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ABSTRACT

In the field of large language model (LLM) post-training, the effectiveness of uti-
lizing synthetic data generated by the LLM itself has been well-presented. How-
ever, a key question remains unaddressed: what essential information should such
self-generated data encapsulate? Existing approaches only produce step-by-step
problem solutions, and fail to capture the abstract meta-knowledge necessary for
generalization across similar problems. Drawing insights from cognitive science,
where humans employ high-level abstraction to simplify complex problems before
delving into specifics, we introduce a novel self-training algorithm: LEarning to
Plan before Answering (LEPA). LEPA trains the LLM to formulate anticipatory
plans, which serve as abstract meta-knowledge for problem-solving, before engag-
ing with the intricacies of problems. This approach not only outlines the solution
generation path but also shields the LLM from the distraction of irrelevant details.
During data generation, LEPA first crafts an anticipatory plan based on the prob-
lem, and then generates a solution that aligns with both the plan and the problem.
LEPA refines the plan through self-reflection, aiming to acquire plans that are in-
strumental in yielding correct solutions. During model optimization, the LLM
is trained to predict both the refined plans and the corresponding solutions. By
efficiently extracting and utilizing the anticipatory plans, LEPA demonstrates re-
markable superiority over conventional algorithms on various challenging natural
language reasoning benchmarks.

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized the field of natural language processing,
demonstrating remarkable capabilities in handling complex language tasks (Achiam et al., 2023;
Zhao et al., 2023; Yang et al., 2024; Shahriar et al., 2024). While post-training optimization of
LLMs demands a substantial volume of data (Xiao et al., 2023; Wang et al., 2024b), recent works
reveal that LLMs obtain the potential of generating high-quality synthetic data themselves (Zelik-
man et al., 2022; Gulcehre et al., 2023; Singh et al., 2023; Bansal et al., 2024). These works, known
as self-training methods, improve the LLM by iterating between generating data with LLMs and op-
timizing LLMs with the generated data. Self-training methods alleviate the requirement of expensive
human annotations and make post-training much more scalable.

A central challenge in self-training is, what essential information should such self-generated syn-
thetic data encapsulate? Despite remarkable progress, this problem has not been well studied. Pre-
vious works only generate step-by-step problem solutions, and train the LLM to maximize the log-
likelihood of generating these solutions (Zelikman et al., 2022; Singh et al., 2023). This approach
only trains the LLM to memorize knowledge about task-specific solutions, and fails to capture the
high-level abstract meta-knowledge necessary for generalization across similar problems. As a con-

1



Published as a conference paper at ICLR 2025

sequence, previous self-training methods obtain only limited generalization abilities, and struggle
on difficult natural language tasks such as Hendrycks MATH (Hendrycks et al., 2021).

Question: 
There are ten meerkats in a colony. Every night, two meerkats
stand guard while the others sleep. During a certain period of 
nights, every meerkat stands guard with every other meerkat
exactly once. During that period, how many nights of sleep 
does each meerkat get?

(a) Hendrycks Math

Answer: 
Let's solve the problem step by step.
There are 10 meerkats, and every night, 2 meerkats stand 
guard. This means that the total number of nights of guard 
duty is 10C2, which is the number of ways to choose 2 
meerkats out of 10.

10C2 = 10! / (2! * (10-2)!)= 10! / (2! * 8!)= (10 * 9 * 8! ) / (2 * 1 
* 8!)= 45
So, the total number of nights of guard duty is 45.

Since each meerkat stands guard with every other meerkat
exactly once, each meerkat stands guard for 45/2 = 22.5 nights.

However, this is not a whole number of nights, so we need to 
find the number of nights each meerkat gets. Since each 
meerkat stands guard with every other meerkat, each meerkat
stands guard with 9 other meerkats. This means that each 
meerkat stands guard for 9 nights.

Answer: 9

(b) Previous Method (ReST)

Plan: 
When solving combinatorial mathematics problems, consider the following steps:
1. Identify the number of elements and the number of elements that are chosen at a time.
2. Determine the total number of combinations.
3. Calculate the number of combinations for each element.
4. Calculate the total number of nights of sleep for each meerkat by subtracting the 
number of combinations for each element from the total number of combinations.
5. Provide the solution in the required format, including the correct answer.

Answer: 
Step 1: Identify the number of elements and the number of elements that are chosen at a 
time.
The problem states that there are 10 meerkats, and every night, 2 meerkats stand guard. 
This means that 2 meerkats are chosen at a time.

Step 2: Determine the total number of combinations.
Since 2 meerkats are chosen at a time, and there are 10 meerkats, the total number of 
combinations is given by the combination formula: C(10, 2) = 45.

Step 3: Calculate the number of combinations for each element.
Since every meerkat stands guard with every other meerkat exactly once, each meerkat is 
part of 9 combinations (since they stand guard with 9 other meerkats).

Step 4: Calculate the total number of nights of sleep for each meerkat.
The total number of nights is the total number of combinations (45) minus the number of 
combinations for each meerkat (9). This gives 45 - 9 = 36.

Answer: 36

(c) Proposed Method (LEPA)

Figure 1: A didactic example demonstrating how LEPA outperforms baseline methods by learning
to generate anticipatory plans before answering. (a) An example problem in the Hendrycks MATH
test set. (b) An incorrect solution given by the LLM trained with a baseline method, ReST. The
model fails to generate correct reasoning steps. (c) A correct solution given by the LLM trained
with our proposed method, LEPA. The model generates high-quality plans, and then follows the
plan to solve the problem correctly.

