
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SUPERVISED BINARY HYPERBOLIC EMBEDDINGS

Anonymous authors
Paper under double-blind review

ABSTRACT

As datasets grow in size, vector-based search becomes increasingly challenging
in terms of both storage and computational efficiency. Traditional solutions such
as quantization techniques involve trade-offs between retrieval speed and accu-
racy, while hashing methods often require further optimization for binarization.
In this work, we propose leveraging the compact nature of hyperbolic space for
efficient search. Specifically, we introduce Binary Hyperbolic Embeddings, which
transform complex hyperbolic similarity calculations into binary operations. We
prove that these binary hyperbolic embeddings are retrieval-equivalent to their
real-valued counterparts, ensuring minimal loss in retrieval quality. Our approach
can be seamlessly integrated into FAISS to achieve improved memory efficiency
and running speed while maintaining performance comparable to full-precision
Euclidean embeddings. Notably, binary hyperbolic embeddings can also be com-
bined with product quantization. We demonstrate significant improvements in
storage efficiency, with a natural byproduct of speeding up, with scaling potential
to larger datasets. A portion of the code is included in the supplementary materi-
als, and the full implementation will be made publicly available.

1 INTRODUCTION

CompactFast

Binary Hyperbolic
(Ours)

HyperbolicBinary Euclidean

Fast
Compact

Figure 1: Binary hyperbolic embeddings aim
for the best of both: the fast distance calculations
of binary Euclidean embeddings and the compact
representations of hyperbolic embeddings.

Compressed representations benefit informa-
tion retrieval, as they greatly reduce index size,
i.e., the memory requirements for data em-
beddings. Such compact property is desirable
where retrieval-by-embedding needs to be fast
or performed on large collections. Prior work
has shown that considerable speed-ups can be
obtained for Euclidean representations through
binarization (Cai et al., 2020; Jacob et al., 2018;
Kim et al., 2021), or by hashing Wang et al.
(2018); Shen et al. (2020); Hoe et al. (2021b)
representations on top of a network. These ap-
proaches do so by splitting the Euclidean repre-
sentations into regular grids. In contrast, hyper-
bolic representations naturally allow for lower-
dimensional representations (Long et al., 2020;
Ghadimi Atigh et al., 2021; Tseng et al., 2023) due to their compact nature. Such lower-dimensional
representations allow retrieval systems for vastly reduced storage and have the potential to scale
up. Unfortunately, hyperbolic compactness comes at the cost of hefty computations due to its com-
plex metric (Peng et al., 2021). In this work, we overcome this complexity through binarization,
unlocking the full potential of hyperbolic embeddings and pushing the embedding to even lower
dimensionality. We show that it is possible to get the best of the fast distance calculations of binary
embeddings and the compact representations of hyperbolic embeddings, as shown in Figure 1.

Hyperbolic deep learning is quickly gaining traction. Primarily, because it allows embedding hierar-
chies with minimal distortion (Nickel & Kiela, 2017), outperforming Euclidean hierarchical embed-
dings (Ganea et al., 2018b; Sala et al., 2018). These benefits have been shown for various research
problems, from graph networks (Chami et al., 2019; Dai et al., 2021; Liu et al., 2019), reinforcement
learning (Cetin et al., 2023) to large language models (Yang et al., 2024; Chen et al., 2024). Specifi-
cally, hyperbolic geometry allows for fewer embedding dimensionalities (Liu et al., 2020; Ermolov

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

et al., 2022; Tseng et al., 2023) and better hierarchical learning (Nickel & Kiela, 2017; Ganea et al.,
2018b; Sonthalia & Gilbert, 2020). Despite these advantages, hyperbolic embeddings have not been
a viable option for retrieval-by-embedding, as calculating the distance between embeddings involves
complex vector operations 1.

This paper introduces supervised binary hyperbolic embedding, a binarization approach that ad-
dresses the core limitation of hyperbolic embeddings for retrieval. Our contributions are as follows:

• We unlock the speed potential of hyperbolic embeddings by proving that under retrieval,
complex hyperbolic distance computation is ranking preserving to fast Hamming distance
computation with our proposed binary encoding.

• Along with the inherent low dimensionality of hyperbolic space, we propose a natural
binary hyperbolic embedding, which can obtain even lower-bit embedding with substantial
speed-up with minimal loss in retrieval performance. Our embedding can be directly used
with FAISS (Douze et al., 2024) for immediate memory reduction and speed-up.

• We show that these benefits hold across a variety of settings, including the ability to incor-
porate hierarchical knowledge and the potential to scale to larger retrieval sets.

Our work makes it possible to perform fast search in binarized hyperbolic space, making hyperbolic
embeddings a viable supplement for large-scale search and retrieval.

2 RELATED WORK

Since search typically needs to occur on-the-fly (Yuan et al., 2020; Wang et al., 2018) or on huge
collections (Jang & Cho, 2021; Chen et al., 2023), it is imperative to efficiently embed queries and
data collections. The efficiency of an embedding can be expressed in bits, where fewer bits can
ultimately only be obtained in two ways: using fewer embedding dimensions (Cao et al., 2020;
Hausler et al., 2021) and/or using fewer bits per dimension (Choukroun et al., 2019; Yao et al.,
2022; Bai et al., 2022).

Hyperbolic low-dimensional representations differ from the Euclidean representations for their
ability to embed hierarchical structures with minimal distortion Ganea et al. (2018b); Tseng et al.
(2023) due to the curved nature of the space Cannon et al. (1997). Most related, a variety of
works find that hyperbolic space is naturally low-dimensional (Tifrea et al., 2019; Long et al., 2020;
Shimizu et al., 2021; Ghadimi Atigh et al., 2021; Desai et al., 2023; Tseng et al., 2023). Such po-
tential enables dimensionality reduction (Chami et al., 2021; Guo et al., 2022), but at the cost of
computational overhead (Shimizu et al., 2021; Peng et al., 2021). In this paper, we exploit the low-
dimensional nature, pushing it to fewer bits and turning the computational cost into acceleration.

Low-bit embeddings. For using fewer bits per embedding dimension, classical solutions are given
by quantization techniques (Jégou et al., 2011; Jacob et al., 2018), benefiting quantization models
designed for large-scale settings (Liu et al., 2021b; Yao et al., 2022). Inspired by these developments,
we seek to bring the advantages of low-bit binarization to hyperbolic embeddings.

Binary hashing embeddings (Wang et al., 2017) learn compressed representations into compact
binary codes (Shen et al., 2018b; Fan et al., 2020; Hoe et al., 2021b; Shen et al., 2020; Wei et al.,
2024) while preserving the semantic similarity (Yuan et al., 2020) or structure (Li & van Gemert,
2021) of the original data, thereby reducing storage and computational costs. Unlike our proposed
binarization approach, hashing requires NP-hard optimization and thus demands either complex
optimization (Shen et al., 2018a) or substantial relaxation (Wei et al., 2024).

Hyperbolic isometry. There are five isometric models for hyperbolic space (Cannon et al., 1997).
We focus on the Poincaré disk model as it is highly suited for binarization; the coordinates on the
Poincaré ball are finite, and each axis is symmetric, allowing us to use a simple binarization strategy.
Further discussion on the other hyperbolic models can be found in Appendix A.2.

Approximate Nearest Neighbor (ANN) search significantly reduces query time for large-scale
retrieval (Muja & Lowe, 2014; Douze et al., 2024), where the exact nearest neighbor search is com-

1We quantify the complexity of hyperbolic distance dD(·, ·) in Appendix D.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

𝑇!ℳ

ℳ

𝑥 𝑣

	𝑒𝑥𝑝!(𝑣)
Hashing/Quantization

(Baselines)
Exponential map

(Appendix A)

Binarization
(Section 3.3)

Euclidean ℝ! Hyperbolic 𝔻"
Equivalence
(Prop. 3.1-3.2)

Binary Euclideanℍ# Binary Hyperbolicℍ$

Natural Property:
𝑑 ≪ 𝐷

Induced Complexity:
𝑂 𝑏 ≪ 𝑂(𝐵)

Figure 2: Overview of our approach. Where existing baselines perform quantization in Euclidean
space (left), we construct binary representations possible in hyperbolic space (right). The main
contribution (Propositions 3.1-3.2) highlights the equivalence between hyperbolic embedding Dd

and its corresponding binary hyperbolic embedding Hb. Section 3.3 details the binarization process.

putationally prohibitive. Classical approaches to ANN include tree-based methods (Arya & Mount,
1998), graph-based methods (Malkov & Yashunin, 2018), product quantization based (Jégou et al.,
2011; Ge et al., 2014) to balance accuracy and speed. More application-oriented, DiskANN (Subra-
manya et al., 2019) combines in-memory computation with a disk-resident graph. enabling billion-
scale nearest neighbor search on a single machine. In contrast, our approach efficiently performs
exact nearest neighbour search, by leveraging compact binary hyperbolic embeddings, we avoid
the compromises inherent in ANN thus eliminating reliance on distance gap preservation.

3 BINARY HYPERBOLIC EMBEDDING

In this work, we strive to find a binarizer g(·) which encodes real-valued hyperbolic embeddings x
into a binary format xb, such that xb = g(x). We do so by constructing an approximate equiva-
lence between hyperbolic distance dD(·, ·) based search and Hamming distance dH(·, ·) based search.
Then, using the Poincaré model for simplicity, we show how to binarize distances in hyperbolic
space2.

3.1 PROBLEM STATEMENT

Given a query embedding q, retrieval is performed through a nearest neighbor search in the database
D that is represented on manifold M:

argmin
x∈D

dM(q,x). (1)

This work argues for hyperbolic geometry as the manifold of choice for retrieval. Its effectiveness,
especially in low-dimensional settings, is however offset by the computation complexity of hyper-
bolic distance dD(q,x) curvature c:

dD(q,x) =
2√
c
tanh−1

√
c

∥∥∥∥∥
(
1− 2c⟨q,x⟩+ c∥x∥2

)
q +

(
1− c∥q∥2

)
x

1− 2c⟨q,x⟩+ c2∥q∥2∥x∥2

∥∥∥∥∥
2
 . (2)

In this work, we tackle the complexity of hyperbolic metric through binarization of the hyperbolic
space as xb = g(x), where we largely benefit from low-dimensional representation while speeding
up distance calculations.

