When Does Re-initialization Work?

Sheheryar Zaidi'* Tudor Berariu?* Hyunjik Kim?
Jorg Bornschein® Claudia Clopath?3 Yee Whye Teh!:®> Razvan Pascanu®
YUniversity of Oxford, 2Imperial College London, *DeepMind

*Equal contribution.
Correspondence to: szaidi@stats.ox.ac.uk, t.berariul9@imperial.ac.uk

Abstract

Re-initializing a neural network during training has been observed to improve
generalization in recent works. Yet it is neither widely adopted in deep learning
practice nor is it often used in state-of-the-art training protocols. This raises the
question of when re-initialization works, and whether it should be used together
with regularization techniques such as data augmentation, weight decay and learn-
ing rate schedules. In this work, we conduct an extensive empirical comparison of
standard training with a selection of re-initialization methods to answer this ques-
tion, training over 15,000 models on a variety of image classification benchmarks.
We first establish that such methods are consistently beneficial for generalization in
the absence of any other regularization. However, when deployed alongside other
carefully tuned regularization techniques, re-initialization methods offer little to
no added benefit for generalization, although optimal generalization performance
becomes less sensitive to the choice of learning rate and weight decay hyperparam-
eters. To investigate the impact of re-initialization methods on noisy data, we also
consider learning under label noise. Surprisingly, in this case, re-initialization sig-
nificantly improves upon standard training, even in the presence of other carefully
tuned regularization techniques.

1 Introduction

Recent works [e.g. (1} 2] have proposed a set of techniques for training neural networks based on
re-initialization. These methods, which we collectively refer to as re-initialization methods, involve
re-initializing and transforming a part or all of the parameters of a neural network periodically
throughout learning. Studies have shown that re-initialization can help in certain settings, such
as small-data regimes [l 27] and online learning [2]. However, despite having no overhead in
terms of computation cost and small implementation overhead, such re-initialization techniques
have not yet been adopted as common deep learning practice. Indeed, most state-of-the-art (SOTA)
training protocols do not incorporate re-initialization techniques, relying instead on advances in e.g.
optimization [10], architectures [22} 28} 5], data augmentation [8} 9] and pre-training [7].

However, prior work suggests that re-initialization can improve the generalization performance of
neural networks. For example, in the context of online learning, Ash and Adams [2] studied a
scenario in which training data arrives sequentially in “‘chunks” over time such that at any point in
time the training dataset consists of the union of all chunks arrived so far. They compared training
the network from scratch each time a new chunk arrives to warm-starting, where we continuously
train (i.e. fine-tune) the model, finding that warm-starting significantly underperformed. In order to
remedy this, they proposed Shrink & Perturb (defined in Section[2.2)), a re-initialization technique
applied each time a new chunk arrives. Interestingly, applying Shrink & Perturb not only closed the
performance gap between warm-starting and training from scratch, but improved upon the model
trained from scratch. Does this mean that the standard approach to training neural networks without
re-initialization is sub-optimal?

I Can’t Believe It’s Not Better Workshop at NeurIPS 2022.

The motivation of our work is to empirically investi-
gate whether re-initialization improves generalization
in supervised learning and understand its benefits and
limitations for training neural networks. To that end,
we trained over 15,000 models to identify the settings
under which re-initialization methods are helpful. We
study the interaction between re-initialization and
other widely used regularization and optimization
techniques, including data augmentation, weight de-
cay and learning rate schedules. We seek to answer a
fundamental, practical question: are the benefits of re-
initialization additive with those of common, existing
techniques for improving generalization? Our experi-
ments consider settings ranging from vanilla training
to SOTA protocols which yield top performance. In
addition to varying the training protocol, we also
investigate the impact of re-initialization methods
when learning on noisy data by studying what hap-
pens under the presence of label noise, leading to
some surprising improvements.

Test Accuracy (%)

No regularization Full regularization Full regularization
No label noise No label noise 40% label noise

No re-init.

Re-init. (S&P)
= (standard)

B Re-init. (S&P) + distillation

Figure 1: Comparison of standard train-
ing (i.e. no re-initialization) with re-
initialization using Shrink & Perturb in
three scenarios on Tiny ImageNet with
PreAct-ResNet-18. Full regularization refers
to the usage of carefully tuned data aug-

mentation, weight decay and a learning rate
schedule, whereas no regularization is with-
out. Without label noise, Shrink & Perturb
helps in the absence of other regularization
but has limited benefit otherwise. With label
noise, Shrink & Perturb helps significantly
even alongside other regularization. Adding
distillation further improves performance. All
training protocols have approximately equal
computational cost.

Our empirical study centers around two re-
initialization methods. First, as our primary focus,
we consider Shrink & Perturb [2]] as described earlier.
Second, we consider the recently proposed Layer-
wise Re-initialization [[I] that has been shown to out-
perform prior re-initialization schemes, particularly
in small data regimes. Furthermore, we show that
re-initialization methods can naturally be adapted
to incorporate self-distillation which typically
leads to improvement, at negligible cost. Figure]|
summarizes our results on Tiny ImageNet. From here on, we will use standard training to refer to
training without re-initialization.

Our contributions and findings are as follows:

* Shrink & Perturb can benefit i.i.d. learning. Although previously proposed for online learning,
Shrink & Perturb can also benefit i.i.d supervised learning and outperforms techniques such as
Layer-wise Re-initialization in certain settings.

* Re-initialization improves generalization in the absence of other regularization (Section3).
There is a consistent advantage in periodically re-initializing a neural network—even up to 25
times—during training, pointing to the inherent regularization benefit of re-initialization.