To tackle this challenge, we draw insights from cognitive science (Wang & Chiew, 2010; Radüntz,
2020): humans simplify complex problems through high-level abstraction before engaging with
details (Ross, 2009). Such abstraction not only lightens the cognitive load but also distills high-
level meta-knowledge that is transferable to analogous problems. This idea is also evidenced by
recent advances in meta-learning (Finn et al., 2017; Rakelly et al., 2019), which learn generalizable
meta-knowledge that enables fast adaptation to similar problems. We propose a novel self-training
algorithm, LEarning to Plan before Answering (LEPA), that learns to generate anticipatory plans be-
fore generating detailed step-by-step problem solutions. The anticipatory plans serve as high-level
abstract meta-knowledge that outlines the solution generation path and shields the LLM from the
distraction of irrelevant details. During data generation, LEPA prompts the LLM to first devise an
anticipatory plan that encapsulates the high-level problem-solving steps, and then generate a solu-
tion that aligns with both the problem and the plan. If the solution is correct, the plan-solution pair is
stored into the training dataset. Otherwise, the LLM is asked to reflect on the plan and the incorrect
solution, and refine the plan until it successfully prompts the LLM to generate correct solutions.
With this self-reflection mechanism, LEPA acquires plans that are instrumental in yielding correct
solutions. During model optimization, we utilize supervised fine-tuning (SFT) to train the LLM
to predict both the plans after self-reflection and the corresponding solutions. As shown in Figure
1, after self-training with LEPA, the LLM generates helpful abstract anticipatory plans that out-
line the solution steps and are generalizable to similar problems, thus achieving better performance
than baseline algorithms. LEPA is extensively evaluated on various challenging language reasoning
benchmarks including Hendrycks MATH, and significantly outperforms baseline methods.

To summarize, our main contributions are listed as follows:

1. We present the fundamental problem of what information should self-generated data en-
capsulate in the field of LLM self-training.

2. We propose a novel self-training algorithm, LEPA, that learns to generate anticipatory
plans, which serves as high-level abstract meta-knowledge guiding solution generation,
before generating detailed problem solutions.
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(a) Baseline algorithms’ data generation procedure.

(b) LEPA’s data generation procedure.

Figure 2: Comparison between baseline algorithms’ and LEPA’s data generation procedure. (a)
Baseline algorithms only generate step-by-step solutions to each problem, lacking high-level ab-
stract meta-knowledge that guides solution generation. (b) LEPA generates anticipatory plans before
generating detailed problem solutions. These plans are optimized with self-reflection, and encapsu-
late the high-level abstract problem-solving steps. The plans efficiently guide the LLM to generate
correct solutions.

3. We evaluate LEPA on several challenging language reasoning benchmarks and demonstrate
LEPA’s superior performance compared to based algorithms.

2 LEARNING TO PLAN BEFORE ANSWERING (LEPA)

This section introduces LEPA, a novel self-training algorithm that self-trains the LLM to devise
high-level anticipatory plans, which serve as abstract solution-generation blueprints, before gen-
erating detailed problem solutions. LEPA iterates between a data generation phase and a model
optimization phase. In the data generation phase, LEPA generates high-quality plan-solution pairs
with self-reflection. In the model optimization phase, LEPA fine-tunes the LLM with the gener-
ated data using SFT. Finally, we discuss multiple advantages that the anticipatory plans offer for
enhancing the self-training process.

2.1 DATA GENERATION PHASE

LEPA operates within the common self-training framework, which involves an initial LLM denoted
as θ0, a set of prompts containing N problems Dprompt = {xi}N−1

i=0 , and a binary scoring function
fcor(xi, yi) that evaluates the correctness of a solution yi with a score of either 0 or 1.

In each iteration t, as depicted in Figure 2, LEPA differs from previous methods in that it does not
directly prompt the LLM to generate step-by-step solutions to problems. Instead, LEPA instructs
the LLM to first generate an anticipatory plan pti that serves as an abstract blueprint for solution
generation, and then generate the actual solutions yti based on the plan and the problem. To avoid
the degenerate case of generating plans containing detailed step-by-step problem solutions, LEPA
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stresses in the prompt that the plan should be general high-level meta-knowledge that is applica-
ble to similar problems, and should not contain any problem-specific information such as detailed
calculations. If the solution is correct, i.e., rcor(xi, yi) = 1, then the problem-plan-solution tuple
(xi, p

t
i, y

t
i) is added to the training dataset Dt

train. Otherwise, LEPA refines the plan with self-
reflection. The LLM is prompted with the problem, the previous plan, the corresponding incorrect
solution, and the correct answer (if accessible). Then LEPA instructs the LLM to reflect on why
the previous plan fails to guide itself to generate correct solutions, and then generate a new plan
based on its reflection results. To avoid information bypassing, LEPA also stresses in the reflection
prompt that the reflected plan should not contain problem-specific information, including detailed
calculation and the correct answer. LEPA evaluates the refined plan by instructing the LLM to solve
the problem with the refined plan. If the generated solution is correct, the problem-plan-solution tu-
ple (xi, p

t
i, y

t
i) is added to the training dataset. Otherwise, LEPA repeats the self-reflection process,

unless either a correct solution is generated or the number of trials reaches a certain limit l. The self-
reflection process empowers LLMs to enhance anticipatory plans based on correctness feedback and
analysis of unsuccessful attempts, thus efficiently seeking out superior plans.