Ranking Preservation. To demonstrate the potential of binary hyperbolic embeddings for retrieval,
we prove the ranking preservation property between binary hyperbolic embeddings and real-valued
hyperbolic embeddings. In other words:

dH(q
b,xb

1) ≤ dH(q
b,xb

2) ⇒ dD(q,x1) ≤ dD(q,x2). (3)

In this paper, we connect the Hamming metric to the hyperbolic metric via a (conditioned) ranking
preservation between the hyperbolic metric and Euclidean metric on the hyperbolic embeddings.

2We provide preliminaries of related hyperbolic properties in Appendix A

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 FROM HYPERBOLIC TO HAMMING

We link the hyperbolic distance to the Hamming distance in three steps: (i) we first prove the ranking
preservation between hyperbolic and Euclidean metric up under certain conditions, and (ii) using
Euclidean metric as a bridge, we show the equivalence between Hamming distance (over binary
hyperbolic embeddings) and the hyperbolic distance (over real-valued hyperbolic embeddings).

Proposition 3.1 states that for hyperbolic embeddings, under retrieval conditions, it is possible to
produce the same retrieval output between hyperbolic metric dD(·, ·) and Euclidean metric dR(·, ·).
Proposition 3.1. (Ranking Preservation) Given query q ∈ Dd, For any x1,x2 ∈ Dd in the database
such that |∥x1∥ − ∥x2∥| = ϵ, given the Poincaré disk boundary tolerance margin δ, if 0 ≤ ϵ ≤
δ dR(q,x2)−dR(q,x1)

dR(q,x2)
, then dR(q,x1) ≤ dR(q,x2) implies dD(q,x1) ≤ dD(q,x2).

Proof. The proof is in Appendix B.2.

This proposition demonstrates that under the condition 0 ≤ ϵ ≤ δ dR(q,x2)−dR(q,x1)
dR(q,x2)

, the hyperbolic
distance produces the same retrieval output as Euclidean distance. It is important to note that the
precondition ∥|x1−x2∥ = ϵ ≤ δ dR(q,x2)−dR(q,x1)

dR(q,x2)
holds not only because normalizing embeddings

is a common practice (Radford et al., 2021), but also because the embeddings used in this paper are
closely distributed around normalized prototypes (Long et al., 2020; Kasarla et al., 2022).

As a follow-up step, in Proposition 3.2 we prove that under proper binarization g(x) = xb, hyper-
bolic metric dD(x,y) yields identical retrieval outputs as Hamming metric dH(x

b,yb):

Proposition 3.2. (Binary Ranking Preservation) For a binarizer g(·) such that ⟨x+,y+⟩ ∝
⟨g(x), g(y)⟩, dD(x,y) yields the same ranking results as to Hamming distance dH(x

b,yb) =
∥xb ⊕ yb∥0 for nearest neighbor search.

Proof. The proof is in Appendix B.3.

Intuitively, the propositions state that a hyperbolic distance-based search generates the same retrieval
ordering as a Hamming distance-based search, which can be computed quickly through binary op-
erations. This is exactly the step to make distance-based nearest neighbor search fast in hyperbolic
embeddings. Throughout this work, we use the Poincaré ball for our hyperbolic operations due to
its widespread use in deep learning (Peng et al., 2021; Mettes et al., 2023), but we note that our
approach applies to any hyperbolic model:
Remark 3.3. Under the isometry defined in Cannon et al. (1997), five hyperbolic models yield
equivalent retrieval results.

Proof. The proof is in Appendix B.4.

3.3 BINARY HYPERBOLIC QUANTIZATION

Based on Proposition 3.2, we can perform binary operation-based search while using hyperbolic
embeddings. To make this practically operational, we first generate full-precision hyperbolic em-
beddings on the Poincaré ball by optimizing embedding network f(·) 3 and then binarize the em-
beddings via quantization.

Binary quantization. With the trained hyperbolic embedding x, we perform binary quantization
to obtain the binary representation of x, denoted as xb = g(x). In this section, we show that by
designing a binarizer g(·) such that it satisfies ⟨g(x), g(y)⟩ ∝ ⟨x,y⟩ in a block-wise manner, we can
exploit Proposition 3.2 for a binary Hamming distance-based search with hyperbolic embeddings.

In the Poincaré ball model, all dimensions fall in the radius of the ball (−r, r). We shift each
dimension by r to make it in the range (0, 2r):

x+ = x+ r. (4)

3Hyperbolic embedding generation is described in Appendix B

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

This shift simplifies the calculations without changing the Euclidean distance:

dR(x
+,y+) = ∥x+ − y+∥ = ∥x+ r1− (y + r1) ∥

= ∥x− y∥ = dR(x,y).
(5)

In our proposed approach, the representation undergoes a dimension-wise quantization process. For
n bits used by each dimension, we partition each dimension into a distinct set of 2n−1 quantization
levels under the same framework as Jeon et al. (2020) with respect to scale:

s =
sup(x)− inf(x)

2n − 1
=

sup(x+)− 0

2n − 1
=

2r

2n − 1
, (6)

where sup(·) is the supremum and inf(·) is the infimum. Then we can convert each dimension
concerning the scale into integers, which can be converted into n-bits binary code:

xint = ⌊x
+

s
⌉ =

n∑
i=1

2n−i · xb
i = 2n−1 · xb

1 + 2n−2xb
2 + · · ·+ 20xb

n, (7)

where xb
i ∈ {0, 1}d represent the binary code for i-th significant bits in each dimension of xint.

To relate xb to x+, we can similarly decompose vector x as a summation of base vectors that
correspond to different significant bits4:

x+ = x+
1 + x+

2 + · · ·+ x+
n .

Binary grouping: assuming zero quantization error, we have a block-wise proportionals:

⟨x+,y+⟩∝ ⟨x+
int,y

+
int⟩

⟨x+
1 ,y

+
1 ⟩∝ ⟨xb

1,y
b
1⟩

⟨x+
2 ,y

+
2 ⟩∝ ⟨xb

2,y
b
2⟩

· · ·
⟨x+

n ,y
+
n ⟩∝ ⟨xb

n,y
b
n⟩,

(8)

which results in:

⟨x+,y+⟩ = s2⟨xint,yint⟩= 4n−1 · ⟨xb
1,y

b
1⟩+ 4n−2 · ⟨xb

2,y
b
2⟩+ · · ·+ ⟨xb

n,y
b
n⟩, (9)

leading to a block-wise application of Proposition 3.2. We can obtain the distance metric for binary
hyperbolic embeddings as:

dR(x,y) = dR(x
+,y+) ∝ dΣH(x

b,yb)= Σn
i=14

n−i · dH(xb
i ,y

b
i) (10)

where dΣH(x
b,yb) is a summation of the scaled hamming distance, hence we can use the scaled

binary hamming distance as an approximation of the real-valued distance. The scaling only happens
on each of the n− 1 bits, resulting in n− 1 binary bit-shift operations with integer addition, which
can be efficiently carried out. Equipped with a hyperbolic embedding network f(·) and binarization
g(·), fast retrieval can be performed by embedding the entire database. Then for a query q and search
collection S, both embedded to D and quantized, we can perform fast nearest neighbor search:

argmin
v∈S

dΣH(q
b,vb)

△
= argmin

v∈S
dD(q,v). (11)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We focus on retrieval in the image and video domains to measure the performance of various em-
bedding compression approaches across a range of compression levels for retrieval performance and
speed. hyperbolic LLMs are not included as they are either not yet open-sourced (Chen et al., 2024)
or the text embeddings stay in Euclidean space (Yang et al., 2024). The performance is measured

4We show a concrete example in Appendix

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Comparing manifolds and binarization for retrieval on CIFAR100, ImageNet1K, and
Moments-in-Time. Underlined scores denote best full-precision embedding performance; bold
scores denote best binary embedding performance. For each manifold, we use the following set-
tings: Euclidean space RD (Liu et al., 2021a), hyperspherical space Sd (Kasarla et al., 2022), and
hyperbolic space Dd (Long et al., 2020). D, d denotes the dimensionality of the real-valued space,
and B, b is the binary representation’s dimensionality. All retrievals are cut off @50. With full
precision, hyperbolic embeddings already outperform Euclidean embeddings but are slow to evalu-
ate. Our binary hyperbolic embeddings at 512 bits can maintain this performance while being much
faster to evaluate, thereby maintaining performance at a much smaller embedding size.

CIFAR100 ImageNet1K Moments-in-Time
Manifold Embedding size mAP SmAP Speed mAP SmAP Speed mAP SmAP Speed

RD 16384 bits 0.7938 ±0.0014 0.8868 ±0.0029 1.00x 0.6324 ±0.0037 0.6879 ±0.0035 1.00x 0.1598 ±0.0002 0.2371 ±0.0025 1.00x
Sd 8192 bits 0.8110 ±0.0037 0.8953 ±0.0021 0.99x 0.6314 ±0.0019 0.6870 ±0.0021 1.01x 0.1624 ±0.0015 0.2408 ±0.0022 1.00x
Dd 8192 bits 0.8078 ±0.0015 0.9017 ±0.0014 0.22x 0.6344 ±0.0011 0.6894 ±0.0010 0.18x 0.1780 ±0.0001 0.2578 ±0.0019 0.21x

RB 1024 bits 0.6127 ±0.0005 0.7827 ±0.0002 2.21x 0.6299 ±0.0008 0.6840 ±0.0076 2.28x 0.1387 ±0.0013 0.2080 ±0.0017 2.29x
Sb 512 bits 0.7943 ±0.0006 0.8847 ±0.0004 4.19x 0.6320 ±0.0015 0.6863 ±0.0017 8.25x 0.1584 ±0.0018 0.2303 ±0.0019 4.47x
Db (ours) 512 bits 0.7948 ±0.0023 0.9014 ±0.0007 4.20x 0.6358 ±0.0018 0.6992 ±0.0017 8.24x 0.1769 ±0.0015 0.2536 ±0.0018 4.50x

Table 2: Integrating Binary Hyperbolic Embeddings in FAISS on ImageNet1K-val. The results
show that we can directly incorporate our approach into FAISS, making for a retrieval method that
is strong in performance, with minimal index size, and top retrieval speed.

