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ABSTRACT

As datasets grow in size, vector-based search becomes increasingly challenging
in terms of both storage and computational efficiency. Traditional solutions such
as quantization techniques involve trade-offs between retrieval speed and accu-
racy, while hashing methods often require further optimization for binarization.
In this work, we propose leveraging the compact nature of hyperbolic space for
efficient search. Specifically, we introduce Binary Hyperbolic Embeddings, which
transform complex hyperbolic similarity calculations into binary operations. We
prove that these binary hyperbolic embeddings are retrieval-equivalent to their
real-valued counterparts, ensuring minimal loss in retrieval quality. Our approach
can be seamlessly integrated into FAISS to achieve improved memory efficiency
and running speed while maintaining performance comparable to full-precision
Euclidean embeddings. Notably, binary hyperbolic embeddings can also be com-
bined with product quantization. We demonstrate significant improvements in
storage efficiency, with a natural byproduct of speeding up, with scaling potential
to larger datasets. A portion of the code is included in the supplementary materi-

als, and the full implementation will be made publicly available.

1 INTRODUCTION

Compressed representations benefit informa-
tion retrieval, as they greatly reduce index size,
i.e., the memory requirements for data em-
beddings. Such compact property is desirable
where retrieval-by-embedding needs to be fast
or performed on large collections. Prior work
has shown that considerable speed-ups can be
obtained for Euclidean representations through

binarization (Cai et al.,[2020; Jacob et al., 2018}
2021). or by hashing
(2018)); IShen et al.| (2020); Hoe et al.| (2021Db)
representations on top of a network. These ap-
proaches do so by splitting the Euclidean repre-
sentations into regular grids. In contrast, hyper-
bolic representations naturally allow for lower-
dimensional representations (Long et al.} 2020}
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Figure 1: Binary hyperbolic embeddings aim
for the best of both: the fast distance calculations
of binary Euclidean embeddings and the compact
representations of hyperbolic embeddings.

[Ghadimi Atigh et al, 2021} [Tseng et al.}[2023)) due to their compact nature. Such lower-dimensional
representations allow retrieval systems for vastly reduced storage and have the potential to scale
up. Unfortunately, hyperbolic compactness comes at the cost of hefty computations due to its com-
plex metric 2021). In this work, we overcome this complexity through binarization,
unlocking the full potential of hyperbolic embeddings and pushing the embedding to even lower
dimensionality. We show that it is possible to get the best of the fast distance calculations of binary
embeddings and the compact representations of hyperbolic embeddings, as shown in Figure [I]

Hyperbolic deep learning is quickly gaining traction. Primarily, because it allows embedding hierar-
chies with minimal distortion (Nickel & Kiela, [2017), outperforming Euclidean hierarchical embed-

dings (Ganea et al., 2018bj} [Sala et al., 2018)). These benefits have been shown for various research
problems, from graph networks (Chami et al.}[2019; Dai et al.}[2021}; [Liu et al.,[2019)), reinforcement

learning (Cetin et al.| [2023) to large language models (Yang et al.,2024; (Chen et al.,[2024). Specifi-

cally, hyperbolic geometry allows for fewer embedding dimensionalities (Liu et al.,|2020; |[Ermolov|
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et al.| [2022; Tseng et al.,|2023)) and better hierarchical learning (Nickel & Kiela, [2017; |Ganea et al.,
2018b; [Sonthalia & Gilbert, 2020). Despite these advantages, hyperbolic embeddings have not been
a viable option for retrieval-by-embedding, as calculating the distance between embeddings involves
complex vector operations

This paper introduces supervised binary hyperbolic embedding, a binarization approach that ad-
dresses the core limitation of hyperbolic embeddings for retrieval. Our contributions are as follows:

* We unlock the speed potential of hyperbolic embeddings by proving that under retrieval,
complex hyperbolic distance computation is ranking preserving to fast Hamming distance
computation with our proposed binary encoding.

* Along with the inherent low dimensionality of hyperbolic space, we propose a natural
binary hyperbolic embedding, which can obtain even lower-bit embedding with substantial
speed-up with minimal loss in retrieval performance. Our embedding can be directly used
with FAISS (Douze et al.,[2024) for immediate memory reduction and speed-up.

* We show that these benefits hold across a variety of settings, including the ability to incor-
porate hierarchical knowledge and the potential to scale to larger retrieval sets.

Our work makes it possible to perform fast search in binarized hyperbolic space, making hyperbolic
embeddings a viable supplement for large-scale search and retrieval.

2 RELATED WORK

Since search typically needs to occur on-the-fly (Yuan et al., 2020; [Wang et al., 2018) or on huge
collections (Jang & Chol 2021} |Chen et al., [2023)), it is imperative to efficiently embed queries and
data collections. The efficiency of an embedding can be expressed in bits, where fewer bits can
ultimately only be obtained in two ways: using fewer embedding dimensions (Cao et al.| 2020;
Hausler et al., [2021) and/or using fewer bits per dimension (Choukroun et al., 2019; |Yao et al.,
2022; Bai et al., [2022)).

Hyperbolic low-dimensional representations differ from the Euclidean representations for their
ability to embed hierarchical structures with minimal distortion Ganea et al.| (2018b); [Tseng et al.
(2023)) due to the curved nature of the space [Cannon et al| (1997). Most related, a variety of
works find that hyperbolic space is naturally low-dimensional (Tifrea et al.,2019; |Long et al., 2020
Shimizu et al, |2021; [Ghadimi Atigh et al., 2021} |Desai et al., [2023; [Tseng et al., [2023). Such po-
tential enables dimensionality reduction (Chami et al., [2021} |Guo et al., |2022)), but at the cost of
computational overhead (Shimizu et al.,[2021; |Peng et al.,[2021). In this paper, we exploit the low-
dimensional nature, pushing it to fewer bits and turning the computational cost into acceleration.

Low-bit embeddings. For using fewer bits per embedding dimension, classical solutions are given
by quantization techniques (Jégou et al.| 2011} Jacob et al., |2018)), benefiting quantization models
designed for large-scale settings (Liu et al.,[2021bjYao et al.,2022). Inspired by these developments,
we seek to bring the advantages of low-bit binarization to hyperbolic embeddings.

Binary hashing embeddings (Wang et al., |2017) learn compressed representations into compact
binary codes (Shen et al., 2018bj [Fan et al., 2020; |[Hoe et al., |2021b; [Shen et al., 2020; |Wei et al.,
2024)) while preserving the semantic similarity (Yuan et al., 2020) or structure (Li & van Gemert,
2021) of the original data, thereby reducing storage and computational costs. Unlike our proposed
binarization approach, hashing requires NP-hard optimization and thus demands either complex
optimization (Shen et al., | 2018a) or substantial relaxation (Wei et al., [2024)).

Hyperbolic isometry. There are five isometric models for hyperbolic space (Cannon et al.,|{1997).
We focus on the Poincaré disk model as it is highly suited for binarization; the coordinates on the
Poincaré ball are finite, and each axis is symmetric, allowing us to use a simple binarization strategy.
Further discussion on the other hyperbolic models can be found in Appendix [A.2]

Approximate Nearest Neighbor (ANN) search significantly reduces query time for large-scale
retrieval (Muja & Lowe, [2014;|Douze et al.| 2024)), where the exact nearest neighbor search is com-

"We quantify the complexity of hyperbolic distance dp (-, -) in Appendix D.
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Figure 2: Overview of our approach. Where existing baselines perform quantization in Euclidean
space (left), we construct binary representations possible in hyperbolic space (right). The main
contribution (Propositions 3.1-3.2) highlights the equivalence between hyperbolic embedding D¢
and its corresponding binary hyperbolic embedding HP. Section 3.3 details the binarization process.

putationally prohibitive. Classical approaches to ANN include tree-based methods (Arya & Mount,
1998), graph-based methods (Malkov & Yashunin, |2018)), product quantization based (Jégou et al.,
2011;|Ge et al., 2014)) to balance accuracy and speed. More application-oriented, Disk ANN (Subra-
manya et al.,|2019) combines in-memory computation with a disk-resident graph. enabling billion-
scale nearest neighbor search on a single machine. In contrast, our approach efficiently performs
exact nearest neighbour search, by leveraging compact binary hyperbolic embeddings, we avoid
the compromises inherent in ANN thus eliminating reliance on distance gap preservation.

