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Abstract

Word similarity is important for NLP and its001
applications to humanistic and social science002
tasks, like measuring meaning changes over003
time, detecting biases, understanding contested004
terms, and more. Yet the traditional similar-005
ity method based on cosine between word em-006
beddings falls short in capturing the context-007
dependent, asymmetrical, polysemous nature008
of semantic similarity.009

We propose a cognitively-inspired model draw-010
ing on the proposal of Tversky (1977) that for011
conceptual tasks, people focus on extracting012
and compiling only the relevant features. Our013
Word Confusion model reframes seman-014
tic similarity in terms of feature-based clas-015
sification confusion. We train a classifier to016
map from contextual embeddings to words and017
use the classifier confusion (the probability of018
choosing confound word c instead of correct019
target t) as a measure of the similarity of c and020
t.021

We show that Word Confusion outper-022
forms cosine similarity in matching human sim-023
ilarity judgments across several datasets (MEN,024
WirdSim353, and SimLex), can measure simi-025
larity using predetermined features of interest,026
and enables qualitative analysis on real-world027
data. Reframing similarity based on classifi-028
cation confusion offers a cognitively-inspired,029
directional, and interpretable way of modeling030
the relationship between concepts.031

1 Introduction032

Semantic similarity measures allow computational033

social scientists, digital humanists, and NLP practi-034

tioners to perform fine-grained synchronic and di-035

achronic analysis on word meaning, with important036

applications to areas like cultural analytics and le-037

gal and historical document analysis (Bhattacharya038

et al., 2020; Ríos et al., 2012).039

The cosine between two embedding vectors is040

the most commonly used similarity metric for tex-041

tual analysis across a variety of fields, including 042

the digital humanities (Johri et al., 2011; Caliskan 043

et al., 2017; Manzini et al., 2019; Martinc et al., 044

2020). However, it does not fully account for 045

the multi-faceted nature of similarity (Tversky, 046

1977; Ettinger and Linzen, 2016; Zhou et al., 047

2022a, inter alia). Cosine similarity is dominated 048

by a small number of rogue dimensions due to 049

the anisotropy of contextual embedding spaces 050

(Timkey and Van Schijndel, 2021), underestimates 051

the semantic similarity of high-frequency words 052

(Zhou et al., 2022a), is a symmetric metric that 053

cannot capture the asymmetry of semantic relation- 054

ships1 (Vilnis and McCallum, 2014), and often fails 055

in capturing human interpretation (Sitikhu et al., 056

2019). These make cosine similarity less than op- 057

timal as a tool for humanistic and social scientific 058

analytics. 059

Here we propose to think about concept similar- 060

ity metrics in a different way, inspired by Tversky’s 061

1977 seminal work on similarity. Such cognitive 062

models presume that humans have a very rich men- 063

tal representation of concepts. When faced with a 064

particular task, like similarity assessment, we ex- 065

tract and compile from this rich representation only 066

the relevant features for the required task. This 067

formulation highlights the context-dependency of 068

similarity judgments (Evers and Lakens, 2014). 069

To demonstrate the potential of this new framing, 070

we introduce a proof-of-concept: Word Confu- 071

sion, a self-supervised method the defines the 072

semantic similarity between words according to 073

a classifier’s confusion between them. In our new 074

model, we first train a classifier to map from a word 075

embedding to the word itself, distinguishing it from 076

a set of distractors. At inference time, given a new 077

embedding e for a target word t, the probability the 078

classifier assigns to a confound word c, is used as 079

1Human similarity judgments are directional; “cat” is more
similar to “animal” than “animal” is to “cat”.

1



a measure of similarity of words c and t. The set080

of distractor words used in training act as features,081

allowing the similarity between words to be based082

on their feature-based interchangeability.083

We first test our model by comparing it to co-084

sine in standard word-similarity tasks, and test-085

ing it in feature classification tasks like sentiment086

and grammatical gender classification. Our find-087

ings suggest that the classification errors by Word088

Confusion might serve as a meaningful metric089

for assessing the similarity between two words.090

We then apply Word Confusion to two dif-091

ferent data exploration tasks. We first validate092

Word Confusion on a real-life dataset by trac-093

ing how the dollar token “$” has changed over the094

years.095

We next use Word Confusion to study a096

question in the political history of revolutionary097

France: how “revolution” went from being seen as098

a means of popular liberation, to becoming identi-099

fied with governmental actions that often flouted100

such personal freedoms. We do this by measuring101

the Word Confusion similarity of the French102

word “revolution” to different sets of words in the103

French Archive Parlementaires from 1789-1793.104

Our contributions are:105

• We propose a novel framing of semantic simi-106

larity, inspired by cognitive models and sensi-107

tive to the pitfalls of cosine similarity. Our108

new formulation can learn more complex109

word identity boundaries than cosine simi-110

larity alone; accounts for the asymmetrical111

nature of semantic similarity; can be easily112

adapted to desired domains; and provides a113

more interpretable measure.114

• We implement a proof-of-concept of our new115

framing of similarity, showing it outperforms116

cosine on standard semantic similarity bench-117

marks.118

• We apply our method to real-world data, show-119

casing its potential for analyzing word mean-120

ing and temporal trends.121

We hope this new formulation will spark the122

creation of computational social science tools that123

account for the multi-faceted and complex nature124

of semantic similarity2.125

2The Python package for this tool will be linked here upon
paper acceptance.

(a) Training Word Confusion: The classifier is trained
in a self-supervised manner. After constructing the desired
features /classes of the classifier, we automatically extract
sentences containing the feature words (red, green, and blue).
The input to the classifier is the contextual embedding of the
primary color token, e.g., the BERT embedding of the word
“red” in conditioned on the sentence “The sunset painted the
sky a brilliant shade of red”. The classifier is trained to map
between contextual embedding to the word.