Embedding mAP@50 ↑ SmAP@50 ↑ Index Size ↓ Retrieval Time (s) ↓
Euclidean-512D 0.6324 ±0.0037 0.6879 ±0.0035 102MB 2.83 ± 0.07
Euclidean-256D 0.5847 ±0.0004 0.6374 ±0.0003 51MB 1.11 ± 0.04
Hyperbolic-256D 0.6344 ±0.0011 0.6894 ±0.0010 51MB 1.11 ± 0.06

BinaryHyperbolic-256bit 0.6320 ±0.0014 0.6875 ±0.0015 1.5MB 0.28 ± 0.03
BinaryEuclidean-512bit 0.5849 ±0.0024 0.6376 ±0.0015 3MB 1.03 ± 0.04
BinaryHyperbolic-512bit 0.6358 ±0.0006 0.6992 ±0.0005 3MB 1.04 ± 0.03

with mean average precision (mAP@50) and speed as the relative difference in retrieval time in
seconds on the test set.

Datasets. We use three well-studied datasets with optional hierarchical knowledge: CIFAR100,
that comes with an officially defined hierarchy (Krizhevsky et al., 2009), while for ImageNet1K
each class is a node in the WordNet hierarchy (Miller, 1995).In Moments in Time, each class is
a node in the VerbNet hierarchy (Schuler, 2006). We also examine the large-scale Quick Draw
dataset (Google, 2023), which contains 50 million sketch images from 345 categories. There is no
hierarchy in Quick Draw, we simply regard all categories as belonging to a super-class root.

Implementation details. For hyperbolic prototpes learning, we use a curvature of c = 0.1 and
the Riemannian Adam optimizer (Becigneul & Ganea, 2019), supported by the geoopt (Kochurov
et al., 2020) with a learning rate 10−4. In practice, when learning hyperbolic embeddings based
on hyperbolic prototypes, Riemannian Adam can be replaced by Adam as the learnable parameters
are in Euclidean space. Unless specified otherwise, we report supervised results on hyperbolic
embeddings with hierarchical prototypes. All experiments were performed on a single Nvidia A6000
GPU. For the image experiments, we use the Swin (Liu et al., 2021a) on 32×32 patches for CIFAR-
100 and ImageNet1K. For the video experiments, we use a pre-trained 3D Swin (Liu et al., 2022).

Evaluation. For a fair comparison, the same frozen backbone is used across all competing models.
Unless stated otherwise, we use two bits per dimension for binarization following Hubara et al.
(2018). We use commonly used mAP metric for evaluating retrieval, we also use SmAP similar
to Long et al. (2020); Ghadimi Atigh et al. (2021) which takes into account the proximity in the
class hierarchy for retrieved items. Specifically, when an item retrieved is just one hop away (i.e.,
same parent class) from the ground truth it is considered a true positive. To measure the speed-up,
we perform both FAISS-based evaluation and purpose-made stand-alone experiments for measuring
the retrieval speed. Note that Speed-up relies on the implementation in the mathematical library
used. For example, a boolean variable in Pytorch is treated as an 8-bit unsigned int, which does
not accurately reflect speed-up. Therefore, in addition to FAISS, we use a C++ implementation that
supports vectorized float&bitwise operations to evaluate the speed-up. All speed-ups are relative to
512-dimensional full-precision Euclidean representation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

512 256 128 64 32 160.00

0.20

0.40

0.60

0.80

CIFAR100

512 256 128 64 32 160.00

0.20

0.40

0.60

0.80 ImageNet1K

Euclidean hyperbolic

512 256 128 64 32 160.00

0.05

0.10

0.15

0.20 Moments-in-Time

Figure 3: Retrieval performance (mAP@50) as a function of bits on CIFAR100, ImageNet1K,
and Moments-in-Time. Binary hyperbolic embeddings allow for strong compression while main-
taining performance, especially in low-bit settings.

4.2 BINARY VERSUS NON-BINARY RETRIEVAL

We first investigate the effect of manifold and binarization in Table 1 on retrieval performance and
speed. We use 512 bits for binarized embeddings and report the results for mAP@50. As Equa-
tion 11 shows that our binarization-based similarity is equivalent to the similarity in R and D, we
can use the same binarization strategy across all three manifolds: Euclidean R, hyperspherical S,
and hyperbolic D. We use the same frozen backbone with a linear projection on top, supervised
by the retrieval task, to get features with the same dimensionality. The Euclidean baseline follows
conventional cross-entropy optimization, while the hyperspherical baseline uses maximally separate
prototypes (Kasarla et al., 2022) optimized with cosine similarity between all prototype pairs. The
hyperbolic embedding is trained akin to Long et al. (2020).

The results in Table 1 show that for full-precision embeddings, hyperbolic space shows great promise
for retrieval, outperforming its Euclidean and hyperspherical alternatives. However, hyperbolic em-
bedding retrieval is five times slower than Euclidean retrieval. With binary hyperbolic embeddings,
we can induce a 2.2× to 8.2 × speed-up with the highest retrieval scores. Hyperbolic embeddings
retain good performance when binarized, highlighting the strong match between hyperbolic space
and binarization. Results in Table 2 also show its effectiveness when combined with FAISS, where
our binary hyperbolic embedding can be seamlessly integrated into this common libary.

4.3 EFFECT OF BIT LENGTH AND QUANTIZATION LEVEL

Table 3: Trade-off Between embedding dimen-
sions and quantization bits on ImageNet1K.
Underlined scores denote full precision. Binary
hyperbolic embeddings accelerate largely with
roughly the same performance. The speed-up is
based on integrating our embedding in Faiss. An-
other C++ version speed-up analysis is in Figure 4
dim× bits mAP@50 ↑ Speed(s) ↓

8 ×2 0.1641 ±0.0011 0.46 ±0.03
8 ×4 0.1384 ±0.0005 0.22 ±0.08

16 ×2 0.2832 ±0.0008 0.17 ±0.02
16 ×4 0.2745 ±0.0009 0.18 ±0.02
32 ×2 0.4817 ±0.0072 0.18 ±0.02
32 ×4 0.4479 ±0.0079 0.22 ±0.02
64 ×2 0.5814 ±0.0104 0.21 ±0.02
64 ×4 0.5968 ±0.0022 0.21 ±0.01
128×2 0.6365 ±0.0067 0.28 ±0.02
128×4 0.6320 ±0.0014 1.03 ±0.04
256×2 0.6358 ±0.0006 1.00 ±0.02

512×32 0.6344±0.0036 2.83 ±0.07

Effect of bit length. To explore the impact of
low-bits embeddings for fast retrieval, we com-
pare Euclidean to hyperbolic embeddings as a
function of the number of bits, as shown in Fig-
ure 3. For both geometry, we investigate us-
ing 512, 256, 128, and 64 bits, corresponding
to 256-, 128-, 64-, and 32-dimensional embed-
ding dimensions.

Figure 4 shows the trade-off between em-
bedding dimensions and quantization levels on
ImageNet1K. Larger, darker bubbles represent
configurations with more bits and better mAP
but slower speed. The baseline is 512d × 32
bits with an mAP of 0.6344 and no speedup
(1×). Smaller, lighter bubbles show faster con-
figurations, like 128d × 2 bits, achieving 16×
speedup with an mAP of 0.6365. The figure il-
lustrates that binary hyperbolic embeddings of-
fer significant speedup (up to 8×) while main-
taining comparable performance to the full-
precision baseline.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

10 0 10 20 30 40 50 60 70
Speed (x times)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
AP

8d x 2bits

8d x 4bits

16d x 2bits

16d x 4bits
32d x 2bits

32d x 4bits

64d x 2bits

64d x 4bits

128d x 2bits128d x 4bits

512d x 32bits

mAP vs Speedup trade-off - ImageNet1K

2

4

8

Qu
an

tiz
at

io
n

Le
ve

l

Figure 4: The effect of embedding dimensions and quantization bits on ImageNet1K-Val. The
darkest bubble denotes the full-precision Euclidean embedding. With binary hyperbolic embed-
dings, we can obtain significant (∼ 8×) acceleration at roughly the same performance.

Effect of quantization level. By quantizing each dimension into levels we can choose the bits
per dimension. The total number of bits can therefore be determined by using more embedding
dimensions with few bits or vice versa. For example, a 128-bits = 64d × 2 bits, or 32d × 4 bits.
In Table 3, we show the impact across multiple choices of bit sizes. Overall, more embedding
dimensions with stronger compression perform better than the other way around. We show more
comparisons of other datasets in Appendix D.1.

The speed-up results in Table 3 paint a clear picture: the speed-up can be obtained without ham-
pering retrieval performance. Our approach allows for much bigger speed-up, but high compression
then comes at the price of lower retrieval performance, making it a design choice how to balance
both.

4.4 EFFECT OF HIERARCHICAL KNOWLEDGE

A key benefit of hyperbolic space is the capability to embed hierarchical knowledge with minimal
distortion for hierarchical embeddings (Ganea et al., 2018b; Sala et al., 2018). Such property enables
a hyperbolic network to retrieve semantically similar items of adjacent classes (Long et al., 2020),
Following which setting, in Appendix D.2 we report results with hierarchical knowledge-aware
retrieval. We can maintain retrieval performance in both standard and hierarchy-aware settings.
Even with the lowest number of bit lengths.

Qualitative analysis. In Figure 5 we compare a non-hierarchical spherical space with our hierar-
chical hyperbolic space. All classes are connected to classes with pairwise cosine similarity greater
than 0.5. To measure the similarity between classes we average the embeddings for all instances of
a class, reducing it to pair-wise relationships. The figure shows that we are better at organizing con-
cepts hierarchically, which as a consequence means that inputs with hierarchically similar concepts
are more likely to fall in the same quantization bin. This enables better hierarchical performance
even at low bit length. We suspect this is because spherical embeddings are learned by forcing
classes to be equally dissimilar, whereas in hyperbolic space we can enforce a margin between
classes while keeping track of siblings due to its infinite boundary nature.