3 BINARY HYPERBOLIC EMBEDDING

In this work, we strive to find a binarizer g(-) which encodes real-valued hyperbolic embeddings x
into a binary format °, such that z* = g(x). We do so by constructing an approximate equiva-
lence between hyperbolic distance dp (-, -) based search and Hamming distance dy (-, -) based search.
Then, using the Poincaré model for simplicity, we show how to binarize distances in hyperbolic

spaceﬁ

3.1 PROBLEM STATEMENT

Given a query embedding g, retrieval is performed through a nearest neighbor search in the database
D that is represented on manifold M:

argmindag(q, ). (1)
x€D

This work argues for hyperbolic geometry as the manifold of choice for retrieval. Its effectiveness,
especially in low-dimensional settings, is however offset by the computation complexity of hyper-
bolic distance dpp(q, ) curvature c:

2
(1—2¢(g.z) +cllz|®) g + (1 — cllq|®) =
1—-2c(q,z) + || q|1?||z|?

d(g, @) = —= tanh~! \/E| @)

NG

In this work, we tackle the complexity of hyperbolic metric through binarization of the hyperbolic
space as ” = g(x), where we largely benefit from low-dimensional representation while speeding
up distance calculations.

Ranking Preservation. To demonstrate the potential of binary hyperbolic embeddings for retrieval,
we prove the ranking preservation property between binary hyperbolic embeddings and real-valued
hyperbolic embeddings. In other words:

dH(qb7wl1)) S dH(qba ch) = dD(q7w1) S dD(qva)' (3)

In this paper, we connect the Hamming metric to the hyperbolic metric via a (conditioned) ranking
preservation between the hyperbolic metric and Euclidean metric on the hyperbolic embeddings.

2We provide preliminaries of related hyperbolic properties in Appendix@
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3.2 FROM HYPERBOLIC TO HAMMING

We link the hyperbolic distance to the Hamming distance in three steps: (i) we first prove the ranking
preservation between hyperbolic and Euclidean metric up under certain conditions, and (ii) using
Euclidean metric as a bridge, we show the equivalence between Hamming distance (over binary
hyperbolic embeddings) and the hyperbolic distance (over real-valued hyperbolic embeddings).

Proposition states that for hyperbolic embeddings, under retrieval conditions, it is possible to
produce the same retrieval output between hyperbolic metric dp (-, -) and Euclidean metric dg (-, -).

Proposition 3.1. (Ranking Preservation) Given query q € D?, For any x, x5 € D? in the database
such that |||z1|| — ||z2]|| = € given the Poincaré disk boundary tolerance margin 6, if 0 < € <

5%, then dr(q, 1) < dgr(q, z2) implies dp(q, ©1) < dp(q, x2).

Proof. The proof is in Appendix B.2. O

This proposition demonstrates that under the condition 0 < € < § W, the hyperbolic

distance produces the same retrieval output as Euclidean distance. It is important to note that the

precondition |||z — x2|| = € < § W holds not only because normalizing embeddings

is a common practice (Radford et al.|[2021), but also because the embeddings used in this paper are
closely distributed around normalized prototypes (Long et al.l 2020; Kasarla et al., [2022).

As a follow-up step, in Proposition we prove that under proper binarization g(x) = x°, hyper-
bolic metric dp(x, y) yields identical retrieval outputs as Himming metric dg(x®, y°):

Proposition 3.2. (Binary Ranking Preservation) For a binarizer g(-) such that (xT,yT) o
(g x),g%y)), dp(x,y) yields the same ranking results as to Hamming distance dg(x’,y%) =
Ix° & y°||o for nearest neighbor search.

Proof. The proof is in Appendix B.3. O

Intuitively, the propositions state that a hyperbolic distance-based search generates the same retrieval
ordering as a Hamming distance-based search, which can be computed quickly through binary op-
erations. This is exactly the step to make distance-based nearest neighbor search fast in hyperbolic
embeddings. Throughout this work, we use the Poincaré ball for our hyperbolic operations due to
its widespread use in deep learning (Peng et al., |2021; Mettes et al., [2023), but we note that our
approach applies to any hyperbolic model:

Remark 3.3. Under the isometry defined in |Cannon et al.| (1997), five hyperbolic models yield
equivalent retrieval results.

Proof. The proof is in Appendix B.4. O

3.3 BINARY HYPERBOLIC QUANTIZATION

Based on Proposition we can perform binary operation-based search while using hyperbolic
embeddings. To make this practically operational, we first generate full-precision hyperbolic em-
beddings on the Poincaré ball by optimizing embedding network f(-) E] and then binarize the em-
beddings via quantization.

Binary quantization. With the trained hyperbolic embedding x, we perform binary quantization
to obtain the binary representation of @, denoted as = g(z). In this section, we show that by
designing a binarizer g(-) such that it satisfies (g(x), g(y))  (x, y) in a block-wise manner, we can
exploit Proposition [3.2] for a binary Hamming distance-based search with hyperbolic embeddings.

In the Poincaré ball model, all dimensions fall in the radius of the ball (—r,7). We shift each
dimension by r to make it in the range (0, 2r):

=z +r “)

3Hyperbolic embedding generation is described in Appendix
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This shift simplifies the calculations without changing the Euclidean distance:
de(@®,y") = [e" -yl = [lz +r1 - (y +r1) |
= [z -yl = de(=,y).

In our proposed approach, the representation undergoes a dimension-wise quantization process. For
n bits used by each dimension, we partition each dimension into a distinct set of 2 — 1 quantization
levels under the same framework as Jeon et al.[(2020) with respect to scale:

&)

sup(z) —inf(x) sup(z™) -0 2r ©)
S = = =
2n —1 2n —1 2n — 1’
where sup(+) is the supremum and inf(-) is the infimum. Then we can convert each dimension
concerning the scale into integers, which can be converted into n-bits binary code:

+ n
T .
Tint = Lis 1= E on=i. b = on—l.gb pon2gb 4. 4 200 (7)
i=1

where 2% € {0, 1} represent the binary code for i-th significant bits in each dimension of ;.

