605 0.00153 0.03164 0.00874 0.00197
FNO 0.11258 0.04998 0.00706 0.00161 0.00120 0.00064 0.00060 0.00067 0.00148

UFNO 0.15604 0.05499 0.00682 0.00393 0.00127 0.00036 0.00300 0.00153 0.00078
FFNO 0.09931 0.04275 0.00686 0.00361 0.00115 0.00044 0.00224 0.00109 0.00043

Trasnsovler 0.27045 0.08406 0.01283 0.00393 0.0015 0.00053 0.00074 0.00061 0.00043
LocalFNO - - - 0.00053 0.00044 0.00021 0.00042 0.00050 0.00033

FINO 0.06596 0.03021 0.00864 0.00024 0.00026 0.00014 0.00013 0.00027 0.00022
Improvement 33.58% 29.33% -26.69% 54.72% 40.91% 33.33% 69.05% 46% 33.33%

C.2 ADDITIONAL NUMERICAL RESULTS AND VISULISATIONS

Table S.1 compares baseline methods (U-Net, FNO, UFNO, FFNO, Transolver) with the proposed
FINO model on three 1D PDE benchmarks: advection, compressible Navier–Stokes (CNS), and
diffusion–reaction. Evaluation is based on three complementary error metrics: normalized RMSE
(nRMSE), which ensures scale independence; maximum error, which captures the local worst-case
discrepancy and serves as a proxy for stability in time-stepping; and conservation RMSE (cRMSE),
which measures the deviation from conserved physical quantities. Across all tasks, FINO consis-
tently outperforms baselines by large margins. For advection, FINO achieves the lowest nRMSE
(0.0049), reducing error by 45.07% relative to the strongest baseline, while also improving stability
and conservation. In CNS, FINO delivers the best nRMSE (0.146) and cRMSE (0.065), yielding
11.02% and 22.37% improvements, respectively. In the diffusion–reaction system, FINO again
provides the lowest nRMSE (0.01137) and cRMSE (0.00729), with a 24.30% gain. These results
demonstrate that FINO not only improves accuracy but also enhances stability and preserves key
physical invariants across disparate PDE regimes.

Table S.2 reports results on three challenging 2D PDE benchmarks—Darcy Flow, diffu-
sion–reaction, and Shallow Water—using normalized RMSE (nRMSE) for scale-independent ac-
curacy, maximum error as a proxy for stability, and conservation RMSE (cRMSE) to quantify devi-
ations from conserved physical quantities. FINO consistently achieves state-of-the-art performance
across all tasks. For Darcy Flow, it attains second-best results closely behind UNet. Since Darcy
flow is a time-independent PDE and other global method or Local plus Global method perform
poorly. In contrast, FINO achieves a very similar performance with UNet. In 2D diffusion–reaction,
FINO delivers substantial gains with the lowest errors across all three metrics (nRMSE = 0.03645,
cRMSE = 0.00014), surpassing LocalFNO by up to 81.8% in conservation accuracy. In 2D shal-
low water, FINO again outperforms all baselines by a wide margin, achieving nRMSE = 0.0025,
maximum error = 0.0398 and cRMSE = 0.00013, reflecting improvements of 40–65%. Since 2D
Diffusion Reaction and Shallow Water both have a long time domain, such strong performance in-
dicates FINO can achieve a stable and accurate result in a long time domain. These results highlight
FINO’s robustness across diverse PDE regimes, combining local accuracy, numerical stability, and
strong adherence to physical conservation laws.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure S.1: Comparison of full-resolution predictions and baseline on the climate modeling bench-
mark. (a) Input surface air temperature field. (b) Ground-truth surface pressure. (c) Predicted surface
pressure from FINO. (d) Absolute error map between prediction and ground truth.

Table S.3 evaluates baselines and FINO on PDEBench using Fourier space errors across three
regimes—low (fRMSEL), middle (fRMSEM), and high frequency (fRMSEH)—to measure the fi-
delity of capturing multi-scale dynamics. In contrast with RMSE and nRMSE, which provide a
metric view of the data. These Fourier space errors provide a physical view. Lower values indicate
better accuracy in representing frequency components. On CNS, FINO delivers the best perfor-
mance in the low and middle frequency bands, reducing error by 33.6% and 29.3% compared to
the strongest baselines, though it is slightly less competitive in the high-frequency regime. For 2D
diffusion–reaction, FINO achieves substantial improvements across all bands, with an 81.8% rel-
ative gain in the high-frequency regime, highlighting its ability to preserve fine-scale oscillatory
structures. In the Shallow Water system, FINO again attains the lowest errors across all frequency
bands, with improvements of 69% in low frequencies, 46% in middle frequencies, and 33% in high
frequencies, demonstrating superior resolution of both large-scale flows and small-scale turbulent
components. These results emphasize FINO’s strong capacity to resolve multi-scale PDE dynamics
in Fourier space, outperforming both spectral and local baselines across diverse regimes.

D USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of the paper, LLMs were used to polish part of the writing.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure S.2: Visualization of 1D advection across different baselines on two samples.

Figure S.3: Qualitative Comparison of 2D Diffusion–Reaction (Activator) Across GT, Local FNO,
and our method

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure S.4: Qualitative Comparison of 2D Diffusion–Reaction (inhibitor) Across GT, Local FNO,
and our method

22


	Introduction
	Related Work
	Finite-difference Inspired Neural Operator (FINO)
	The Anatomy of FINO
	Theoretical Foundations of FINO

	Experiments
	Dataset and implementation details 
	Experiment Results
	Ablation Studies

	Conclusion
	Supplementary Information
	Preliminaries: Finite Difference Method

	The Anatomy of FINO
	Experiment Results
	Dataset and Implementation Detail
	Additional numerical results and Visulisations

	Use of Large Language Models (LLMs)