(b) Word Confusion inference: The predetermined
classes serve as inference-features. The input is a sentence
with a word we wish to inspect, e.g., “burgundy”. The trained
classifier receives as input the contextual embedding “bur-
gundy”. We then use the classifier’s confusion matrix to
define the similarity of the burgundy with each and every
primary color. We note that the input word at inference could
be out-of-vocabulary with respect to the classifier. Moreover,
a different set of classes will entail different features used to
describe the input word.

Figure 1: Word Confusion: We predetermined a
set of classes for our classifier. At training, we extract
sentences containing the chosen classes {red, green,
blue}. We then use BERT’s contextual embeddings
of these words to train the classifier to correctly map
from the embeddings to the right class /feature (color, in
this case). At inference, we extract BERT’s contextual
embeddings of a new word, that is not necessarily repre-
sented by a classifier class (“burgundy”). We then input
the embedding to the classifier and use its confusion
matrix to understand which primary colors burgundy is
similar to.

2 Introducing Word Confusion 126

Figure 1 depicts Word Confusion’s training 127

and inference processes. At training, we prede- 128

fined a set of words, or features, that will later be 129

used to describe the analyzed word. We then ex- 130

tract from a corpus a set of sentences containing 131
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these words, such as “The sunset painted the sky a132

brilliant shade of red” for the word “red”.3 We then133

use BERT to extract the contextual embeddings of134

these feature-words, and train a classifier to map135

from a word embedding to its corresponding word136

identity. Thus, the classifier’s training objective is137

to correctly classify the embedding to the word that138

corresponds to it.139

More formally, given embeddings140

{e1, e2....ei} ∈ E that correspond to word141

identities {w1, w2, ..., wi} ∈ W , where W is the142

chosen set of words, we train a logistic regression143

classifier on all pairs of {ei, wi}.144

At inference, we wish to define the semantic sim-145

ilarity of a word in terms of the classifier’s classes146

(which can be thought of as features).4 We extract147

the contextual embedding of the word we wish to148

inspect, e.g., the word “burgundy” given the sen-149

tence “Burgundy is a deep reddish-brown shade150

inspired by wine”. We use the trained classifier151

to map the “burgundy”-embedding to its classes,152

or features, which are in this case the primary col-153

ors. We then use the classifier’s confusion matrix154

to understand which primary colors burgundy is155

similar to. Similar to the chosen example, the input156

word at inference could be out-of-vocabulary with157

respect to the classifier. This method also works for158

the case in which the inspected word is one of the159

classifier’s classes, as we can ignore the probability160

it assigns to that word and use the other N − 1161

features.162

More formally, we use the probability distribu-163

tion predicted by the model, p⃗j ∈ R|W |, to quantify164

the semantic similarity between wj (Burgundy) and165

wi, ∀wi ∈ W = {red, green, blue}. For exam-166

ple, the similarity of burgundy with the color red167

is the probability our classifier assigns to the class168

“red”. Thus the set of distractor words chosen to169

train the initial classifier act as features that can170

be selected by the analyst to focus on a particular171

dimension or question.172

2.1 Benchmarking Word Confusion173

The intuition behind Word Confusion is that if174

it struggles to distinguish between contextual em-175

beddings of burgundy and red, this could indicate176

they are similar. To test this hypothesis, we use177

Word Confusion on three semantic similarity178

benchmarks. For each task, we trained a Word179

3We use at least 30 training examples per class.
4We note that a different set of classes will entail different

features used to describe the input word.

Confusion model using sentences from English 180

Wikipedia5. Our classes contained all the words 181

from the benchmark. We then built word embed- 182

dings by averaging the last four hidden layers of 183

BERT-base-cased (additional details in appendix 184

B). 185

To calculate the similarity between two words 186

wi, wj , we first extracted all the sentences contain- 187

ing wi from English Wikipedia. We averaged the 188

contextual token embeddings of wi using these sen- 189

tences. This average token embedding was the in- 190

put to the trained classifier (with classes containing 191

all the words in the benchmark). We then used the 192

probability Word Confusion assigned to wi as 193

the right class to set the similarity score between 194

wi and wj . We used three benchmarks: 195

• MEN contains 3000-word pairs annotated 196

by 50 humans based on their “relatedness” 197

(Agirre et al., 2009). For example {berry, 198

seed}, {game, hockey}, and {truck, vehicle} 199

received high relatedness scores, where {hot, 200

zombi}, {interior, mushroom}, and {bakery, 201

zebra} received low scores. To approximate 202

human agreement, two annotators labeled all 203

3000 pairs on a 1-7 Likert scale; their Spear- 204

man correlation is 0.68, and the correlation of 205

their average ratings with the general MEN 206

scores is 0.84. 207

• WordSim353 (WS353) contains 2000 word- 208

pairs along with human-assigned association 209

judgements (Bruni et al., 2014). For exam- 210

ple {bank, money}, {Jerusalem, Israel}, and 211

{Maradona, football} received high scores 212

whereas {noon, string}, {sugar, approach}, 213

and {professor, cucumber} were ranked low. 214

The authors report an inter-annotator agree- 215

ment of 84%. 216

• SimLex contains 1000 word-pairs and directly 217

measures similarity, rather than relatedness 218

or association (Hill et al., 2015). The au- 219

thors defined similarity as synonymy and in- 220

structed their annotators to rank accordingly. 221

For example {happy, glad}, {fee, payment}, 222

and {wisdom, intelligence} received high re- 223

latedness scores, where {door, floor}, {trick, 224

size}, and {old, new} received low scores. 225

Inter-rater agreement (the average of pairwise 226

Spearman correlations between the ratings of 227

all respondents) was reported as 0.67. 228

5We use at least 30 training examples per class.
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Method
Dataset

MEN WS353 SimLex

Cosine 0.68 0.55 0.52
Word
Confusion

0.76 0.69 0.60

Table 1: Spearman’s ρ correlation between Word
Confusion and cosine similarity results as compared
to humans. These three benchmarks focus on slightly
different aspects of word similarity. We measure the
correlation between human scores and cosine similarity
between the language model embeddings versus Word
Confusion’s similarity scores. As can be seen, our
method outperforms cosine similarity.