2.2 MODEL OPTIMIZATION PHASE

In each iteration, after acquiring the training dataset Dt
train, LPEA optimizes the model with SFT.

LEPA formats data into a two-round conversation. In the first round, The user inputs the problem xi

and requires the LLM to generate an anticipatory plan, and the assistant output is the plan pti. In the
second round, the user instructs the LLM to solve the problem based on the plan it proposed, and
the assistant output is the solution yti . The training objective is to minimize the following negative
log-likelihood loss:

LSFT (θt,Dt
train) = −E(xi,pt

i,y
t
i)∼Dt

train
[log pθt(p

t
i, y

t
i |xi)]. (1)

While we employ SFT for algorithm simplicity, LEPA is also compatible with more sophisticated
reinforcement learning (RL) algorithms such as Direct Policy Optimization (DPO) (Rafailov et al.,
2024) and Proximal Policy Optimization (PPO) (Schulman et al., 2017). We believe RL algorithms
can further boost LEPA’s performance, and are important future directions. The pseudo-code for
LEPA is presented in Algorithm 1. Detailed prompts and hyper-parameters used by LEPA is deferred
to Appendix A.

2.3 WHY IS THE ANTICIPATORY PLAN BENEFICIAL?

Central to LEPA’s efficacy is the anticipatory plan, offering multiple advantages for self-training.
This subsection discusses these benefits in detail.

Reducing cognitive workload. As demonstrated in Figure 1, without the anticipatory plans, the
LLM may get lost in the problem-solving process, leading to erroneous solution steps. In contrast,
the anticipatory plans serve as blueprints that outline the necessary problem-solving steps, and shield
the LLM from the distraction of irrelevant details. Consequently, when generating detailed problem
solutions, the LLM is conscious of what to do at the current step, and successfully solves the prob-
lem. Research in cognitive science (Wang & Chiew, 2010; Radüntz, 2020) supports the notion that
such a structured approach significantly eases cognitive load and improves learning efficiency.

Learning generalizable high-level meta-knowledge. The anticipatory plans are abstract high-
level meta-knowledge that does not involve problem specifics, and is thus generalizable across sim-
ilar problems. For example, the plan demonstrated in Figure 1 can be readily adapted to a variety of
combinatorial mathematical problems with similar underlying structures but different parameters.
From the meta-learning perspective, LEPA can be interpreted as a meta-learning algorithm that ex-
tracts the meta-knowledge in the form of anticipatory plans. The learned meta-knowledge empowers
the LLM to solve similar problems more effectively.

Learning generalizable high-level meta-knowledge. When the correct answer is accessible, the
anticipatory plans enable self-reflection that avoids the pitfall of information bypassing. Previous
methods like STaR (Zelikman et al., 2022) directly modify incorrect solutions by referring to the
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Algorithm 1 LEPA: LEarning to Plan before Answering

1: Require: An initial LLM θ0, a set of problems Dprompt = {xi}N−1
i=0 , a binary scoring function

fcor(xi, yi), number of iterations T , maximum self-reflection trials l, learning rate α
2: for t← 0 to T − 1 do // In each iteration do
3: Initialize an empty training set Dt

train
4: for i← 0 to N − 1 do // For each problem do
5: Ask θt to generate anticipatory plan pt,0i to problem xi

6: Ask θt to generate solution yt,0i based on xi and pt,0i

7: if fcor(xi, y
t,0
i )==1 then // Solution is correct, add to training set

8: Add {xi, p
t,0
i , yt,0i } to Dt

train
9: else

10: for j ← 1 to l do // Self-reflection iterations
11: Ask θt to self-reflect on pt,j−1

i and yt,j−1
i , and generate pt,ji

12: Ask θt to generate solution yt,ji based on xi and pt,ji

13: if fcor(xi, y
t,j
i )==1 then

14: Add {xi, p
t,j
i , yt,ji } to Dt

train
15: Break // Solution is correct, stop self-reflection
16: end if
17: end for
18: end if
19: end for
20: θt+1 ← θt − α∇θtLSFT (θt,Dt

train) // Model Optimization with SFT
21: end for

correct answer, and are very likely to cheat by only modifying the final answer and ignoring the
consistency between intermediate steps and the final answer (Singh et al., 2023). In contrast, as
LEPA requires the anticipatory plans to not include any problem-specific information including
the final correct answer, it isolates the correct answer from solution generation. The model must
generate correct solutions without seeing the correct answer, preventing the model from cheating
during solution generation.