* Re-initialization has little to no benefit relative to standard training in a SOTA setting
(Section[d). When data augmentation, weight decay and learning rate schedules are carefully tuned,
re-initialization performs at par with standard training. However, the optimal performance becomes
more robust to the choice of learning rate and weight decay, which is desirable in practice.

* Under label noise, re-initialization methods lead to significant improvement in generalization
(Section[5). This improvement appears on top of other well-tuned regularization, revealing a setting
where the effects of re-initialization and other regularization techniques do not overlap.

Related work is discussed in Appendix [A]

2 Background on Re-initialization Methods

Let fo be a neural network with parameters & € RP trained to minimize a loss function L(8).
Moreover, let pinir be a probability distribution over R” from which we sample the initialization
parameters 6y ~ piir. Then, we define a re-initialization of fg to be the function fg,,, where we
have replaced the current parameters 0 with re-initialized parameters Og; = R(0;ni, @). The function
R computes the re-initialized parameters using a fresh initialization @y, ~ pi and the current
parameters 8. Different re-initialization methods will differ in terms of R.

Re-initialization methods will modify standard training as follows. Assuming a computational budget
corresponding to N epochs over the training data, we train the model in T" stages, each for | N/T'|

epochs. Between any two stages, we apply re-initialization as described earlier. Explicitly, let 0‘;"_‘11
denote the parameters at the end of the previous stage ¢ — 1. Stage ¢ then consists of training the
model starting from initial parameters 65" = R (i, 05™)). The initial parameters for stage 1 are
sampled directly from piy;. See Algorithm|[I]for pseudo-code.

2.1 Incorporating Self-Distillation With Re-initialization

Our experiments will also consider the effect of incorporating self-distillation, which is a natural
extension of re-initialization methods because training is split into multiple sequential stages. Specif-
ically, when using distillation, we train the model in stage ¢ by minimizing a combination of the
training loss and a distillation loss between the current model (the student) and the model at the end
of the previous stage ¢ — 1 (the teacher), that is, we minimize the loss

L(0) + Baisin KL(fgee || fo), ey

with respect to 8, where the second term measures the KL-divergence between the predicted class
probabilities of the teacher and the student on the training data and (s is @ hyperparameter. In stage
t = 1, we only optimize the loss L(8). Note that the setting in which re-initialization simply consists
of replacing all the old model parameters with a new initialization, i.e. Og; = iy, combined with
distillation is equivalent to Born-Again Networks (BANs) [11]] supervised by the true and teacher
labels.

2.2 Shrink & Perturb

Our primary focus in this work will be Shrink & Perturb, a method proposed by Ash and Adams
[2] in the context of online learning and warm-starting neural network training. Shrink & Perturb
consists of defining the re-initialized parameters to be:

Or1 = A0 + V0,

where A,y € [0, 1] are shrinkage and perturbation hyperparameters respectively. Note that contrary
to the setup of Ash and Adams [2] where Shrink & Perturb is applied for online learning, we will
view Shrink & Perturb as a re-initialization method for training on a stationary dataset as described
earlier.

2.3 Layer-wise Re-initialization

Alabdulmohsin et al. [1]] recently proposed Layer-wise Re-initialization, which re-initializes the
architecture block-by-block during training. Assuming that there are K “blocks” in the architecture,
we have a total of T' = K stages during training. At the end of stage ¢, we re-initialize all layers after
the ¢-th block, that is, we set:

Ori=00m® + 0,0 (1—mb).

Here m(*) € {0, 1}? is a vector such that ml(-t) = 1 if the ¢-th parameters belongs to the first ¢ blocks

and is otherwise zero. ® denotes an element-wise product. More generally, note that we can have
T = K M total stages, where at the end of each of the first M stagest = 1,..., M, we re-initialize
all layers after the first block. At the end of each of the second M stagest = M +1,...,2M, we
re-initialize all layers after the second block and so forth. In addition to re-initializing all blocks after
the ¢-th block, Layer-wise Re-initialization also (1) re-scales the norm of the first ¢ blocks to their
norm at initialization and (2) adds a normalization layer after block .

3 The Regularizing Effect of Re-initialization

We first investigate the effect of re-initialization when no other regularization is deployed, akin to
settings where prior work [2] suggests re-initialization helps. We show that re-intiliazation provides
a consistent and considerable advantage over standard training, even beyond the small-data regime
(1 27, as is the case of Tiny ImageNet. See Appendices [C|and [D]for details of the experimental
setup and hyperparameter choices.

Table 1: Test accuracy (%) of different methods in settings ranging from basic to SOTA protocols on
CIFAR-100 with ResNet-18.

Setting Data Cosine Weight No Re-initialization Self-distillation SGDR
Abbrev. Aug. Anneal. Decay (standard training) (fixed-budget BAN)

Layer-wise

Re-initialization Shrink & Perturb

w/o dist. w/dist. w/odist. w/dist.

%) X X X 55.5+0.6 56.4+0.5 N/A 61.0£0.6 62.5+0.2 63.1+0.6 63.5+0.3
D v X X 70.8 +0.1 70.5+0.5 N/A 72.1+0.3 74.7+0.2 71.9+0.1 74.0+0.6
DC v v X 71.2-+0.2 70.9 +0.4 71.0 £0.6 74.6 £0.5 75.4+0.2 75.4 +0.3 75.4 +0.1
DCW v v v 77.9+0.2 77.2+0.1 77.5+0.2 77.5+0.1 77.3+0.3 77.5+0.2 77.0+0.3

Table 2: Test accuracy (%) of standard training and Shrink & Perturb on Tiny ImageNet with PreAct-
ResNet-18.