To relate x° to 1, we can similarl decompose vector = as a summation of base vectors that
correspond to different significant bits

ZE+:£L';F+CI:;+--~+J::.
Binary grouping: assuming zero quantization error, we have a block-wise proportionals:
(xF,yT)oc <X:;t7y;;,t>
b b
<XTaYT>“?@HaY1>
(x3,¥3)ox (x3,¥3) ®)

+ o

(x5, yhyoec (xb,yh),

which results in:
(@, y") = *(@ine, yine)= 4" (@], 97) + 4777 (@b, yh) + -+ (2l Yh), 9)

leading to a block-wise application of Proposition[3.2] We can obtain the distance metric for binary
hyperbolic embeddings as:

dr(z,y) = de(z™, y ") oc dif (2, y")= 24" - du(af, y7) (10)

where d (2%, y?) is a summation of the scaled hamming distance, hence we can use the scaled
binary hamming distance as an approximation of the real-valued distance. The scaling only happens
on each of the n — 1 bits, resulting in n — 1 binary bit-shift operations with integer addition, which
can be efficiently carried out. Equipped with a hyperbolic embedding network f(-) and binarization
g(+), fast retrieval can be performed by embedding the entire database. Then for a query ¢ and search
collection .S, both embedded to D and quantized, we can perform fast nearest neighbor search:

arg min d (q°, v°) 2 argmindp(g, v). (11)
veSs veS

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We focus on retrieval in the image and video domains to measure the performance of various em-
bedding compression approaches across a range of compression levels for retrieval performance and
speed. hyperbolic LLMs are not included as they are either not yet open-sourced (Chen et al.| 2024)
or the text embeddings stay in Euclidean space (Yang et al.| [2024)). The performance is measured

*We show a concrete example in Appendix
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Table 1: Comparing manifolds and binarization for retrieval on CIFAR100, ImageNet1K, and
Moments-in-Time. Underlined scores denote best full-precision embedding performance; bold
scores denote best binary embedding performance. For each manifold, we use the following set-
tings: Euclidean space R” (Liu et al., [2021a)), hyperspherical space S® (Kasarla et al., 2022), and
hyperbolic space D¢ (Long et al.,[2020). D, d denotes the dimensionality of the real-valued space,
and B, b is the binary representation’s dimensionality. All retrievals are cut off @50. With full
precision, hyperbolic embeddings already outperform Euclidean embeddings but are slow to evalu-
ate. Our binary hyperbolic embeddings at 512 bits can maintain this performance while being much
faster to evaluate, thereby maintaining performance at a much smaller embedding size.

CIFAR100 ImageNet1K Moments-in-Time
Manifold Embedding size mAP SmAP Speed mAP SmAP Speed mAP SmAP Speed
RP 16384 bits 0.7938 £0.0014  0.8868 £0.0029  1.00x  0.6324 £0.0037  0.6879 £0.0035 1.00x  0.1598 £0.0002  0.2371 £0.0025  1.00x
s¢ 8192 bits 0.8110 +£0.0037  0.8953 £0.0021  0.99x  0.6314 £0.0019  0.6870 £0.0021  1.01x  0.1624 £0.0015 0.2408 +£0.0022  1.00x
D¢ 8192 bits 0.8078 £0.0015  0.9017 £0.0014  0.22x  0.6344 £0.0011  0.6894 £0.0010  0.18x  0.1780 £0.0001  0.2578 £0.0019  0.21x
RE 1024 bits 0.6127 £0.0005  0.7827 £0.0002  2.21x  0.6299 £0.0008 0.6840 £0.0076 ~ 2.28x  0.1387 £0.0013  0.2080 +£0.0017  2.29x
st 512 bits 0.7943 £0.0006  0.8847 £0.0004  4.19x  0.6320 £0.0015 0.6863 +0.0017 8.25x  0.1584 +£0.0018 0.2303 +£0.0019  4.47x
D (ours) 512 bits 0.7948 £0.0023  0.9014 +£0.0007 4.20x  0.6358 £0.0018  0.6992 +0.0017 8.24x  0.1769 £0.0015 0.2536 +0.0018  4.50x

Table 2: Integrating Binary Hyperbolic Embeddings in FAISS on ImageNet1K-val. The results
show that we can directly incorporate our approach into FAISS, making for a retrieval method that
is strong in performance, with minimal index size, and top retrieval speed.

Embedding mAP@50 1 SmAP@50 1 Index Size | Retrieval Time (s) |
Euclidean-512D 0.6324 £0.0037  0.6879 +0.0035 102MB 2.83 £0.07
Euclidean-256D 0.5847 £0.0004 0.6374 £0.0003 51MB 1.11 £ 0.04
Hyperbolic-256D 0.6344 £0.0011  0.6894 +0.0010 51MB 1.11 £ 0.06
BinaryHyperbolic-256bit  0.6320 £0.0014  0.6875 +0.0015 1.5MB 0.28 + 0.03
BinaryEuclidean-512bit ~ 0.5849 +0.0024 0.6376 £0.0015 3MB 1.03 + 0.04
BinaryHyperbolic-512bit  0.6358 £0.0006 0.6992 +0.0005 3MB 1.04 £+ 0.03

with mean average precision (mAP@50) and speed as the relative difference in retrieval time in
seconds on the test set.

Datasets. We use three well-studied datasets with optional hierarchical knowledge: CIFAR100,
that comes with an officially defined hierarchy (Krizhevsky et al., 2009), while for ImageNet1 K
each class is a node in the WordNet hierarchy (Miller, |1995).In Moments in Time, each class is
a node in the VerbNet hierarchy (Schuler, 2006). We also examine the large-scale Quick Draw
dataset (Googlel [2023)), which contains 50 million sketch images from 345 categories. There is no
hierarchy in Quick Draw, we simply regard all categories as belonging to a super-class root.

Implementation details. For hyperbolic prototpes learning, we use a curvature of ¢ = 0.1 and
the Riemannian Adam optimizer (Becigneul & Ganeal |2019), supported by the geoopt (Kochurov
et al., 2020) with a learning rate 10~%. In practice, when learning hyperbolic embeddings based
on hyperbolic prototypes, Riemannian Adam can be replaced by Adam as the learnable parameters
are in Euclidean space. Unless specified otherwise, we report supervised results on hyperbolic
embeddings with hierarchical prototypes. All experiments were performed on a single Nvidia A6000
GPU. For the image experiments, we use the Swin (Liu et al.,[2021a) on 32 x 32 patches for CIFAR-
100 and ImageNet1K. For the video experiments, we use a pre-trained 3D Swin (Liu et al.| 2022).

Evaluation. For a fair comparison, the same frozen backbone is used across all competing models.
Unless stated otherwise, we use two bits per dimension for binarization following Hubara et al.
(2018). We use commonly used mAP metric for evaluating retrieval, we also use SmAP similar
to [Long et al.| (2020); |Ghadimi Atigh et al.| (2021) which takes into account the proximity in the
class hierarchy for retrieved items. Specifically, when an item retrieved is just one hop away (i.e.,
same parent class) from the ground truth it is considered a true positive. To measure the speed-up,
we perform both FAISS-based evaluation and purpose-made stand-alone experiments for measuring
the retrieval speed. Note that Speed-up relies on the implementation in the mathematical library
used. For example, a boolean variable in Pytorch is treated as an 8-bit unsigned int, which does
not accurately reflect speed-up. Therefore, in addition to FAISS, we use a C++ implementation that
supports vectorized float&bitwise operations to evaluate the speed-up. All speed-ups are relative to
512-dimensional full-precision Euclidean representation.
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Figure 3: Retrieval performance (mAP@50) as a function of bits on CIFAR100, ImageNet1K,
and Moments-in-Time. Binary hyperbolic embeddings allow for strong compression while main-
taining performance, especially in low-bit settings.

4.2 BINARY VERSUS NON-BINARY RETRIEVAL

We first investigate the effect of manifold and binarization in Table [l on retrieval performance and
speed. We use 512 bits for binarized embeddings and report the results for mnAP@50. As Equa-
tion |1 1| shows that our binarization-based similarity is equivalent to the similarity in R and D, we
can use the same binarization strategy across all three manifolds: Euclidean R, hyperspherical S,
and hyperbolic D. We use the same frozen backbone with a linear projection on top, supervised
by the retrieval task, to get features with the same dimensionality. The Euclidean baseline follows
conventional cross-entropy optimization, while the hyperspherical baseline uses maximally separate
prototypes (Kasarla et al.l [2022) optimized with cosine similarity between all prototype pairs. The
hyperbolic embedding is trained akin to|Long et al.|(2020).