3 EXPERIMENTS

To demonstrate the effectiveness of LEPA, we evaluate on several challenging reasoning bench-
marks, including Hendrycks MATH (challenging math problems) (Hendrycks et al., 2021), Hel-
laswag (sentence completion reasoning) (Zellers et al., 2019), BoolQ (paragraph understanding and
reasoning) (Clark et al., 2019), and PIQA (physics reasoning) (Bisk et al., 2020). For Hendrycks
MATH, we evaluate solution correctness with the function provided by the dataset creators (https:
//github.com/hendrycks/math).We utilize Llama 3 8B Instruct (Dubey et al., 2024) as the
initial LLM. LEPA is compared against several representative self-training algorithms: ReST (Gul-
cehre et al., 2023), ReSTEM (Singh et al., 2023), and STaR (Zelikman et al., 2022). All these
baseline methods only generate step-by-step solutions to problems. Both ReST and ReSTEM gen-
erate solutions with rejection sampling. In each iteration, ReST fine-tunes the model trained after
the previous iteration, while ReSTEM instead fine-tunes from the initial LLM. STaR generates so-
lutions by prompting the LLM to modify incorrect solutions with the aid of correct answers, and
also fine-tunes from the initial LLM in each iteration. We demonstrate algorithms’ test accuracy at
convergence1. For a fair comparison, all methods do not utilize few-shot examples in their prompts.
We also demonstrate the initial LLM’s efficacy, with either a zero-shot CoT prompt (Kojima et al.,
2022) or a LEPA prompt that instructs it to first generate an anticipatory plan before answering.

1As STaR’s test accuracy drops significantly on MATH, we instead demonstrate its highest test accuracy.
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Table 1: Test accuracy of LEPA and various baselines on four challenging reasoning benchmarks.
“CoT” and “Plan+CoT” refer to the initial LLM’s performance with a zero-shot CoT prompt and
the LEPA prompt, respectively. LEPA demonstrates superior accuracy in comparison to all other
algorithms on each of the benchmarks. Numbers in the parentheses are LEPA’s performance im-
provement over the best-performing baseline algorithm on each benchmark.

CoT Plan+CoT ReST ReSTEM STaR LEPA

Hellaswag 60.8% 56.1% 86.3% 86.4% 85.7% 91.2% (+4.8%)
Hendrycks MATH 19.5% 22.1% 28.2% 27.2% 25.9% 30.2% (+2.0%)

BoolQ 77.3% 80.8% 84.5% 86.3% 85.8% 88.4% (+2.1%)
PIQA 67.0% 75.7% 81.4% 83.5% 84.2% 85.9% (+1.7%)

Average 56.1% 58.7% 70.1% 70.8% 70.4% 73.9% (+3.1%)

3.1 MAIN RESULTS

Table 1 presents a comparative analysis of algorithm performance across the four reasoning bench-
marks. Notably, in the absence of self-training, the LEPA prompt (Plan+CoT) enhances the ini-
tial LLM’s performance on three benchmarks when compared to the traditional zero-shot CoT
prompt (CoT). This suggests that the practice of formulating anticipatory plans before generating
detailed solutions can significantly improve model efficacy. However, on the Hellaswag benchmark,
Plan+CoT falls short of CoT, implying that such enhancement is not uniformly achievable across
different tasks, potentially due to the initial LLM’s lack of calibration for producing high-quality
anticipatory plans. As for self-training performance, baseline self-training algorithms only train the
LLM to predict step-by-step solutions, lacking abstract high-level meta-knowledge about problem-
solving. As a consequence, these algorithms perform poorly on these benchmarks. In contrast,
LEPA efficiently extracts high-level abstract meta-knowledge with the anticipatory plans, thereby
surpassing all baseline algorithms consistently across all benchmarks.

Figure 3 illustrates algorithms’ learning curve across learning iterations. LEPA’s superior perfor-
mance is evident across all benchmarks. Specifically, on Hellaswag, LEPA lags initially during
the early iterations (0-10), where the LEPA prompt is slightly less effective than the zero-shot CoT
prompt. However, as training progresses, LEPA’s performance incrementally surpasses that of the
baseline algorithms, suggesting that self-training is instrumental in awakening the LLM’s capacity
to conceive and leverage anticipatory plans effectively. On the remaining three benchmarks, LEPA
acquires better initial performance and converges at higher test accuracies, demonstrating the effec-
tiveness of introducing the anticipatory plans. We also observe a great performance drop of STaR
on Hendrycks MATH. This is because STaR is very likely to generate false-positive solutions, i.e.,
solutions with wrong rationales but correct final answers (Singh et al., 2023), and greatly hinders
learning on complex reasoning benchmarks like Hendrycks MATH.

3.2 ABLATION STUDIES

LEPA consists of three key components: the anticipatory plan, plan optimization with self-reflection,
and utilizing more inference compute to achieve better performance. This subsection discusses the
necessity of each component with ablation studies.

Anticipatory plans. We test a variant of LEPA that does not introduce anticipatory plans in the
data generation phase, and only trains the LLM to predict the step-by-step solutions optimized with
self-reflection. As shown in Table 2, this variant (“Without Plan”) under-performs LEPA. There
are two reasons for this degrade in performance. Firstly, without the anticipatory plans, the LLM
does not learn abstract high-level meta-knowledge about problem-solving. Secondly, as discussed
in Section 2.3, directly performing self-reflection on the solutions is very likely to generate false-
positive solutions, which greatly hiders learning.

Self-reflection. To demonstrate the necessity of self-reflection in LEPA’s plan optimization, we
test a variant that instead utilizes rejection sampling (Singh et al., 2023) to sample plan-answer
pairs. As shown in Table 2, this variant (“Without Self-Reflection”) also performs worse than LEPA.
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Figure 3: Algorithms’ learning curves on the four benchmarks. LEPA achieves better performance
than baseline algorithms.

