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ABSTRACT

Few-shot learning aims to train a classifier given only a few samples per class
that are highly insufficient to describe the whole data distribution. These few-shot
samples not only introduce high variance to the training but also may include
outliers near the class boundaries. Directly feeding these samples to training
algorithms can lead to unstable optimization and even incorrect gradient descent
direction. In this paper, we improve the robustness to “outliers” by learning to
propagate and refine the representations of few-shot samples to form a more
compact data distribution before using them to train a classifier. We develop a
mutual calibration among few-shot samples’ representations by graph propaga-
tion, for which we learn an attention mechanism to build the graph and determine
the propagation weights. On both clean datasets and datasets containing noisy
labels, we show that our sample propagation generally improves different types
of existing few-shot learning methods in multiple few-shot learning settings.

1 INTRODUCTION

Over the past decade, machine learning models have demonstrated their generalization power to
unseen data if trained on sufficient data drawn from the same distribution for the same task. However,
human intelligence is more powerful in adapting the wisdom learned from those accomplished tasks
to new and unseen tasks in the future. Recent studies of meta-learning (or “learning to learn”) (Finn
et al., 2017; Snell et al., 2017; Ravi & Larochelle, 2016) aim to extract this type of task-agnostic
knowledge, collect it from multiple tasks, and leverage it to make the learning of unseen tasks with
highly deficient data possible.

This raises a question: is this set of samples a good deputy of this task and can these samples well-
represent the data distribution of every class? As shown in Figure 1, if we directly represent each
class by a prototype, e.g., the average feature representation of a few samples from the class (Snell
et al., 2017), the prototype may suffer from high variance at the presence of outliers and lose the
capability to represent the whole class’s distribution. This is a joint result of data deficiency and the
direct usage of a pre-trained model in producing the feature representations, which are trained on
sufficient data and spans an ambient space for the data distribution. Hence, when we only know a
few samples for a class in the space, it is almost impossible to reconstruct the true distribution of the
class and any sample far away from some others could be an outlier. This could lead to inaccurate
distance-based classifier and accumulated errors if the prototype needs to get further refined, for
example, by prototype propagation (Liu et al., 2019a). Similarly, the gradients generated by a small
minibatch of samples may lead to a suboptimal direction and make the optimization unstable. This
is especially evident in the optimization for “learning to learn” where higher order derivatives are
computed or approximated: the model gets to a suboptimal saddle point, from which the loss is
computed and a second order derivatives are backpropagated (Finn et al., 2017).

We propose model-agnostic sample propagation (MASP) calibrating the representations produced
for few-shot samples to a more compact space before using them to train a task-specific model.
MASP learns to correct the high variance existing in the representations of few-shot samples pro-
duced by a pre-trained model. In MASP, we train an iterative propagation scheme that sends mes-
sages across all training samples for the task, which deploys an attention module to build connections
between samples and compute the weight of propagating a sample’s representation to another. The
sample propagation can be applied over all samples in one task so that both intra-class distribution
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Figure 1: LEFT: Gradients generated by few samples can lead to suboptimal saddle point (blue).
RIGHT: Averaging the feature representations of few samples in one class can generate inaccurate
class prototypes affected by outliers.

and inter-class distribution/relationships can be taken into the considerations. It is also easy to be
extended to the transductive setting, where the query samples can also be included in the propaga-
tion.

In experiments, we show that MASP can serve as a plug-and-play module between a pre-trained
model and any few-shot/meta-learning model, and can consistently improve their original few-shot
learning performance. For example, we successfully plug MASP into the most popular models,
i.e., prototypical network (Snell et al., 2017) and MAML (Finn et al., 2017) for traditional few-shot
setting. MASP can also bring improvements to the Gated Propagation Network (Liu et al., 2019a)
for the graph meta-learning setting, where outliers are more distracting since there are follow-up
prototype refinement steps applied to the prototypes. We not only evaluate MASP on the standard
benchmarks for few-shot learning, we also test it on a more practical dataset, i.e., WebVision (Li
et al., 2017), which are web-labeled data with real-world noises as true outliers. We test if MASP
can remove the noises from the dataset by the learned propagation. To understand how sample
propagation modifies the representations and their distribution, we visualize them before and after
propagation and observe that MASP moves the outliers closer to the cluster of other samples and
thus provide more compact representations easier for the task-specific model to learn.