4.5 EFFECT OF CURVATURE AND RADIUS

The curvature of the Poincaré disk model is determined by c; r controls the radius for constructing
prototypes (optionally with the hierarchy H) pi, with which we learn f(·) to map the input samples

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Visualization of pair-wise class similarities for (left) non-hierarchical spherical embed-
dings and (right) our hierarchical binary embeddings. Our embeddings are organized more hierar-
chically, balancing strong quantization and hierarchical performance.

Table 4: The effect of curvature on CIFAR100. Parameter r2 is the squared radius used when
constructing the class prototypes P on poincaré disk, whereas c is the curvature used when op-
timizing f(·) to map data samples to class prototypes. Low curvature indicates nearly uncurved,
Euclidean-like space, where high curvature causes numerical instability. Hence a middle ground for
class prototype embedding and sample embedding is preferred.

r2 = 103 r2 = 102 r2 = 10 r2 = 1 r2 = 0.1

c = 10−3 0.7045 ±0.0027 0.7294 ±0.0021 0.7930 ±0.0029 0.7810 ±0.0031 0.7921 ±0.0018
c = 10−2 - 0.7889 ±0.0024 0.7939 ±0.0029 0.7947 ±0.0025 0.7896 ±0.0019
c = 0.1 - - 0.7938 ±0.0030 0.7948 ±0.0023 0.7938 ±0.0021
c = 1 - - - 0.7463 ±0.0015 0.7817 ±0.0020
c = 10 - - - - 0.5627 ±0.0013

to the class prototypes. Meanwhile, c is the curvature of D where we embed images and videos, it
can be regarded as adjusting the hyperbolic metric, resulting in a different distance calculation with
the same prototypes. In Table 4 we compare different settings for c and r and find an interaction
between the two parameters, with the highest performance obtained with a high r and a low c.
Overall, training class prototypes with an intermediate curvature is preferred, we suspect that is
because the class prototypes are not pushed to the disk boundary, thereby leaving some room for
embedding class instances in the later stage. More analyses of other datasets are given in Appendix
D.3.

4.6 PRODUCT QUANTIZATION AND LARGE-SCALE COMPARISONS

Both our method and classical product quantization can be regarded as post-processing on top of
existing feature vectors. We draw a comparison in Table 5. Besides its superior performance, we
find, interestingly, if we combine our method with PQ, i.e., using the binary hyperbolic embeddings
as the feature vectors for PQ, it further improves the performance of PQ. This might be because our
binary grouping in eq equation 8 already groups each group of sub-space, thus better aligned with
PQ’s subspace division. We furthermore compare to hashing methods, which require a long training
time and are not easily scalable to large datasets. As a result, recent hashing research has focused
on small datasets for validation. Therefore, in this paper, due to the outsized training cost, we do
not compare the performance of hashing methods on large datasets. In Table 6, we show that on
CIFAR-100, our approach is on par with the hashing methods, while we do not require complex
optimization and our performance does not decrease after as bit-length goes beyond 128.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Comparison and combination with product quantization. Product quantization is a
canonical approach in retrieval, but not competitive to our binary hyperbolic embeddings in either
the unsupervised or the supervised setting.

CIFAR100 ImageNet1K-Val
128bit 256bit 512bit 128bit 256bit 512bit

Unsupervised PQ (Jégou et al., 2011) 0.5213 ± 0.0009 0.5372 ± 0.0012 0.5503 ± 0.0015 0.3574 ± 0.0016 0.4152 ± 0.0018 0.4573 ± 0.0021
Unsupervised Ours 0.5304 ± 0.0011 0.5412 ± 0.0013 0.5497 ± 0.0016 0.3736 ± 0.0015 0.4213 ± 0.0019 0.4584 ± 0.0020

D + PQ (Jégou et al., 2011) 0.7102 ± 0.0019 0.7304 ± 0.0022 0.7353 ± 0.0025 0.5452 ± 0.0029 0.6051 ± 0.0030 0.6082 ± 0.0031
D + OPQ (Ge et al., 2014) 0.7613 ± 0.0018 0.7714 ± 0.0020 0.7782 ± 0.0021 0.5681 ± 0.0025 0.6212 ± 0.0032 0.6213 ± 0.0030
Ours + OPQ 0.7747 ± 0.0016 0.7726 ± 0.0012 0.7814 ± 0.0026 0.5701 ± 0.0022 0.6223 ± 0.0028 0.6253 ± 0.0033
Ours 0.8031 ± 0.0010 0.8090 ± 0.0040 0.8177 ± 0.0030 0.5814 ± 0.0104 0.6365 ± 0.0067 0.6358 ± 0.0006

Table 6: Comparison to hashing methods on CIFAR-100 Our approach is preferred, without incur-
ring complex optimization, while the performance kept increasing without being limited to a high
number of bits.

16bits 32bits 64bits 128bits 512bits

CSQ (Yuan et al., 2020) 0.6473 ± 0.003 0.7562 ± 0.002 0.7981 ± 0.001 0.8101 ± 0.002 0.8072 ± 0.002
DPN (Fan et al., 2020) 0.6370 ± 0.004 0.7431 ± 0.003 0.7902 ± 0.002 0.8090 ± 0.002 0.8130 ± 0.003
OrthoCos (Hoe et al., 2021a) 0.6630 ± 0.004 0.7552 ± 0.003 0.7905 ± 0.003 0.8120 ± 0.002 0.8012 ± 0.002
BiHalf (Li & van Gemert, 2021) 0.6775 ± 0.003 0.7572 ± 0.002 0.7887 ± 0.002 0.7977 ± 0.001 0.7803 ± 0.002
Hyperbolic-Hashing (Yu et al., 2024) 0.2490 ± 0.012 0.3921 ± 0.009 0.4893 ± 0.008 0.5693 ± 0.007 0.6013 ± 0.002
Ours 0.5370 ± 0.002 0.6990 ± 0.001 0.7706 ± 0.005 0.8031 ± 0.001 0.8177 ± 0.003

To showcase the potential of our approach on large-scale settings, we also experiment on the Quick
Draw dataset (Google, 2023). Here, we embed the raw 50 Million images with a simple MLP
backbone followed by a Euclidean or hyperbolic head. To avoid out-of-memory issues, we use 64
embedding dimensions, and 4-bit quantization and perform retrieval on two randomly picked query
sets (one small scale and one large scale) of the test set. The results in Table 7 show that on such
large-scale settings, binary hyperbolic embeddings remain highly effective.

Table 7: Large-scale evaluation on QuickDraw, binary hyperbolic embeddings are scalable as
well.

QuickDraw-50K QuickDraw-10M
Euclidean Binarization 0.2445 0.0407
Ours 0.3149 0.0712

5 CONCLUSION

Hyperbolic deep learning has a wide range of applications, from images to videos. However, its
application in large-scale search has been hampered by slow distance calculations. In this work,
we overcome this limitation by proving the retrieval equivalence between hyperbolic and Hamming
distances, which allows binarization of the hyperbolic space and significantly accelerates distance
calculations. We experimentally verify this acceleration, across the video and image domain, ob-
taining significant accerlation at roughly equal performance. Our hyperbolic binary embeddings
demonstrate the viability of hyperbolic space for large-scale retrieval and hierarchical retrieval.

Broader impact. The proposed model, through binarization of hyperbolic space, substantially de-
creases memory consumption and computational costs for retrieval, which contributes to reducing
energy costs and infrastructure expenses.

Limitations. A limitation of hyperbolic embeddings on a Poincaré disk is the issue of numerical
stability (Yu & De Sa, 2019; Mishne et al., 2023), as it relies on a finite numerical range to represent
an infinite volume. This constraint becomes particularly pronounced because the Poincaré disk
model compresses distances exponentially as they approach the boundary, leading to substantial
precision challenges. An induced limitation is that we binarize the embeddings uniformly in a
non-uniform space, which would be an inspiration for future work. Double-precision arithmetic is
recommended to mitigate numerical instabilities near the disk’s edge.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sunil Arya and David M Mount. An optimal algorithm for approximate nearest neighbor searching
in fixed dimensions. Journal of the ACM (JACM), 45(6):891–923, 1998.

Mina Ghadimi Atigh, Julian Schoep, Erman Acar, Nanne van Noord, and Pascal Mettes. Hyper-
bolic image Segmentation. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4453–4462, 2022.

Haoli Bai, Lu Hou, Lifeng Shang, Xin Jiang, Irwin King, and Michael R. Lyu. Towards Efficient
Post-training Quantization of Pre-trained Language Models. In Advances in Neural Information
Processing Systems, pp. 1405–1418, 2022.

Ivana Balazevic, Carl Allen, and Timothy Hospedales. Multi-relational Poincaré Graph Embed-
dings. In Advances in Neural Information Processing Systems, 2019.

Bjorn Barz and Joachim Denzler. Deep Learning on Small Datasets without Pre-Training using
Cosine Loss. In IEEE Winter Conference on Applications of Computer Vision, pp. 1371–1380,
2020.

Gary Becigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. In
International Conference on Learning Representations, 2019.

Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer. Ze-
roQ: A Novel Zero Shot Quantization Framework. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13169–13178, 2020.

James W Cannon, William J Floyd, Richard W Kenyon, and Walter R Parry. Hyperbolic geometry.
In Flavors of Geometry, pp. 59–115, 1997.

Bingyi Cao, André Araujo, and Jack Sim. Unifying Deep Local and Global Features for image
search. In European Conference on Computer Vision, pp. 726–743, 2020.

Edoardo Cetin, Benjamin Chamberlain, Michael Bronstein, and Jonathan J Hunt. Hyperbolic deep
reinforcement learning. In International Conference on Learning Representations, 2023.

Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural
networks. In Advances in neural information processing systems, 2019.

Ines Chami, Albert Gu, Dat P. Nguyen, and Christopher Re. HoroPCA: Hyperbolic Dimensionality
Reduction via Horospherical Projections. In Proceedings of the 38th International Conference on
Machine Learning, pp. 1419–1429, 2021.