Table 2: Ablation study on the anticipatory plan and self-reflection. We also demonstrate the perfor-
mance of ReSTEM , the baseline with the highest average test accuracy. “Without Plan” is LEPA
without anticipatory plans, and “Without Self-Reflection” is LEPA without self-reflection.

ReSTEM LEPA Without Plan Without Self-Reflection

Hendrycks MATH 27.2% 30.2% 24.3% 28.8%
BoolQ 86.3% 88.4% 84.8% 86.9%
PIQA 84.2% 85.9% 84.5% 84.8%

This result implies that self-reflection is more effective than rejection sampling in optimizing the
anticipatory plans, as it gives linguistic feedback for LLMs to improve the previous plans.

Different ways of utilizing inference compute. LEPA generates both anticipatory plans and prob-
lem solutions, utilizing more compute at inference time. it is worth discussing how much contri-
bution the extra compute makes, and whether the anticipatory plan is an effective way to utilize
inference compute. For the first question, as discussed in Section 3.2, without self-training, utilizing
inference compute with anticipatory plans can improve performance on three of the four bench-
marks, and degrade performance on one benchmark. In contrast, after self-training, the anticipatory
plans can consistently help LEPA outperform baseline methods. This result demonstrates that extra
inference compute contributes a part to LEPA’s performance, and self-training is also vital for un-
locking the LLM’s ability to efficiently utilize these extra compute. For the second question, we test
three other variants that train the LLM to utilize inference compute in different ways. The first vari-
ant adds silence tokens in the solution to give the LLM more compute to generate answers (Goyal
et al., 2023). The second variant trains the LLM to first output a solution, and then outputs a new
solution if it finds the original solution incorrect. For data generation of this variant, solutions are
generated with rejection sampling, analogous to ReST . We synthesize training data by appending
correct solutions to the end of incorrect solutions. The third variant simply asks the LLM to generate
long solutions. All variants fine-tune the LLM with ReST . As shown in Table 3, LEPA is the only
method that successfully utilizes additional inference compute to outperform baseline methods. In
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Table 3: Ablation study on ways of utilizing inference compute. We test on the Hendrycks MATH
dataset.“Silence token” is the variant that adds silence tokens in the solution. “Correction” is the
variant that trains the LLM to output new solutions if it finds its initial solution incorrect. “Long So-
lution” is the variant that instructs the LLM to generate long solutions. “# of Tokens” is the average
token length of the LLM’s responses to test problems, and “Accuracy” is the LLM’s test accuracy.
LEPA is the only method that efficiently utilizes additional inference compute to outperform base-
line methods. We put the results in two rows due to the page width limit.

STaR ReST LEPA

# of Tokens Accuracy # of Tokens Accuracy # of Tokens Accuracy

175.1 25.9% 477.8 28.2% 826.4 30.2%
Silence Tokens Correction Long Solution

# of Tokens Accuracy # of Tokens Accuracy # of Tokens Accuracy

869.3 28.3% 979.4 27.8% 1409.7 25.4%

contrast, the first variant performs similarly to the ReST baseline, suggesting that silence tokens
offer limited benefits for the challenging Hendrycks MATH benchmark. Both the second and the
third variant underperform ReST , as the LLM is trained to predict tokens with scant correlation to
correct solution formulation. The results above implies that introducing the anticipatory plans is a
more efficient way to generate long self-training data compared to the aforementioned alternatives.
Detailed implementation of these variants are deferred to Appendix B.

Incorporation with RL algorithms. To demonstrate that LEPA is also applicable to more ad-
vanced RL optimization algorithms, we test a variant of LEPA that utilizes REINFORCE (Zhang
et al., 2021b) as the underlying optimization algorithm, which is called LEPA+REINFORCE. The
only difference between LEPA and LEPA+REINFORCE is that LEPA+REINFORCE labels data
with rewards of either 1 or -1 (based on the final answer correctness), and optimizes the LLM with
the labelled data using the REINFORCE algorithm. On Hendrycks MATH, LEPA+REINFORCE
achieves a test accuracy of 30.6%, while the original LEPA achieves 30.2%. This performance
improvement demonstrates the potential of incorporating LEPA with more advanced optimization
algorithms like RL, and is a promising future direction.

LPEA with RL. To investigate the potential of incorporating LPEA with RL algorithms, we
demonstrate a variant of LEPA that utilizes REINFORCE as the optimization algorithm in the model
optimization phase. This variant is named LEPA+REINFORCE. The only difference from LEPA is
that LEPA+REINFORCE does not discard failure data. Instead, it utilizes the solution correctness as
the reward (1 for correct solutions, -1 for incorrect solutions). This implementation makes no modi-
fication to the data generation process. On Hendrycks MATH, LEPA+REINFORCE achieves a test
accuracy of 30.6%, while LEPA achieves 30.2%. This performance improvement demonstrates the
feasibility and effectiveness of incorporating LEPA with RL algorithms. Additional ablation studies
including algorithm performance on OOD benchmarks, other LLMs, additional benchmarks, and
evaluation with Simple-Eval are deferred to Appendix C.

