
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS STABLE, GLOBALLY EXPRESSIVE GRAPH
REPRESENTATIONS WITH LAPLACIAN EIGENVECTORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) have achieved remarkable success in a variety of
machine learning tasks over graph data. Existing GNNs usually rely on message
passing, i.e., computing node representations by gathering information from the
neighborhood, to build their underlying computational graphs. Such an approach
has been shown fairly limited in expressive power, and often fails to capture global
characteristics of graphs. To overcome the issue, a popular solution is to use
Laplacian eigenvectors as additional node features, as they are known to contain
global positional information of nodes, and can serve as extra node identifiers
aiding GNNs to separate structurally similar nodes. Since eigenvectors naturally
come with symmetries—namely, O(p)-group symmetry for every p eigenvectors
with equal eigenvalue, properly handling such symmetries is crucial for the stability
and generalizability of Laplacian eigenvector augmented GNNs. However, using a
naive O(p)-group invariant encoder for each p-dimensional eigenspace may not
keep the full expressivity in the Laplacian eigenvectors. Moreover, computing
such invariants inevitably entails a hard split of Laplacian eigenvalues according
to their numerical identity, which suffers from great instability when the graph
structure has small perturbations. In this paper, we propose a novel method ex-
ploiting Laplacian eigenvectors to generate stable and globally expressive graph
representations. The main difference from previous works is that (i) our method
utilizes learnable O(p)-invariant representations for each Laplacian eigenspace of
dimension p, which are built upon powerful orthogonal group equivariant neural
network layers already well studied in the literature, and that (ii) our method deals
with numerically close eigenvalues in a smooth fashion, ensuring its better robust-
ness against perturbations. Experiments on various graph learning benchmarks
witness the competitive performance of our method, especially its great potential
to learn global properties of graphs.

1 INTRODUCTION

Numerous real-world data—such as molecules, electric circuits or social networks—can be repre-
sented by graphs. Machine learning over graphs is thus an important approach to find underlying
relations among them, and make predictions concerning novel data. So far, graph neural networks
(GNNs) have proved successful on a plethora of learning tasks over graphs (Wu et al., 2020; Zhou
et al., 2020), spanning across domains such as chemistry (Deshpande et al., 2002; Jin et al., 2018;
Reiser et al., 2022), biology (Stokes et al., 2020; Zitnik & Leskovec, 2017; Zitnik et al., 2018), social
recommendations (Ying et al., 2018) or electronic design automation (Lopera et al., 2021).

One of the most popularly adopted GNN architecture is message passing neural network (MPNN),
which maintains a representation vector hu for each node u, and iteratively updates it by gathering
information from the neighboring nodes of u. Despite its relative simplicity and efficiency, it
has several weaknesses that severely limit its performance. One important problem is its limited
expressive power, referring to the fact that MPNNs often fail to distinguish between two non-
isomorphic graphs, or two structurally different nodes with similar neighborhood configuration (Xu
et al., 2018; Zhang et al., 2021). Another issue is its inability to capture global properties of graphs,
meaning that it cannot truthfully learn long-range interactions within a graph, due to “oversquashing”
that occurs as a result of multiple message passing steps (Alon & Yahav, 2020; Dwivedi et al., 2022).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this paper, we refer to the former problem as a lack of local expressive power, while the latter as
one concerning global expressive power.

A great number of works have attempted to tackle the aforementioned weaknesses of MPNNs, which
we will review in Section 5 and Appendix C. For now, we restrict our discussion to one specific
approach—using Laplacian eigenvectors as node feature augmentations. Why are we particularly
interested in it? The reason is that Laplacian eigenvectors may alleviate both issues we raise above.
First, Laplacian eigenvectors provably contain rich local structural information (Cvetković et al.,
1997; Fürer, 2010; Rattan & Seppelt, 2023), and can thus serve as additional node labels, making
it easier for a GNN to separate nodes that are otherwise similar. Furthermore, they can reflect the
absolute position of each node within the graph (Von Luxburg, 2007), making GNNs aware of
potential long-range interactions. Indeed, a vast literature has regarded Laplacian eigenvectors
as so-called graph positional encodings, which play important roles both in MPNNs and graph
transformers (Dwivedi et al., 2021; 2023; Rampášek et al., 2022; Ying et al., 2021b).

Although Laplacian eigenvectors provide a promising solution for expressive graph representation
learning, there are some well-known constraints that one must take into account for their reliable
use. The first is orthogonal-group invariance. As is first pointed out by Wang et al. (2022); Lim
et al. (2022), given a Laplacian L, its eigen-decomposition is in general not unique. In fact, assuming
that v1, . . . ,vp are p mutually orthogonal normalized eigenvectors of a Laplacian L that correspond
to the same eigenvalue λ, then so are v′

1, . . . ,v
′
p, as long as the two groups of eigenvectors can

be associated via a p × p orthogonal matrix Q, namely V ′ = V · Q where V = (v1, . . . ,vp)
and V ′ = (v′

1, . . . ,v
′
p). One must ensure that the network output is invariant to such orthogonal

transformations, so as to produce identical representations for identical (i.e., isomorphic) graphs.
Another related but stricter constraint is stability, which, as formally defined by Huang et al. (2024),
demands that network outputs should be close when the input graph undergoes small perturbations. It
is easy to see that orthogonal-group invariance is a special case of stability in which the strength of
perturbation approaches zero.

To ensure orthogonal-group invariance (and furthermore, stability), Lim et al. (2022) and Huang
et al. (2024) both propose to extract spectral information from inner products between Laplacian
eigenvectors—namely, V V T with V = (v1, . . . ,vp) being the matrix consisting of p mutually
orthogonal normalized eigenvectors within an eigenspace of dimension p—instead of the eigenvectors
(v1, . . . ,vp) themselves. The inner product matrices V V T for different Laplacian eigenspaces are
then processed by invariant graph networks (IGNs) proposed in (Maron et al., 2018; 2019) to produce
node feature augmentations. Despite being provably invariant to O(p) transformations and even
stable (with carefully designed network architectures), their learning architectures based on inner
products are not flexible enough, and may lose much of the rich structural and positional information
carried by vanilla Laplacian eigenvectors. Earlier than the above two works, Wang et al. (2022) has
proposed a special message passing operation in which only the norms of differences between rows
of V are used, and proved its stability. However, this method even dismisses important eigenvalue
information by treating Laplacian eigenvectors from different eigenspaces uniformly. Given the
limitations of existing methods to utilize Laplacian eigenvectors, a natural question is whether we
can recover the information inherent in vanilla Laplacian eigenvectors while ensuring stability.
To make the question even more general, we may ask:

What is the representational limit of graph learning methods exploiting Laplacian
eigenvectors, given the stability constraint?

In this paper, we attempt to partially answer the general question posed above. Our main contributions
are summarized below.

• We propose vanilla orthogonal group equivariant augmentation (Vanilla OGE-Aug), a
novel method exploiting Laplacian eigenvectors to produce node feature augmentations.
Inspired by the property of orthogonal group invariance of invariant point cloud networks
(for example, Tensor Field Network (Thomas et al., 2018) and its variant (Finkelshtein
et al., 2022)) as well as their great expressive power, we use them to process the Laplacian
eigenvectors, enabling the construction of node feature augmentations much more expressive
than previous ones that make use of inner products between eigenvectors.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We theoretically prove that Vanilla OGE-Aug, combined with an MPNN, can lead to
universal representations of graphs, as long as the invariant point cloud networks we
use are powerful enough. Previous works have theoretically guaranteed the expressive
power of several specific invariant point cloud networks, which lays the foundations for the
practicality of our theoretical result.

• Although Vanilla OGE-Aug can be maximally expressive, it unfortunately lacks stability.
We then propose a smooth variant of Vanilla OGE-Aug, namely OGE-Aug, by trading
expressive power for better stability. Our approach is to use a series of “soft” masks to filter
Laplacian eigenvectors that belong to different eigenspaces, instead of hard-splitting and
separately processing them. We theoretically prove the stability of OGE-Aug, and evaluate
its empirical performance on various real-world graph datasets. The results indicate that
our method not only shows competitive performance on popular graph benchmarks, but is
surprisingly good at learning global properties of graphs.