Across MEN, WS353, and SimLex, Word229

Confusion outperforms cosine similarity, with230

Spearman’s ρ that are up to 0.14 higher (see Table231

1). This illustrates the meaningfulness of classifica-232

tion confusions, compared to cosine similarity. We233

note that our probability distribution spanned only234

the classes we chose in advance (all of the words235

in the dataset), which yields a different vocabulary236

compared to the original language model.237

3 Theoretical Intuition238

In this section, we discuss the importance of word239

identifiability and how it enables the core mechan-240

ics of Word Confusion. We then discuss the241

theoretical differences between Word Confu-242

sion and cosine similarity.243

3.1 The Identifiability of Contextualized244

Word Embeddings245

Word Confusion depends on the ability of a246

classifier to identify a word based on its contextual247

embedding; here we confirm that this classification248

task is indeed solvable, and examine some error249

cases to better understand it.250

While contextualized word embeddings vary in251

their representation based on context, prior work252

showed that tokens of the same word still cluster253

together in geometric space (Zhou et al., 2022b).254

To test whether these boundaries are indeed255

learnable, we test how well a model can identify256

a contextualized word embedding after seeing one257

other example of the same word’s contextualized258

embedding. We randomly sampled 26,000 words259

from English Wikipedia, trained 1000-class one-260

shot classifiers, and tested them on 10,000 exam-261

ples (ten examples per class). Indeed, we found that262

the average test set accuracy on all our classifiers263

is 90%, suggesting that the contextualized word 264

embeddings are highly identifiable. Thus, given 265

an embedding, it is possible to identify its sym- 266

bolic representation. See appendix A for additional 267

experimental details. 268

3.2 Theoretical Differences Between Word 269

Confusion and Cosine Similarity 270

We now discuss the theoretical differences between 271

Word Confusion and cosine similarity, argu- 272

ing that feature-based similarity can produce more 273

flexible decision boundaries, capture asymmetrical 274

relations, highlight specific aspects of the analyzed 275

word, and output more meaningful scores. 276

Decision Boundaries. We now provide some theo- 277

retical intuition behind why using logistic regres- 278

sion to predict the identity of embeddings differs 279

from the commonly used cosine metric. 280

Given two normalized vectors in 2-dimensions, 281

x and y, we apply a linear transformation A to each. 282

Assuming A is real, the singular value decompo- 283

sition of A is UΣV ⊺; thus we can rewrite Ax,Ay 284

using the singular values of A: σ1u1v1
⊺x1 + 285

σ2u2v2
⊺x2 and σ1u1v1

⊺y1 + σ2u2v2
⊺y2. 286

Depending on A, the distance between the 287

two vectors after the linear transformation can 288

be either bigger or smaller than the distance 289

between the original vectors. E.g., the co- 290

sine distance between the projected vectors 291

is σ1
2(v1

⊺x1)(v1
⊺y1) + σ2

2(v2
⊺x2)(v2

⊺y2) com- 292

pared to 1 − (x1y1 + x2y2). Similarly, the Eu- 293

clidean distance between the project vectors is 294

σ1u1v1
⊺(x1 − y1) + σ2u2v2

⊺(x2 − y2) instead of 295

(x1 − y1)
2 + (x2 − y2)

2. 296

Although our classification method uses a pre- 297

diction (softmax) layer instead of a distance metric, 298

this projection has nonetheless transformed the ge- 299

ometry of the embeddings — giving us additional 300

parameters to represent the desired words best6. 301

Figure 2 depicts the difference in the decision 302

surface for both methods. We also note that while 303

we implemented Word Confusion as a linear 304

classifier, the method can be easily extended to 305

capture even non-linear relationships between the 306

components in the embeddings by using neural 307

networks in place of the linear projection. 308

Asymmetry. Human perceived similarity is not 309

symmetric (Tversky, 1977). Yet cosine, like many 310

6Although there are endless transformations we can apply
to embeddings prior to measuring distances (Mu et al., 2018),
the same transformations can also be applied before using
Word Confusion.
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Figure 2: Differences in decision boundaries between Word Confusion and cosine similarity. The x and y axes
represent two dimensions of an artificially constructed set of data points. Note how cosine similarity’s boundaries
originate from the origin whereas Word Confusion’s are not limited in the same way.