2 RELATED WORKS

Meta-learning has shown advantages in few-shot learning for tasks in regression, classification and
reinforcement learning. Early works propose to use LSTM (Ravi & Larochelle, 2016) as a meta-
learner or a mechanism of learning to match (Vinyals et al., 2016) to mitigate the few-shot challenges
in the new tasks. MAML (Finn et al., 2017) and Prototypical Networks (Snell et al., 2017) are
widely-used methods that are representatives of gradient-based methods and non-parametric meth-
ods, respectively. We propose a sample propagation module and try to plug it onto both methods.

Graph in Meta-learning Meta-learning has been applied to few-shot learning using graphs for
tasks such as link prediction (Bose et al., 2019) and image classification (Liu et al., 2019a; Garcia &
Bruna, 2018; Yao et al., 2019). In (Bose et al., 2019), they learn to initialize a graph neural network
using the meta-learning framework along with a learned graph signature function for few-shot link
prediction. In the task for few-shot image classification, previous works apply graph structures
to propagate messages between the connected nodes, where the nodes can be images (Garcia &
Bruna, 2018), classes (Liu et al., 2019a) or tasks (Yao et al., 2019). (Yao et al., 2019) propose
to cluster tasks in a hierarchical structure so that the initialization of the model for gradient-based
meta-learning methods can be shared within a cluster instead of within all tasks (Finn et al., 2017).
(Yao et al., 2020) extends their work by developing an automated way to build the hierarchy, which is
hand-crafted in their previous version. (Garcia & Bruna, 2018) propose to build a densely-connected
graph with an image as a node. In this way, all images in a one-shot learning task are connected and
a GNN is applied to make the prediction based on the graph. The weights of the edges are assigned
in (Kim et al., 2019) so that various relationships between images can be considered. For our work,
we propose a sample propagation module which is algorithm-agnostic and can be applied on the
feature representations of a CNN followed by any classification algorithm.

Task Adaptive Representation in Meta-Learning Another line of work tries to adapt the repre-
sentations conditioned on the current task. The same sample can have different representations by
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making it conditioned on a representation of the current task (Oreshkin et al., 2018; Wang et al.,
2019). The feature space can be projected to another space (Yoon et al., 2019). As for sample prop-
agation, the model learns to linearly compose the feature representations of the samples in one task
without mapping them to another hidden space. (Li et al., 2019) also uses the structure of attention
for a task-specific representation. However, they try to apply attention to mask the feature represen-
tations based on inter-class commonality and inter-class uniqueness while the attention in our work
is for generating the weights and the connections for propagation. Kye et al. (2020) meta-learns
an input-adaptive distance metric over a task distribution under various model and data perturba-
tions for the transductive setting. Comparatively, we try to improve the sample representation and
is agnostic to different few-shot learning settings. Allen et al. (2019) try to increase the number of
prototypes to alleviate the high variance in few-shot learning, while we try to improve the sample
representation.

3 MASP: MODEL-AGNOSTIC SAMPLE PROPAGATION

In this section, we first introduce the background knowledge in Section 3.1. Then, we introduce our
sample propagation layer and model in Section 3.2. Next, we introduce a natural extension of our
MASP from the inductive few-shot setting to the transductive few-shot setting in Section 3.3. Lastly,
we will briefly introduce how to utilize the propagated features in Section 3.4.