2 PRELIMINARIES

We use G to denote the set of all simple, undirected graphs. For a graph G ∈ G, its node set and
edge set are denoted by V(G) and E(G) respectively. Graphs considered in this paper are usually
accompanied with node features, defined as a function from V(G) to Rd.

For a graph with n nodes labeled by 1, . . . , n respectively, its adjacency matrix is defined as A ∈
{0, 1}n×n in which Aij = 1 if and only if nodes i and j are connected; further, if the graph has node
features, the node features are represented by a matrix X ∈ Rn×d whose i-th row corresponds to the
feature of node i.

Given the adjacency matrix A ∈ {0, 1}n×n of graph G, we define the Laplacian of graph G as
L = D−A, in which D = diag(d(1), . . . , d(n)), with d(i) being the degree of node i (i = 1, . . . , n).
It is not hard to see that with G being simple and undirected, its Laplacian L is real symmetric,
and further positive semi-definite. Therefore, all eigenvalues of L are real non-negative. One may
also verify that 0 is always an eigenvalue of L (thus being the smallest eigenvalue of L). If L
has an eigenvalue λ with multiplicity µ, the linear subspace spanned by the µ mutually orthogonal
eigenvectors of L corresponding to λ is called an eigenspace of L with dimension µ.

Let A ∈ Rn×n. A is said to be orthogonal if AAT = ATA = I , with I being the identity matrix.
Given a positive integer n, we use O(n) to denote the set of all orthogonal matrices of shape n× n.
A 0-1 matrix A ∈ {0, 1}n×n is said to be a permutation matrix if each of its rows and columns has
exactly one 1-element. Let Sn be the set of all permutation matrices of shape n× n. It’s easy to see
that Sn ⊆ O(n).

To simplify our discussion below, we further introduce the following shorthands:

• Assume {V1, . . . ,Vk} ⊂ Rn×p is a set of n × p matrices, in which Vj can be row-wise
decomposed as Vj = (vj1, . . . ,vjn)

T , each vji ∈ Rp, i = 1, . . . , n. Further let g be a set
function, namely g : 2R

p → R. Then we use g({V1, . . . ,Vk}) ∈ Rn to denote the vector
whose i-th component equals g({v1i, . . . ,vki}), for i = 1, . . . , n.

• Given V1 ∈ Rn×p1 , . . . ,Vk ∈ Rn×pk , let concat [V1, . . . ,Vk] ∈ Rn×(p1+···+pk) be the
concatenation of V1, . . . ,Vk along the row dimension.

3 UNIVERSAL GRAPH REPRESENTATION WITH LAPLACIAN EIGENVECTORS

Despite the great number of works showing the efficacy of using Laplacian eigenvectors in graph
learning tasks, few (Fürer, 2010; Rattan & Seppelt, 2023) have studied theoretically their expressive-
ness upper-bound—namely, to what extent can the information of a graph be learned, merely
from its Laplacian eigenvectors? This is a weaker version of the general question we pose in
Section 1, with the stability constraint removed. In this section, we will show that the answer to this
weaker question is rather optimistic: ignoring the stability constraint, Laplacian eigenvectors can
actually lead to universal representations of graphs. To reach the point, we start by reconsidering the
problem of finding universal graph representations from the perspective of Laplacian eigenvalues and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

eigenvectors (Proposition 3.2), and then give a concrete construction of such universal representation
(Proposition 3.5).

We first present the definition for universal representations of graphs.

Definition 3.1 (Universal representation). Let f be a function mapping each pair (G,XG) to a
real value f(G,XG) ∈ R, where G ∈ G is a graph and XG ∈ R|V(G)|×d stands for node features
accompanied with G. Further let AG be the adjacency matrix of graph G. The function f is said
to be a universal representation if the following condition holds: for any two pairs (G,XG) and
(H,XH), f(G,XG) = f(H,XH) if and only if ∃P ∈ S|V(G)|,

AG = PAHP T , XG = PXH . (1)

In other words, f should produce equal outputs only for graphs that are identical up to a permutation
of nodes.

Next, we will associate the concept of universal representations with eigendecompositions of graph
Laplacians. We denote LG the Laplacian of a simple, undirected graph G. Due to the properties
of graph Laplacians (stated in Section 2), we may assume that LG has K distinct real eigenvalues
λ1, . . . , λK , with 0 = λ1 < λ2 < · · · < λK . We further use µj to denote the multiplicity
of eigenvalue λj , and Vj ∈ R|V(G)|×µj the set of mutually orthogonal normalized eigenvectors
corresponding to λj (each column of Vj being an eigenvector that has L2-norm scaled to 1), for
j = 1, . . . ,K. Following Fürer (2010), we also denote

Spec G = ((λ1, µ1), (λ2, µ2), . . . , (λK , µK)) (2)

the spectrum of G.

Given the above notations, the following proposition is straightforward.

Proposition 3.2. LetG,H ∈ G with |V(G)| = |V(H)|. Let AG and AH be their adjacency matrices
respectively. The following two statements are equivalent:
(i) ∃P ∈ S|V(G)|,AG = PAHP T .
(ii) Both of the following conditions hold.

• Spec G = Spec H .

• Let the spectrum of G (and thus H) be ((λ1, µ1), . . . , (λK , µK)), and Vj ,V
′
j ∈ R|V(G)|×µj

be sets of mutually orthogonal normalized eigenvectors belonging to G,H respectively,
both corresponding to eigenvalue λj , for j = 1, . . . ,K. There exists P ∈ S|V(G)| and
Qj ∈ O(µj) (j = 1, . . . ,K), such that

Vj = PV ′
jQj . (3)

We include the proof in Appendix A. Proposition 3.2 implies that in order to find universal rep-
resentations of a graph, it may be helpful to find a sufficiently expressive representation for each
of its Laplacian eigenspace. Nevertheless, such representation must stay invariant under actions
of O(p)-group elements for an eigenspace of dimension p, due to the existence of arbitrary Qj

matrices (j = 1, . . . ,K). Thus, we are motivated to define as following an O(p)-invariant universal
representation.

Definition 3.3 (O(p)-invariant universal representation). Let f :
⋃∞
n=0 Rn×p →

⋃∞
n=0 Rn×1. Given

an input V ∈ Rn×p, f outputs a column vector f(V) ∈ Rn×1. The function f is said to be an
O(p)-invariant universal representation if given V ,V ′ ∈ Rn×p and P ∈ Sn, the following two
conditions are equivalent: (i) f(V) = P f(V ′); (ii) ∃Q ∈ O(p), such that V = PV ′Q.

By Definition 3.3, an O(p)-invariant universal representation is one that assigns an output to each
point of a point set embedded in Rp, in a way that is invariant to global O(p) rotations, equivariant to
point permutations, and injective with respect to all possible point set configurations. Such networks
have been named universal point cloud networks, whose design has been intensively studied, as we
will survey in Section 5.

We still need another definition which follows Zaheer et al. (2017).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Definition 3.4 (Universal set representation). Let X be a non-empty set. A function f : 2X → R is
said to be a universal set representation if ∀X1, X2 ∈ 2X , f(X1) = f(X2) if and only if the two
sets X1 and X2 are equal.

We remark that the problem of finding a universal set representation, at least for finite subsets of a
countable universe X , has been fully addressed by Zaheer et al. (2017), using the deep set architecture
they propose.

With Definitions 3.3 and 3.4, we are now ready to present our main result on constructing universally
expressive graph representations.

Proposition 3.5. For each p = 1, 2, . . ., let fp be anO(p)-invariant universal representation function.
Further let g : 2R

3 → R be a universal set representation. Then the following function

r(G,XG) = GNN
(
AG, concat

[
XG, g

({
concat

[
µj1n, λj1n, fµj (Vj)

]}K
j=1

)])
(4)

is a universal representation (by Definition 3.1). Here n = |V(G)|, ((λ1, µ1), . . . , (λK , µK)) is the
spectrum of G, and Vj ∈ Rn×µj are the µj mutually orthogonal normalized eigenvectors of LG
corresponding to λj . We denote 1n an all-1 vector of shape n× 1. GNN is a maximally expressive
MPNN such as the one proposed in (Xu et al., 2018).