distance functions commonly used to calculate se-311

mantic similarity, is symmetric. One of the ad-312

vantages of using a model’s confusion matrix for313

measuring semantic similarity is that these scores314

are asymmetric; i.e., pij ̸= pji. For example, Word315

Confusion assigns lower probabilities for ani-316

mal being predicted as cat than for cat being pre-317

dicted as animal. The ability to measure asymmet-318

ric semantic similarity opens interesting new direc-319

tions of understanding semantic similarity which320

are not possible with cosine.321

Domain Adaptability. The fact that Word Con-322

fusion requires training leads to more flexible323

similarity measures. Class selection enables mea-324

suring the semantic similarity of words relative to325

just a subset of features; we propose that this is326

particularly useful for practitioners who are inter-327

ested in computing the similarity of words within a328

niche domain (we explore this in section 4).329

Interpretability. Probabilistic similarity measures330

have the advantage of being more interpretable331

for humans than non-probabilistic measures like332

cosine (Sohangir and Wang, 2017). Using a classi-333

fier’s confusion matrix gives similarity scores that334

represent real probabilities. Moreover, since the335

choice of classifier’s classes is an implementation336

decision, one could choose them based on desired337

aspects of a word for a task. For example, we could338

interpret attitudes toward school by asking for the339

confusion matrix for the word “school” with a sen-340

timent analysis classifier that contains the classes341

{negative, positive}, or the classes {fun, work}.342

4 Real-World Data343

Word Confusion is a new similarity measuring344

tool that could assist in understanding real-world345

data and trends. In this section, we focus on two as-346

pects of Word Confusion – its ability to serve 347

as a feature extractor and to detect temporal terms 348

in the world. 349

4.1 Word Confusion for Feature 350

Classification 351

Word Confusion can be used to define out-of- 352

domain word classes, i.e. when wj ̸∈ W . Us- 353

ing our earlier example, if the classes of Word 354

Confusion are the features {positive, negative}, 355

given an out-of-domain word like school, we can 356

use the confusion matrix to represent the embed- 357

ding for school as a mixture of the classes the 358

model is familiar with, i.e., {positive, negative}. 359

Following this intuition, we test whether Word 360

Confusion can use features as classes to identify 361

objects’ membership to these classes accurately. 362

We used the following tasks: 363

Sentiment classification using the NRC corpus 364

(Pang et al., 2002; Mohammad et al., 2013). The 365

goal is to classify words according to their senti- 366

ment (either positive or negative). The words were 367

manually annotated based on their emotional asso- 368

ciation (e.g., “trophy” is positive, whereas “flu” is 369

negative). 370

Grammatical gender classification of nouns (Sa- 371

hai and Sharma, 2021). We tested Word Confu- 372

sion using two languages – Italian and French. 373

The goal is to classify words according to their 374

grammatical gender per language. For example, 375

“flower” is feminine in French and masculine in 376

Italian. 377

Domain classification using ConceptNet cate- 378

gories (Dalvi et al., 2022). The goal is to classify 379

words to their correct ConceptNet class. We used 380

two domain pairs: Fashion-Gaming is about clas- 381
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Experiment Word Confusion Cosine 1 Cosine 2 Cosine 3

Sentiment Classification 0.83 0.73 0.73 0.82
Grammatical Gender (Italian) 0.66 0.62 0.63 0.51
Grammatical Gender (French) 0.95 0.90 0.93 0.79
ConceptNet Domain (Fashion-Gaming) 0.93 0.90 0.90 0.90
ConceptNet Domain (Sea-Land Animals) 0.87 0.74 0.72 0.78

Average 0.85 0.78 0.78 0.76

Table 2: Macro-F1 for Word Confusion and cosine similarity across a variety of feature classification tasks. We
operationalize cosine similarity in three ways: 1) the distance between the centroids of the seed words and the target
words 2) the average distance each of the target word to the centroid of the seed words 3) the average distance of
each target word to each seed word (no centroids).

sifying whether a word belongs to the fashion do-382

main or the design domain; in Sea-Land, the goal383

is to predict if an animal is a sea or land animal.384

For each task, we hand-select meaningful words385

as classes for the classifier and use terms from the386

lexicon as test embeddings. For example, for senti-387

ment classification we first use the seed words pos-388

itive and negative as our classes and collect occur-389

rences from a corpus, extract the embeddings train390

the concept prober to recognize positive and nega-391

tive. Finally, we then use Word Confusion to392

classify all the terms in the NRC lexicon (our target393

words). We define the label using the class with the394

highest probability for the word. Details of each395

experiment are available in in the Appendix C.396

Across all three tasks, we find that Word Con-397

fusion is successful in feature-based classifica-398

tion using a few seed word training examples. Com-399

pared to cosine similarity, we achieve a macro-F1400

of 83% compared to 73% (see table 2; see C for401

full results and implementation details).402

4.2 What Is A Revolution?403

We now offer two pilot studies that look into404

whether Word Confusion could be used to405

study humanistic or social science concepts. In406

our first study, we investigate historical changes in407

the meaning of the French word “révolution”; one408

of the co-authors of this paper is a French history409

scholar. Together, we used Word Confusion410

to test a prominent hypothesis of how the mean-411

ing of the word and concept of revolution changed412

(Baker, 1990): that the meaning of “révolution” in413

the early years of the French Revolution was more414

associated with popular action, but later become415

identified with state actions.416

We constructed a set of French words associated417

with the people ({peuple, populaire, ...}) and the418

state ({conseil, gouvernement, ...}). These seed 419

words were used as classes for our classifier, which 420

we trained on different temporal segments (to cap- 421

ture the temporal change in meaning) extracted 422

from the Archives Parlementaires7, transcripts of 423

parliamentary speeches during a time that contains 424

moments of both emancipation and elite control 425

of political processes. The corpus contains 9,628 426

speeches and 54,460,150 words from the years 427

1789-1793. Within this corpus, the term “révo- 428

lution” appears 2,206 times across 218 speeches, 429

with a contextual basis of 90,138 words. 430

We color-code the classes (orange as “the people” 431

and blue as “the state”) and project the embeddings 432

down to a 2-dimensional space and visualize the 433

results (figure 3). 434

We find that, in 1789, the word “révolution” was 435

primarily associated with popular action, the most 436

famous example of which was the storming of the 437

Bastille. In 1790, another definition became com- 438

mon: “révolution” was now also seen as something 439

that the government should lead. Interestingly, 440

we find these instances in the “counter-revolution” 441

cluster indicating that it was primarily when talk- 442

ing about threats to, and enemies of, the revolu- 443

tion, that politicians suggested transferring more 444

power to the state. Jumping forward to 1793, this 445

new governmental meaning had spread back to the 446

word “révolution” itself, when used on its own. Our 447

findings suggest that the goal of repressing counter- 448

revolutionaries is what associated the term “révo- 449

lution” with governmental action. In other words, 450

once revolutionaries became more concerned about 451

tracking down their enemies, they granted to the 452

government the same kind of extra-legal power 453

that had originally only been the prerogative of the 454

7https://sul-philologic.stanford.edu/
philologic/archparl/
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people in arms.455