3.1 PRELIMINARY

In this section, we introduce a typical few-shot classification setting. Given a dataset with data-
label pairs D = {(xi, yi)} where xi ∈ Rd is the feature vector of a sample and yi ∈ C, where
C denotes the set of classes. This set of classes is divided into base classes Cb and novel classes
Cn, where Cb ∩ Cn = ∅ and Cb ∪ Cn = C. The most popular way to build a task is called an
N-way-K-shot task (Vinyals et al. (2016)), where N classes are sampled from the novel set and
only K (e.g., 1 or 5) labeled samples are provided for each class. The few available labeled data
are called support set S = {(xi, yi)}N×Ki=1 and the model is evaluated on another query set Q =

{(xi, yi)}N×K+N×q
i=N×K+1 , where every class in the task has q test cases. The goal for a meta-learning

algorithm is to train a model on multiple N-way-K-shot tasks and extract the common knowledge
from them. The generalization ability of the model is evaluated on multiple tasks sampled from the
novel classes Cn, where each task is a N-way-K-shot task. The performance of a model is evaluated
as the averaged accuracy on (the query set of) multiple tasks sampled from the novel classes.

3.2 SAMPLE PROPAGATION LAYER

Sample propagation layer learns to propagate the representation of samples within a task to each
other. Here we denote xi[t] as the feature representation of the i-th sample after the t-th propagation
layers. Formally, the procedure of one sample propagation layer can be formulated as:

xi[t+ 1] ,
∑

(xj ,yj)∈DT
wi,j [t]× xj [t], (1)

where yj is the label of j-th sample and xi[0] is output of the neural network backbone with the input
of the i-th sample. DT denotes the data-lablel pairs used for task T . The weight for propagating
the representation from the j-th sample to the i-th sample, i.e., wi,j [t], is calculated by an attention
mechanism based on their original representation:

wi,j [t] =
exp(ui,j × a(xi[t],xj [t]))∑
k exp(ui,k × a(xi[t],xk[t]))

, (2)

The representation of the samples from the same class can potentially share more than that from
other classes. In order to distinguish the samples from the same class, the attention score of within-
class samples are up-weighted by a hyperparameter α:

ui,j =

{
α, if yi = yj .

1, if yi 6= yj .
. (3)
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Algorithm 1 Training of Model-Agnostic Sample Propagation model MASP

Input: sample propagation model f with S layers, a few-shot learning model, episodes τtotal;
1: Initialization:

MASP parameters Θ, few-shot learning model parameters Θ†, current epoch τ ← 0;
2: for τ ∈ {1, · · · , τtotal} do
3: Sample a few-shot task T with its support set S and query set Q from a task distribution T ;
4: Initialize the representation x for each sample in S and Q by a pre-trained model;
5: Apply sample propagation with MASP on the support set S by Equation 1;
6: Compute the meta-objective of the few-shot learning model on the query set Q;
7: Back-propagation updates Θ and Θ† by a training strategy for the few-shot learning model;
8: end for

The raw attention score is calculated by a dot product attention function a(·, ·) as follows:

a(p, q) =
〈h1(p), h2(q)〉

‖h1(p)‖ × ‖h2(q)‖
, (4)

where h1 and h2 are linear transformation functions.

The MASP model is stacked by multiple sample propagation layers. Suppose there are S layers for
our MASP model, it takes the original representation of all samples in a task T as input, and outputs
x[S] for each sample as its propagated feature representation. We will introduce how to utilize the
propagated feature representation below.

3.3 EXTENDING THE SCOPE TO TRANSDUCTIVE SETTING

Sample propagation can be easily applied to unlabeled samples, so that the query set can be leverged
in the propagation procedure as well. This is another popular setting in few-shot learning, i.e.,
transductive few-shot learning (Liu et al., 2019b). In this case, the sample propagation will include
samples from both the query set DT

valid and the support set DT . As a result, Equation 1 can be
reformulated as:

xi[t+ 1] ,
∑

(xj ,yj)∈DT∪DT
valid

wi,j [t]× xj [t]. (5)

The attention mechanism uses the same structure as Equation 4. Note that the unlabeled data is not
upweighted since there is no accurate label for every sample and giving more weights on them may
make the optimization unstable especially in the beginning stage:

uTi,j =

{
α, if yi = yj and (xi, yi) ∈ DT .