The proof is also given in Appendix A. By Proposition 3.5, the problem of finding a universal repre-
sentation of graphs is completely reduced to that of finding O(p)-invariant universal representations
of point sets (as constructions for other components are already known). Therefore, directly applying
existing point cloud networks (such as those we will mention in Section 5) to graph Laplacian
eigenspaces following equation (4) immediately results in a fairly large design space of GNNs, and
universality of the resulting GNN directly follows from universality of the underlying point cloud
network.

One may find that equation (4) takes the form of a node feature augmented MPNN. The observation
is made explicit with the following definition.

Definition 3.6 (Vanilla OGE-Aug). Let fp be an O(p)-invariant universal representation, for each
p = 1, 2, . . ., and g : 2R

3 → R be a universal set representation. Define Z : G →
⋃∞
n=1 Rn as

Z(G) = g
({

concat
[
µj1|V(G)|, λj1|V(G)|, fµj

(Vj)
]}K
j=1

)
, (5)

in which the notations follow Proposition 3.5. For G ∈ G, Z(G) is called a vanilla orthogonal
group equivariant augmentation, or Vanilla OGE-Aug on G.

We end this section by discussing the complexity of computing Z(G). The typical complexity of a
universal point cloud network is n exp(Õ(dim))1, where dim is the coordinate dimension. Thus, the
complexity of computing equation (5) is n exp(Õ(maxj µj)). Our worst-case complexity (in which
maxj µj ∼ n) matches that of a typical algorithm for graph isomorphism problem (GI). Nevertheless,
real-world graphs usually have maxj µj ≪ n, making our method computationally affordable in
general.

4 INCORPORATING THE STABILITY CONSTRAINT

Proposition 3.5 has theoretically confirmed the possibility of finding universal graph representa-
tions with Laplacian eigenvectors, even when the backbone GNN is a (relatively weak) MPNN.
Nevertheless, naively applying the network architecture proposed in Proposition 3.5 (or Vanilla
OGE-Aug) may not necessarily bring performance gain, due to one important weakness—instability.
As is mentioned in Section 1, instability refers to the proneness to produce very different outputs as
the input undergoes small perturbations. Instability of Vanilla OGE-Aug stems from the fact that
it treats Laplacian eigenspaces of different dimensions separately. As an example, let λ be a
K-fold eigenvalue of Laplacian L, whose K corresponding eigenvectors should be encoded by an
O(K)-invariant universal representation fK ; after a small perturbation on L, the K-dimensional

1Õ(f(n)) means a complexity linear in f(n) if ignoring poly-logarithm factors, i.e., O(logk f(n)).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

eigenspace corresponding to λ might split into two smaller eigenspaces of dimensions k1 and k2
respectively (i.e., the degeneracy of λ is partially lifted), which should be alternatively encoded by
fk1 and fk2 . Since the functions fK and fk1 (or fk2) can be very different with K ̸= k1,K ̸= k2, the
output can vary a lot even if the changes in L (or changes in the K eigenvalues and eigenvectors) are
small.2 An important lesson from the above discussion is that a “hard split” of Laplacian eigenvectors
into separate eigenspaces can be susceptible to perturbations. Hence, model predictions should not
absolutely rely on such a “hard split” (especially, not relying on the dimension of each eigenspace)
for the sake of stability.

According to equation (5), in Vanilla OGE-Aug there are two occurrences of explicit dependencies
on eigenspace dimensions µj (j = 1, . . . ,K), namely (i) µj being concatenated as a number, and
(ii) a different fµj

being used for each value of µj . To maintain stability, such dependencies should
either be removed, or be replaced by functions not sensitive to the exact eigenspace splitting. Our
attempt towards this goal is as follows.
Definition 4.1 (OGE-Aug). Let G be a graph with n nodes. Let f be an O(n)-invariant universal
representation function. Define

V smooth
j = concat [V1ρ(|λ1 − λj |),V2ρ(|λ2 − λj |), . . . ,VKρ(|λK − λj |)] , (6)

where ρ : R⩾0 → [0, 1] is a continuous smoothing function with ρ(0) = 1 and limx→+∞ ρ(x) = 0,
and other notations follow Proposition 3.5. Further let ϕ : R2 → Rm and ψ : Rm → R be
parameterized functions that apply row-wise on n× 2 and n×m matrices, respectively. Then

Z(G) = ψ

 K∑
j=1

µjϕ
(
concat

[
λj1n, f(V

smooth
j)

]) (7)

is called an orthogonal group equivariant augmentation, or OGE-Aug on G.

There are some remarkable points regarding OGE-Aug. First, instead of using a different orthogonal
group invariant encoder for different eigenspace dimensions, a single O(n)-invariant encoder f is
used to encode eigenvectors coming from all eigenspaces. The dependency on eigenspace dimensions
µj (j = 1, . . . ,K) appears only in the form of a weighted sum, which is insensitive to the exact
splitting of Laplacian eigenspaces. Moreover, a continuous smoothing function ρ is used to keep
the eigenvectors aware of the eigenspace where they belong, as well as the eigenspaces nearby.
As ρ becomes more and more centered at 0 (namely, ρ(0) = 1 and ρ(x) → 0 for all x > 0), each
eigenspace gets encoded by its own portion of parameters from f that are not shared with each other;
contrarily, with ρ being flatter, more parameters are shared across eigenspaces. In other words, the
shape of ρ controls the “degree of smoothness” of OGE-Aug.

Next, we quantitatively characterize the stability of OGE-Aug. To this end, we first present our
definition of stability, following (though slightly different from) (Huang et al., 2024).
Definition 4.2 (Stability, following Definition 3.1 of (Huang et al., 2024)). A function f , operating
on the Laplacian L of a graph G and producing a node feature augmentation Z ∈ R|V(G)|×d, is said
to be stable, if there exist constants c1, C1, . . . , cm, Cm > 0, such that for any two Laplacians L,L′,

∥f(L)− P∗f(L
′)∥F ⩽ max

ℓ=1,...,m

{
Cℓ · ∥L− P∗L

′P T
∗ ∥

cℓ
F

}
, (8)

in which ∥·∥F stands for Frobenius norm, and P∗ = argminP∈Sn ∥L−PL′P T ∥F is the permutation
matrix matching L and L′ (assuming both L and L′ are of size n× n).

We are now ready to give our theoretical result on the stability of OGE-Aug. We assume that the
following conditions hold for functions ψ, ϕ, f and ρ.

1. ψ, ϕ and ρ are Lipschitz continuous, with Lipschitz constants Jψ, Jϕ and Jρ respectively.
Namely,

∥ψ(X)− ψ(X ′)∥F ⩽ Jψ∥X −X ′∥F, ∀X,X ′ ∈ Rn×m, (9)

∥ϕ(X)− ϕ(X ′)∥F ⩽ Jϕ∥X −X ′∥F, ∀X,X ′ ∈ Rn×2, (10)

|ρ(x)− ρ(x′)| ⩽ Jρ|x− x′|, ∀x, x′ ∈ R⩾0. (11)
2We remark that a similar problem pertains to BasisNet (Lim et al., 2022). See the discussion in Appendix C

of Huang et al. (2024).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

2. f satisfies the following condition: ∃Jf > 0,

∥f(X)− f(X ′)∥ ⩽ Jf min
Q∈O(n)

∥X −X ′Q∥F, ∀X,X ′ ∈ Rn×n. (12)

One may think of f as Jf -Lipschitz continuous after rotating its arguments along the same
direction.

3. There exists a constant δ > 0, such that ρ(x) = 0 for all x > δ.

Given the above assumptions, we have
Proposition 4.3 (Stability of OGE-Aug). With the assumptions on ψ, ϕ, f and ρ specified above,
OGE-Aug defined by (7) is stable. To be specific, given two graphs G,G′ ∈ G with Laplacians L and
L′ respectively, there exists a proper value of δ such that

∥Z(G)− P∗Z(G
′)∥F ⩽ nJψJϕ

[
(
√
n+ 2nJρJf)∥L− P∗L

′P T
∗ ∥2

+ 4
4
√
2Jf
√
Jρn∥L− P∗L

′P T
∗ ∥

1/2
F

]
, (13)

where ∥ ·∥2 is the spectral norm which is no larger than the Frobenius norm ∥ ·∥F, and n = |V(G)| =
|V(G′)|.