The results in Table[I|show that for full-precision embeddings, hyperbolic space shows great promise
for retrieval, outperforming its Euclidean and hyperspherical alternatives. However, hyperbolic em-
bedding retrieval is five times slower than Euclidean retrieval. With binary hyperbolic embeddings,
we can induce a 2.2 to 8.2 x speed-up with the highest retrieval scores. Hyperbolic embeddings
retain good performance when binarized, highlighting the strong match between hyperbolic space
and binarization. Results in Table [2| also show its effectiveness when combined with FAISS, where
our binary hyperbolic embedding can be seamlessly integrated into this common libary.

4.3 EFFECT OF BIT LENGTH AND QUANTIZATION LEVEL

Effect of bit length. To explore the impact of Table 3: Trade-off Between embedding dimen-
low-bits embeddings for fast retrieval, we com- sions and quantization bits on ImageNetlK.
pare Euclidean to hyperbolic embeddings as a Underlined scores denote full precision. Binary
function of the number of bits, as shown in Fig- hyperbolic embeddings accelerate largely with
ure 3] For both geometry, we investigate us- roughly the same performance. The speed-up is
ing 512, 256, 128, and 64 bits, corresponding based on integrating our embedding in Faiss. An-
to 256-, 128-, 64-, and 32-dimensional embed- other C++ version speed-up analysis is in Figured]

ding dimensions. dim x bits ~ mAP@50 1 Speed(s) |

Figure [] shows the trade-off between em- 8 x2 0.1641 +0.0011 0.46 +0.03
bedding dimensions and quantization levels on 8 x4 0.1384 +0.0005 0.22 +0.08
ImageNet1K. Larger, darker bubbles represent 16 x2 02832 +0.0008  0.17 +0.02
configurations with more bits and better mAP 16 x4 02745 +0.0009 0.18 +0.02
but slower speed. The baseline is 512d x 32 32 %2 0.4817 +0.0072 0.18 +0.02
bits with an mAP of 0.6344 and no speedup 32 x4 0.4479 +0.0079 0.22 +0.02
(1x). Smaller, lighter bubbles show faster con- 64 x2  0.5814 +0.0104 0.21 +0.02
figurations, like 128d x 2 bits, achieving 16x 64 x4  0.5968 +0.0022 0.21 +0.01
speedup with an mAP of 0.6365. The figure il- 128%2  0.6365 +0.0067 0.28 +0.02
lustrates that binary hyperbolic embeddings of- 128x4  0.6320 +0.0014 1.03 +0.04
fer significant speedup (up to 8x) while main- 256x2  0.6358 +£0.0006  1.00 +0.02

taining comparable performance to the full-

precision baseline. 512x32  0.6344+0.0036  2.83 £0.07
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mAP vs Speedup trade-off - ImageNet1lK
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Figure 4: The effect of embedding dimensions and quantization bits on ImageNet1K-Val. The
darkest bubble denotes the full-precision Euclidean embedding. With binary hyperbolic embed-
dings, we can obtain significant (~ 8 ) acceleration at roughly the same performance.

Effect of quantization level. By quantizing each dimension into levels we can choose the bits
per dimension. The total number of bits can therefore be determined by using more embedding
dimensions with few bits or vice versa. For example, a 128-bits = 64d x 2 bits, or 32d x 4 bits.
In Table 3] we show the impact across multiple choices of bit sizes. Overall, more embedding
dimensions with stronger compression perform better than the other way around. We show more
comparisons of other datasets in Appendix D.1.

The speed-up results in Table 3] paint a clear picture: the speed-up can be obtained without ham-
pering retrieval performance. Our approach allows for much bigger speed-up, but high compression
then comes at the price of lower retrieval performance, making it a design choice how to balance
both.

4.4 EFFECT OF HIERARCHICAL KNOWLEDGE

A key benefit of hyperbolic space is the capability to embed hierarchical knowledge with minimal
distortion for hierarchical embeddings (Ganea et al.,|2018b;|Sala et al.,2018). Such property enables
a hyperbolic network to retrieve semantically similar items of adjacent classes (Long et al.l [2020),
Following which setting, in Appendix D.2 we report results with hierarchical knowledge-aware
retrieval. We can maintain retrieval performance in both standard and hierarchy-aware settings.
Even with the lowest number of bit lengths.

Qualitative analysis. In Figure[5]we compare a non-hierarchical spherical space with our hierar-
chical hyperbolic space. All classes are connected to classes with pairwise cosine similarity greater
than 0.5. To measure the similarity between classes we average the embeddings for all instances of
a class, reducing it to pair-wise relationships. The figure shows that we are better at organizing con-
cepts hierarchically, which as a consequence means that inputs with hierarchically similar concepts
are more likely to fall in the same quantization bin. This enables better hierarchical performance
even at low bit length. We suspect this is because spherical embeddings are learned by forcing
classes to be equally dissimilar, whereas in hyperbolic space we can enforce a margin between
classes while keeping track of siblings due to its infinite boundary nature.

4.5 EFFECT OF CURVATURE AND RADIUS

The curvature of the Poincaré disk model is determined by c; r controls the radius for constructing
prototypes (optionally with the hierarchy #) p;, with which we learn f(-) to map the input samples
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Figure 5: Visualization of pair-wise class similarities for (left) non-hierarchical spherical embed-
dings and (right) our hierarchical binary embeddings. Our embeddings are organized more hierar-
chically, balancing strong quantization and hierarchical performance.

Table 4: The effect of curvature on CIFAR100. Parameter 72 is the squared radius used when
constructing the class prototypes P on poincaré disk, whereas c is the curvature used when op-
timizing f(-) to map data samples to class prototypes. Low curvature indicates nearly uncurved,
Euclidean-like space, where high curvature causes numerical instability. Hence a middle ground for
class prototype embedding and sample embedding is preferred.

r? =103 r? =102 r2 =10 r?=1 r2=0.1
c=10"3 0.7045 £0.0027 0.7294 £0.0021  0.7930 £0.0029 0.7810 +0.0031  0.7921 +0.0018
c=1072 - 0.7889 £0.0024  0.7939 £0.0029  0.7947 +0.0025 0.7896 +0.0019
c=0.1 - - 0.7938 £0.0030  0.7948 £0.0023  0.7938 £0.0021
c=1 - - - 0.7463 £0.0015 0.7817 +0.0020
c=10 - - - - 0.5627 £0.0013

to the class prototypes. Meanwhile, c is the curvature of D where we embed images and videos, it
can be regarded as adjusting the hyperbolic metric, resulting in a different distance calculation with
the same prototypes. In Table f] we compare different settings for ¢ and  and find an interaction
between the two parameters, with the highest performance obtained with a high r and a low c.
Overall, training class prototypes with an intermediate curvature is preferred, we suspect that is
because the class prototypes are not pushed to the disk boundary, thereby leaving some room for

embedding class instances in the later stage. More analyses of other datasets are given in Appendix
D.3.