Our findings are consistent with historians hy-456

pothesis that the meaning of revolution in the early457

years of the French Revolution is most closely458

aligned with the concept of the people and this459

gradually shifts as the revolution continues. Fur-460

thermore, our model allows us to uncover a poten-461

tial causal story for this shift in the meaning; that462

the state sense of révolution first actually started463

with counter-revolution. This is a novel discov-464

ery in our understanding of the French Revolution;465

future humanistic work should use other methdos466

to confirm this proposed causal link to counter-467

revolutionaries.468

Figure 3: In 1789, the word “revolution” was primarily
associated with popular action (represented in orange).
In 1790 “revolution” was now also seen as something
that the government should lead (represented in blue)
found in the “counter-revolution” cluster. In 1793, this
new governmental meaning had spread back to the word
“revolution” itself.

4.3 Capturing Trends in Inflation469

In our second (more speculative) pilot study, we ap-470

ply Word Confusion to a very novel social sci-471

ence domain: representation of financial meaning.472

Here we test whether we can recover the financial473

value of goods from their embeddings and use them474

to predict changes in those values – inflation. We475

choose inflation since it is easy to quantify and ex-476

plores a novel domain for this sort of computational477

meaning.478

We used the California Digital Newspaper Col- 479

lection (CDNC)8, a newspaper corpus that covers 480

the years 1846-2023. We segmented the data into 481

temporal periods based on trends in the Dow Jones 482

Index (DJI)9, aggregating intervals that exhibited 483

the same index fluctuation directions. For more 484

details, see Appendix D. At the end of the process, 485

we had 17 different data segments, spanning the 486

years 1915-2009. We then further trained the last 487

layer of a 12-layer BERT model for each temporal 488

segment, to create embeddings that capture a par- 489

ticular historical period, with the goal of capturing 490

the temporal change in the value of money. 491

To quantify the change in the value of money, 492

we trained Word Confusion for every tempo- 493

ral segment of the data. Its goal was to map from 494

the contextual embedding of the “ $” token to the 495

(bucketed) monetary value that accompanied that 496

dollar sign. Thus, for each temporal segment, we 497

extract all sentences containing “$”, and use the 498

contextual embedding of $ for predicting the buck- 499

eted monetary value from the original sentence. 500

For example, if the sentence is “The price of gas 501

increased to $3 per gallon!”, we train a linear re- 502

gression model to correctly map the $ embedding 503

to the bucket that contains 3.10 504

We used all of the temporal Word Confu- 505

sion classifiers to predict the monetary values 506

of items in a typical basket of goods (e.g., egg, 507

milk, gasoline, car, etc)11. We then compare these 508

predictions with two measures – the historical Con- 509

sumer Product Index (CPI) and the Dow Jones In- 510

dex (DJI)12 511

The correlation between CPI and DJI, is very 512

high (0.966), indicating they capture similar trends. 513

The correlations of Word Confusion values 514

with CPI (0.187) and DJI (0.169) are positive 515

and significant but low. This low correlation in- 516

dicates that inflation prediction is a complicated 517

task, which it looks like we can only very vaguely 518

8https://cdnc.ucr.edu/
9https://www.macrotrends.net/1319/

dow-jones-100-year-historical-chart
10The average correlation coefficient of the trained Word

Confusion regressors across the different temporal seg-
ments is 0.790, indicating a strong correlation between the $
embeddings and their numerical values in context.

11To make the analysis as similar to the real CPI as possible,
we used the reported products from the website of the U.S.
Bureau of labor statistics, keeping only products that were
found in all segments (to avoid biasing our results by using
products that were not invented in the past).

12See Appendix D for other statistics, including correlations
with rates of change as well.
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approximate using Word Confusion (Figure 4).519

While these second pilot results are inconclusive,520

they do suggest further study involving domain521

experts on whether Word Confusion could be522

used to study financial values in text.523

Figure 4: Average CPI, DJI, and Word Confusion
values between the years 1915-2009. For each temporal
segment, the Word Confusion values were calcu-
lated using the mean predicted value for each item in the
basket of goods. We can see that until the 1970s Word
Confusion values followed the increasing CPI trend,
but then dropped. This could be a problem in our
method, or could be caused by changes in the train-
ing text itself at that period of time, in any case require
further investigation that includes domain experts.