We give the proof in Appendix B. To ensure that the inequality (13) holds, in principle we need to
tune δ for different G and G′. However, in our experiments we simply take δ as a hyperparameter
designated before actual training.

Finally, we discuss practical implementations of OGE-Aug. While presenting the universality result
(Proposition 3.5), we have assumed that fp (p = 1, 2, . . .) can universally represent all O(p)-invariant
and permutation-equivariant functions on point sets embedded in Rp. This universality requirement
is inherited to OGE-Aug (Definition 4.1). Namely, we still require that f is an O(n)-invariant
universal representation. We now point out that such universality requirement, despite producing
maximally expressive networks in theory, can be impractical to implement. First, with f being
universal, the resulting network architecture has a typical complexity of n exp(Õ(n)) which is
generally unacceptable. Moreover, insisting on the universality of f can be harmful to the stability of
OGE-Aug, since a more expressive f might result in a larger Lipschitz constant Jf . Therefore, in our
actual implementation of OGE-Aug, we no longer require f to be universal. Instead, we adopt as f a
Cartesian tensor based point cloud network (Finkelshtein et al., 2022) with Cartesian tensors up to
the second order used. We include more experimental details, as well as a complexity analysis for
our implementation, in Appendix D.

5 RELATED WORKS

Graph representation learning with Laplacian eigenvectors. It is well-known that eigenvectors
of graph Laplacian corresponding to the smallest eigenvalues contain “positional” information of
nodes. A number of works have thus adopted Laplacian eigenvectors as a technique for node feature
augmentation. As we have mentioned in Section 1, there are two important issues regarding the
application of Laplacian eigenvectors in graph representation learning, namely orthogonal group
invariance (or sign-and-basis invariance) and stability. Some early works (Dwivedi & Bresson, 2020;
Kreuzer et al., 2021) have noticed the sign invariance problem and tried to alleviate it by randomly
flipping the signs of Laplacian eigenvectors, while completely ignored the basis invariance problem.
Lim et al. (2022) is the first work to formally state and systematically address the sign-and-basis
invariance issue. Nevertheless, it fails to meet the stronger requirement of stability. So far, only two
works (Wang et al., 2022; Huang et al., 2024) have seriously discussed the stability issue by giving
mathematical definitions for it, and proposing learning methods that are provably stable.

Orthogonal-group invariant networks. A neural network is said to be orthogonal-group invariant
if it takes as input one or more vector(s) (say, for instance, each of dimension p), and outputs an
O(p)-invariant scalar, i.e., a value that remains invariant as the input vector system undergoes an
O(p) transformation. As is pointed out by, e.g., Bronstein et al. (2021), orthogonal-group invariance
is a desirable property for learning tasks on molecular data or point clouds, in which Euclidean
coordinates play important roles.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Orthogonal-group equivariance is a property closely related to invariance. A network is O(p)-
equivariant if it takes as input one (or a set of) arbitrary representation(s)3 ofO(p) (with p-dimensional
vectors being a special case), and outputs another (or another set of) representation(s) of O(p), in a
way that whenever the input system undergoes the action of an O(p) group element, the output also
undergoes an action corresponding to the same element. In practice, invariant networks are usually
constructed by stacking multiple equivariant layers, along with a final invariant layer. Regarding the
intermediate orthogonal group representations they use, existing works on the design of invariant
networks mainly take one of the four approaches: (i) utilizing scalar or vector representations (Deng
et al., 2021; Li et al., 2024; Satorras et al., 2021; Villar et al., 2021); (ii) utilizing hand-crafted
higher-order representations (Gasteiger et al., 2020; 2021; Schütt et al., 2021); (iii) utilizing higher-
order Cartesian tensor representations (Finkelshtein et al., 2022; Ruhe et al., 2024); (iv) utilizing
higher-order irreducible representations (Batzner et al., 2022; Bogatskiy et al., 2020; Cohen et al.,
2018; Fuchs et al., 2020; Thomas et al., 2018).

Similar to the question of expressive power of GNNs, there exists the question of whether an
orthogonal-group invariant network can express all possible geometric configurations (either of a
single vector or of a point cloud) up to an arbitrary orthogonal transformation. Invariant networks
possessing the above property are usually called universal. There have been a few works establishing
theoretically the universality of some of the aforementioned architectures. Villar et al. (2021) shows
that universality can be achieved merely using scalar and vector representations, as long as interaction
terms including sufficiently many vectors are allowed, and that the network output is restricted to be
scalars or vectors. Li et al. (2024) further shows by construction that an invariant network can be
already universal with 4-vector interaction terms, even if all intermediate representations are restricted
scalar. Regarding methods using higher-order representations, Dym & Maron (2020) proves the
universality of two specific architectures exploiting higher-order irreducible representations of SO(3)—
Tensor Field Networks (TFN) (Thomas et al., 2018) and SE(3)-Transformers (Fuchs et al., 2020).
Based on TFN, Finkelshtein et al. (2022) proposes another universal architecture utilizing Cartesian
tensor representations. The universality results reviewed above have laid theoretical foundations for
our proposed method.

We leave the discussion on more related works to Appendix C.

6 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the performance of our methods. We
adopt several popular real-world datasets, including: (1) QM9 (Ramakrishnan et al., 2014); (2)
ZINC12k (Dwivedi et al., 2020); (3) Alchemy (Chen et al., 2019); (4) PCQM-Contact (Dwivedi
et al., 2022); (5) CLUSTER (Dwivedi et al., 2023); (6) PATTERN (Dwivedi et al., 2023); (7) ogbg-
molhiv (Hu et al., 2021); (8) DrugOOD (Ji et al., 2022). Results on the first four datasets are given
below, while other experimental results are given in Appendix D. Dataset statistics are summarized in
Table 5. We also provide detailed experimental settings in Appendix D.

QM9. QM9 (Ramakrishnan et al., 2014) is a graph property regression dataset containing 130k small
molecules and 19 regression targets. We use a commonly adopted 0.8/0.1/0.1 training/validation/test
split ratio, and report the results of the first 12 targets. Several representative expressive GNNs
are selected as baselines, including MPNN, 1-2-3-GNN (Morris et al., 2019), DTNN (Wu et al.,
2017), DeepLRP (Chen et al., 2020), PPGN (Maron et al., 2019), NGNN (Zhang & Li, 2021),
KP-GIN+ (Feng et al., 2022), IDMPNN (Zhou et al., 2023b) and PST (Wang et al., 2024). The results
are shown in Table 1. From Table 1, we find that OGE-Aug achieves competitive performance on all
12 targets. We also notice that our method achieves a relatively low MAE on targets U0, U , H and G,
compared with subtree- or subgraph-based methods such as MPNN, NGNN or KP-GIN+, as well as
other Laplacian eigenvector augmented GNNs like PST. This fact indicates that our method has the
ability to capture global properties of graphs, since those targets are macroscopic thermodynamic
properties of molecules and heavily depend on long-range interactions (for example, intermolecular
forces like hydrogen bonds).

3In our context, a representation of O(p) means a vector lying in a linear space L, given that a group
homomorphism from O(p) to the general linear group GL(L) on L exists.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: QM9 results (MAE ↓). Highlighted are first, second best results.

Target MPNN 1-2-3-GNN DTNN DeepLRP PPGN NGNN KP-GIN+ 4-IDMPNN PST OGE-Aug

µ 0.358 0.476 0.244 0.364 0.231 0.433 0.358 0.398 0.023 0.0822
α 0.89 0.27 0.95 0.298 0.382 0.265 0.233 0.226 0.078 0.159
ϵHOMO 0.00541 0.00337 0.00388 0.00254 0.00276 0.00279 0.00240 0.00263 0.00110 0.00140
ϵLUMO 0.00623 0.00351 0.00512 0.00277 0.00287 0.00276 0.00236 0.00286 0.00081 0.00144
∆ϵ 0.0066 0.0048 0.0112 0.00353 0.00406 0.00390 0.00333 0.00398 0.0016 0.00198
⟨R2⟩ 28.5 22.9 17.0 19.3 16.7 20.1 16.49 10.4 0.93 5.55
ZPVE 0.00216 0.00019 0.00172 0.00055 0.00064 0.00015 0.00017 0.00013 0.000095 0.000149
U0 2.05 0.0427 2.43 0.413 0.234 0.205 0.0682 0.0189 0.121 0.0526
U 2.00 0.111 2.43 0.413 0.234 0.200 0.0553 0.0152 0.120 0.0356
H 2.02 0.0419 2.43 0.413 0.229 0.249 0.0575 0.0160 0.118 0.0439
G 2.02 0.0469 2.43 0.413 0.238 0.253 0.0484 0.0159 0.119 0.0441
cv 0.42 0.0944 0.27 0.129 0.184 0.0811 0.0869 0.0890 0.0363 0.0681

ZINC. ZINC12k (Dwivedi et al., 2020) is a subset of the ZINC250k dataset containing 12k
molecules, and the task is molecular property (constrained solubility) regression evaluated by mean
absolute error (MAE). We follow the official split of the dataset. We include common baselines such
as GIN (Xu et al., 2018), PNA (Corso et al., 2020), DeepLRP (Chen et al., 2020), OSAN (Qian et al.,
2022), KP-GIN+ (Feng et al., 2022), GNN-AK+ (Zhao et al., 2021) and CIN (Bodnar et al., 2021).