4.6 PRODUCT QUANTIZATION AND LARGE-SCALE COMPARISONS

Both our method and classical product quantization can be regarded as post-processing on top of
existing feature vectors. We draw a comparison in Table [5] Besides its superior performance, we
find, interestingly, if we combine our method with PQ, i.e., using the binary hyperbolic embeddings
as the feature vectors for PQ, it further improves the performance of PQ. This might be because our
binary grouping in eq equation [§] already groups each group of sub-space, thus better aligned with
PQ’s subspace division. We furthermore compare to hashing methods, which require a long training
time and are not easily scalable to large datasets. As a result, recent hashing research has focused
on small datasets for validation. Therefore, in this paper, due to the outsized training cost, we do
not compare the performance of hashing methods on large datasets. In Table [§] we show that on
CIFAR-100, our approach is on par with the hashing methods, while we do not require complex
optimization and our performance does not decrease after as bit-length goes beyond 128.
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Table 5: Comparison and combination with product quantization. Product quantization is a
canonical approach in retrieval, but not competitive to our binary hyperbolic embeddings in either
the unsupervised or the supervised setting.

CIFAR100 ImageNet1K-Val
128bit 256bit 512bit 128bit 256bit 512bit
Unsupervised PQ (Jégou et al.{2011)  0.5213 +0.0009  0.5372 £ 0.0012  0.5503 4 0.0015 0.3574 £ 0.0016  0.4152 4 0.0018  0.4573 + 0.0021
Unsupervised Ours 0.5304 £0.0011  0.5412+0.0013  0.5497 £ 0.0016  0.3736 £ 0.0015  0.4213 £ 0.0019  0.4584 + 0.0020
D + PQ (Jégou et al.|[2011) 0.7102 £0.0019  0.7304 +0.0022  0.7353 £ 0.0025  0.5452 £ 0.0029  0.6051 4 0.0030  0.6082 =+ 0.0031
D + OPQ (Ge et al.{|2014) 0.7613 £ 0.0018  0.7714 4 0.0020  0.7782 £ 0.0021  0.5681 £ 0.0025 0.6212 4+ 0.0032  0.6213 + 0.0030
Ours + OPQ 0.7747 £0.0016  0.7726 +0.0012  0.7814 £ 0.0026  0.5701 £ 0.0022  0.6223 + 0.0028  0.6253 £ 0.0033
Ours 0.8031 £ 0.0010  0.8090 + 0.0040  0.8177 + 0.0030  0.5814 & 0.0104  0.6365 + 0.0067  0.6358 + 0.0006

Table 6: Comparison to hashing methods on CIFAR-100 Our approach is preferred, without incur-
ring complex optimization, while the performance kept increasing without being limited to a high
number of bits.

16bits 32bits 64bits 128bits 512bits
CSQ (Yuan et al.|[2020) 0.6473 £ 0.003  0.7562 4 0.002  0.7981 + 0.001  0.8101 £ 0.002 0.8072 + 0.002
DPN (Fan et al.[[2020) 0.6370 £ 0.004  0.7431 +£0.003  0.7902 £ 0.002  0.8090 £ 0.002  0.8130 £ 0.003
OrthoCos (Hoe et al.;[2021a) 0.6630 &+ 0.004  0.7552 4+ 0.003  0.7905 + 0.003  0.8120 + 0.002  0.8012 + 0.002
BiHalf (Li & van Gemert|[2021) 0.6775 £ 0.003  0.7572 +0.002 0.7887 £ 0.002 0.7977 £ 0.001  0.7803 +£ 0.002
Hyperbolic-Hashing (Yu et al.[2024)  0.2490 £ 0.012  0.3921 £ 0.009 0.4893 4 0.008 0.5693 & 0.007  0.6013 + 0.002
Ours 0.5370 £ 0.002  0.6990 & 0.001  0.7706 £ 0.005 0.8031 £ 0.001  0.8177 +£ 0.003

To showcase the potential of our approach on large-scale settings, we also experiment on the Quick
Draw dataset (Google, [2023). Here, we embed the raw 50 Million images with a simple MLP
backbone followed by a Euclidean or hyperbolic head. To avoid out-of-memory issues, we use 64
embedding dimensions, and 4-bit quantization and perform retrieval on two randomly picked query
sets (one small scale and one large scale) of the test set. The results in Table [/|show that on such
large-scale settings, binary hyperbolic embeddings remain highly effective.

Table 7: Large-scale evaluation on QuickDraw, binary hyperbolic embeddings are scalable as
well.

QuickDraw-50K  QuickDraw-10M

Euclidean Binarization 0.2445 0.0407
Ours 0.3149 0.0712

5 CONCLUSION

Hyperbolic deep learning has a wide range of applications, from images to videos. However, its
application in large-scale search has been hampered by slow distance calculations. In this work,
we overcome this limitation by proving the retrieval equivalence between hyperbolic and Hamming
distances, which allows binarization of the hyperbolic space and significantly accelerates distance
calculations. We experimentally verify this acceleration, across the video and image domain, ob-
taining significant accerlation at roughly equal performance. Our hyperbolic binary embeddings
demonstrate the viability of hyperbolic space for large-scale retrieval and hierarchical retrieval.

Broader impact. The proposed model, through binarization of hyperbolic space, substantially de-
creases memory consumption and computational costs for retrieval, which contributes to reducing
energy costs and infrastructure expenses.

Limitations. A limitation of hyperbolic embeddings on a Poincaré disk is the issue of numerical
stability (Yu & De Sal[2019; Mishne et al.,|2023), as it relies on a finite numerical range to represent
an infinite volume. This constraint becomes particularly pronounced because the Poincaré disk
model compresses distances exponentially as they approach the boundary, leading to substantial
precision challenges. An induced limitation is that we binarize the embeddings uniformly in a
non-uniform space, which would be an inspiration for future work. Double-precision arithmetic is
recommended to mitigate numerical instabilities near the disk’s edge.

10
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A  HYPERBOLIC MACHINE LEARNING PRELIMINARIES

Hyperbolic geometry is non-Euclidean geometry characterized by a constant negative curvature.
Unlike Euclidean geometry, hyperbolic space exhibits unique properties, such as the exponential
growth of volume (Ganea et al., |2018b) with respect to the radius and the divergence of parallel
lines. It serves as a powerful mathematical framework for modeling hierarchical data, tree-like
structures, and other settings where distances grow exponentially.

Hyperbolic spaces are equipped with several equivalent models |Cannon et al|(1997) that offer
different perspectives on the same underlying geometry. These models provide flexibility for com-
putation, visualization, and mathematical reasoning. Despite their different formulations, they are
isometric, meaning their distance metrics can be transformed into one another through well-defined
coordinate transformations.

A.1 FivE COMMON MODELS OF HYPERBOLIC GEOMETRY

Following the conventions in differential geometry, the five commonly used models of hyperbolic
geometry are isometric to each other:
1. Halfspace Model (H): Also known as the Poincaré halfspace model, it is defined as:

H = {(1,3527 e 7$n+1) P Tpy1 > 0} .

In this model, hyperbolic space is represented within a half-plane or half-space above a given axis,
often used in complex analysis and conformal mapping.
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2. Interior of the Disk Model (I): Also known as the Poincaré disk model, it is given by:
I={(z1,...,20,0) 12 + - +a2 <1},
Here, the hyperbolic space resides inside a Euclidean unit disk. This model is conformal, preserving
angles, and is commonly used in visualization.
3. Jemisphere Model (J): Pronounced with the ”J” as in Spanish, this model is defined as:
J={(z1,...,xn41) 2T+ +2i 4 =land z, 41 > 0}.

The hyperbolic space is represented as a hemisphere of a unit sphere.

4. Klein Model (K): This model, known for its projective properties, is given by:
K={(z1,...,2p,1) s 2]+ -+ 22 <1}.
The Klein model preserves straight-line geodesics, making it useful for certain computations, though
it does not preserve angles.
5. Loid Model (L): Short for the hyperboloid model, it is defined as:
L={(x1,..., %, Tpq1) 127+ +a5 —ao,y =—land z,41 >0} .