Wei Chen, Yu Liu, Weiping Wang, Erwin M. Bakker, Theodoros Georgiou, Paul Fieguth, Li Liu,
and Michael S. Lew. Deep learning for instance retrieval: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 7270–7292, 2023.

Weize Chen, Xu Han, Yankai Lin, Kaichen He, Ruobing Xie, Jie Zhou, Zhiyuan Liu, and Maosong
Sun. Hyperbolic pre-trained language model. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 2024.

Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. Low-bit Quantization of neural net-
works for Efficient Inference. In 2019 IEEE/CVF International Conference on Computer Vision
Workshop (ICCVW), pp. 3009–3018, 2019.

Jindou Dai, Yuwei Wu, Zhi Gao, and Yunde Jia. A hyperbolic-to-hyperbolic graph convolutional
network. In Computer Vision and Pattern Recognition, 2021.

Karan Desai, Maximilian Nickel, Tanmay Rajpurohit, Justin Johnson, and Shanmukha Ramakrishna
Vedantam. Hyperbolic Image-text Representations. In Proceedings of the 40th International
Conference on Machine Learning, pp. 7694–7731. PMLR, July 2023. ISSN: 2640-3498.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. arXiv
preprint arXiv:2401.08281, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Aleksandr Ermolov, Leyla Mirvakhabova, Valentin Khrulkov, Nicu Sebe, and Ivan Oseledets. Hy-
perbolic vision Transformers: Combining Improvements in Metric Learning. In 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7399–7409, 2022.

Lixin Fan, Kam Woh Ng, Ce Ju, Tianyu Zhang, and Chee Seng Chan. Deep Polarized Network
for Supervised Learning of Accurate Binary Hashing Codes. In Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, pp. 825–831, 2020.

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. Advances in
Neural Information Processing Systems, 2018a.

Octavian Ganea, Gary Becigneul, and Thomas Hofmann. Hyperbolic Entailment Cones for Learn-
ing Hierarchical Embeddings. In Proceedings of the 35th International Conference on Machine
Learning, pp. 1646–1655, 2018b.

Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization. IEEE
transactions on pattern analysis and machine intelligence, 36(4):744–755, 2014.

Mina Ghadimi Atigh, Martin Keller-Ressel, and Pascal Mettes. Hyperbolic Busemann Learning
with Ideal Prototypes. In Advances in Neural Information Processing Systems, pp. 103–115,
2021.

Google. Quick, draw! dataset, 2023. URL https://github.com/googlecreativelab/
quickdraw-dataset.

Yunhui Guo, Haoran Guo, and Stella X Yu. Co-sne: Dimensionality reduction and visualization for
hyperbolic data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 21–30, 2022.

Stephen Hausler, Sourav Garg, Ming Xu, Michael Milford, and Tobias Fischer. Patch-netvlad:
Multi-scale fusion of locally-global descriptors for place recognition. In 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14136–14147, 2021.

Jiun Tian Hoe, Kam Woh Ng, Tianyu Zhang, Chee Seng Chan, Yi-Zhe Song, and Tao Xiang. One
loss for all: Deep hashing with a single cosine similarity based learning objective. Advances in
Neural Information Processing Systems, 34:24286–24298, 2021a.

Jiun Tian Hoe, Kam Woh Ng, Tianyu Zhang, Chee Seng Chan, Yi-Zhe Song, and Tao Xiang.
One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective. In
Advances in Neural Information Processing Systems, pp. 24286–24298, 2021b.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized
neural networks: Training neural networks with Low Precision Weights and Activations. Journal
of Machine Learning Research, pp. 1–30, 2018.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and Training of neural networks for Ef-
ficient Integer-Arithmetic-Only Inference. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2704–2713, 2018.

Young Kyun Jang and Nam Ik Cho. Self-Supervised Product Quantization for Deep Unsupervised
image Retrieval. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.
12085–12094, 2021.

Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
search. In IEEE Transactions on Pattern Analysis and Machine Intelligence, volume 33, pp. 117–
128. IEEE, 2011.

Yongkweon Jeon, Baeseong Park, Se Jung Kwon, Byeongwook Kim, Jeongin Yun, and Dongsoo
Lee. BiQGEMM: Matrix Multiplication with Lookup Table for Binary-Coding-Based Quan-
tized DNNs. In SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–14, 2020.

12

https://github.com/googlecreativelab/quickdraw-dataset
https://github.com/googlecreativelab/quickdraw-dataset

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

H Jégou, M Douze, and C Schmid. Product quantization for nearest neighbor search. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pp. 117–128, 2011.

Tejaswi Kasarla, Gertjan Burghouts, Max van Spengler, Elise van der Pol, Rita Cucchiara, and
Pascal Mettes. Maximum Class Separation as Inductive Bias in One Matrix. Advances in Neural
Information Processing Systems, pp. 19553–19566, 2022.

Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lempitsky.
Hyperbolic image embeddings. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 6418–6428, 2020.

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer. I-BERT:
Integer-only BERT Quantization. In Proceedings of the 38th International Conference on Machine
Learning, pp. 5506–5518, 2021.

Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in pytorch,
2020.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for advanced
research), 2009.

Christopher Lang, Alexander Braun, Lars Schillingmann, and Abhinav Valada. On hyperbolic em-
beddings in object detection. In DAGM German Conference on Pattern Recognition, pp. 462–476,
2022.

Yunqiang Li and Jan van Gemert. Deep unsupervised image hashing by maximizing bit entropy. In
Proceedings of the AAAI Conference on Artificial Intelligence, pp. 2002–2010, 2021.

Qi Liu, Maximilian Nickel, and Douwe Kiela. Hyperbolic graph neural networks. Advances in
neural information processing systems, 2019.

Shaoteng Liu, Jingjing Chen, Liangming Pan, Chong-Wah Ngo, Tat-Seng Chua, and Yu-Gang
Jiang. Hyperbolic Visual Embedding Learning for Zero-Shot recognition. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9273–9281, 2020.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021a.

Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin trans-
former. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 3202–3211, 2022.

Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma, and Wen Gao. Post-Training Quan-
tization for vision Transformer. In Advances in Neural Information Processing Systems, pp.
28092–28103, 2021b.

Teng Long, Pascal Mettes, Heng Tao Shen, and Cees G. M. Snoek. Searching for actions on the
hyperbole. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 1138–1147, 2020.

Yury A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 42(4):824–836, 2018.

Pascal Mettes, Mina Ghadimi Atigh, Martin Keller-Ressel, Jeffrey Gu, and Serena Yeung. Hyper-
bolic deep learning in computer vision: A survey. arXiv, 2023.

George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):
39–41, 1995.

Gal Mishne, Zhengchao Wan, Yusu Wang, and Sheng Yang. The Numerical Stability of Hyper-
bolic Representation Learning. In Proceedings of the 40th International Conference on Machine
Learning, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Antonio Montanaro, Diego Valsesia, and Enrico Magli. Rethinking the compositionality of point
clouds through regularization in the hyperbolic space. Advances in Neural Information Processing
Systems, 35:33741–33753, December 2022.

Marius Muja and David G Lowe. Scalable nearest neighbor algorithms for high dimensional data.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(11):2227–2240, 2014.

Alessandro Muscoloni, Josephine Maria Thomas, Sara Ciucci, Ginestra Bianconi, and Carlo Vit-
torio Cannistraci. Machine learning meets complex networks via coalescent embedding in the
hyperbolic space. Nature Communications, pp. 1615, 2017.

Maximillian Nickel and Douwe Kiela. Poincaré Embeddings for Learning Hierarchical Represen-
tations. In Advances in Neural Information Processing Systems, 2017.

Zhe Pan and Peng Wang. Hyperbolic Hierarchy-Aware Knowledge Graph Embedding for Link
Prediction. In Findings of the Association for Computational Linguistics: EMNLP 2021, pp.
2941–2948, 2021.

Wei Peng, Jingang Shi, Zhaoqiang Xia, and Guoying Zhao. Mix Dimension in Poincaré Geome-
try for 3D Skeleton-based Action Recognition. In Proceedings of the 28th ACM International
Conference on Multimedia, MM ’20, pp. 1432–1440. Association for Computing Machinery,
October 2020.

Wei Peng, Tuomas Varanka, Abdelrahman Mostafa, Henglin Shi, and Guoying Zhao. Hyperbolic
deep neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning Transferable Visual Models From Natural Language Supervision. In
Proceedings of the 38th International Conference on Machine Learning, pp. 8748–8763, 2021.

Frederic Sala, Chris De Sa, Albert Gu, and Christopher Ré. Representation tradeoffs for hyperbolic
embeddings. In International conference on machine learning, 2018.

Ramit Sawhney, Harshit Joshi, Rajiv Ratn Shah, and Lucie Flek. Suicide Ideation Detection via
Social and Temporal User Representations using Hyperbolic Learning. In Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 2176–2190, 2021.

Karin Kipper Schuler. VerbNet: A Broad-Coverage, Comprehensive Verb Lexicon. PhD thesis,
University of Pennsylvania, 2006.

Fumin Shen, Yan Xu, Li Liu, Yang Yang, Zi Huang, and Heng Tao Shen. Unsupervised deep
hashing with similarity-adaptive and discrete optimization. IEEE transactions on pattern analysis
and machine intelligence, 40(12):3034–3044, 2018a.

Fumin Shen, Yan Xu, Li Liu, Yang Yang, Zi Huang, and Heng Tao Shen. Unsupervised Deep Hash-
ing with Similarity-Adaptive and Discrete Optimization. IEEE Transactions on Pattern Analysis
and Machine Intelligence, pp. 3034–3044, 2018b.

Yuming Shen, Jie Qin, Jiaxin Chen, Mengyang Yu, Li Liu, Fan Zhu, Fumin Shen, and Ling Shao.
Auto-Encoding Twin-Bottleneck Hashing. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2818–2827, 2020.

Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. Hyperbolic neural networks++. In
International Conference on Learning Representations, 2021.

Rishi Sonthalia and Anna Gilbert. Tree! I am no Tree! I am a low dimensional Hyperbolic Embed-
ding. In Advances in Neural Information Processing Systems, pp. 845–856, 2020.