We also include previous methods mak-
ing use of Laplacian eigenvectors to pro-
duce node feature augmentations (which
are usually named positional encodings
or PEs), such as PEG (Wang et al.,
2022), SignNet (Lim et al., 2022), Basis-
Net (Lim et al., 2022) and SPE (Huang
et al., 2024), as well as graph trans-
formers such as SAN (Kreuzer et al.,
2021), Graphormer (Ying et al., 2021a),
GraphGPS (Rampášek et al., 2022) and
Specformer (Bo et al., 2023). Among
the graph transformer baselines, SAN,
GraphGPS and Specformer also encode
spectral information through other ap-
proaches. Regarding our OGE-Aug, we
consider both GINE (Hu et al., 2019)
(which belongs to the MPNN family)
and the GPS as base models. As
shown in Table 2, OGE-Aug outper-
forms all baseline methods even com-
bined with the simple GINE backbone
without global attention.

Table 2: Zinc12K results (MAE ↓). Shown is the
mean ± std of 5 runs.

Method Test MAE

GIN 0.163± 0.004
PNA 0.188± 0.004
GSN 0.115± 0.012
OSAN 0.187± 0.004
KP-GIN+ 0.119± 0.002
GNN-AK+ 0.080± 0.001
CIN 0.079± 0.006

GIN, with PEG 0.144± 0.008
GIN, with SignNet 0.085± 0.003
GIN, with BasisNet 0.155± 0.007
GIN, with SPE 0.069± 0.004

SAN 0.139± 0.006
Graphormer 0.122± 0.006
GPS 0.070± 0.004
Specformer 0.066± 0.003

GINE, with OGE-Aug (ours) 0.066± 0.002
GPS, with OGE-Aug (ours) 0.064 ± 0.003

Alchemy. Alchemy (Chen et al., 2019)
is also a graph-level small molecu-
lar property regression dataset from
the TUDatasets. We adopt message-
passing GNN backbones, and consider
alternative expressive PEs including
PEG (Wang et al., 2022), SignNet (Lim
et al., 2022), BasisNet (Lim et al., 2022)
and SPE (Huang et al., 2024). As
shown in Table 3, our OGE-Aug sig-
nificantly outperforms all these base-
lines and achieves state-of-the-art per-
formance.

Table 3: Experiments on Alchemy. Shown is the
mean ± std of 5 runs with different random seeds.

Model PE Test MAE ↓
GIN None 0.112± 0.001
GIN PEG (8) 0.114± 0.001
GIN SignNet (All) 0.113± 0.002
GIN BasisNet (All) 0.110± 0.001
GIN SPE (All) 0.108± 0.001

GINE OGE-Aug (ours) 0.087 ± 0.001

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Experiments on PCQM-Contact dataset from the long-range graph benchmarks (LRGB).
Highlighted are the first, second, third best results.

model PE PCQM-Contact (MRR ↑)
GCN None 0.3234± 0.0006
GINE None 0.3180± 0.0027
GatedGCN None 0.3218± 0.0011
Transformer LapPE 0.3174± 0.0020
SAN LapPE 0.3350± 0.0003
SAN RWSE 0.3341± 0.0006
GPS LapPE 0.3337± 0.0006
GPS EdgeRWSE 0.3408 ± 0.0003
GPS Hodge1Lap 0.3407± 0.0004
Exphormer None 0.3637±0.0020
GPS OGE-Aug (ours) 0.3543 ± 0.0004

PCQM-Contact. As part of the long-range graph benchmarks (LRGB) (Dwivedi et al., 2022),
PCQM-Contact is a dataset derived from the PCQM4Mv2 dataset along with the corresponding
3D molecular structures. The task is a binary link ranking measured by the Mean Reciprocal Rank
(MRR), which requires the capability of capturing long range interactions. MPNN baselines include
GCN (Kipf & Welling, 2016), GINE (Hu et al., 2019), and GatedGCN (Bresson & Laurent, 2017),
while graph transformer baselines include Transformer, SAN, Exphormer (Shirzad et al., 2023) and
GPS combined with positional encodings (PEs) like LapPE (Kreuzer et al., 2021), RWSE (Dwivedi
et al., 2021), EdgeRWSE (Zhou et al., 2023a) and Hodge1Lap (Zhou et al., 2023a). We combine
GPS with our OGE-Aug and achieve the second best performance across all baselines, which verifies
the benefit of bringing in long-range information via OGE-Aug.

7 CONCLUSION

In this paper, we propose to apply orthogonal group invariant neural networks on Laplacian
eigenspaces of graphs, so as to produce node feature augmentations that may possess great ex-
pressive power. We present Vanilla OGE-Aug and OGE-Aug as two instances of our proposed
framework, of which the former illustrates the potential of our method to achieve universal represen-
tation of graphs, while the latter is provably stable and practically useful. Extensive experiments have
verified the outstanding performance of OGE-Aug on various benchmarks as well as its capability to
learn global properties of graphs. We remark that our approach to incorporating stability into graph
learning methods based on Laplacian eigenvectors, i.e., by ensuring smoothness while processing
different Laplacian eigenspaces, is a general technique, and can be applied to other machine learning
domains where eigenvalues and eigenvectors are of significant interest.

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
arXiv preprint arXiv:2006.05205, 2020.

Pablo Barceló, Floris Geerts, Juan Reutter, and Maksimilian Ryschkov. Graph neural networks with
local graph parameters, 2021.

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai Kornbluth,
Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E (3)-equivariant graph neural networks for
data-efficient and accurate interatomic potentials. Nature communications, 13(1):2453, 2022.

Beatrice Bevilacqua, Moshe Eliasof, Eli Meirom, Bruno Ribeiro, and Haggai Maron. Efficient
subgraph gnns by learning effective selection policies, 2024.

Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph neural networks meet
transformers. In The Eleventh International Conference on Learning Representations, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and
Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. Advances in Neural
Information Processing Systems, 34:2625–2640, 2021.

Alexander Bogatskiy, Brandon Anderson, Jan Offermann, Marwah Roussi, David Miller, and Risi
Kondor. Lorentz group equivariant neural network for particle physics. In International Conference
on Machine Learning, pp. 992–1002. PMLR, 2020.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(1):657–668, 2022.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. ArXiv, abs/1711.07553, 2017.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In International Conference on Machine Learning, pp. 3469–3489. PMLR,
2022.

Guangyong Chen, Pengfei Chen, Chang-Yu Hsieh, Chee-Kong Lee, Benben Liao, Renjie Liao,
Weiwen Liu, Jiezhong Qiu, Qiming Sun, Jie Tang, et al. Alchemy: A quantum chemistry dataset
for benchmarking ai models. arXiv preprint arXiv:1906.09427, 2019.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? Advances in neural information processing systems, 33:10383–10395, 2020.

Taco S Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical cnns. arXiv preprint
arXiv:1801.10130, 2018.

Gabriele Corso, Luca Cavalleri, D. Beaini, Pietro Lio’, and Petar Velickovic. Principal neighbourhood
aggregation for graph nets. ArXiv, abs/2004.05718, 2020.

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph repre-
sentations. Advances in Neural Information Processing Systems, 34:1713–1726, 2021.