5 Related Work on Cultural Change524

Both static and contextualized embedding spaces525

contain semantically meaning dimensions that526

align with high-level linguistic and cultural fea-527

tures (Bolukbasi et al., 2016; Coenen et al., 2019).528

These embeddings have enabled a large number of529

quantitative analyses of temporal shifts in meaning530

and links to cultural or social scientific variables.531

For example early on, using static embeddings,532

Hamilton et al. (2016) measured linguistic drifts in533

global semantic space as well as cultural shifts in534

particular local semantic neighborhoods. Garg et al.535

(2018) demonstrated that changes in word embed-536

dings correlated with demographic and occupation537

shifts through the 1900s.538

Analyzes of contextualized embeddings have539

identified semantic axes based on pairs of “seed540

words” or “poles” (Soler and Apidianaki, 2020;541

Lucy et al., 2022; Grand et al., 2022). Across the542

temporal dimension, such axes can measure the543

evolution of gender and class (Kozlowski et al.,544

2019), internet slang (Keidar et al., 2022), and545

more (Madani et al., 2023; Lyu et al., 2023; Erk546

and Apidianaki, 2024).547

Lastly, our method has ties with word sense dis-548

ambiguation (WSD) (Navigli, 2009) and named549

entity recognition (NER) (Li et al., 2020) and it has 550

been inspired by research and results in these fields. 551

The central idea behind Word Confusion of 552

mapping from embeddings to categories are also 553

found in NER and WSD, but instead of focusing 554

on pre-defined concept hierarchies (as for NER) or 555

senses (as for WSD), here we focus on a coherent 556

grouping of words that is interpretable for a given 557

task. 558

6 Discussion and Conclusion 559

In this paper, we reframe the task of semantic sim- 560

ilarity from one of measuring distances to one of 561

classification confusion. This formulation high- 562

lights the context-dependency of similarity judg- 563

ments, meanwhile avoiding the pitfalls of geomet- 564

ric similarity measures (Evers and Lakens, 2014). 565

This new framing of semantic similarity in terms 566

of classification confusion introduces new proper- 567

ties that are inspired by cognitive models of similar- 568

ity (Tversky, 1977) and accounts for the asymmet- 569

ric nature of semantic similarity, captures different 570

aspects of both similarity and multi-faceted words 571

and ofter a measure that has interpretability benefits 572

Our proof-of-concept method, Word Confu- 573

sion, demonstrates the practical applicability and 574

effectiveness of this reframing. Empirical results 575

show that it outperforms cosine similarity on stan- 576

dard datasets. For computational social science 577

applications, Word Confusion can serve as a 578

way to learn to represent words using target features 579

(e.g., “school” in terms of {positive, negative}, and 580

can be used to trace the meaning of a word as a 581

function of time (like the $ token and the words 582

“revolution”). 583

The theoretical underpinnings of Word Con- 584

fusion allow it to learn complex word identity 585

boundaries and capture the directional nature of 586

similarity, offering a richer and more flexible frame- 587

work for understanding word meanings. 588

While our experiments are preliminary and the 589

space of possible similarity metrics is enormous, 590

we hope this reimagining of semantic similarity 591

will inspire the development of new tools that better 592

capture the multi-faceted and dynamic nature of 593

language, advancing the fields of computational 594

social science and cultural analytics and beyond. 595
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Limitations596

Our implementation offers a promising method of597

where cosine similarity can be replaced by a more598

sophisticated method that involves self-supervision.599

However, the boost in performance comes also with600

some caveats. Because Word Confusion is a601

supervised classifier, it requires an extra training602

step that simple cosine doesn’t require. Further-603

more, potential users will need basic understand-604

ings of model training and the pitfalls of over-fitting605

data.606

While our experiments were run with a logistic607

classifier, deeper networks might both help or hurt608

the performance as it might be more difficult to609

optimize them. Future work in this area needs to610

be done.611

Another important limitation of our analysis is612

that our results might be affected by the choice613

of seed words, since changing seed words can im-614

pact the similarities. We explored different sets of615

seed words without seeing drastic changes in re-616

sults. However, a robust evaluation of the effect of617

different seed words should be considered in future618

work.619

Lastly, we are not aware if changing the model620

used to create the embeddings can degrade the per-621

formance; we tested only BERT-Base models.622

Ethics Statement623

As with all language technologies, there are a num-624

ber of ethical concerns surrounding their usage and625

societal impact. It is likely that with this method,626

the biases known in contextualized embeddings can627

continue to propagate through downstream tasks,628

leading to representation or allocation harms. Ad-629

ditionally, the use of large language models for630

building contextualized embeddings is expensive631

and requires time and energy resources. To our632

knowledge, the method we have developed does633

not exacerbate any of these pre-existing ethical con-634

cerns but we recognize our work here also does not635

mitigate or avoid them.636
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A Word Confusion Additional Details 872

Here, we provide additional details about the ex- 873

perimental set-up of Word Confusion. 874

We used the logistic regression model from 875

the scikit-learn library using a one-vs-rest (OvR) 876

scheme. 877

Did you try other ways of creating embeddings? 878

We explored alternative methods of creating word 879

embeddings, such as various ways of concatenating 880

layers, but they produced almost identical results. 881

Did you perform any preprocessing? We filtered 882

out short (<20 characters) and long (>512 charac- 883

ters) sentences, and matched keywords on token 884

IDs to ensure punctuation and casing are consistent 885

across examples. 886

Which hyperparameters did you use? Our task 887

is also trained without any use of hyperparameters 888

or special pre-processing steps to help address the 889

concerns pointed out by Liu et al. (2019); Hewitt 890

and Liang (2019). 891

How does this differ from BERT’s training task 892

and other works? The identity retrieval task differs 893

from the masked LM training task: in masked LM 894

training, the word identity must be predicted from 895

its surrounding context rather than the embed- 896

ding itself. Our task is also related to but different 897

from the “word identity” classifier of Zhang and 898

Bowman (2018) which predicts the identity of a 899

neighboring word. 900

What about OOV words? For the error anal- 901

ysis, we used the embedding of the first subto- 902

ken. Throughout the rest of the paper, we average 903

the subtokens following (Pilehvar and Camacho- 904

Collados, 2019) and (Blevins and Zettlemoyer, 905

2020). Our decision to use the first subtoken in 906

the error analysis section was to investigate the im- 907

pacts of tokenization and perform analysis on token 908

frequencies of the first subtokens when words were 909

OOV. 910

In the benchmarking tasks, does your decision 911

to represent a word via the embedding of its first 912

token impact a word’s identifiability? We find this 913

is largely not the case. BERT-Base has a ~30,000 914

token vocabulary, with words that occurred over 915
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(a) Tokens (b) 1st Token Freq
Figure 5: The bar charts above highlight the percentage
of errors for words binned by tokens and frequencies of
the first subtoken for OOV words. (a) errors by number
of tokens (b) errors by frequency of the first token

(a) Frequency (b) Senses
Figure 6: The percentage of errors for words binned by
frequency and number of senses.