Akhil G Subramanya, Shravan Kumar, Anshumali Prakash, Anshumali Shrivastava, Andreas
Volanakis, Chaitanya Tewari, and Dushyant Singh. Diskann: Fast accurate billion-point near-
est neighbor search on a single node. In Advances in Neural Information Processing Systems
(NeurIPS), pp. 13765–13775, 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Alexandru Tifrea, Gary Becigneul, and Octavian-Eugen Ganea. Poincare glove: Hyperbolic word
embeddings. In International Conference on Learning Representations, 2019.

Albert Tseng, Tao Yu, Toni Liu, and Christopher M. De Sa. Coneheads: Hierarchy Aware Attention.
Advances in Neural Information Processing Systems, 36:51421–51433, 2023.

Jingdong Wang, Ting Zhang, Nicu Sebe, and Heng Tao Shen. A survey on learning to hash. IEEE
transactions on pattern analysis and machine intelligence, 40(4):769–790, 2017.

Jingdong Wang, Ting Zhang, jingkuan song, Nicu Sebe, and Heng Tao Shen. A Survey on Learning
to Hash. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 769–790, 2018.

Sijie Wang, Qiyu Kang, Rui She, Wei Wang, Kai Zhao, Yang Song, and Wee Peng Tay. Hy-
pLiLoc: Towards Effective LiDAR Pose Regression With Hyperbolic Fusion. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5176–5185, 2023.

Rukai Wei, Yu Liu, Jingkuan Song, Yanzhao Xie, and Ke Zhou. Exploring hierarchical information
in hyperbolic space for self-supervised image hashing. IEEE Transactions on Image Processing,
2024.

Menglin Yang, Aosong Feng, Bo Xiong, Jihong Liu, Irwin King, and Rex Ying. Hyperbolic fine-
tuning for large language models. arXiv preprint arXiv:2410.04010, 2024.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He.
ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers.
Advances in Neural Information Processing Systems, pp. 27168–27183, 2022.

Tao Yu and Christopher M De Sa. Numerically Accurate Hyperbolic Embeddings Using Tiling-
Based Models. In Advances in Neural Information Processing Systems, volume 32, 2019.

Tao Yu, Toni J. B. Liu, Albert Tseng, and Christopher De Sa. Shadow Cones: A Generalized Frame-
work for Partial Order Embeddings. In International Conference on Learning Representations,
2024.

Li Yuan, Tao Wang, Xiaopeng Zhang, Francis EH Tay, Zequn Jie, Wei Liu, and Jiashi Feng. Central
Similarity Quantization for Efficient image and Video Retrieval. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 3083–3092, 2020.

A HYPERBOLIC MACHINE LEARNING PRELIMINARIES

Hyperbolic geometry is non-Euclidean geometry characterized by a constant negative curvature.
Unlike Euclidean geometry, hyperbolic space exhibits unique properties, such as the exponential
growth of volume (Ganea et al., 2018b) with respect to the radius and the divergence of parallel
lines. It serves as a powerful mathematical framework for modeling hierarchical data, tree-like
structures, and other settings where distances grow exponentially.

Hyperbolic spaces are equipped with several equivalent models Cannon et al. (1997) that offer
different perspectives on the same underlying geometry. These models provide flexibility for com-
putation, visualization, and mathematical reasoning. Despite their different formulations, they are
isometric, meaning their distance metrics can be transformed into one another through well-defined
coordinate transformations.

A.1 FIVE COMMON MODELS OF HYPERBOLIC GEOMETRY

Following the conventions in differential geometry, the five commonly used models of hyperbolic
geometry are isometric to each other:

1. Halfspace Model (H): Also known as the Poincaré halfspace model, it is defined as:

H = {(1, x2, . . . , xn+1) : xn+1 > 0} .
In this model, hyperbolic space is represented within a half-plane or half-space above a given axis,
often used in complex analysis and conformal mapping.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

2. Interior of the Disk Model (I): Also known as the Poincaré disk model, it is given by:

I =
{
(x1, . . . , xn, 0) : x

2
1 + · · ·+ x2

n < 1
}
.

Here, the hyperbolic space resides inside a Euclidean unit disk. This model is conformal, preserving
angles, and is commonly used in visualization.

3. Jemisphere Model (J): Pronounced with the ”J” as in Spanish, this model is defined as:

J =
{
(x1, . . . , xn+1) : x

2
1 + · · ·+ x2

n+1 = 1 and xn+1 > 0
}
.

The hyperbolic space is represented as a hemisphere of a unit sphere.

4. Klein Model (K): This model, known for its projective properties, is given by:

K =
{
(x1, . . . , xn, 1) : x

2
1 + · · ·+ x2

n < 1
}
.

The Klein model preserves straight-line geodesics, making it useful for certain computations, though
it does not preserve angles.

5. Loid Model (L): Short for the hyperboloid model, it is defined as:

L =
{
(x1, . . . , xn, xn+1) : x

2
1 + · · ·+ x2

n − x2
n+1 = −1 and xn+1 > 0

}
.

This model is particularly important in physics and mathematics due to its direct connection to
Lorentzian geometry and relativity.

A.2 ISOMETRY BETWEEN MODELS

The equivalence of these models is established through isometric coordinate transformations, as
detailed in Section 7 of Cannon et al. (1997). These transformations ensure that distances and
geodesics remain invariant when transitioning between models, making them interchangeable de-
pending on the application.

Remark Under the isometry defined in Cannon et al. (1997), Section 7, five hyperbolic models
yield equivalent retrieval results.

Proof. Although we do not binarize other hyperbolic models, they can still use our binarization via
isometry defined in hyperbolic geometry Cannon et al. (1997), with a single coordinates transfor-
mation. In particular, we give one example of how the Lorentz model L transforms to Poincaré disk
model Radford et al. (2021) in one line:

L 7→ D : (x0, x1, ..., xn) 7→ (
x1

1 + x0
,

x2

1 + x0
, ...,

xn

1 + x0
) (12)

We similarly illustrate the other isometries following the convention in (Cannon et al., 1997):

From Lorentz model to Klein model:

(x0, x1, · · · , xn) 7→ (x1/x0, x2/x0, · · · , xn/x0). (13)

From Lorentz model to Hemisphere model:

(x0, x1, · · · , xn) 7→ (x0/xn, x1/xn, · · · , xn−1/xn, 1/xn). (14)

From Hemisphere model to Poincaé Halfspace model:

(x0, x1, · · · , xn) 7→ (1, 2x1/(x0 + 1), · · · , 2xn/(x0 + 1)) (15)

From Hemisphere model to Poincaré Disk model:

(x0, x1, · · · , xn) 7→ (x0/(xn + 1), x1/(xn + 1), · · · , xn−1/(xn + 1)) (16)

Note that all the above transformations are isometry, meaning that the distance between source
model embeddings is equal to the distance between the target model embeddings. Therefore, any
hyperbolic model can benefit from our Poincaré binarization.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.3 POINCARÉ BALL GEOMETRY

Hyperbolic geometry is a non-Euclidean geometry characterized by a constant negative curvature.
Among the five commonly used models of hyperbolic geometry, we choose the Poincaré ball model
due to its unique properties of isotropy and symmetry in each dimension. These properties make the
Poincaré ball particularly well-suited for designing simple and effective binarization strategies.

The Poincaré ball model is defined as:

Dn = {x ∈ Rn : ∥x∥ < 1}, (17)

where ∥ · ∥ denotes the Euclidean norm. Within this model, the geometry is described by a con-
formal Riemannian metric that preserves angles, making it especially convenient for embedding
hierarchical or tree-like data structures.

The Riemannian metric of the Poincaré ball is given by:

gx = λ2
xg

E , (18)

where gE is the Euclidean metric and λx = 2
1−∥x∥2 is the conformal factor. This conformal property

ensures that local distances and directions are geometrically meaningful, while the ball’s bounded
nature simplifies computations and facilitates compact embedding representations.

A.4 DISTANCE ON POINCARÉ BALL

Hyperbolic space can have different constant negative curvatures, parameterized by c. For simplicity,
we follow the conventions in Ganea et al. (2018a); Shimizu et al. (2021) that use c > 0 to represent
negative curvature to simplify computation. The Poincaré ball model with curvature c is defined as:

Dn
c = {x ∈ Rn : ∥x∥ <

1√
c
}, (19)

where ∥ · ∥ denotes the Euclidean norm. The hyperbolic distance between two points x,y ∈ Dn
c

under curvature c is given by:

dc(x,y) =
2√
c
tanh−1

(√
c ∥⊖cx⊕c y∥

)
. (20)

where the Möbius addition ⊕c and subtraction ⊖c are defined as:

x⊕c y =

(
1 + 2c⟨x,y⟩+ c∥y∥2

)
x+

(
1− c∥x∥2

)
y

1 + 2c⟨x,y⟩+ c2∥x∥2∥y∥2
, (21)

x⊖c y = x⊕c (−y), (22)
⊖cx = 0⊕c (−x), (23)

When c = −1, this reduces to the standard Poincaré ball distance:

dD(x,y) = arcosh

(
1 + 2

∥x− y∥2

(1− ∥x∥2)(1− ∥y∥2)

)
. (24)

Here, c allows for the scaling of the hyperbolic space, with smaller |c| corresponding to a ”flatter”
space.

A.4.1 RECOVERING EUCLIDEAN SPACE AS c → 0

As the curvature c approaches 0 (i.e., c → 0), the hyperbolic space becomes increasingly flat, and
its geometry converges to Euclidean geometry. Specifically:

• The radius of the Poincaré ball, 1√
c
, tends to infinity.

• The hyperbolic distance formula simplifies to the Euclidean distance:

lim
c→0−

dDc(x,y) = ∥x− y∥. (25)

• This occurs also because the conformal factor λx = 2
1−c∥x∥2 in the Riemannian metric

approaches 1, and the distortion due to curvature vanishes.,..

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.5 POINCARÉ DISTANCE SYMMETRY UNDER CURVATURE c

We show that dc(x,y) is symmetric, despite the non-commutative nature of the Möbius addition ⊕c.
This symmetry arises from the fact that the Euclidean norm of the Möbius addition is commutative.
Specifically, the norm of the Möbius addition is given by:

∥x⊕c y∥ =

√
∥x∥2 + 2⟨x,y⟩+ ∥y∥2

1 + 2c⟨x,y⟩+ c2∥x∥2∥y∥2
. (26)

The key observation here is that while x⊕c y ̸= y ⊕c x in general, the norm satisfies:

∥x⊕c y∥ = ∥y ⊕c x∥ , (27)

due to the symmetric structure of the numerator and denominator in the norm formula.