Dragoš M Cvetković, Peter Rowlinson, and Slobodan Simic. Eigenspaces of graphs. Number 66.
Cambridge University Press, 1997.

Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas J
Guibas. Vector neurons: A general framework for so (3)-equivariant networks. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 12200–12209, 2021.

Mukund Deshpande, Michihiro Kuramochi, and George Karypis. Automated approaches for classify-
ing structures. Technical report, MINNESOTA UNIV MINNEAPOLIS DEPT OF COMPUTER
SCIENCE, 2002.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. ArXiv, abs/2003.00982, 2020.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. arXiv preprint
arXiv:2110.07875, 2021.

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. Advances in Neural Information Processing
Systems, 35:22326–22340, 2022.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 24
(43):1–48, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nadav Dym and Haggai Maron. On the universality of rotation equivariant point cloud networks.
arXiv preprint arXiv:2010.02449, 2020.

Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How powerful are k-hop
message passing graph neural networks. In Advances in Neural Information Processing Systems,
2022.

Jiarui Feng, Lecheng Kong, Hao Liu, Dacheng Tao, Fuhai Li, Muhan Zhang, and Yixin Chen.
Towards arbitrarily expressive gnns in O(nˆ 2) space by rethinking folklore weisfeiler-lehman.
arXiv preprint arXiv:2306.03266, 2023.

Ben Finkelshtein, Chaim Baskin, Haggai Maron, and Nadav Dym. A simple and universal rotation
equivariant point-cloud network. In Topological, Algebraic and Geometric Learning Workshops
2022, pp. 107–115. PMLR, 2022.

Fabrizio Frasca, Beatrice Bevilacqua, Michael M Bronstein, and Haggai Maron. Understanding
and extending subgraph gnns by rethinking their symmetries. In Advances in Neural Information
Processing Systems, 2022.

Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d roto-
translation equivariant attention networks. Advances in neural information processing systems, 33:
1970–1981, 2020.

Martin Fürer. On the power of combinatorial and spectral invariants. Linear Algebra and its
Applications, 432(9):2373–2380, 2010. ISSN 0024-3795. doi: https://doi.org/10.1016/j.laa.
2009.07.019. URL https://www.sciencedirect.com/science/article/pii/
S0024379509003620. Special Issue devoted to Selected Papers presented at the Workshop on
Spectral Graph Theory with Applications on Computer Science, Combinatorial Optimization and
Chemistry (Rio de Janeiro, 2008).

Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for molecular
graphs. arXiv preprint arXiv:2003.03123, 2020.

Johannes Gasteiger, Florian Becker, and Stephan Günnemann. Gemnet: Universal directional
graph neural networks for molecules. Advances in Neural Information Processing Systems, 34:
6790–6802, 2021.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S. Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. arXiv: Learning, 2019.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs, 2021. URL
https://arxiv.org/abs/2005.00687.

Yinan Huang, Xingang Peng, Jianzhu Ma, and Muhan Zhang. Boosting the cycle counting power
of graph neural networks with I2-GNNs. In The Eleventh International Conference on Learning
Representations, 2023.

Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, and Pan
Li. On the stability of expressive positional encodings for graph neural networks. In The Twelfth
International Conference on Learning Representations, 2024.

Yuanfeng Ji, Lu Zhang, Jiaxiang Wu, Bingzhe Wu, Long-Kai Huang, Tingyang Xu, Yu Rong, Lanqing
Li, Jie Ren, Ding Xue, Houtim Lai, Shaoyong Xu, Jing Feng, Wei Liu, Ping Luo, Shuigeng Zhou,
Junzhou Huang, Peilin Zhao, and Yatao Bian. Drugood: Out-of-distribution (ood) dataset curator
and benchmark for ai-aided drug discovery – a focus on affinity prediction problems with noise
annotations, 2022. URL https://arxiv.org/abs/2201.09637.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pp. 2323–2332.
PMLR, 2018.

Jinwoo Kim, Tien Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and
Seunghoon Hong. Pure transformers are powerful graph learners. ArXiv, abs/2207.02505, 2022.

12

https://www.sciencedirect.com/science/article/pii/S0024379509003620
https://www.sciencedirect.com/science/article/pii/S0024379509003620
https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/2201.09637

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Lecheng Kong, Jiarui Feng, Hao Liu, Dacheng Tao, Yixin Chen, and Muhan Zhang. Mag-gnn:
Reinforcement learning boosted graph neural network, 2023.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning, 2020.

Zian Li, Xiyuan Wang, Yinan Huang, and Muhan Zhang. Is distance matrix enough for geometric
deep learning? Advances in Neural Information Processing Systems, 36, 2024.

Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and Stefanie
Jegelka. Sign and basis invariant networks for spectral graph representation learning. arXiv
preprint arXiv:2202.13013, 2022.

Daniela Sánchez Lopera, Lorenzo Servadei, Gamze Naz Kiprit, Souvik Hazra, Robert Wille, and
Wolfgang Ecker. A survey of graph neural networks for electronic design automation. In 2021
ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD), pp. 1–6. IEEE, 2021.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. arXiv preprint arXiv:1812.09902, 2018.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. Advances in neural information processing systems, 32, 2019.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, pp. 4602–4609, 2019.

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: Towards
scalable higher-order graph embeddings. Advances in Neural Information Processing Systems, 33:
21824–21840, 2020.

Chendi Qian, Gaurav Rattan, Floris Geerts, Mathias Niepert, and Christopher Morris. Ordered
subgraph aggregation networks. In Advances in Neural Information Processing Systems, 2022.

Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, and O. Anatole von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific Data, 1, 2014.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Gaurav Rattan and Tim Seppelt. Weisfeiler-Leman and Graph Spectra, pp. 2268–2285. Society
for Industrial and Applied Mathematics, January 2023. ISBN 9781611977554. doi: 10.1137/
1.9781611977554.ch87. URL http://dx.doi.org/10.1137/1.9781611977554.
ch87.

Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen Shao, Houssam
Metni, Clint van Hoesel, Henrik Schopmans, Timo Sommer, et al. Graph neural networks for
materials science and chemistry. Communications Materials, 3(1):93, 2022.

David Ruhe, Johannes Brandstetter, and Patrick Forré. Clifford group equivariant neural networks.
Advances in Neural Information Processing Systems, 36, 2024.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks.
In International conference on machine learning, pp. 9323–9332. PMLR, 2021.

13

http://dx.doi.org/10.1137/1.9781611977554.ch87
http://dx.doi.org/10.1137/1.9781611977554.ch87

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the prediction
of tensorial properties and molecular spectra. In International Conference on Machine Learning,
pp. 9377–9388. PMLR, 2021.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J. Sutherland, and Ali Kemal Sinop.
Exphormer: Sparse transformers for graphs, 2023. URL https://arxiv.org/abs/2303.
06147.

Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M
Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar Bloom-Ackermann, et al. A
deep learning approach to antibiotic discovery. Cell, 180(4):688–702, 2020.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley.
Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point clouds.
arXiv preprint arXiv:1802.08219, 2018.

Soledad Villar, David W Hogg, Kate Storey-Fisher, Weichi Yao, and Ben Blum-Smith. Scalars are
universal: Equivariant machine learning, structured like classical physics. Advances in Neural
Information Processing Systems, 34:28848–28863, 2021.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17:395–416, 2007.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional encoding
for more powerful graph neural networks. arXiv preprint arXiv:2203.00199, 2022.

Xiyuan Wang and Muhan Zhang. Pytorch geometric high order: A unified library for high order
graph neural network. arXiv preprint arXiv:2311.16670, 2023.

Xiyuan Wang, Pan Li, and Muhan Zhang. Graph as point set. arXiv preprint arXiv:2405.02795,
2024.

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.
Pappu, Karl Leswing, and Vijay S. Pande. Moleculenet: a benchmark for molecular machine
learning† †electronic supplementary information (esi) available. see doi: 10.1039/c7sc02664a.
Chemical Science, 9:513 – 530, 2017.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In Advances in
Neural Information Processing Systems, volume 34, pp. 28877–28888, 2021a.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877–28888, 2021b.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–983,
2018.

Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp.
10737–10745, 2021.

Yi Yu, Tengyao Wang, and Richard J Samworth. A useful variant of the davis–kahan theorem for
statisticians. Biometrika, 102(2):315–323, 2015.