This model is particularly important in physics and mathematics due to its direct connection to
Lorentzian geometry and relativity.

A.2 ISOMETRY BETWEEN MODELS

The equivalence of these models is established through isometric coordinate transformations, as
detailed in Section 7 of [Cannon et al| (1997). These transformations ensure that distances and
geodesics remain invariant when transitioning between models, making them interchangeable de-
pending on the application.

Remark Under the isometry defined in [Cannon et al| (1997)), Section 7, five hyperbolic models
yield equivalent retrieval results.

Proof. Although we do not binarize other hyperbolic models, they can still use our binarization via
isometry defined in hyperbolic geometry |Cannon et al.|(1997), with a single coordinates transfor-
mation. In particular, we give one example of how the Lorentz model £ transforms to Poincaré disk

model [Radford et al.| (2021)) in one line:

L—=D: (29, 21,y Tp) —

(— 2 I (12)
1 -+ ZTo 1 + i) 1 -+ Zo
We similarly illustrate the other isometries following the convention in (Cannon et al., [1997):

From Lorentz model to Klein model:

(x()u Ty, 71.7’7,) = (xl/x07x2/x07 e 7$n/$0). (13)

From Lorentz model to Hemisphere model:

(:L.(hxlv"' 7xn) = (xO/mnvxl/xna"' 7xn71/xna]—/5€n)~ (14)

From Hemisphere model to Poincaé Halfspace model:

(o, 21, -+ yxn) — (1,201 /(o + 1), -+ , 22y /(z0 + 1)) (15)

From Hemisphere model to Poincaré Disk model:
(‘TOaxlv T vwn) = (1'0/(xn + 1)»551/(1'71 + ]-)7 T 7xn71/(xn + 1)) (16)

Note that all the above transformations are isometry, meaning that the distance between source
model embeddings is equal to the distance between the target model embeddings. Therefore, any
hyperbolic model can benefit from our Poincaré binarization. U
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A.3 POINCARE BALL GEOMETRY

Hyperbolic geometry is a non-Euclidean geometry characterized by a constant negative curvature.
Among the five commonly used models of hyperbolic geometry, we choose the Poincaré ball model
due to its unique properties of isotropy and symmetry in each dimension. These properties make the
Poincaré ball particularly well-suited for designing simple and effective binarization strategies.

The Poincaré ball model is defined as:
D" ={x e R": x| <1}, (17)

where || - || denotes the Euclidean norm. Within this model, the geometry is described by a con-
formal Riemannian metric that preserves angles, making it especially convenient for embedding
hierarchical or tree-like data structures.

The Riemannian metric of the Poincaré ball is given by:
Ix = Ax9 (18)

where g is the Euclidean metric and \, = ﬁ is the conformal factor. This conformal property

ensures that local distances and directions are geometrically meaningful, while the ball’s bounded
nature simplifies computations and facilitates compact embedding representations.

A.4 DISTANCE ON POINCARE BALL

Hyperbolic space can have different constant negative curvatures, parameterized by c. For simplicity,

we follow the conventions in [Ganea et al.| (2018a)); [Shimizu et al.| (202T) that use ¢ > 0 to represent

negative curvature to simplify computation. The Poincaré ball model with curvature c is defined as:

1
where || - || denotes the Euclidean norm. The hyperbolic distance between two points x,y € D”
under curvature c is given by:
2 —
de(xy) = 7 tanh™ (Ve[ Ocx @ y]) - (20)

where the Mdbius addition @, and subtraction ©,, are defined as:

(14 2¢(x,y) +cllyl?) x + (1 —c[x[?) y

XDy = ) (21)
1+ 2¢c(x,y) + 2|x[]?[ly]?

XCcy =X D (—Y), (22)
Ox =00, (—x), (23)

When ¢ = —1, this reduces to the standard Poincaré ball distance:

Ix - y|I?
dp(x,y) = arcosh (1 +2 . (24)

(L= =[I*)(1 = [lyll*)

Here, c allows for the scaling of the hyperbolic space, with smaller |¢| corresponding to a "flatter”
space.

A.4.1 RECOVERING EUCLIDEAN SPACE AS ¢ — 0
As the curvature ¢ approaches 0 (i.e., ¢ — 0), the hyperbolic space becomes increasingly flat, and
its geometry converges to Euclidean geometry. Specifically:

1
%9
* The hyperbolic distance formula simplifies to the Euclidean distance:

¢ The radius of the Poincaré ball, tends to infinity.

lim dp, (x,y)=|x-yl- (25)
c—0

* This occurs also because the conformal factor A\x = W in the Riemannian metric

approaches 1, and the distortion due to curvature vanishes.,..
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A.5 POINCARE DISTANCE SYMMETRY UNDER CURVATURE ¢

We show that d..(x,y) is symmetric, despite the non-commutative nature of the Mobius addition @...
This symmetry arises from the fact that the Euclidean norm of the Mobius addition is commutative.
Specifically, the norm of the M&bius addition is given by:

[1x|1? + 2(x,y) + [ly[]?
[x @ yll = : (26)
14 2e(x,y) + |12 [ly|?

The key observation here is that while x &,y # y @, x in general, the norm satisfies:
[x eyl = lly @ x|, (27)

due to the symmetric structure of the numerator and denominator in the norm formula.

As a result, the hyperbolic distance d..(x,y) becomes symmetric:

de(x,y) = d.(y,x). (28)

This property is crucial for defining a proper distance metric in hyperbolic space under curvature c.

2
> (29)

A.6 COMPLEXITY OF DISTANCE dp(q, x):

2 1 (1 —2¢(q,x) +clx[)a+ (1 - c[al*)x
dp(q,x) = — tanh c
plax) =75 (fH 1 —2c(a,x) + el ?x]P

ANALYSIS OF OPERATIONS
¢ Inner products and norms:
- {q,x): n multiplications, n — 1 additions
- ||a|? and ||x||?: 2n multiplications, 2(n — 1) additions
 Scalar computations:
— Few multiplications and additions (constants)
* Vector operations:

— Scaling vectors: 2n multiplications
— Vector addition: n additions

e Norm squared of numerator:
— n multiplications, n — 1 additions
¢ Division & Transcendental function:

— One division (scalar)
— One tanh ™! evaluation

* Total Operations:

— Multiplications: Approximately 7n + constants
— Additions/Subtractions: Approximately 5n + constants
— Divisions & Transcendental function: One

CONCLUSION:

* While both distances have linear complexity O(n), dp(q,x) involves significantly more
arithmetic operations.

* Therefore, even when considering constant factors, dp(q, x) is computationally more in-
tensive than dg (x,y).
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B REAL-VALUED HYPERBOLIC EMBEDDINGS

Given a training set Dirain = {(24, yz)}f\[:1 For each class y, let p, denote its prototype target in
a hyperbolic embedding space. We aim to train a network f(-) that projects the data point = onto
hyperbolic space x = f(x), where f(-) is an arbitrary backbone network with an exponential map
on top to project the output embedding to hyperbolic space. The likelihood of sample (x, y) is given
as:

exp (—dp(f(z), py))
Sl exp (~dn(f(2), py))

which is optimized through the negative log-likelihood loss akin to [Long et al.[(2020). For the pro-
totype embeddings of the classes, our approach works both in the one-vs-rest setting and the setting
where we are equipped with label hierarchy . In the one-vs-rest setting, we can simply define
class prototypes as maximally separated prototypes akin to |[Kasarla et al.[(2022). In the hierarchical
setting, we can obtain class prototypes for example using Hyperbolic Entailment Cones|Ganea et al.
(2018b).

plzly=y') = (30)

C PROOFS

Proposition C.1. Given query q, For any X1, Xo in the database such that |||x1 || — ||x2||| = €, given
the Poincar’e disk boundary tolerance margin 9, if 0 < € < 5%, then dr(q,x1) <
dr(q,x2) implies dp(q, x1) < dp(q,x2).