Setting Data Cosine Weight No Re-initialization Shrink & Perturb
Abbrev. Aug. Anneal. Decay (standard training) wio dist. W/ dist.
o X X X 39.55-+0.69 41.47+0.48 44.81+0.46
DCW v v v 59.12-+0.33 58.95+0.56 61.03+0.38
The different settings we consider are labeled &, D, 90

DC and DCW, as described on the left of Table
Setting & is the basic setting considered in this sec-
tion, where we use a constant learning rate, no weight
decay and no data augmentation. As shown in the
first rows of Tables[I] and [3] both Shrink & Perturb
and Layer-wise Re-initialization improve generaliza-
tion performance over standard training for both CI-
FAR datasets, with Shrink & Perturb outperforming
Layer-wise Re-initialization by a margin of 1-2 per- ~ 30~7—— = r—1— 71— 1T
centage points in both cases. Distillation is also ben- Epoch

eficial, though more for CIFAR-10 than CIFAR-100. _ E‘I"F::_‘il';‘- — iﬁia,mo — S&P+D
These findings also hold for the larger Tiny ImageNet

dataset, where we focus on only Shrink & Perturb

with and without distillation, as shown in the first Figure 2: Example test accuracy curves on
row of Table [J] In summary, re-initialization sig- the CIFAR datasets with ResNet-18 in set-
nificantly boosts generalization without additional ting &. Shrink & Perturb involves 10 stages.
computational cost in setting &. For each method and dataset, the learning
rate is tuned separately — the optimal learn-
ing rates are on average 10 times smaller for
re-initialization than standard training here.

Test Accuracy (%)
3
1

Examples of the test accuracy learning curves are
shown in Figure[2]for Shrink & Perturb with 10 stages.
Notice that each re-initialization causes a sudden drop
in performance from which there is a quick recovery. Whereas the test accuracy for standard training
stagnates early on, training with Shrink & Perturb keeps improving test accuracy with each successive
re-initialization. All models shown in this plot achieved approximately 100% training accuracy and
close to zero training negative log-likelihood. See Figures [0] and [I0|for examples of training curves.

4 Re-initialization Alongside Other Regularization

Next, we consider how beneficial re-initialization is when deployed alongside other regularization
techniques that are commonly used to achieve high performance in SOTA training protocols. Begin-
ning with the simple setting explored in Section 3] we gradually add data augmentation (setting D),
cosine annealing (setting DC) and weight decay (setting DCW), achieving around SOTA performance
in setting DCW. Our motivation is to explore whether the effect of these different techniques is
additive with the benefit of re-initialization. As shown in Tables[T]and 3] all re-initialization methods
except fixed-budget BAN noticeably improve upon standard training in settings &, D and DC. In most
cases, the best performing method is Shrink & Perturb with distillation, improving accuracy over
standard training by upto 5 percentage points on CIFAR-10 and 8 percentage points on CIFAR-100.

However, a key negative finding here is that when all regularization techniques are used and
carefully tuned (setting DCW), the best re-initialization methods do not improve generalization
performance over standard training. Note that setting DCW is arguably more important and
common in practice than previous settings. We speculate that Shrink & Perturb affects the norm of

No Re-init.

S&P+D

67.2/69.6 71.071.1 70.6

- 73.9 74.0 73.4, 742743739736
©
g 67.4 70.2 725 73.0 74.2 74.4 74.0 74.0/74.8 74.6|
[a]
. [EXWER] 75.9 75.8 75.9 74.7 76.2 76.0 75.8 15 6 76.0 76.1
<
g %1773 76.7 76.3 75.7 77.2 76.3 75.5 75.5 76.4 76.9 76.1 L. X1
= 76.4 m 5.9 76.8 759““ 75.8 76.5 ﬁ 765 77.0 745/69.4
LI | [| | [|
n o mMmwn - n o n n = m n o~ n o4 Mo
© o o o g o o o o © © o o g © o o o g
© s o o © s o o [S] 5 o o 5
- O O © o o o o o © o o
o o S o

e 3
Learnlng Rate Learning Rate Learning Rate Learning Rate Learning Rate Learning Rate Learning Rate

Figure 3: Re-initialization can make performance less sensitive to the choice of learning rate
and weight decay. Performance of different methods over a grid search of learning rate and weight
decay combinations on CIFAR-100 with ResNet-18 in setting DCW. All re-initialization methods use
5 stages. Shrink & Perturb stands out most, as its performance varies much less over the grid than
other methods, especially standard training (no re-initialization).

CIFAR-10 CIFAR-10 CIFAR-100 CIFAR-100
No regularization (@) Full regularization (DCW) No regularization (@) Full regularization (DCW)
B — o |77.5 Tz
88+ é >.<. _— 6254 ——— —_——
5 94 — / 7504 rR—
oy / T lso.0 Y ==
© 86 = S)p— 72.5
g — 92+ 57.5- ./ 700
; 84 / E :
o 55.04 67.5
= 90
824 65.0
T T T T T T : T T
0 10 20 0 10 20 0 10 20 0 10 20
Number of stages Number of stages Number of stages Number of stages
—— No Re-init. BAN SGDR w LW+D — S&P —— S&P+D

Figure 4: Test accuracy as a function of the number of re-initialization stages in settings @
and DCW. In setting &, any number of stages improves upon standard training for Shrink &
Perturb and Layer-wise Re-initialization. In setting DCW, adding more stages monotonically worsens
generalization. Recall that for Layer-wise Re-initialization, the number of stages is tied to the
architecture itself, and T € {2, 5,10, 20}.

the weights during training which may overlap with the effect of weight decay, as discussed further in
Appendix [B-I} We also show the impact of re-initialization in setting DCW for Tiny ImageNet in the
last row of Table[2] Similar to before, the improvement in performance from using Shrink & Perturb
is much smaller here than in setting &. Shrink & Perturb has no impact on performance, whereas
Shrink & Perturb with distillation slightly improves performance over standard training.