1, otherwise.
(6)

Thus, the sample propagation in transductive setting generally follows the same procedure as the
inductive setting and sets the weights of the query set as default.

3.4 HOW TO USE FEATURES AFTER SAMPLE PROPAGATION?

Our sample propagation module can be plugged to the beginning of most existing meta-learning
models as preprocessing to the representations generated by a pre-trained model. In particular,
given the few-shot training data for a specified task, we first initialize the representations of each
sample by a pre-trained model. Then, we apply MASP to the representations to gain a more compact
representation space with possible outliers removed. Afterwards, we can apply any few-shot learning
model that takes the calibrated representations as inputs and produce a task-specific model (test
phase) or train the meta-learner model by back-propagation (training phase).

MASP does not depend on any assumption to the data type since its feature calibration only depends
on the propagation between samples rather than any structured transformation such as convolution.
It bridges the pre-trained model and the meta-learning model and can be applied to any combination
of the two. Hence, we argue that MASP is model-agnostic and a general technique that potentially
improves most existing few-shot learning models. Moreover, it is also compatible with most training
strategies. In our experiments, we apply it to a diverse set of few-shot learning models and achieve
improvements on all of them.
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4 TRAINING STRATEGY

The full training algorithm of a general few-shot learning framework with MASP is shown in Algo-
rithm 1. It elaborates how to plug MASP to an existing framework of few-shot learning, regardless
of which exact pre-trained model and few-shot learning model are used. Afterwards, they can be
trained in an end-to-end manner with an initialization learned by MASP. Specifically, few-shot tasks
are sampled based on the task generation mechanisms introduced in Experiments. Then MASP
learns to preprocess the representations of the few-shot samples of the support set, which are usually
produced by a pre-trained model, using sample propagation at line 4 of Alg. 1. The preprocessed
representations are then fed to a few-shot learning model as input features for the few-shot training
samples. We then compute the validation loss and apply back-propagation to update both the MASP
module and the meta-learner. The model can be trained by back-propagating the cross-entropy loss
to the backbone network, meta-learner and MASP module. Since the sample propagation is modeled
by an attention network, these modules can be trained in an end-to-end way efficiently.

5 EXPERIMENTS

In this section, we mainly want to address if MASP can be general and consistently improve the
performance in various settings. Specifically, we answer the following questions:

• Can MASP generally be applicable to different kinds of meta learning approaches?
• Can MASP generalize to different algorithms in different meta-learning settings/problems?
• Can MASP be robust to different datasets and improve the performance?
• Can MASP consistently improve the performance under both inductive and transductive

settings?

5.1 DATASETS AND EXPERIMENTAL SETUPS

Datasets. To investigate the ability of avoiding noise for MASP, we first try it on miniWebVision
– a dataset with noisy labels. The miniWebVision dataset is created for meta-learning from the
WebVision 1.0 (Li et al., 2017) dataset. Specifically, we randomly sampling 64 classes and 16
classes from the original training classes as the meta train classes and the meta validation classes,
respectively. We also randomly sample 20 classes from the original validation classes of WebVision
1.0 to serve as the meta test classes. All images come from the resized Google image database.
Therefore, there are 56K training images, 16K validation images, and 1K test images. To test the
performance of MASP for conventional meta-learning, we then use the Omniglot (Lake et al., 2015)
dataset following the most popular setting for conventional meta-learning. Omniglot is a hand-
written character dataset consisting of 1623 characters from 50 alphabets (super classes). We follow
the split proposed in Vinyals et al. (2016) and also the way of resizing the image to 28*28 and
augmenting the number of classes by rotating images of multiple 90◦. 1200 characters (and their
rotations) are used for training, and the remaining classes are for testing.