14

https://arxiv.org/abs/2303.06147
https://arxiv.org/abs/2303.06147

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Manzil Zaheer, Satwik Kottur, Siamak Ravanbhakhsh, Barnabás Póczos, Ruslan Salakhutdinov, and
Alexander J Smola. Deep sets. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17, pp. 3394–3404, Red Hook, NY, USA, 2017. Curran
Associates Inc. ISBN 9781510860964.

Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expressiveness
hierarchy for subgraph gnns via subgraph weisfeiler-lehman tests. arXiv preprint arXiv:2302.07090,
2023.

Muhan Zhang and Pan Li. Nested graph neural networks. Advances in Neural Information Processing
Systems, 34:15734–15747, 2021.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. Advances in Neural Information
Processing Systems, 34:9061–9073, 2021.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any gnn
with local structure awareness. ArXiv, abs/2110.03753, 2021.

Cai Zhou, Xiyuan Wang, and Muhan Zhang. Facilitating graph neural networks with random walk
on simplicial complexes. In Advances in Neural Information Processing Systems, volume 36, pp.
16172–16206, 2023a.

Cai Zhou, Xiyuan Wang, and Muhan Zhang. From relational pooling to subgraph GNNs: A universal
framework for more expressive graph neural networks. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp.
42742–42768. PMLR, 2023b.

Cai Zhou, Rose Yu, and Yusu Wang. On the theoretical expressive power and the design space
of higher-order graph transformers. In Proceedings of The 27th International Conference on
Artificial Intelligence and Statistics, volume 238 of Proceedings of Machine Learning Research,
pp. 2179–2187. PMLR, 2024.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI open, 1:57–81, 2020.

Junru Zhou, Jiarui Feng, Xiyuan Wang, and Muhan Zhang. Distance-restricted folklore weisfeiler-
leman gnns with provable cycle counting power. arXiv preprint arXiv:2309.04941, 2023c.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33(14):i190–i198, 2017.

Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with
graph convolutional networks. Bioinformatics, 34(13):i457–i466, 2018.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A PROOFS OF PROPOSITIONS IN SECTION 3

A.1 PROOF OF PROPOSITION 3.2

Proof. We denote n = |V(G)|. Let LG and LH be the Laplacians of G and H , respectively. We first
show that statement (i) is equivalent to the following: ∃P ∈ Sn,LG = PLHP T . By definition of
permutation matrices, for any P ∈ Sn there exists a bijective function p : {1, . . . , n} → {1, . . . , n}
such that Pij = 1p(i)=j . Therefore, we have LG = PLHP T ⇔ LGij = LHp(i)p(j). Since the
off-diagonal part of LG (or LH) is −AG (or −AH), LGij = LHp(i)p(j) implies AGij = AHp(i)p(j).
Thus AG = PAHP T follows from LG = PLHP T . To see the other direction, notice that given
AG = PAHP T or AGij = AHp(i)p(j), we have

(PDHP T)ij = DHp(i)p(i)1i=j =

n∑
k=1

AHp(i)p(k)1i=j =

n∑
k=1

AGik1i=j = DGij , (14)

or simply DG = PDHP T . Thus LG = PLHP T .

Next, we prove that statement (ii) is equivalent to ∃P ∈ Sn,LG = PLHP T . Assuming that
statement (ii) is true, one may make use of the identities

LG =

K∑
j=1

λjVjV
T
j , LH =

K∑
j=1

λjV
′
j V

′T
j , (15)

to observe that LG = PLHP T . To see the other direction, notice that LG = PLHP T implies that
LG and LH are similar, and thus Spec G = Spec H as similar matrices share the set of eigenvalues
combined with their corresponding multiplicities. Moreover, if the columns of V ′

j constitute the set
of mutually orthogonal normalized eigenvectors of LH corresponding to eigenvalue λj , then the
columns of PV ′

j contain mutually orthogonal normalized eigenvectors of LG corresponding to the
same eigenvalue, for j = 1, . . . ,K. Therefore, each column of Vj must be a linear combination of
columns of PV ′

j , namely

Vj = PV ′
jQj , (16)

for some Qj ∈ Rµj×µj . Further imposing the constraint that V T
j Vj = Iµj×µj

yields QT
j Qj =

Iµj×µj , or Qj ∈ O(µj). Thus the proof is made.

A.2 PROOF OF PROPOSITION 3.5

Proof. By Definition 3.1, we only need to prove that r(G,XG) = r(H,XH) if and only if ∃P ∈ Sn
such that AG = PAHP T and XG = PXH , for any two graphs G,H with accompanying node
features XG,XH . By Proposition 3.2, the latter condition is equivalent to the conjunction of the
following:

1. Spec G = Spec H .

2. ∃P ∈ Sn and Qj ∈ O(µj) (j = 1, . . . ,K), such that XG = PXH , and Vj = PV ′
jQj ,

for j = 1, . . . ,K.

Our notations follow those in Proposition 3.2. Now, given that the above two conditions are true,
we immediately get fµj

(Vj) = P fµj
(V ′

j) due to the fact that fµj
is an O(µj)-invariant universal

representation. Thus, we have

concat
[
µj1n, λj1n, fµj

(Vj)
]
= P concat

[
µj1n, λj1n, fµj

(V ′
j)
]
. (17)

Similarly, since g operates on individual rows of set elements, the permutation matrix P passes
through the operation of g. Therefore,

g
({

concat
[
µj1n, λj1n, fµj

(Vj)
]}K
j=1

)
= P g

({
concat

[
µj1n, λj1n, fµj

(V ′
j)
]}K
j=1

)
. (18)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

If we let

X ′
G = concat

[
XG, g

({
concat

[
µj1n, λj1n, fµj (Vj)

]}K
j=1

)]
, (19)

X ′
H = concat

[
XH , g

({
concat

[
µj1n, λj1n, fµj (V

′
j)
]}K
j=1

)]
, (20)

then X ′
G = PX ′

H . Since message passing GNNs are invariant with respect to node permutations,
we know that

r(G,XG) = GNN(AG,X
′
G) = GNN(PAHP T ,PX ′

H) = GNN(AH ,X
′
H) = r(H,XH),

(21)

thus proving one direction of the proposition.

For the other direction, notice that a maximally expressive message passing GNN is as powerful as
the 1-WL test (Xu et al., 2018), and strictly stronger than a universal set encoder (regarding the set
of node features).4 Therefore, by construction (4), r(G,XG) = r(H,XH) implies that ∃P ∈ Sn,
X ′
G = PX ′

H , where X ′
G is defined in equation (19) but X ′

H should be alternatively defined as

X ′
H = concat

[
XH , g

({
concat

[
µ′
j1n, λ

′
j1n, fµ′

j
(V ′

j)
]}K′

j=1

)]
, (22)

since we have not yet proved that G and H share spectra. The above fact further translates into
XG = PXH and

g
({

concat
[
µj1n, λj1n, fµj

(Vj)
]}K
j=1

)
= P g

({
concat

[
µ′
j1n, λ

′
j1n, fµ′

j
(V ′

j)
]}K′

j=1

)
. (23)

Since g is a universal set representation, the sets on both sides are equal up to an element-wise
application of P . As a consequence,

{(µj , λj)}Kj=1 = {(µ′
j , λ

′
j)}K

′

j=1, (24)

or Spec G = Spec H . Now that G and H share spectra, we may assume that the eigenvalues
{λj}Kj=1 are in an order such that 0 = λ1 < λ2 < · · · < λK . We then arrive at equation (17),
and subsequently fµj

(Vj) = P fµj
(V ′

j), for each j = 1, . . . ,K. Due to fµj
being an O(µj)-

invariant universal representation, we end up finding that ∃Qj ∈ O(µj) (j = 1, . . . ,K), such that
Vj = PV ′

jQj . So far we have proved the other direction of the proposition.