As a result, the hyperbolic distance dc(x,y) becomes symmetric:

dc(x,y) = dc(y,x). (28)

This property is crucial for defining a proper distance metric in hyperbolic space under curvature c.

A.6 COMPLEXITY OF DISTANCE dD(q,x):

dD(q,x) =
2√
c
tanh−1

(
√
c

∥∥∥∥ (1− 2c⟨q,x⟩+ c∥x∥2)q+ (1− c∥q∥2)x
1− 2c⟨q,x⟩+ c2∥q∥2∥x∥2

∥∥∥∥2
)

(29)

ANALYSIS OF OPERATIONS

• Inner products and norms:

– ⟨q,x⟩: n multiplications, n− 1 additions
– ∥q∥2 and ∥x∥2: 2n multiplications, 2(n− 1) additions

• Scalar computations:

– Few multiplications and additions (constants)

• Vector operations:

– Scaling vectors: 2n multiplications
– Vector addition: n additions

• Norm squared of numerator:

– n multiplications, n− 1 additions

• Division & Transcendental function:

– One division (scalar)
– One tanh−1 evaluation

• Total Operations:

– Multiplications: Approximately 7n+ constants
– Additions/Subtractions: Approximately 5n+ constants
– Divisions & Transcendental function: One

CONCLUSION:

• While both distances have linear complexity O(n), dD(q,x) involves significantly more
arithmetic operations.

• Therefore, even when considering constant factors, dD(q,x) is computationally more in-
tensive than dR(x,y).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B REAL-VALUED HYPERBOLIC EMBEDDINGS

Given a training set Dtrain = {(xi, yi)}Ni=1. For each class y, let py denote its prototype target in
a hyperbolic embedding space. We aim to train a network f(·) that projects the data point x onto
hyperbolic space x = f(x), where f(·) is an arbitrary backbone network with an exponential map
on top to project the output embedding to hyperbolic space. The likelihood of sample (x, y) is given
as:

p(x|y = y′) =
exp (−dD(f(x),py′))∑|H|
y′′ exp (−dD(f(x),py′′))

, (30)

which is optimized through the negative log-likelihood loss akin to Long et al. (2020). For the pro-
totype embeddings of the classes, our approach works both in the one-vs-rest setting and the setting
where we are equipped with label hierarchy H. In the one-vs-rest setting, we can simply define
class prototypes as maximally separated prototypes akin to Kasarla et al. (2022). In the hierarchical
setting, we can obtain class prototypes for example using Hyperbolic Entailment Cones Ganea et al.
(2018b).

C PROOFS

Proposition C.1. Given query q, For any x1,x2 in the database such that |∥x1∥−∥x2∥| = ϵ, given
the Poincar’e disk boundary tolerance margin δ, if 0 ≤ ϵ ≤ δ dR(q,x2)−dR(q,x1)

dR(q,x2)
, then dR(q,x1) ≤

dR(q,x2) implies dD(q,x1) ≤ dD(q,x2).

Proof. we start the analysis from the fact that poincar’e disk usually defines a tolerance margin δ
such that

||x||2 ≤ 1− δ (31)

to avoid numerical instability. For example, Khrulkov et al. (2020) adopted δ = 10−3 as the margin.

we show that 1) preserving dD(q, x1) < dD(q, x2) is equivalent to r ∈ (L,R) for some L,R.

Note that dD(q, x1) < dD(q, x2) is equivalent to

cosh−1

(
1 + 2

||q − x1||2

(1− ||q||2)(1− ||x1||2)

)
< cosh−1

(
1 + 2

||q − x2||2

(1− ||q||2)(1− ||x2||2)

)
. (32)

As cosh−1(·) is strictly increasing, dD(q, x1) < dD(q, x2) is equivalent to

||q − x1||2

(1− ||q||2)(1− ||x1||2)
<

||q − x2||2

(1− ||q||2)(1− ||x2||2)
, (33)

which is equivalent to

(||q − x1||2)(1− ||x2||2) < (||q − x2||2)(1− ||x1||2). (34)

With simplified notation as:

dR(q, x1)
2(1− r2) < dR(q, x2)

2(1− (r ± ϵ)2). (35)

Solving this quadratic inequality with respect to r, we have r ∈ (L,R), where

L =
±ϵdR(q, x2)−

√
(dR(q, x2)− dR(q, x1))2 + ϵ2(2dR(q, x2)2 − dR(q, x1))

dR(q, x2)− dR(q, x1)
, (36)

R =
±ϵdR(q, x2) +

√
(dR(q, x2)− dR(q, x1))2 + ϵ2(2dR(q, x2)2 − dR(q, x1))

dR(q, x2)− dR(q, x1)
, (37)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

leading to the following inequalities:

L <
±ϵdR(q, x2)−

√
(dR(q, x2)− dR(q, x1))2

dR(q, x2)− dR(q, x1)
(38)

≤
ϵdR(q, x2)−

√
(dR(q, x2)− dR(q, x1))2

dR(q, x2)− dR(q, x1)
= ϵ

dR(q, x2)

dR(q, x2)− dR(q, x1)
− 1 (39)

R >
±ϵdR(q, x2) +

√
(dR(q, x2)− dR(q, x1))2

dR(q, x2)− dR(q, x1)
(40)

≥
−ϵdR(q, x2) +

√
(dR(q, x2)− dR(q, x1))2

dR(q, x2)− dR(q, x1)
= −ϵ

dR(q, x2)

dR(q, x2)− dR(q, x1)
+ 1, (41)

which means the quadratic inequality dR(q, x1)
2(1 − r2) < dR(q, x2)

2(1 − (r ± ϵ)2) holds true
when

ϵ
dR(q, x2)

dR(q, x2)− dR(q, x1)
− 1 ≤ −1 + δ (42)

−ϵ
dR(q, x2)

dR(q, x2)− dR(q, x1)
+ 1 ≤ 1− δ (43)

holds, leading that

ϵ ≤ δ
dR(q, x2)− dR(q, x1)

dR(q, x2)

Therefore, we conclude that the upper bound of ϵ is ϵ ≤ δ dR(q,x2)−dR(q,x1)
dR(q,x2)

= dR(q,x2)−dR(q,x1)
dR(q,x2)

. We
also have a trivial lower bound of ϵ, as ϵ ≥ 0, this is because when ϵ = 0, we easily have L =
−1, R = 1, are the boundary of the Poincare disk, leading to a constantly true proposition.

Proposition C.2. (Binary Ranking Preservation) For a binarizer g(·) such that ⟨x+,y+⟩ ∝
⟨g(x), g(y)⟩, dD(x,y) is yields the same ranking results to Hamming distance dH(x

b,yb) =
∥xb ⊕ yb∥0 for nearest neighbor search.

Proof. For any binary representation xb = g(x),yb = g(y), the squared Euclidean distance dR is
proportional to Hamming distance dH:

d2R(x,y) = d2R(x
+,y+) = ∥x+ − y+∥2

= ∥x+∥2 + ∥y+∥2 − 2⟨x+,y+⟩
∝ ∥g(x)∥2 + ∥g(y)∥2 − 2 ⟨g(x), g(y)⟩
= ∥xb∥2 + ∥yb∥2 − 2⟨xb,yb⟩
= dH(x

b,yb).

(44)

Following Proposition C.2, we have nearest neighbor equivalence between the Hamming distance
and hyperbolic distance:

argmin
x

dH(q,x) = argmin
x

d2R(q,x) by equation 44

= argmin
x

dR(q,x)

= argmin
x

dD(q,x) by Prop. C.1.

(45)

Corollary C.3. Under the condition of Proposition C.2, hyperbolic metric dD(x,y) is ranking
preserving as euclidean metric dR(x,y).

Proof. Given query q and database X = {xi}, we annotate the subscript of the database according
to the Euclidean distance to the query. such that:

dR(q,x1) ≤ dR(q,x2) ≤ · · · ≤ dR(q,xN) (46)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

From Proposition C.2, we can have:
dD(q,x1) ≤ dD(q,x2) ≤ · · · ≤ dD(q,xN) (47)

This means under the conditions of Proposition C.2 the hyperbolic metric yields the same output
ranking as using the Euclidean metric, leading to the same retrieval outputs.

D SLOWNESS OF HYPERBOLIC SPACE

The strongest evidence that hyperbolic space is more suitable for retrieval than Euclidean is its
compact nature, as shown in (Long et al., 2020) and Ermolov et al. (2022). Unfortunately, this
comes at the cost of slowness that is determined by the nature of the hyperbolic distance:

dD(q,x) =
2√
c
tanh−1

√
c

∥∥∥∥∥
(
1− 2c⟨q,x⟩+ c∥x∥2

)
q+

(
1− c∥q∥2

)
x

1− 2c⟨q,x⟩+ c2∥q∥2∥x∥2

∥∥∥∥∥
2
 . (48)

However, The efficiency brought by low-dimensional embedding is offset by its slow computation,
in hyperbolic space, distance calculation is much slower than its Euclidean counterpart

dR(x,y) = ∥x− y∥2. (49)

We can quantitatively show how slow hyperbolic distance calculation is, as hyperbolic distance
calculation takes 20.2713± 0.1443 micro-seconds, while its Euclidean counterpart takes 4.7033±
0.0394 micro-seconds. This result comes from 512-dim float number vectors distance calculations,
averaged over 104 calculations on a single CPU core, both dD and dR are based on implementation
of (Becigneul & Ganea, 2019).

To make hyperbolic space practically useful for retrieval, we need to bypass the need for explicit
distance calculations in hyperbolic space. We present the necessary theory and algorithms to do so
in our Binary Hyperbolic Embeddings.