3.3 CASE STUDY

We present a case to demonstrate how LEPA’s self-reflection mechanism optimizes the anticipatory
plans and the solutions. As shown in Figure 4, the initial plan generated by the model is too vague,
and cannot provide enough guidance for the model to solve the problem correctly. Consequently,
during solution generation, the model generates irrelevant steps, makes a mistake in the symbol of
the expression, and fails to answer correctly. In the self-reflection process, the model finds out that
the previous answer failed to calculate the correct symbols. So it modifies the plan to contain more
detailed instructions on how to solve this problem. Note that the plan after self-reflection is still gen-
eral meta-knowledge that is applicable to a wide range of similar problems. With this modified plan,
the model pays more attention to signs, generates only necessary steps, and successfully generates a
correct solution.
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Question: 

What is the value of 15 − 6 6 + 15 + 6 6?

Initial Plan: 
Analyze the problem carefully. Identify the mathematical object or expression involved, and determine the relevant mathematical field or discipline it belongs 
to. In this case, identify the type of expression, its structure, and the mathematical operations involved. Consider the properties and relations between the 
given numbers, expressions, and variables. Look for any opportunities to apply mathematical concepts, theorems, or formulas to simplify or solve the problem.

Answer guided by the initial plan: 
Analyzing the problem carefully, I identify the mathematical object as a radical expression involving square roots. The relevant mathematical field is algebra, 
specifically rationalizing the denominators and simplifying expressions.

Step 1: I consider the structure of the expression and identify the perfect squares within the radicals. Recognizing that 6 6 can be rewritten as 36 6 = 6 6, 

I can rewrite the expression as 15 − 6 6 + 15 + 6 6 = 9 + 6 − 6 6 + 9 + 6 + 6 6.

I apply the difference of squares formula to the first radical, obtaining 15 − 6 6 = 3 + 6
2
= 3 + 6. Similarly, I apply the difference of squares 

formula to the second radical, obtaining 15 + 6 6 = 3 + 6
2
= 3 + 6.

Step 3:

I combine the expressions, adding the like terms, to obtain 3 + 6 + 3 + 6 = 6 + 2 6.

Answer: 6 + 2 6

Self-reflection:
The model fails to solve the problem because it incorrectly applies the difference of squares formula, resulting in the same expression for both radicals. This is 
likely due to the model's lack of attention to the signs and the correct application of the formula.
The new instruction should focus on the correct application of the difference of squares formula and the importance of considering the signs. 

Plan after self- reflection: 
When simplifying radical expressions, consider the structure of the radicand and the signs. 
1. Identify the radical expression and its components.
2. Simplify each radical separately, considering the signs.
3. Combine like terms to obtain the simplified expression.
4. Verify the result by checking the original expression and the simplified expression for equivalence.

Answer guided by the plan after self-reflection: 
Step 1: Identify the radical expression and its components.

The radical expression is 15 − 6 6 + 15 + 6 6, which consists of two radical terms.
Step 2: Simplify each radical separately, considering the signs.

We can start by simplifying the first radical: 15 − 6 6 = 3 − 6
2
= 3 − 6.

Similarly, we can simplify the second radical: 15 + 6 6 = 3 + 6
2
= 3 + 6.

Step 3: Combine like terms to obtain the simplified expression.

The simplified expression is 3 − 6 + 3 + 6 = 6.
Step 4: Verify the result by checking the original expression and the simplified expression for equivalence.
The original expression and the simplified expression are equivalent, so our answer is correct.
Answer: 6

Figure 4: A case study demonstrating how LEPA optimizes the anticipatory plans and the solutions
with self-reflection. The initial plan is too broad and lacks detail, and fails to provide enough guid-
ance to generate correct answers. The self-reflection process successfully analyses what is wrong,
and generates a new, high-quality plan that provides more guidance while maintaining generaliz-
ability. With the new plan after self-reflection, the model successfully generates correct solutions.

4 RELATED WORKS

Self-training. With the fast development of LLMs, the thirst for data continues to grow. A promis-
ing way is to generate high-quality data with the LLM itself. A branch of works mainly focus on
designing the data generation progress. STaR (Zelikman et al., 2022) operates by initially prompt-
ing the LLM to produce step-by-step solutions, followed by an adjustment phase where the LLM
corrects its errors with the aid of the correct answers. One severe limitation of STaR is that the
modification process makes it very possible to generate false-positive solutions, i.e., solutions with
wrong rationales but correct final answers. RFT (Yuan et al., 2023), ReST (Gulcehre et al., 2023),
and ReSTEM (Singh et al., 2023) instead adopt rejection sampling for data generation, and suffer
less from the false-positive issue. TRICE (Hoffman et al., 2024) improves over STaR by utilizing
a Markov-chain Monte Carlo expectation-maximization algorithm to sample solutions, and intro-
ducing a control-variate method to control gradient variance. Re-ReST (Dou et al., 2024) utilizes
self-reflection to correct the generated wrong answers. LMSI (Huang et al., 2022) considers the
scenario where the correctness of model-generated data cannot be verified during training, and filers
data with majority voting. Apart from these methods, SPAG (Cheng et al., 2024) generates data by
asking LLMs to self-play in adversarial games. These previous methods above only generate step-
by-step solutions to problems, and lack high-level meta-knowledge that are generalizable across
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similar problems. In contrast, LEPA learns abstract meta-knowledge in the form of anticipatory
plans, and achieves better performance on complex benchmarks.