~10,000 times in its original training data consid-916

ered in the vocabulary. The word “intermission”,917

is out-of-vocabulary and is tokenized into “inter”918

and “##mission”, and we would use the (extremely919

ambiguous) first token “inter” to represent “inter-920

mission”.921

Surprisingly, using only the first token to repre-922

sent an OOV word had little impact on the identifi-923

ability of words, suggesting that these embeddings924

could capture enough context to differentiate them-925

selves from words with identical prefixes. We find926

that words tokenized into multiple pieces had lower927

error rates (4%) than words that remained whole928

(17%) (see figure 5a). In other words, the words929

“intermission”, “interpromotional”, “interwar”, and930

“interwoven” are distinguishable from one another931

even though each is tokenized into “inter” and sub-932

sequent tokens and only the first token’s embedding933

is used. That is, the context (namely, the subse-934

quent token “##mission”) sufficiently changed the935

BERT embedding for “inter” to make it identifiable936

in context. The fact that single tokens words (which937

are in vocabulary and generally more frequent) per-938

formed worse as a group is likely explained by our939

prior finding that high frequency words have lower940

performance on this task (see figure 5b).941

A.1 Error Analysis942

Although Word Confusion is relatively accu-943

rate, it still makes mistakes, particularly with highly944

frequent or polysemous words. 13945

13Although not critical to this paper, we also include error
analysis on the impacts of tokenization and OOV words in
Appendix A.

Frequency We find that a word’s training data 946

frequency correlates negatively with identifiability. 947

For example, the error rate of words with over 10 948

million training data occurrences is 42%, compared 949

to an error rate of 3% for rare words with between 950

100 and 1000 training data occurrences. 951

Polysemy One explanation for the poor perfor- 952

mance of high-frequency words could be the high 953

polysemy of these words (Zipf, 1945). Indeed, 954

Word Confusion makes more errors with pol- 955

ysemous words. Very polysemous words (more 956

than 10 senses in WordNet) are 8 times more likely 957

than monosemous words to be misidentified (34% 958

versus 4%, see figure 6b). 959

Geometric Space Another explanation for lower 960

linear separability of high frequency words is that 961

embeddings of high frequency words are typically 962

more dispersed in geometric space than low fre- 963

quency words (Zhou et al., 2022b). This would 964

most likely lead to difficulty in identifying them 965

with a simple logistic regression model. 966

B Details and Full Results from Section 967

4.1 968

Implementation Out-of-vocabulary words here 969

are represented as the average of the words’ to- 970

kens, following (Pilehvar and Camacho-Collados, 971

2019) and (Blevins and Zettlemoyer, 2020). We 972

experiment with a variety of embedding methods, 973

taking the last layer and taking the first subtoken 974

of out-of-vocabulary words and find comparable 975

results. 976

Similarity Experiments For cosine, we took 30 977

samples of each word and we took the average 978

embedding (this is standard practice). For Word 979

Confusion, we again took 30 samples and we 980

averaged the vectors of the predicted probabilities 981

before taking the target probability values. 982

Feature Extraction Experiments Word sam- 983

pling for target and seed words is done to speed up 984

the computation, we did not find significant differ- 985

ences with different samples (nonetheless, having 986

at least 1000 embeddings to train Word Confu- 987

sion is necessary to get good and stable results). 988

Models used: 989

• “bert-base-cased" 990

• “dbmdz/bert-base-italian-cased" 991

• “dbmdz/bert-base-french-europeana-cased" 992
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C Seed and Target Words Used993