Proof. we start the analysis from the fact that poincar’e disk usually defines a tolerance margin §
such that

2> <1-4 G1)
to avoid numerical instability. For example,|Khrulkov et al.|(2020) adopted § = 10~ as the margin.
we show that 1) preserving dp (g, 1) < dp(g, z2) is equivalent to » € (L, R) for some L, R.
Note that dp(q, 1) < dp(g, x2) is equivalent to

2 2
cwh*(1+2 llg — ] ><cwh*(1+2 llg — 2| ). (32)
(T —q?) (X = [J21][?) (1= lq*) (1 = [Ja=|[?)

As cosh™'(-) is strictly increasing, dp(q, 1) < dp(g, x2) is equivalent to

_ 2 _ 2
||q2 | < Hq2 || . (33)
(= 1alP)@ = lz1][?) (1 = lql*)(A — [lz=[|?)
which is equivalent to
(llg = 21lP)(L = llz2]1*) < (llg = 2][*) (1 — [l ). (34)
With simplified notation as:
dr(g,21)°(1 = %) < dr(q, 22)*(1 = (r £ ¢)?). (35)
Solving this quadratic inequality with respect to r, we have r € (L, R), where
I tedr(q, 72) — /(dr(g, 72) — dr(g,1))2 + €2(2dr(q, 72)% — dr(g, 71)) (36)
dr(q, v2) — dr(g, 1) ’
R_ +edr (g, z2) + /(dr(q, 22) — dr(q, 21))? + €2(2dr(q, 22)% — dr(q, 1)) 37)

dR(Qv 1’2) - dR(Qv 1’1)
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leading to the following inequalities:

+edr(q, 22) — \/(dR(q7$2) —dr(q, 71))?

L 38

= dr(q; z2) — dr(q, 71) %)
edr(q, 72) — v/(dr(g, 22) — dr(q, z1))2 dr(q, z2)

= -1 39

= dr(q, 72) — dr(g, 1) “Ai(g, 72) — da(g, 1) 59

+edr (g, z2) +/(dr(q, 72) — dr(g, 71))?

R 40

g dn(g,72) — dn(q, 71) 40

> —edr(q, 22) + v/ (dr(q, ©2) — dr(q,21))> . dr(q, x2) Y @1

dr(q,r2) — dr(q,z1)  dr(g,72) — dr(g,21)

which means the quadratic inequality dg (g, 1)?(1 — 72) < dg(g,72)?(1 — (r & €)?) holds true
when

dr(q, z2)
€ —1< =149 42
dr(q, z2) — dr(g, 1) B 2
—e dr (g, 22) +1<1-96 43)

dr(q, z2) — dr(g, z1)
holds, leading that
dr(q, z2) — dr(g, z1)
dR(qa .’Eg)

e<d

Therefore, we conclude that the upper bound of € is € < 6dR(q’§2)_dR(‘1’”1) — drlg,@2)=de(g,21) e
r(q,22) dr(q,z2)

also have a trivial lower bound of ¢, as € > 0, this is because when ¢ = 0, we easily have L
—1, R = 1, are the boundary of the Poincare disk, leading to a constantly true proposition.

Proposition C.2. (Binary Ranking Preservation) For a binarizer g(-) such that (x*,y™)
(9(x),9(y)), dp(x,y) is yields the same ranking results to Hamming distance dy(x",y®)
||x° @ y°||o for nearest neighbor search.

R Ol

b b

Proof. For any binary representation x° = ¢g(x),y” = ¢(y), the squared Euclidean distance dg is

proportional to Hamming distance dg:
di(x,y) = di(x",y") = |x* —y*|?
= |xFI? + Iy FI1? - 27, y7)

o [lg=)1* + lg(y)II* = 2 (9(x), g(y)) (44)
= [Ix"]? + Ily°|I* — 2(x", y*)
= dg(x",y").

Following Proposition [C.2] we have nearest neighbor equivalence between the Hamming distance
and hyperbolic distance:

arg mindpy(q, x) = argmindx(q,x) by equation [44]
= arginin dr(q, x) (45)
= argmindp(qg,x) by Prop.[C.]]
O

Corollary C.3. Under the condition of Proposition hyperbolic metric dp(x,y) is ranking
preserving as euclidean metric dg(x,y).

Proof. Given query q and database X = {x;}, we annotate the subscript of the database according
to the Euclidean distance to the query. such that:

dr(g,x1) < dr(q,x2) <--- <dr(q,xn) (46)
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From Proposition [C.2] we can have:

dp(q,x1) < dp(q,x2) < -+ < dp(q,xn) 47
O

This means under the conditions of Proposition [C.2]the hyperbolic metric yields the same output
ranking as using the Euclidean metric, leading to the same retrieval outputs.

D SLOWNESS OF HYPERBOLIC SPACE

The strongest evidence that hyperbolic space is more suitable for retrieval than Euclidean is its
compact nature, as shown in (Long et al., |2020) and [Ermolov et al.| (2022). Unfortunately, this
comes at the cost of slowness that is determined by the nature of the hyperbolic distance:

2
(1 —2¢{a,x) +clx[?) a+ (1 —cllal]?) x
1—2¢(q,x) + ¢||al?[Ix|]?

dp(q,x) = % tanh ™" [ /e (48)

However, The efficiency brought by low-dimensional embedding is offset by its slow computation,
in hyperbolic space, distance calculation is much slower than its Euclidean counterpart

dr(x,y) = [|x — yl*. (49)

We can quantitatively show how slow hyperbolic distance calculation is, as hyperbolic distance
calculation takes 20.2713 + 0.1443 micro-seconds, while its Euclidean counterpart takes 4.7033 +
0.0394 micro-seconds. This result comes from 512-dim float number vectors distance calculations,
averaged over 10* calculations on a single CPU core, both dp and dg are based on implementation
of (Becigneul & Ganea, |2019).

To make hyperbolic space practically useful for retrieval, we need to bypass the need for explicit
distance calculations in hyperbolic space. We present the necessary theory and algorithms to do so
in our Binary Hyperbolic Embeddings.

D.1 ANALYSIS FOR LORENTZ MODEL

The distance metric under Lorentz model is induced by Lorentzian scalar product:

n
(x,¥)c = woyo + Z TiYi (50)
i=1
The associated distance is defined as:
di(x,y) = cosh™" (=(x,y)r) (51)
Although this distance appears to be fast to compute, we still suffer from the complexity of its
anisotropic and unlimited range. Using Poincaré disk as a proxy also does not work, because trans-
forming from Poincaré disk ID to Lorentz model £ also incurs high computation costs:
(1 + ||X||2,x17x27 e 7xn)
1—x[]?