Scaling inference compute. As proposed by Snell et al. (2024) and confirmed by the recent inspir-
ing GPT O1 model (Hu et al., 2024), scaling inference compute can further boost LLM performance.
Similar to LEPA, PS Prompting (Wang et al., 2023b) also scales inference compute by asking the
LLM to first generate a plan before answering, but does not consider how to generate data and fine-
tune the LLM. Moreover, it does not consider how to automatically optimize the anticipatory plans.
HSP (Fu et al., 2024) is the most relevant work to ours, which trains the LLM to output hints before
solving the problem. However, HSP’s hints are pre-collected rather than self-generated, and induce
additional data collection costs. PHP (Zheng et al., 2023) utilizes previously generated answers as
hints, and encourages the LLM to answer with reference to its previous answers. LEPA efficiently
utilizes inference compute by training the LLM to generate helpful anticipatory plans, which contain
high-level meta-knowledge on problem-solving, before generating actual problem solutions. These
plans are automatically optimized by the LLM itself, and do not require additional human design.

Meta-learning. Meta-learning aims at “learning to learn”, i.e., designing meta-algorithms that op-
timize learning algorithms automatically (Finn et al., 2017; Sung et al., 2017; Rakelly et al., 2019;
Zhang et al., 2021a; Wang et al., 2023a). LEPA can be interpreted as a meta-learning algorithm
that learns the meta-knowledge of designing the anticipatory plans for each problem, rather than
designing plans with human effort. The most relevant work is Quiet-STaR (Zelikman et al., 2024),
which meta-learns meta-tokens that help the LLM to predict the next token. LEPA considers the
setting of problem-solving rather than general next-token prediction, and meta-learns the generation
of anticipatory problem-solving plans.

Planning in LLMs. Recently, several works have demonstrated the effectiveness of integrating
planning in LLMs. ReAct (Yao et al., 2022) and DEPS (Wang et al., 2024c) generate plans before
dealing with decision-making problems, and LUMOS (Yin et al., 2023) fine-tunes the LLM on
pre-collected datasets containing planning data. To our best knowledge, LEPA is the first work
to integrate planning in the process of self-training, and improves the LLM’s planning ability by
training on self-generated data.

Self-reflection. Self-reflection enables LLMs to reflect on their mistakes and generate better re-
sponses. It can be viewed as a process of in-context optimization to produce better responses. Previ-
ous works demonstrate that self-reflection can significantly improve LLM response quality (Renze
& Guven, 2024; Shinn et al., 2024; Madaan et al., 2024). LEPA utilizes self-reflection to optimize
plans and solutions in the data generation phase, and acquires data of higher quality.

5 CONCLUSION

This paper presents the fundamental problem of what data should be generated in self-training al-
gorithms. Inspired by cognitive science research and recent meta-learning advances, we propose a
novel idea of learning abstract meta-knowledge in the form of anticipatory problem-solving plans.
Based on this idea, we propose a novel self-training algorithm, LEPA, which automatically generates
and learns the anticipatory plans. Experiment results on several challenging reasoning benchmarks
demonstrate the effectiveness of LEPA. An interesting future direction is to incorporate LEPA with
more advanced model optimization methods such as RL. It is also worth exploring how well can
LEPA perform on larger and more advanced LLMs, and how to scale LEPA to utilize more infer-
ence compute. Furthermore, as LLMs may solve simple problems without planning, an important
future direction is to automatically identify complex problems that require planning from simple
problems that can be easily solved without planning. This identification can avoid wasting compute
resources and help the LLM solve problems more efficiently.
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Concerns about safety and reliability are key points of discussion in the LLM community. The use
of anticipatory plans in LLMs is a step towards making the models’ actions more understandable
and transparent to people. Yet, LEPA cannot guarantee that every solution will strictly match the
plans it creates, which means further work is needed to solidify the trustworthiness of LLMs.
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A DETAILED PROMPTS AND HYPER-PARAMETERS

This section demonstrates the detailed prompts and the hyper-parameters used by LEPA and baseline
algorithms. Figure 5 presents the prompts used by LEPA and baseline algorithms.

As for hyper-parameters, for a fair comparison, we ensure that all algorithms have the same number
of trials (5) in the data generation phase. LEPA is allowed to have maximally 4 self-reflection
processes for each problem. For ReST and ReSTEM , 5 solutions are sampled for each question.
For STaR, it has maximally 4 opportunities to modify the previous incorrect answer. All algorithms
fine-tunes the LLM for one epoch in each model optimization phase. For the data generation phase
of all algorithms, we use a temperature of 0.5 for sampling. We use a temperature of 0.0005 for all
test results. We use 3e-7 as the learning rate for all learning algorithms.

Prompt for anticipatory plan generation: 
You are an expert at designing plans for large language models to solve problems. The problem to be solved is:
[Question]
Output the plan you design. Note that the plan should be general knowledge that help solve similar problems, so do not contain any question-specific 
information. Also, the content will be directly added to the prompt, so pay attention to its format. The plan should be concise, no longer than 1024 tokens. 
Output only the plan. Do not output any other words.