Sentiment Classification994

• Task: Classifying concepts based on senti-995

ment by using the NRC corpus (Mohammad996

et al., 2013). Target words: 98 positive and 98997

negative words. Seed words: “positive” and998

“negative”.999

• Corpus: wikitext-103-v1 from HuggingFace.1000

We remove sentences that are shorter than 151001

tokens and longer than 200 tokens.1002

• Sampling: We sample 1000 occurrences of1003

“positive” and 1000 occurrences of “negative”.1004

For each target word, we sample 30 occur-1005

rences.1006

Grammatical Gender in French and Italian1007

Experiment 1:1008

• Task: Classifying concepts by the grammati-1009

cal gender of nouns.1010

• Corpus: Latest Italian Wikipedia abstracts1011

from DBPedia. We removed sentences shorter1012

than 20 tokens and longer than 100 tokens.1013

• Sampling: Target words: 140 Italian nouns.1014

Seed words: 59 Italian masculine and fem-1015

inine adjectives. For each target word, we1016

sample 30 occurrences. For each seed word,1017

we sample 20 occurrences. Seed and target1018

words have been filtered with respect to fre-1019

quency. Data comes from Flex-IT (Pescuma1020

et al., 2021).1021

Experiment 2:1022

• Task: Classifying concepts by the grammati-1023

cal gender of nouns.1024

• Corpus: Latest French Wikipedia abstracts1025

from DBPedia. We removed sentences shorter1026

than 20 tokens and longer than 100 tokens.1027

• Sampling: Target words: 201 French nouns.1028

Seed words: 65 French masculine and femi-1029

nine adjectives. Seed and target words have1030

been filtered with respect to frequency. Data1031

comes form Lexique383 (New et al., 2004).1032

BERT Concept Net Classification Land-Sea1033

• Task: Classifying concepts by classes based1034

on the ConceptNet dataset (Dalvi et al., 2022),1035

predicting if an animal is a sea or land animal.1036

• Corpus: wikitext-103-v1 from HuggingFace. 1037

We remove sentences that are shorter than 15 1038

tokens and longer than 200 tokens. 1039

• Sampling: Target words: 64 land or sea an- 1040

imals. Seed words: category names: “land” 1041

and “sea”. We sample 1000 occurrences of 1042

each seed word. For each target word, we 1043

sample 30 occurrences. 1044

BERT Concept Net Classification Fashion- 1045

Gaming 1046

• Task: Classifying concepts by classes based 1047

on the ConceptNet dataset (Dalvi et al., 2022), 1048

predicting if a concept comes from the fashion 1049

domain or the design domain. 1050

• Corpus: wikitext-103-v1 from HuggingFace. 1051

We remove sentences that are shorter than 15 1052

tokens and longer than 200 tokens. 1053

• Sampling: Target words: 29 terms related 1054

to fashion or gaming. Seed words: cate- 1055

gory names: “fashion, clothes” and “gaming, 1056

games”. We sample 500 occurrences of each 1057

seed word. For each target word, we sample 1058

30 occurrences. 1059

D Details and Full Results from Section 1060

4.3 1061

Data Segmentation We segment the temporal 1062

data based on the Dow Jones Index trend14 and 1063

aggregate intervals with the same fluctuation direc- 1064

tions (see Table 4). 1065

Data Pre-processing We use California Digital 1066

Newspaper Collection (Center for Bibliographic 1067

Studies and Research, University of California, 1068

Riverside, 2024) spanning from 1915 to 2008. The 1069

data is pre-processed in the following manner for 1070

model continual training: 1071

• Convert all text to lowercase. 1072

• Remove low-quality text corpuses, defined as 1073

those where more than 20% of the characters 1074

are non-alphanumeric symbols or where more 1075

than 20% of words are highly segmented (a 1076

single word tokenized into more than two seg- 1077

ments), due to poor optical character recogni- 1078

tion from scans of historical documents. 1079

14https://www.macrotrends.net/1319/
dow-jones-100-year-historical-chart
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Experiment Word Confusion Cosine 1 Cosine 2 Cosine 3

Sentiment 0.83 0.73 0.73 0.82
Grammatical Gender (It) 0.66 0.62 0.63 0.51
Grammatical Gender (Fr) 0.95 0.90 0.93 0.79
ConceptNet (Fashion-Gaming) 0.93 0.90 0.90 0.90
ConceptNet (Sea-Land Animals) 0.87 0.74 0.72 0.78

Table 3: Full results from Section 4.1. We compare the results of Word Confusion to cosine similarity which
we operationalize in one of three ways: we measure cosine similarity in one of three ways 1) the distance between
the centroids of the seed words and the target words 2) the average distance each of the target word to the centroid
of the seed words 3) the average distance of each target word to each seed word (no centroids)

Year DJI Avg. Annual Change

1915 81.49%
1916-1917 -12.95%
1918-1919 20.48%
1921-1928 20.48%
1929-1932 -31.67%
1933-1936 30.02%
1937-1941 -7.16%
1956-1961 9.97%
1962-1972 3.86%
1973-1974 -22.08%
1975-1976 12.35%
1988-1995 13.53%
1996-1999 22.49%
2000-2002 -10.01%
2003-2007 11.04%
2008 -33.84%
2009 18.82%

Table 4: Years aggregated by DJI fluctuation directions

• The dataset of each training segment has1080

10,240 training documents, 1280 test docu-1081

ments and 1280 validation documents, each1082

containing an average of 350 tokens.1083

Continual Training We fine-tune the last layer1084

of the 12-layer bert-base-uncased model, which1085

comprises 7,087,872 trainable parameters. We use1086

a learning rate of 2× 10−5 and a weight decay of1087

0.01. Each model takes 3 hours to fine-tune with1088

Google Cloud T4 GPUs.15.1089

Training Word Confusion We extract 2,0001090

occurrences of the "$" token from each segment.1091

Each token is part of a 128-character window and1092

must be followed by a numeric value. We get the1093

contextualized embedding of the tokens using the1094

fine-tuned models and bucketize the 2000 numeric1095

15https://cloud.google.com/compute/docs/gpus#
t4-gpus

values into 60 buckets to reduce noise in the data. 1096

We then train a linear regression for each time seg- 1097

ment. 1098

Calculating CPI To calculate the Consumer 1099

Price Index (CPI), we construct a basket of goods 1100

consisting of the following items: {"car", "rent", 1101

"hat", "wine", "jewelry", "shirt", "chicken", "milk", 1102

"furniture", "egg", "shoe", "pork", "gasoline", 1103

"beef", "coffee", "bus"}. We identify occurrences 1104

of the "$" token that are followed by a numeric 1105

value and keep those where terms from our basket 1106

of goods appear within a 20-word window. The 1107

numeric values are then masked, and the trained 1108

Word Confusion classifier is used to predict 1109

the value associated with each "$" token. 1110

Models used: 1111

• “bert-base-uncased" 1112

14

https://cloud.google.com/compute/docs/gpus#t4-gpus
https://cloud.google.com/compute/docs/gpus#t4-gpus


Rate of change in CPI, DJI, and Word Con-1113

fusion values: Rate of change in Word Con-1114

fusion values compared with the rate of change1115

in CPI and DJI values (the mean annual change1116

in values per temporal segment). The correlation1117

between the change in CPI and DJI values is al-1118

most zero (-.006), suggesting they capture quite1119

different trends. The correlation of CPI change and1120

Word Confusion change is negative (-0.226),1121

and the correlation between the changes in DJI and1122

Word Confusion values is positive and signifi-1123

cant (0.387).1124
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