4.1 Re-initialization Makes Optimal Performance More Robust to Hyperparameters

Although re-initialization methods do not offer much benefit in terms of generalization for optimal
hyperparameters in setting DCW, we found that they can make performance less sensitive to the
choice of learning rate and weight decay hyperparameters. Figure [3|shows the test accuracy achieved
by different methods over a grid of learning rate and weight decay choices for CIFAR-100 in setting
DCW. We observe that the performance of both Layer-wise Re-initialization and Shrink & Perturb
varies less over the grid compared to no re-initialization. This is especially prominent for Shrink &
Perturb. These methods can hence be beneficial when thorough hyperparameter tuning is infeasible.

4.2 TImpact of the Number of Re-initialization Stages

The number of stages 7" used for re-initialization is an additional hyperparameter that we tuned in
our experiments. Note that 7" = 1 trivially corresponds to standard training (i.e. no re-initialization).
We show how test accuracy varies as a function of 7" in Figure @] for the different methods over each
of the CIFAR datasets in settings & and DCW. In setting &, typically a large number of stages, in
the range 5-20, is most beneficial for the re-initialization methods. In fact, for Shrink & Perturb
and Layer-wise Re-initialization, any number of stages in the range shown (2-25) improves upon
standard training. However, in setting DCW, the profile of the curves changes drastically. Increasing
the number of stages monotonically lowers the test accuracy, which is consistent with our finding
that in this setting, re-initialization methods offer little advantage. See Figure [[T]in Appendix [B]for
further experiments with MobileNetV2 on the CIFAR datasets.

Additional Results. Further experiments can be found in Appendix [B| including discussions on the
roles of self-distillation (Appendix , the learning rate schedule (Appendix [B.3) and preliminary
results on ImageNet (Appendix . We also explore the implications of our findings for online

CIFAR-100 Tiny ImageNet
59.1 58.9 010

7797157137715
80 77.0

Test Accuracy (%)
Test Accuracy (%)

20
Label Noise (%) Label Noise (%)

B No Re-init. Wm LW LW+D . S&P B S&P+D

0 20

Figure 5: Re-initialization is beneficial for learning under label noise even with full regularization.
Both re-initialization methods improve performance, with further improvements from distillation.
The benefit of re-initialization compared to standard training increases with more label noise. See
Figure[7] for corresponding results on CIFAR-10.

learning in Appendix [B.3] where Shrink & Perturb was initially proposed, similarly finding a strong
dependence on the presence of other regularization.

5 Re-initialization Under Label Noise

Having studied how different components of the training protocol interact with re-initialization, we
next focus on learning under noisy data, where learning is more challenging, potentially requiring
stricter regularization. In particular, we add label noise to the data by randomizing the labels of a
randomly-chosen fraction g of the training data points, keeping the test set the same. We remain in
setting DCW, where data augmentation, weight decay and learning rate schedules are used.

Figure [5| shows the performance of different methods as we add ¢ = 20% and 40% label noise
on the CIFAR and Tiny ImageNet datasets. Surprisingly, re-initialization methods consistently
improve upon standard training here. For CIFAR datasets, both Shrink & Perturb and Layer-wise
Re-initialization are beneficial each on their own, and performance further improves with the addition
of distillation. The results are similar for Tiny ImageNet, where the difference between standard
training and re-initialization is even starker: over 15 percentage points with 40% label noise.

We can therefore conclude that the effects of re-initialization do not completely overlap with those of
data augmentation, weight decay and learning rate schedules. Indeed, even though re-initialization
does not improve generalization in setting DCW without label noise, it shows a substantial improve-
ment on generalization with label noise on top of standard regularization techniques. We suspect
that one reason re-initialization helps in this scenario relates to the order in which neural networks
learn training examples. “Difficult examples” (such as mislabelled inputs) tend to be learned later
during training by deeper layers [3]]. Re-initialization might be exploiting this property of learning by
naturally selecting the clean data: since periodically re-initializing “resets” training to an extent, the
network might be prevented from confidently fitting to the noise (which is learned later) to instead
focus on learning the correctly labelled examples (which are learned earlier).

6 Conclusion, Limitations & Future Work

We have investigated when re-initialization methods, a set of techniques that are simple to implement
with almost no computational overhead, improve generalization compared to standard training.
Although they appear very promising in the absence of other regularization, they do not improve
over standard training with sufficient regularization, unless the training data contains label noise.
Moreover, since re-initialization methods reduce sensitivity to hyperparameter choices, unless the
hyperparameters for standard training are carefully tuned, re-initialization may incorrectly appear to
improve generalization. This highlights the importance in empirical research of ensuring (as much as
computationally feasible) that sub-optimal hyperparameter choices do not lead to unfair comparisons
and incorrect conclusions.

One limitation of our work is that, although we observe clear empirical trends in when re-initialization
works, a deeper understanding of why it works or not is missing and constitutes important future work.
Another limitation of our study is that we restrict ourselves to CIFAR-10/100 and Tiny ImageNet
datasets and convolution-based network architectures for classification. Although this restriction
allowed us to thoroughly explore the interaction between re-initialization and other techniques on
these standard benchmarks and carefully tune hyperparameters given a limited compute budget, it
would be interesting to extend the scope to other tasks and data modalities as future work.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Ibrahim Alabdulmohsin, Hartmut Maennel, and Daniel Keysers. The impact of reinitialization
on generalization in convolutional neural networks. arXiv preprint arXiv:2109.00267, 2021.

Jordan Ash and Ryan P Adams. On warm-starting neural network training. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 3884-3894. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
288cd2567953f06e460a33951f55daaf-Paper.pdf.