To test the performance of MASP for graph meta-learning, we use the datasets: tieredImageNet-
Close and tieredImageNet-Far as proposed in Liu et al. (2019a). tieredImageNet-Close and
tieredImageNet-Far are datasets of images with information for class hierarchy. The images come
from ImageNet and the hierarchy is extracted from WordNet. The training sets for these two datasets
are the same but the test sets differ in that the test classes are 1 to 4 hops away from the training
classes in tieredImageNet-Close based on WordNet while tieredImageNet-Far has a test set that is
further away at 5 to 10 hops from the training set. These two datasets provide comprehensive test
on how the techniques of graph meta-learning will improve the performance of few-shot learning
under various situations of relatedness/closeness between classes.

Experimental Setup In order to make an apple-to-apple comparison, we follow the same setup
as in (Snell et al., 2017) and (Liu et al., 2019a). Specifically, for conventional meta-learning, the
backbone is a CNN stacked with four convolutional blocks. Each block comprises a 64-filter 3*3
convolution, batch normalization layer, a ReLU non-linearity and a 2*2 max-pooling layer. The
model is training with an Adam (Kingma & Ba, 2015) optimizer with initial learning rate as 0.001
and decrease by 0.5 every 25K episodes. We train the model by 200K episodes in total.
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Table 1: Baseline vs. baseline with MASP – comparison w.r.t. evaluation accuracy (mean±CI%95)
on 600 test tasks on the miniWebVision dataset.

Model 5way1shot (%) 5way5shot (%) 10way1shot (%) 10way5shot (%)
Prototypical Net

(Snell et al., 2017) 41.13±1.68 63.29±0.90 31.37±1.11 50.20±0.62

Prototypical Net w/ MASP 44.27±1.65
∆+3.1

65.36±0.91
∆+2.1

33.10±1.12
∆+1.7

51.11±0.65
∆+0.9

MAML
(Finn et al., 2017) 37.53±1.55 52.65±0.91 26.60±1.05 24.43±0.52

MAML w/ MASP 38.46±1.66
∆+0.9

52.83±0.99
∆+0.2

26.45±1.12
∆-0.2

26.28±0.55
∆+1.9

For graph meta-learning, we train our model for τtotal =350k episodes using Adam with an
initial learning rate of 10−3 and weight decay 10−5. The learning rate is reduced by a factor of
0.9× every 10k episodes starting from the 20k-th episode. The prototypes are learned by sample
propagation for S = 2 steps and the prototypes with learned initialization are then followed by
prototype propagation for S

′
= 2 steps. More steps may result in higher performance with a

resulting outcome of more computations. The hyperparameter α for upweighting samples is 5.
The hyper-parameter λ is 0.5. We use linear transformation for all transformations in attention,
i.e., h1(·), h2(·), h

′

1(·) and h
′

2(·). To ensure a fair comparison, we follow the same setting in Liu
et al. (2019a): using the same backbone ResNet-08; using the same setup of the training tasks, i.e.,
N -way-K-shot, for all methods including baselines in our experiments; using the same random
sampling strategy for task generation. The test stage is conducted over 600 tasks with the size of
the query set the same as that of its support set.

5.2 EMPIRICAL ANALYSIS FOR FEW-SHOT LEARNING FOR CLEAN AND NOISY DATASETS

Table 2: Validation accuracy on the Omniglot dataset with 50 ways.

Model 50way5shot 50way10shot
Prototypical Net 96.5% 97.1%
Prototypical Net w/ MASP 96.8% 97.3%

Our MASP is compatible with any kinds of few-shot learning methods. We choose two repre-
sentative methods, Prototypical Net and MAML, as our baselines. We evaluate “baseline” vs “base-
line with MASP” on the 5-way-1-shot, 5-way-5-shot, 10-way-1-shot, and 10-way-5-shot settings on
miniWebVision in Table 1. In most scenarios, our MASP significantly improves the accuracy of the
baseline models, e.g., 3.1% accuracy gain for Prototypical Net in 5-way-1-shot and 1.8% accuracy
gain for MAML in 10-way-5-shot. The only failure case is for MAML in 10-way-1-shot: MAML +
MASP drops the accuracy 0.15 within the range of variance.