D.1 ANALYSIS FOR LORENTZ MODEL

The distance metric under Lorentz model is induced by Lorentzian scalar product:

⟨x,y⟩L = x0y0 +

n∑
i=1

xiyi (50)

The associated distance is defined as:
dL(x,y) = cosh−1 (−⟨x,y⟩L) (51)

Although this distance appears to be fast to compute, we still suffer from the complexity of its
anisotropic and unlimited range. Using Poincaré disk as a proxy also does not work, because trans-
forming from Poincaré disk D to Lorentz model L also incurs high computation costs:

D 7→ L : (x) 7→ (1 + ∥x∥2, x1, x2, · · · , xn)

1− ∥x∥2
(52)

E MORE EXPERIMENTS

E.1 EFFECT OF DIMENSIONALITY AND NUMBER OF BITS

We visually show the speed-performance trade-off on CIFAR100 in Figure E.1. Lower
bit/dimension configurations result in higher speeds (up to 62.73×) but lower mAP, while higher
configurations provide better mAP (up to 0.745) at the cost of reduced speed (down to 4.71×). The
best trade-off between speed and performance appears to be with binary hyperbolic embeddings,
achieving over 8 times faster speeds with roughly the same performance. The highest mAP of 0.745
is achieved with both 128 × 2 = 256 and 128 × 4 = 512 configurations, with the latter offering
slightly better speed. This underscores the balance between embedding dimensions, quantization
bits, retrieval performance, and speed, highlighting the potential for significant speed-ups with only
modest reductions in accuracy.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

10 0 10 20 30 40 50 60 70
Speed (x times)

0.3

0.4

0.5

0.6

0.7

0.8

m
AP

8d x 2bits

8d x 4bits

16d x 2bits

16d x 4bits

32d x 2bits

32d x 4bits

64d x 2bits

64d x 4bits

128d x 2bits
128d x 4bits

512d x 32bits

mAP vs Speedup trade-off - CIFAR100

2

4

8

n

Figure 6: The effect of embedding dimensions and quantization bits on CIFAR100 on CLIP
visual backbone. The darkest bubble denotes the full-precision Euclidean embedding. We find it
is best to use more dimensions with strong compression than vice versa. With binary hyperbolic
embeddings, we can obtain > 4.7 times faster retrieval speeds at roughly the same performance.
Naturally, we can compress much further, at the cost of retrieval performance.

E.2 EFFECT OF HIERARCHICAL KNOWLEDGE

To measure this potential we follow Long et al. (2020); Ghadimi Atigh et al. (2021) in using the
Sibling mAP (SmAP) performance metric. Building upon the mAP metric, SmAP takes into account
the proximity in the class hierarchy for retrieved items. Specifically, when an item retrieved is just
one hop away (i.e., same parent class) from the ground truth it is considered a true positive.

Table 8: The effect of using hierarchical knowledge and different manifolds on CIFAR100 on
CLIP visual backbone. At full-precision, Spherical and hyperbolic embeddings outperform Eu-
clidean embeddings, at the cost of a large number of bits and/or slow distance calculations. By
binarizing we can maintain the performance benefits of hierarchy and hyperbolic embeddings but at
a highly compressed bit length.
⋆ denotes that the method has been modified to be using hyperbolic distance metric.

Hierarchical Manifold Bit length Binary mAP SmAP

Radford et al. Radford et al. (2021) ✗ R 16,384 ✗ 0.721 0.835
Kasarla et al. Kasarla et al. (2022) ✗ S 3,168 ✗ 0.746 0.860
Kasarla et al. Kasarla et al. (2022)⋆ ✗ D 3,168 ✗ 0.744 0.863
Barz & Denzler Barz & Denzler (2020) ✓ S 3,200 ✗ 0.719 0.843
Long et al. Long et al. (2020) ✓ D 1,600 ✗ 0.746 0.868
Binary (ours) ✓ D 512 ✓ 0.745 0.866

In Table 8 and 9 we perform a comparison to gain insight into the effect of using hierarchy and
hyperbolic embeddings. We show that prior full-precision approaches perform comparable in terms
of mAP when using a hyperbolic or Spherical manifold, and that adding hierarchy is especially
beneficial to the SmAP performance. However, despite being more compressed than full-precision
Euclidean manifolds these approaches still require a large number of bits and/or slow hyperbolic

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

distance calculations. By binarizing, we are able to compress hierarchical hyperbolic embeddings to
a small bit length whilst maintaining good performance on both standard and hierarchical metrics.

Table 9: The effect of using hierarchical knowledge and different manifolds on ImageNet1K
on CLIP visual backbone. At full-precision Spherical and hyperbolic embeddings outperform Eu-
clidean embeddings, at the cost of a large number of bits and/or slow distance calculations. By
binarizing we can maintain the performance benefits of hierarchy and hyperbolic embeddings but at
a highly compressed bit length.
⋆ denotes that the method has been modified to be using hyperbolic distance metric.

Hierarchical Manifold Bit length Binary mAP SmAP

Radford et al. Radford et al. (2021) ✗ R 16,384 ✗ 0.593 0.787
Kasarla et al. Kasarla et al. (2022) ✗ S 3,168 ✗ 0.607 0.802
Kasarla et al. Kasarla et al. (2022)⋆ ✗ D 3,168 ✗ 0.607 0.807
Barz & Denzler Barz & Denzler (2020) ✓ S 3,200 ✗ 0.599 0.811
Long et al. Long et al. (2020) ✓ D 1,600 ✗ 0.610 0.815
Binary (ours) ✓ D 512 ✓ 0.608 0.812

E.3 EFFECT OF CURVATURE AND RADIUS

In Table 10, we explore the effect of curvature on the ImageNet1K dataset. The parameter r2 repre-
sents the squared radius used for constructing class prototypes on the Poincaré disk, while c denotes
the curvature used when optimizing the function to map data samples to class prototypes. Low cur-
vature values indicate almost flat, Euclidean-like space, whereas high curvature values can cause
numerical instability. Therefore, a medium curvature value is preferred for both class prototype
embedding and sample embedding.

Table 10: The effect of curvature on ImageNet1K on CLIP visual backbone. Parameter r2 is the
squared radius used when constructing the class prototypes P on poincaré disk, whereas c is the cur-
vature used when optimizing f(·) to map data samples to class prototypes. Low curvature indicates
almost uncurved, euclidean-like space, whereas high curvature causes numerical instability. Thus,
a medium value of curvature during both class prototype embedding and sample embedding will be
preferred.

r2 = 103 r2 = 102 r2 = 10 r2 = 1 r2 = 0.1

c = 10−3 0.493 0.521 0.587 0.596 0.588
c = 10−2 - 0.586 0.599 0.608 0.594
c = 0.1 - - 0.601 0.607 0.605
c = 1 - - - 0.549 0.550
c = 10 - - - - 0.372

The table lists the accuracy results for different combinations of r2 and c. For r2 = 103, the accuracy
improves from 0.493 with c = 10−3 to 0.521 with r2 = 102 and further to 0.587 with r2 = 10.
The best performance, with an accuracy of 0.608, is achieved with r2 = 1 and c = 10−2. As r2

decreases further to 0.1, the accuracy decreases slightly. High curvature values (c = 1 and c = 10)
result in significantly lower accuracy, highlighting the numerical instability.

In summary, medium curvature values during both class prototype embedding and sample embed-
ding yield better performance, while high curvature causes numerical instability and lower accuracy.

F MORE RELATED WORK

Hyperbolic representation differs from the Euclidean representation commonly used in deep
learning. Early success was obtained by embedding the nodes of hierarchies as hyperbolic vec-
tors, outperforming Euclidean embeddings. Nickel & Kiela (2017) introduce Poincaré Embeddings,
where hierarchical nodes are positioned by pulling and pushing nodes based on parent-child rela-
tions. Ganea et al. (2018b) extend this idea through hyperbolic entailment cones, where child nodes

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

should strictly fall under the cone spanned by parent nodes. Other hyperbolic embeddings Sala et al.
(2018); Balazevic et al. (2019); Tseng et al. (2023); Yu et al. (2024) further explore these ideas
for incomplete information, graphs, and generalibility, respectively. To make the step towards deep
learning in hyperbolic space, Ganea et al. (2018a) and Shimizu et al. (2021) introduce hyperbolic
linear, recurrent, convolutional, and self-attention layers in the most commonly used model of hy-
perbolic space: the Poincaré ball model. These works have served as a foundation for hyperbolic
deep learning on graphs Pan & Wang (2021), dimensionality reduction Chami et al. (2021), com-
plex networks Muscoloni et al. (2017), social media Sawhney et al. (2021), etc. For more details on
hyperbolic layers, we refer to the survey of Peng et al. (2021).

Hyperbolic learning has also been broadly investigated in the image and video domain Mettes et al.
(2023). Hyperbolic geometry has been shown to aid in a variety of tasks, including image segmen-
tation Atigh et al. (2022), object detection Lang et al. (2022), action recognition Long et al. (2020);
Peng et al. (2020), image-text representation learning Desai et al. (2023), representing 3D point
clouds Montanaro et al. (2022) and LiDAR pose regression Wang et al. (2023). These works have
in common that they leverage hierarchical knowledge to maximize the benefits from the hyperbolic
space, embedding related concepts closer together, thereby allowing for more compact and powerful
representations.

24

	Introduction
	Related Work
	Binary Hyperbolic Embedding
	Problem Statement
	From hyperbolic to Hamming
	Binary hyperbolic quantization

	Experiments
	Experimental Setup
	Binary versus non-binary retrieval
	Effect of bit length and quantization level
	Effect of hierarchical knowledge
	Effect of curvature and radius
	Product Quantization and large-scale comparisons

	Conclusion
	Hyperbolic Machine Learning Preliminaries
	Five Common Models of Hyperbolic Geometry
	Isometry Between Models
	Poincaré Ball Geometry
	Distance on Poincaré ball
	Recovering Euclidean Space as c 0

	Poincaré Distance Symmetry Under Curvature c
	Complexity of Distance dD(q, x):

	Real-valued Hyperbolic Embeddings
	Proofs
	Slowness of hyperbolic space
	Analysis for Lorentz model

	More experiments
	Effect of dimensionality and number of bits
	Effect of hierarchical knowledge
	Effect of curvature and radius

	More Related Work