Robert John Nicholas Baldock, Hartmut Maennel, and Behnam Neyshabur. Deep learning
through the lens of example difficulty. 2021.

Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds
for neural networks. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS’ 17, page 6241-6250, Red Hook, NY, USA, 2017. Curran Associates
Inc. ISBN 9781510860964.

Andrew Brock, Soham De, Samuel L Smith, and Karen Simonyan. High-performance large-
scale image recognition without normalization. arXiv preprint arXiv:2102.06171, 2021.

Lucas Caccia, Jing Xu, Myle Ott, Marc’ Aurelio Ranzato, and Ludovic Denoyer. On anytime
learning at macroscale. arXiv preprint arXiv:2106.09563, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, pages 1597-1607. PMLR, 2020.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical
automated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pages 702—703, 2020.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware mini-
mization for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar.
Born again neural networks. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 1607-1616. PMLR, 10-15 Jul 2018. URL https://proceedings.mlr,
press/v80/furlanellol8a.htmll

Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao Gong, Shijian Tang, Erich Elsen, Peter
Vajda, Manohar Paluri, John Tran, et al. Dsd: Dense-sparse-dense training for deep neural
networks. arXiv preprint arXiv:1607.04381, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer
Vision — ECCV 2016, pages 630—645, Cham, 2016. Springer International Publishing. ISBN
978-3-319-46493-0.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770-778, 2016. doi: 10.1109/CVPR.2016.90.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, and Kilian Q. Weinberger.
Snapshot ensembles: Train 1, get M for free. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017. URL |https://openreview.net/forum?id=BJYwwY911,

https://proceedings.neurips.cc/paper/2020/file/288cd2567953f06e460a33951f55daaf-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/288cd2567953f06e460a33951f55daaf-Paper.pdf
https://proceedings.mlr.press/v80/furlanello18a.html
https://proceedings.mlr.press/v80/furlanello18a.html
https://openreview.net/forum?id=BJYwwY9ll

[17] Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and Shimon White-
son. Transient non-stationarity and generalisation in deep reinforcement learning. In Interna-
tional Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=Qun8fv4qgSby.

[18] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry P. Vetrov, and Andrew Gordon
Wilson. Averaging weights leads to wider optima and better generalization. In Amir Globerson
and Ricardo Silva, editors, UAI, pages 876—885. AUAI Press, 2018. URL http://dblpl
uni-trier.de/db/conf/uai/uai2018.html#IzmailovPGVW18.

[19] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research), 2009. URL http://www.cs.toronto.edu/~kriz/cifar.html.

[20] Y. Le and X. Yang. Tiny imagenet visual recognition challenge, 2015.

[21] Xingjian Li, Haoyi Xiong, Haozhe An, Cheng-Zhong Xu, and Dejing Dou. Rifle: Backpropa-
gation in depth for deep transfer learning through re-initializing the fully-connected layer. In
ICML, 2020.

[22] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint
arXiv:2103.14030, 2021.

[23] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

[24] Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-bayesian approach to
spectrally-normalized margin bounds for neural networks. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=Skz_
WEbCZ.

[25] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Inverted residuals and linear bottlenecks: Mobile networks for classification, detection
and segmentation. CoRR, abs/1801.04381, 2018. URL http://arxiv.org/abs/1801/
04381.

[26] Leslie N. Smith. Cyclical learning rates for training neural networks. In 2017 IEEE Winter
Conference on Applications of Computer Vision (WACV), pages 464-472,2017. doi: 10.1109/
WACV.2017.58.

[27] Ahmed Taha, Abhinav Shrivastava, and Larry S Davis. Knowledge evolution in neural networks.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12843-12852, 2021.

[28] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In International Conference on Machine Learning, pages 6105-6114. PMLR, 2019.

[29] Kaikai Zhao, Tetsu Matsukawa, and Einoshin Suzuki. Retraining: A simple way to improve the
ensemble accuracy of deep neural networks for image classification. In 2018 24th International
Conference on Pattern Recognition (ICPR), pages 860-867, 2018. doi: 10.1109/ICPR.2018.
8545535.

https://openreview.net/forum?id=Qun8fv4qSby
https://openreview.net/forum?id=Qun8fv4qSby
http://dblp.uni-trier.de/db/conf/uai/uai2018.html#IzmailovPGVW18
http://dblp.uni-trier.de/db/conf/uai/uai2018.html#IzmailovPGVW18
http://www.cs.toronto.edu/~kriz/cifar.html
https://openreview.net/forum?id=Skz_WfbCZ
https://openreview.net/forum?id=Skz_WfbCZ
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381

CIFAR-10 CIFAR-10 CIFAR-100 CIFAR-100

No regularization (@) Full regularization (DCW) No regularization (@) Full regularization (DCW)
2 — 2004 J
<
5100 —
5 50 1004 7 A~ R
£ NI NS
o
= 0- T T T T T T T T T T o T T T T T T T T T T

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch Epoch
—— No Re-init. —— LW LW+D —— S&P —— S&P+D

Figure 6: Weight norms during training vary across methods more in setting & than setting
DCW. Curves show how the norm of ResNet-18 weights varies through training for re-initialization
methods (with 5 stages) and standard training. In setting &, Shrink & Perturb yields a model with
smaller weight norm than standard training and Layer-wise Re-initialization, but in setting DCW, all
methods yield models with similar weight norms.