We also investigate the effect of MASP on the commonly used Omniglot (Lake et al., 2015) when
the number of classes within each task is high – 50. Here we only use the Prototypical Net as the
baseline, as MAML requires much memory for this high-way setting. We show the results in Table 2.
MASP improves the relative accuracy by 8.5% on 50-way-5-shot and 6.8% on 50-way-10-shot. In
sum, for the conventional few-shot learning problem, MASP consistently improve the performance
of different few-shot methods.

5.3 EMPIRICAL ANALYSIS FOR GRAPH META-LEARNING

MASP achieves the SoTA accuracy on tieredImageNet-Close and tieredImageNet-Far. We in-
vestigate the effect of MASP over different baseline models and compare it with other methods.
We show the results on tieredImageNet-Close and tieredImageNet-Far in Table 3 and Table 4, re-
spectively. In each table, we compare methods with (+) / without hierarchy during the test stage.
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Table 3: Evaluation accuracy (mean±CI%95) on 600 test tasks on tieredImageNet-Close.

Model Reasoning setting 5way1shot 5way5shot 10way1shot 10way5shot
Prototypical Net Inductive 42.87±1.67% 62.68±0.99% 30.65±1.15% 48.64±0.70%
GNN Inductive 42.33±0.80% 59.17±0.69% 30.50±0.57% 44.33±0.72%
Closer Look Inductive 35.07±1.53% 47.48±0.87% 21.58±0.96% 28.01±0.40%
PPN Inductive 41.60±1.59% 63.04±0.97% 28.48±1.09% 48.66±0.70%

GPN Inductive 48.37±1.80% 64.14±1.00% 33.23±1.05% 50.50±0.70%
GPN w/ MASP Inductive 49.90±1.79% 65.90±1.03% 34.90±1.19% 51.00±0.73%

GPN+ Inductive 50.54±1.67% 65.74±0.98% 34.74±1.05% 51.50±0.70%
GPN+ w/ MASP Inductive 52.50±1.71% 66.00±0.98% 37.00±1.18% 51.20±0.71%

TPN Transductive 43.50±0.01% 61.80±0.01% 32.80±0.01% 46.70±0.01%
GPN w/ MASP Transductive 53.20±1.95% 67.00±0.97% 35.50±1.19% 51.00±0.72%
GPN+ w/ MASP Transductive 54.10±1.72% 67.50±0.95% 40.30±1.15% 50.70±0.70%

Table 4: Evaluation accuracy (mean±CI%95) on 600 test tasks onon tieredImageNet-Far.

Model Reasoning setting 5way1shot 5way5shot 10way1shot 10way5shot
Prototypical Net Inductive 44.30±1.63% 61.01±1.03% 30.63±1.07% 47.19±0.68%
GNN Inductive 43.67±0.69% 59.33±1.04% 30.17±0.47% 43.00±0.66%
Closer Look Inductive 42.27±1.70% 58.78±0.94% 22.00±0.99% 32.73±0.41%
PPN Inductive 43.63±1.59% 60.20±1.02% 29.55±1.09% 46.72±0.66%

GPN Inductive 47.54±1.68% 64.20±1.01% 31.84±1.10% 48.20±0.69%
GPN w/ MASP Inductive 49.80±1.83% 64.70±0.97% 35.20±1.10% 48.90±0.65%

GPN+ Inductive 47.49±1.67% 64.14±1.02% 31.95±1.15% 48.65±0.66%
GPN+ w/ MASP Inductive 51.70±1.73% 65.80±1.03% 34.60±1.08% 49.80±0.68%