Prompt for solution generation: 
Based on the plan you propose, solve the problem step by step. In each step of your solution, explain how the plan affect you to form your answers. The last 
line of your response should be of the form Answer: $ANSWER (without quotes) where $ANSWER is the answer to the problem. Remember to put your answer 
on its own line after "Answer:", and you do not need to use a \\boxed command. Your response should be concise, no longer than 1024 tokens. The problem is:
[Question]

Prompt for self-reflection:
You are an expert in designing plans for large language models to solve problems. You have found that the original plan fails to solve a problem. You need to 
analyze the failure case, and design a new plan. The new plan should help the large language model to solve the failure case. You are encouraged to design 
plans distinct from the original plan to better explore high-quality plans.
The problem is:
[Question]
The original plan is: 
[Original Plan]
The incorrect solution  given by the large language model under the original plan is:
[Original solution]
The desired correct final answer is:
[Correct Answer]
Analyze the information above. Why does the model fail to solve the problem? What is wrong in the answer? How to design a new plan so that the model can 
correctly solve the problem? How distinct should the new plan be from the original plan? What contents should the new plan obtain? Pay special attention to 
the formatting requirements. Does the model's output strictly follow the required output format? Answer concisely, no longer than 2560 tokens.

Prompt for new plan generation after self-reflection:
Based on the analysis above, output the new plan. Note that the new plan should be general knowledge that help solve similar problems, so do not contain 
any task-specific information. You must not contain the correct final answer in the plan. You are encouraged to design plans distinct from the original plan to 
better explore high-quality plans. Also, the content will be directly added to prompt, so pay attention to its format. The content should be short and concise, 
no longer than 1024 tokens. Output only the plan. Do not output any other words.

(a) LEPA prompt.
Prompt for solution generation: 
Solve the following problem step by step. The last line of your response should be of the form Answer: $ANSWER (without quotes) where $ANSWER is the 
answer to the problem. Remember to put your answer on its own line after "Answer:", and you do not need to use a \\boxed command. Your response should 
be concise, no longer than 1024 tokens. The problem is:
[Question]

Prompt for solution modification (only used in STaR): 
Your solution is wrong. The correct answer is: 
[Correct Answer]
Modify your previous solution to get the correct answer. Output the modified solution only. Do not output any other words.

(b) Prompt used by baseline methods.

Figure 5: Detailed prompts used by (a) LEPA and (b) baseline algorithms.

B ABLATION DETAILS

This section presents the details of the variants discussed in the “Different ways of utilizing inference
compute” part of Section 3.2.

For the second variant, we first sample correct and incorrect solutions for each problem with re-
jection sampling. Then we synthesize training data by first adding a sentence of “Oops, I made a
mistake. The correct solution is: ” to the end of incorrect solutions. Then we append a correct
solution to the end of this sentence.
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For the third variant, we explicitly instruct the LLM to output solutions that are approximately 2,000
words long. We observe that the LLM generates verbose responses that obscure the important steps
in solving the problem.

C ADDITIONAL ABLATION STUDIES

OOD performance. We evaluate OOD performance by training on Hendrycks MATH and testing
on the Math category of MMLU-Pro (Wang et al., 2024a). As shown in Table 4, LEPA consistently
outperforms baseline algorithms in this OOD setting.

CoT Plan+CoT ReST ReSTEM STaR LEPA
Performance 30.4% 33.9% 35.1% 35.3% 35.8% 38.9%

Table 4: Performance of different algorithms training on Hendrycks MATH and testing on the Math
category of MMLU-Pro. ”CoT” and ”Plan+CoT” refer to the initial LLM’s performance with a
zero-shot CoT prompt and the LEPA prompt, respectively. LEPA achieves better generalization
than baseline algorithms.

Other LLMs. We additionally evaluate algorithm performance on Llama 3.1 8B Instruct. As
shown in Table 5, on the Hendrycks MATH dataset, the LEPA prompt can slightly improve over the
zero-shot CoT prompt on the initial LLM. As for self-training, LEPA significantly outperforms the
baseline algorithm. These empirical results are consistent with our main results presented in Section
3.1.

Additional Benchmarks. We additionally evaluate on CSQA (Saha et al., 2018) and MMLU
(Hendrycks et al., 2020), and results are shown in Table 6. LEPA consistently outperforms base-
line algorithms on these benchmarks.

Algorithm CoT Plan+CoT ReST ReSTEM STaR LEPA
Performance 37.2% 38.4% 45.3% 46.9% 45.0% 49.6%

Table 5: Algorithm performance on Hendrycks MATH, with Llama 3.1 8B Instruct as the initial
LLM. ”CoT” and ”Plan+CoT” refer to the initial LLM’s performance with a zero-shot CoT prompt
and the LEPA prompt, respectively

CoT Plan+CoT ReST ReSTEM STaR LEPA
CSQA 67.1% 69.3% 73.2% 74.0% 74.1% 75.2%
MMLU 61.9% 60.1% 64.3% 65.6% 65.8% 66.1%

Table 6: Performance comparison of different methods on CSQA and MMLU benchmarks. LEPA
achieves higher performance than baseline algorithms.

Evaluation with Simple-Eval. We re-evaluate Hendrycks MATH performance with Simple-Eval,
and the results are demonstrated in Table 7. With the new evaluation, LEPA still outperforms base-
line algorithms.
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CoT Plan+CoT ReST ReSTEM STaR LEPA
26.1% 28.5% 31.2% 31.4% 29.2% 33.7%

Table 7: Hendrycks MATH performance evaluated with Simple-Eval. With the new evaluation,
LEPA still outperforms baseline algorithms.
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