A Related Work

Various re-initialization methods have been proposed in the literature, differing usually by motivation
and choice of weights that are re-initialized. For example, motivated by sparsity, Han et al. [12]
introduced dense-sparse-dense training, where after an initial stage of training, the smallest weights
are pruned to induce sparsity, the network is trained and in the third and last stage, the pruned weights
are re-initialized from zero. Taha et al. [27] also proposed “knowledge evolution” which partitions
the weights of a network into two parts, one of which is continuously training and the other repeatedly
re-initialized. For transfer learning, Li et al. [21]] proposed to periodically re-initialize only the final
layer, optionally with ensembling [29]]. Recently, Alabdulmohsin et al. [1]] compared a number of
these methods with their proposed Layer-wise Re-initialization. They found it outperformed prior
approaches, which is why we chose to study it in this work. Their empirical evaluation focused
on the small-data regime, where one set of hyperparameters common across multiple datasets and
architectures are used. They also did not study how re-initialization methods interact with other
regularizers. Also, in the spirit of re-initialization, various approaches for “resetting” or “restarting”
training can also be found in the literature [23 16, 26} [18]].

Re-initialization also recently appeared in the context of online learning and warm-starting neural
networks, where data arrives sequentially [2, [6]. Ash and Adams [2] showed that warm-starting
neural network training worsens generalization. They proposed Shrink & Perturb, a simple technique
to improve performance in their online learning setup. The benefits of Shrink & Perturb as a generic
re-initialization method for i.i.d. learning have not been studied before. Caccia et al. [6] studied
techniques for expanding capacity by initializing new parameters as more data arrives. Igl et al. [17]]
observed a similar phenomenon in reinforcement learning and proposed distillation as a remedy.
Generally, self-distillation [[11} [15] itself closely relates to re-initialization (see Section @])

B Additional Results

B.1 Weight Norms in Setting DCW

We speculate that part of the reason why Shrink & Perturb does not outperform standard training in
setting DCW as opposed to settings &, D and DC relates to its effect on the norm of the weights during
training which may overlap with the effect of weight decay. As shown in Figure[6] in the absence
of weight decay, the norm of the weights tends to increase monotonically without re-initialization,
whereas Shrink & Perturb periodically reduces this weight norm. In setting &, this results in the
learned models’ weight norms varying across methods, while, in setting DCW, all methods learn
models with similar final norms due to weight decay. Moreover, in setting &, Shrink & Perturb
results in a model with norm similar to that of standard training in setting DCW. Therefore, both
weight decay and Shrink & Perturb encourage the final learned model to have a small weight norm, a
quantity that is known to be linked to generalization performance [24, 4]. Nevertheless, this does not
fully explain why Shrink & Perturb works, as shown in Section 5]

CIFAR-10

100 95.094.795.094.7 94.7

901 86.5 8715 . ese

80

70

Test Accuracy (%

0 20 40
Label Noise (%)
s No Re-init. LW+D mmm S&P+D
. LW mm S&P

Figure 7: Re-initialization is beneficial for learning under label noise even with full regularization.
Results for CIFAR-10. See Figure [5]and Section 5]

Table 3: Test accuracy (%) of different methods in settings ranging from basic to SOTA protocols on
CIFAR-10 with ResNet-18.

Setting Data Cosine Weight No Re-initialization Self-distillation
Abbrev. Aug. Anneal. Decay (standard training) (fixed-budget BAN)

Layer-wise

Re-initialization Shrink & Perturb

w/o dist. w/dist. w/odist. w/dist.

(%] X X X 83.8£0.3 84.0 0.4 87.6 £0.4 87.3+£0.2 88.8 £0.2 88.6 0.4
D v X X 92.5+0.0 92.6 +0.2 92.6 £0.3 93.2+0.1 93.1+£0.2 94.1 +0.0
DC v v X 92.8 £0.2 92.6 £0.1 93.4+0.1 93.4+0.2 94.1 +0.2 94.2 +0.1
DCW v v 4 95.0£0.0 94.8 £0.2 94.7+0.2 95.0£0.3 94.7£0.2 94.7+0.1

B.2 The Role of Self-Distillation

Another observation from Tables[T]and [3]is that fixed-budget BANs do not improve performance
compared to standard training in most cases, sometimes leading to worse test accuracies, and are
outperformed by Shrink & Perturb and Layer-wise Re-initialization in all settings except DCW. Recall
from Section 2.T] that BANs can be viewed as a simple re-initialization method combined with
distillation: we re-initialize the full network from scratch in each stage. Therefore, BANs constitute
an important baseline for more sophisticated re-initialization methods. Our results indicate that
while distillation can boost performance, it is computationally sub-optimal to completely re-initialize
each network in the sequence. Under a fixed-budget setting as shown here, too many stages will
then lead to too few gradient steps per stage, whereas too few stages do not reap the full benefits of
distillation, both of which can negatively impact performance. On the other hand, Layer-wise Re-
initialization and Shrink & Perturb partly “re-use” the model from the previous stage, circumventing
the need for a large number of gradient steps per stage and improving learning efficiency. Therefore,
re-initialization is itself crucial, and distillation does not suffice on its own. Figurelgl shows how
complete re-initialization in BANS leads to large drops in performance from which it is more difficult
to recover quickly.

B.3 The Role of Cosine Annealing

For re-initialization methods, in settings DC and DCW with a learning rate schedule, we applied cosine
annealing per stage, yielding a cyclical learning rate [23]]. Such a learning rate schedule can have
its own benefits, therefore we compared re-initialization in settings DC and DCW with SGDR for
CIFAR-100. As shown in Table[I] SGDR does not match the performance of the re-initialization
methods in setting DC and performs similar in setting DCW. This indicates that when re-initialization
is helpful, it is not an effect of the cyclical schedule.