D L (x) — (52)

E MORE EXPERIMENTS

E.1 EFFECT OF DIMENSIONALITY AND NUMBER OF BITS

We visually show the speed-performance trade-off on CIFARI00 in Figure [E.I]  Lower
bit/dimension configurations result in higher speeds (up to 62.73x) but lower mAP, while higher
configurations provide better mAP (up to 0.745) at the cost of reduced speed (down to 4.71x). The
best trade-off between speed and performance appears to be with binary hyperbolic embeddings,
achieving over 8 times faster speeds with roughly the same performance. The highest mAP of 0.745
is achieved with both 128 x 2 = 256 and 128 x 4 = 512 configurations, with the latter offering
slightly better speed. This underscores the balance between embedding dimensions, quantization
bits, retrieval performance, and speed, highlighting the potential for significant speed-ups with only
modest reductions in accuracy.
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Figure 6: The effect of embedding dimensions and quantization bits on CIFAR100 on CLIP
visual backbone. The darkest bubble denotes the full-precision Euclidean embedding. We find it
is best to use more dimensions with strong compression than vice versa. With binary hyperbolic
embeddings, we can obtain > 4.7 times faster retrieval speeds at roughly the same performance.
Naturally, we can compress much further, at the cost of retrieval performance.

E.2 EFFECT OF HIERARCHICAL KNOWLEDGE

To measure this potential we follow Long et al.[ (2020); |Ghadimi Atigh et al. (2021)) in using the
Sibling mAP (SmAP) performance metric. Building upon the mAP metric, SmAP takes into account
the proximity in the class hierarchy for retrieved items. Specifically, when an item retrieved is just
one hop away (i.e., same parent class) from the ground truth it is considered a true positive.

Table 8: The effect of using hierarchical knowledge and different manifolds on CIFAR100 on
CLIP visual backbone. At full-precision, Spherical and hyperbolic embeddings outperform Eu-
clidean embeddings, at the cost of a large number of bits and/or slow distance calculations. By
binarizing we can maintain the performance benefits of hierarchy and hyperbolic embeddings but at
a highly compressed bit length.

* denotes that the method has been modified to be using hyperbolic distance metric.

Hierarchical Manifold Bitlength Binary mAP SmAP

Radford et al. Radford et al.|(2021) X R 16,384 X 0.721 0.835
Kasarla et al.|Kasarla et al.|(2022) X S 3,168 X 0.746 0.860
Kasarla et al. |Kasarla et al.|(2022)x X D 3,168 X 0.744 0.863
Barz & DenzlerBarz & Denzler|(2020) v S 3,200 X 0.719 0.843
Long et al. |Long et al.|(2020) v D 1,600 X 0.746  0.868
Binary (ours) v D 512 v 0.745 0.866

In Table [§] and [9] we perform a comparison to gain insight into the effect of using hierarchy and
hyperbolic embeddings. We show that prior full-precision approaches perform comparable in terms
of mAP when using a hyperbolic or Spherical manifold, and that adding hierarchy is especially
beneficial to the SmAP performance. However, despite being more compressed than full-precision
Euclidean manifolds these approaches still require a large number of bits and/or slow hyperbolic
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distance calculations. By binarizing, we are able to compress hierarchical hyperbolic embeddings to
a small bit length whilst maintaining good performance on both standard and hierarchical metrics.

Table 9: The effect of using hierarchical knowledge and different manifolds on ImageNet1K
on CLIP visual backbone. At full-precision Spherical and hyperbolic embeddings outperform Eu-
clidean embeddings, at the cost of a large number of bits and/or slow distance calculations. By
binarizing we can maintain the performance benefits of hierarchy and hyperbolic embeddings but at
a highly compressed bit length.

* denotes that the method has been modified to be using hyperbolic distance metric.

Hierarchical Manifold Bitlength Binary mAP SmAP

Radford et al. [Radford et al.|(2021) X R 16,384 X 0.593 0.787
Kasarla et al.|Kasarla et al.|(2022) X S 3,168 X 0.607 0.802
Kasarla et al. |Kasarla et al.|(2022)x X D 3,168 X 0.607 0.807
Barz & DenzlerBarz & Denzler|(2020) v S 3,200 X 0.599 0.811
Long et al. |Long et al.|(2020) v D 1,600 X 0.610 0.815
Binary (ours) v D 512 v 0.608 0.812

E.3 EFFECT OF CURVATURE AND RADIUS

In Table|10l we explore the effect of curvature on the ImageNet1K dataset. The parameter 2 repre-
sents the squared radius used for constructing class prototypes on the Poincaré disk, while ¢ denotes
the curvature used when optimizing the function to map data samples to class prototypes. Low cur-
vature values indicate almost flat, Euclidean-like space, whereas high curvature values can cause
numerical instability. Therefore, a medium curvature value is preferred for both class prototype
embedding and sample embedding.

Table 10: The effect of curvature on ImageNet1K on CLIP visual backbone. Parameter 2 is the
squared radius used when constructing the class prototypes P on poincaré disk, whereas c is the cur-
vature used when optimizing f(-) to map data samples to class prototypes. Low curvature indicates
almost uncurved, euclidean-like space, whereas high curvature causes numerical instability. Thus,
a medium value of curvature during both class prototype embedding and sample embedding will be
preferred.

r2=10% r2=10%2 2=10 r2=1 r2=0.1
c=10"3 0.493 0.521 0.587 0.596 0.588

c=10"2 - 0.586 0.599 0.608 0.594
c=0.1 - - 0.601 0.607 0.605
c=1 - - - 0.549 0.550
c=10 - - - - 0.372

The table lists the accuracy results for different combinations of 72 and ¢. For 72 = 102, the accuracy
improves from 0.493 with ¢ = 1073 to 0.521 with 2 = 102 and further to 0.587 with 72 = 10.
The best performance, with an accuracy of 0.608, is achieved with 72 = 1 and ¢ = 1072, As r?
decreases further to 0.1, the accuracy decreases slightly. High curvature values (¢ = 1 and ¢ = 10)
result in significantly lower accuracy, highlighting the numerical instability.

In summary, medium curvature values during both class prototype embedding and sample embed-
ding yield better performance, while high curvature causes numerical instability and lower accuracy.

F MORE RELATED WORK

Hyperbolic representation differs from the Euclidean representation commonly used in deep
learning. Early success was obtained by embedding the nodes of hierarchies as hyperbolic vec-
tors, outperforming Euclidean embeddings. Nickel & Kielal(2017) introduce Poincaré Embeddings,
where hierarchical nodes are positioned by pulling and pushing nodes based on parent-child rela-
tions. (Ganea et al.[(2018b)) extend this idea through hyperbolic entailment cones, where child nodes
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should strictly fall under the cone spanned by parent nodes. Other hyperbolic embeddings|Sala et al.
(2018)); Balazevic et al.| (2019); [Tseng et al.| (2023); |Yu et al.| (2024) further explore these ideas
for incomplete information, graphs, and generalibility, respectively. To make the step towards deep
learning in hyperbolic space, Ganea et al.| (2018a) and [Shimizu et al.|(2021) introduce hyperbolic
linear, recurrent, convolutional, and self-attention layers in the most commonly used model of hy-
perbolic space: the Poincaré ball model. These works have served as a foundation for hyperbolic
deep learning on graphs [Pan & Wang| (2021), dimensionality reduction |(Chami et al.| (2021)), com-
plex networks Muscoloni et al.| (2017), social media|Sawhney et al.|(2021), etc. For more details on
hyperbolic layers, we refer to the survey of |Peng et al.|(2021).

Hyperbolic learning has also been broadly investigated in the image and video domain Mettes et al.
(2023). Hyperbolic geometry has been shown to aid in a variety of tasks, including image segmen-
tation |Atigh et al.| (2022), object detection Lang et al.| (2022), action recognition |Long et al.|(2020);
Peng et al.| (2020), image-text representation learning Desai et al.| (2023), representing 3D point
clouds [Montanaro et al.| (2022) and LiDAR pose regression [Wang et al.| (2023)). These works have
in common that they leverage hierarchical knowledge to maximize the benefits from the hyperbolic
space, embedding related concepts closer together, thereby allowing for more compact and powerful
representations.
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