TPN Transductive 48.10±0.01% 62.00±0.02% 33.00±0.01% 45.30±0.01%
GPN w/ MASP Transductive 52.20±1.78% 65.20±1.05% 34.90±1.12% 47.70±0.63%
GPN+ w/ MASP Transductive 53.50±1.78% 67.10±0.99% 37.10±1.19% 47.70±0.65%

We observe: (1) MASP achieves the highest accuracy on these two datasets and the improvements
over other methods is non-trival. (2) MASP can consistently improve the performance of few-shot
learning under all settings by 1∼4% compared to the baseline. (3) The original GPN is infeasible
to handle the transductive graph few-shot setting. With the equipment of MASP, we can make it be
feasible for the transductive setting and further improves the accuracy.

5.4 DISCUSSION

Visualization. We visualize the prototypes of the before and after in Figure 2 to visualize what
modifications the propagation makes in the representation space. Here the transparent dots denotes
the samples from the support set and each class is represented by a color. The mean of the repre-
sentations, denoted by triangles, are affected by the outliers and are dragged away. Some triangles
result in overlapping to each other and can have inaccurate classification boundaries. The sample
propagation can get rid of the noise from the outliers and learn a prototype which lies in the majority
of the support set. After the sample propagation, the boundaries are more clear.

Advantages of MASP. Our MASP is a light-weight module that can be plug-in into any few-shot
learning models to improve their accuracy. There are only four hyper-parameters of our MASP –
the number of propagation layers, the number of hidden dimensions, the keep ratio, and α. As we
observed in experiments, the same hyperparameters work well across different models, datasets, and
settings. It further demonstrates the effectiveness and flexibility of our MASP To be reproducible,
we describe our PyTorch implementation below. It is quite simple and easy to implement – just 22
lines of code, then you can obtain up to 4% of the accuracy gain.
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Figure 2: The t-distributed stochastic neighbor embedding (t-SNE) analysis for MASP. We use t-
SNE to visualize the original representation, and its sample propagated representation. For each
class, we also visualize its prototype – the mean feature representation of all samples.

PyTorch Implementation – just 22 lines of code to get up to 4% accuracy gain on tieredImageNet-
Close and tieredImageNet-Far.

1 class SamplePropagationLayer(nn.Module):
2

3 def __init__(self, in_dim, hidden=128, keep_ratio=0.5, alpha=5):
4 super(SamplePropagationLayer, self).__init__()
5 self.q = nn.Linear(in_dim, hidden, bias=False)
6 self.k = nn.Linear(in_dim, hidden, bias=False)
7 self.keep = keep_ratio
8 self.alpha = alpha
9

10 def forward(self, vectors, classes):
11 vectors_q, vectors_k = self.q(vectors), self.k(vectors)
12 num_samples, num_feats = vectors.shape
13 raw_attention = F.cosine_similarity(
14 vectors_q.view(num_samples, 1, -1),
15 vectors_k.view(1, num_samples, -1), dim=-1)
16 downweight = torch.ones_like(raw_attention)
17 is_same_classes = classes.view(num_samples, 1) == classes.view(1,

num_samples)
18 downweight[is_same_classes] = self.alpha
19 attention = F.softmax(raw_attention * downweight, dim=-1)
20 prop_vectors = torch.matmul(attention, vectors)
21 final_vectors = (1 - self.keep) * prop_vectors + self.keep * vectors
22 return final_vectors

6 CONCLUSION

In this paper, we propose a mechanism called “model-agnostic sample propagation (MASP)”that
leans to preprocess the representations of few-shot samples produced by a pre-trained model for
the purpose of outlier removal and more compact representations. It improves the training of task-
specific model and meta-learner in the scenario of few-shot data when the data distribution is hard
to be captured in the pre-trained representation space. It can be generally applied to any existing
few-shot learning models and settings without specifying the meta-learner and task-learner models’
architecture or their training strategies. We show that sample propagation is a general technique
and can consistently improve performance under various meta-learning setting, e.g., inductive and
transductive, conventional meta-learning and graph meta-learning.
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