B.4 Results on ImageNet

Our findings on the dependence of the benefits of Shrink & Perturb on other regularization were shown
to hold for the CIFAR datasets and Tiny ImageNet. In this section, we preliminarily explore whether
they also hold for ImageNet. As Table[d]shows, in setting CW, which lacks data augmentation, Shrink
& Perturb clearly outperforms no re-initialization. However, in setting DCW with full regularization,

10

B v
o o
1

w
o

Test Accuracy (%)

N
o
1

T T T T
0 25 50 75

—— No Re

100
Epoch

-init.

T
125

T T T
150 175 200

BAN

Figure 8: Example test accuracy curves on the CIFAR-100 dataset with ResNet-18 in setting &.
BAN involves 10 stages. For each method and dataset, the learning rate is tuned separately. Notice
that each re-initialization causes a large drop in performance in contrast with e.g. Shrink & Perturb as

shown in Figure 2}
CIFAR-10 CIFAR-10 CIFAR-100 CIFAR-100
. No regularization (@) Full regularization (DCW) No regularization (@) Full regularization (DCW)
£ 1004
iliaananaas
O 75 B 4 i
e
3 s0- - R R
<
£ 254 B E E
E
= T
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch Epoch
—— No Re-init. —— S&P

Figure 9: Example train accuracy curves for standard training and Shrink & Perturb. In each
plot, Shrink & Perturb is shown with its optimal number of stages. Observe that in all cases the
models achieve close to 100% accuracy.

N

-

Train Loss (NLL)

o

CIFAR-10
No regularization (@)

CIFAR-10
Full regularization (DCW)

CIFAR-100
No regularization (@)

CIFAR-100
Full regularization (DCW)

!

e\

S

T T T
100 150 200

Epoch

50

0

T T T
100 150 200

Epoch

T
50

—— No Re-init.

T
0

T T T
100 150 200

Epoch

T
50

—— S&P

T T T T
50 100 150 200

Epoch

Figure 10: Example train negative log-likelihood curves for standard training and Shrink &
Perturb. In each plot, Shrink & Perturb is shown with its optimal number of stages. Observe that in
all cases the models achieve close to zero loss.

Test Accuracy (%)

® ® ©
©
|

CIFAR-10
No regularization (@)

CIFAR-10
Full regularization (DCW)

CIFAR-100
No regularization (@)

CIFAR-100
Full regularization (DCW)

96

95

94

93

92

724

70

68

AN

o o,

~

66

80

~—.

T T
10 20
Number of stages

T T
10 20
Number of stages

—e&— No Re-init.

0

—e— S&P

T T
10 20
Number of stages

T T
10 20
Number of stages

Figure 11: Effect of Shrink & Perturb on the CIFAR datasets in settings & and DCW with a
MobileNetV2 architecture. Our results in this figure indicate that the overall trend observed in our
experiments with ResNet-18 also appears for MobileNetV2. In particular, in setting &, Shrink &

Perturb improves performance for any number of stages shown, whereas in setting DCW, it provides
no benefit over standard training (no re-initialization).

Shrink & Perturb even slightly underperforms compared to standard training. These conclusions also
match our findings in Sections [3]and 4]

11

CIFAR-10 | Label noise: 0% CIFAR-10 | Label noise: 20% %0 CIFAR-10 | Label noise: 40%

95
—_ 90_
5 /. ° :
90 85 / 80 _———
> o~ —
g P /T i
285 o 80
3 70
; 80 ’ 510
S 70 60
T T T T T T T T T T T T
80 CIFAR-100 | Label noise: 0% CIFAR-100 | Label noise: 20% CIFAR-100 | Label noise: 40%
70
3 — .
g | — | 57 .
60 . 60 —
3 /] 50 .
5 ° 504 o./. ./ \
o 40
< 40 40+ ,./ °
a
© 20 30 30
T T T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epochs Epochs Epochs
—o— No Re-init. —— S&P+D

Figure 12: Under label noise, tuning the epoch budget for standard training does not close the
gap with re-initialization methods. See the discussion in Section 3]

Table 4: Test accuracy (%) of standard training and Shrink & Perturb on ImageNet with ResNet-18.
Setting Data Cosine Weight No Re-initialization

Abbrev. Aug. Anneal. Decay (standard training) Shrink & Perturb
CwW X v v 59.1 63.7
DCW v v v 70.8 69.7

B.5 Implications for Online Learning

Shrink & Perturb was originally proposed by Ash and Adams [2] in the context of online learning
(cf: Section [2.2), so we explore whether our conclusions also hold there. In particular, how do
different methods compare in the absence of other regularization (similar to the setting originally
studied by Ash and Adams [2]]) and with full regularization? In Figure@ we assume that training
data accumulates by arriving sequentially in five “chunks” leading to five stages of training, and
we compare three methods: (1) initializing the network from scratch and re-training it every time
a new chunk arrives, (2) warm-starting it (i.e. continuously fine-tuning) and (3) applying Shrink &
Perturb every time a new chunk arrives. In line with the findings of Ash and Adams [2], without
regularization, the warm-started network significantly underperforms the network initialized from
scratch, whereas applying Shrink & Perturb outperforms both (left plot in Figure[I3). However, under
sufficient regularization, all three methods interestingly perform approximately the same (right plot
in Figure[T3). This also closely matches our findings from Sections 3 and]

We also find that the warm-starting generalization gap [2] (i.e. warm-started models underperforming
models initialized from scratch in each stage) does not exist on ImageNet in a setting with full
regularization as shown in Figure [14]

No regularization (@) Full regularization (DCW)

9 ./: =
> ././ 704 /
3507 — / °
© / /
> o |
340 / 0 /
<
kol 501
€ 304 & ¢

1 2 3 4 5 1 2 3 4 5

Stage Stage
—e— |nitialized from scratch Warm-started —o— S&P

Figure 13: The benefits of Shrink & Perturb and the warm-starting generalization gap in the
online learning setup of Ash and Adams [2] also depend on whether other regularization is
used. Results shown are for a ResNet-18 trained on CIFAR-100. See Appendix [B.3]for discussion.

12

Full regularization (DCW)

701
— 60 /
g 5
) 50 ¢,~\/
e
3 40
O
<
4 30
K}

201

10 1+ T T T T

0 20 40 60 80
Epoch
—— Initialize from scratch Warm-started

Figure 14: There is no warm-starting generalization gap for ResNet-18 on ImageNet in the
online learning setup of Ash and Adams [2] under full regularization. Learning curves show the
test accuracy on ImageNet where in the first stage we train on half the training data, followed by the
full training data in the second stage. See Appendix for discussion.

B.6 Additional Figures

To ensure that standard training does not underperform re-initialization methods due to overfitting
resulting from too many gradient steps (particularly when there is label noise), we explored whether
the performance gap between re-initialization methods and standard training can be closed by tuning
the epoch budget. As shown in Figure[I2] this is nor sufficient to close to gap.

Figures 0 to[IT]are discussed in Sections [3|and 4]

C Experimental Setup

For each architecture (ResNet-18, PreAct-ResNet-18, MobileNetV2) [14. 113} 25]] and dataset (CIFAR-
10, CIFAR-100, Tiny ImageNet), we used SGD with momentum 0.9 for training with early stopping
by validation accuracy. For the CIFAR datasets, we separately tuned the learning rate and weight
decay hyperparameters for each method by cross validation. Note that this is different to the setup
of Alabdulmohsin et al. [[1]] where the learning rate and weight decay hyperparameters were fixed
for all combinations of datasets and architectures in their image classification experiments. For
the larger and more computationally costly Tiny ImageNet dataset, we tuned the learning rate and
weight decay hyperparameters for standard training (that is, no re-initialization) and kept them fixed
for the re-initialization methods. This simulates a practical scenario: given tuned hyperparameters
for standard training on an expensive and large dataset, does it help to use re-initialization without
re-tuning the hyperparameters?

For re-initialization methods, we note that the number of stages 7" is an additional hyperparameter
which we tune (cf. Section4.2). Moreover, all models are optimized for the same number of gradient
steps for all methods. All other hyperparameters such as batch size and number of epochs are the
same for all methods and specified in Tables[5]and [} Our code is provided for reproducibility and
will be open-sourced.

13

D Hyperparameters & Pseudo-code of Re-initialization Methods

Hyperparameters for our experiments are described in Tables [5] and [f] and the pseudo-code for
training with re-initialization is shown in Algorithm [I]

General
Total training epochs 200
Stages x epochs per stage {2 x 100,5 x 40,10 x 20,20 x 10,25 x 8}
Batch size 125
Momentum 0.9
Learning rate grid {0.005, 0.01,0.03,0.05,0.1}
Weight decay grid {0,0.0001, 0.0005, 0.001,0.005}
Distillation strength Sgisan (if used) 1

Random horizontal flips and
size-preserving crops after padding 4 pixels.
p = (0.485,0.456, 0.406)

o =(0.229,0.224,0.225)

Data augmentation (if used)

Data normalization

Shrink & Perturb

Shrink A (default unless explicitly defined otherwise) 0.4
Perturb ~y (default unless explicitly defined otherwise) 0.1

Layer-wise Re-initialization

(K, M) {(2,1),(5,1),(5,2)}

Table 5: Hyperparameters common to all models trained on CIFAR-10 and CIFAR-100 (32 x 32
images) [19].

General
Total training epochs 500
Stages x epochs per stage {2 x 100,5 x 40,10 x 20,20 x 10,25 x 8}
Batch size 100
Momentum 0.9
Learning rate grid {0.01,0.05,0.1}
Weight decay grid {0,0.0001,0.0005, 0.005}
Distillation strength Sg;sin (if used) 2

Random horizontal flips and
size-preserving crops after padding 4 pixels.
= (0.485,0.456, 0.406)

o = (0.229,0.224,0.225)

Data augmentation (if used)

Data normalization

Shrink & Perturb
Shrink X (default unless explicitly defined otherwise) 0.4
Perturb v (default unless explicitly defined otherwise) 0.1

Table 6: Hyperparameters common to all models trained on Tiny ImageNet (64 x 64 images) [20].

14

Algorithm 1 Training with re-initialization function R.

Input: Training data D, number of re-initialization stages 7', initialization distribution pjy;, total
epochs N.

P« |N/T| # epochs per stage
fort =1toT do
if t == 1 then
0™ ~ pinic # initialize training
else
0" — R(Bini, ™), where 0y ~ pini is an i.i.d. initialization. # re-initialize network
end if
6™ « parameters after training for P epochs on D, starting from 6°™", optionally with
distillation from teacher network fgew if ¢ > 1. # optimization objective is defined in
Equation
end for

return 6™

15

	Introduction
	Background on Re-initialization Methods
	Incorporating Self-Distillation With Re-initialization
	Shrink & Perturb
	Layer-wise Re-initialization

	The Regularizing Effect of Re-initialization
	Re-initialization Alongside Other Regularization
	Re-initialization Makes Optimal Performance More Robust to Hyperparameters
	Impact of the Number of Re-initialization Stages

	Re-initialization Under Label Noise
	Conclusion, Limitations & Future Work
	Related Work
	Additional Results
	Weight Norms in Setting dcw
	The Role of Self-Distillation
	The Role of Cosine Annealing
	Results on ImageNet
	Implications for Online Learning
	Additional Figures

	Experimental Setup
	Hyperparameters & Pseudo-code of Re-initialization Methods