B PROOF OF PROPOSITION 4.3

Before proving Proposition 4.3, we present some useful lemmas. We quote these lemmas directly
from (Huang et al., 2024).
Lemma B.1 (Davis-Kahan theorem, Proposition A.1 of (Huang et al., 2024), see also (Yu et al.,
2015)). Let A,A′ be n × n real symmetric matrices. Let λ1 ⩽ · · · ⩽ λn be eigenvalues of A
sorted in increasing order (possibly with repeats). Let the columns of V ,V ′ ∈ O(n) contain
mutually orthogonal normalized eigenvectors of A,A′ respectively, sorted in increasing order of
their corresponding eigenvalues. Let J = {s, s+ 1, . . . , t} ⊆ {1, . . . , n} be a contiguous interval
of indices, and [V]J , [V

′]J be matrices of shape n× |J | whose columns are the s-th, (s+ 1)-th,
. . ., t-th column of V and V ′, respectively. Then

min
Q∈O(|J |)

∥[V]J − [V ′]JQ∥F ⩽

√
8min

{√
|J |∥A−A′∥2, ∥A−A′∥F

}
min{λs − λs−1, λt+1 − λt}

. (25)

For convenience, we define λ0 = −∞ and λn+1 = +∞.
Lemma B.2 (Weyl’s inequality, Proposition A.2 of (Huang et al., 2024)). Given a real symmetric
matrix A, let λi(A) be its i-th smallest eigenvalue. For any two real symmetric matrices A,A′ of
shape n× n, |λi(A)− λi(A′)| ⩽ ∥A−A′∥2 holds for all i = 1, . . . , n.

4Indeed, a message passing GNN with a maximally expressive pooling layer and no message passing layers
is equivalent to a deep set, the latter having proved to be a universal set encoder by Zaheer et al. (2017).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Lemma B.3 (Lemma A.1 of (Huang et al., 2024)). Assume A1A2 · · ·Ap is a valid matrix multipli-
cation. Then ∥∥∥∥∥

p∏
k=1

Ak

∥∥∥∥∥
F

⩽

(
ℓ−1∏
k=1

∥Ak∥2

)
∥Aℓ∥F

(
p∏

k=ℓ+1

∥AT
k ∥2

)
. (26)

Now we can present the proof of Proposition 4.3.

Proof. We will prove the uniform result that for any two graphs G,G′ ∈ G with Laplacians L,L′

respectively, and for any P ∈ Sn, there exists a value of δ such that

∥Z(G)− PZ(G′)∥F ⩽ nJψJϕ
[
(
√
n+ 2nJρJf)∥L− PL′P T ∥2

+ 4
4
√
2Jf
√
Jρn∥L− PL′P T ∥1/2F

]
. (27)

We may first rewrite equation (7) as

Z(G) = ψ

(
n∑
i=1

ϕ
(
concat

[
λ̃i1n, f(Ṽ

smooth
i)

]))
, (28)

in which λ̃i is the i-th smallest eigenvalue of L (including repeats when counting orders), and

Ṽ smooth
i = concat

[
v1ρ(|λ̃1 − λ̃i|),v2ρ(|λ̃2 − λ̃i|), . . . ,vnρ(|λ̃n − λ̃i|)

]
, (29)

where column vectors v1,v2, . . . ,vn ∈ Rn×1 are mutually orthogonal normalized eigenvectors
corresponding to eigenvalues λ̃1, λ̃2, . . . , λ̃n respectively. With equation (28), we have completely
removed the dependency on eigenspace dimensions in Z(G). We then have

∥Z(G)− PZ(G′)∥F =

∥∥∥∥∥ψ
(

n∑
i=1

ϕ
(
concat

[
λ̃i1n, f(Ṽ

smooth
i)

]))

− Pψ

(
n∑
i=1

ϕ
(
concat

[
λ̃′i1n, f(Ṽ

′smooth
i)

]))∥∥∥∥∥
F

(30)

=

∥∥∥∥∥ψ
(

n∑
i=1

ϕ
(
concat

[
λ̃i1n, f(Ṽ

smooth
i)

]))

− ψ

(
n∑
i=1

ϕ
(
concat

[
λ̃′i1n, f(P Ṽ ′smooth

i)
]))∥∥∥∥∥

F

(31)

⩽ Jψ

∥∥∥∥∥
n∑
i=1

ϕ
(
concat

[
λ̃i1n, f(Ṽ

smooth
i)

])
−

n∑
i=1

ϕ
(
concat

[
λ̃′i1n, f(P Ṽ ′smooth

i)
])∥∥∥∥∥

F

(32)

⩽ Jψ

n∑
i=1

∥∥∥ϕ(concat [λ̃i1n, f(Ṽ smooth
i)

])
− ϕ

(
concat

[
λ̃′i1n, f(P Ṽ ′smooth

i)
])∥∥∥

F
(33)

⩽ JψJϕ

n∑
i=1

∥∥∥concat [(λ̃i − λ̃′i)1n, f(Ṽ smooth
i)− f(P Ṽ ′smooth

i)
]∥∥∥

F
(34)

⩽ JψJϕ

n∑
i=1

[√
n
∣∣∣λ̃i − λ̃′i∣∣∣+ ∥f(Ṽ smooth

i)− f(P Ṽ ′smooth
i)∥

]
. (35)

The equality on (31) is due to the fact that ψ and ϕ operate row-wise on the n rows of their arguments,
and that f is permutation equivariant. (32) and (34) stem from the Lipschitz continuities of ψ and ϕ,
respectively. (33) is due to triangular inequality. Now it suffices to bound the two terms in (35).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

For the first term, we invoke Lemma B.2 to get

n∑
i=1

∣∣∣λ̃i − λ̃′i∣∣∣ ⩽ n∑
i=1

∥L− PL′P T ∥2 = n∥L− PL′P T ∥2, ∀P ∈ Sn. (36)

This is because for any P ∈ Sn, PL′P T has the same sequence of eigenvalues as L′, namely
λ̃′1, λ̃

′
2, . . . , λ̃

′
n.

For the second term, we have

∥f(Ṽ smooth
i)− f(P Ṽ ′smooth

i)∥ ⩽ Jf min
Qi∈O(n)

∥Ṽ smooth
i − P Ṽ ′smooth

i Qi∥F (37)

= Jf min
Qi∈O(n)

∥∥∥concat [v1ρ(|λ̃1 − λ̃i|), . . . ,vnρ(|λ̃n − λ̃i|)
]

− concat
[
Pv′

1ρ(|λ̃′1 − λ̃′i|), . . . ,Pv′
nρ(|λ̃′n − λ̃′i|)

]
Qi

∥∥∥
F

(38)

⩽ Jf min
Qi∈O(n)

{∥∥∥concat [v1ρ(|λ̃1 − λ̃i|), . . . ,vnρ(|λ̃n − λ̃i|)
]

− concat
[
v1ρ(|λ̃′1 − λ̃′i|), . . . ,vnρ(|λ̃′n − λ̃′i|)

]∥∥∥
F

+
∥∥∥concat [v1ρ(|λ̃′1 − λ̃′i|), . . . ,vnρ(|λ̃′n − λ̃′i|)

]
− concat

[
Pv′

1ρ(|λ̃′1 − λ̃′i|), . . . ,Pv′
nρ(|λ̃′n − λ̃′i|)

]
Qi

∥∥∥
F

}
(39)

= Jf

√√√√ n∑
j=1

[
ρ(|λ̃j − λ̃i|)− ρ(|λ̃′j − λ̃′i|)

]2
+ Jf min

Qi∈O(n)

∥∥∥concat [v1ρ(|λ̃′1 − λ̃′i|), . . . ,vnρ(|λ̃′n − λ̃′i|)
]

− concat
[
Pv′

1ρ(|λ̃′1 − λ̃′i|), . . . ,Pv′
nρ(|λ̃′n − λ̃′i|)

]
Qi

∥∥∥
F
.

(40)

Here, (37) is due to our assumption on f , (38) follows from definitions of Ṽ smooth
i and Ṽ ′smooth

i , while
(39) stems from triangular inequality. Now, for the first term of (40), we have√√√√ n∑

j=1

[
ρ(|λ̃j − λ̃i|)− ρ(|λ̃′j − λ̃′i|)

]2
⩽

n∑
j=1

∣∣∣ρ(|λ̃j − λ̃i|)− ρ(|λ̃′j − λ̃′i|)∣∣∣ (41)

⩽ Jρ

n∑
j=1

∣∣∣|λ̃j − λ̃i| − |λ̃′j − λ̃′i|∣∣∣ (42)

⩽ Jρ

n∑
j=1

(
|λ̃i − λ̃′i|+ |λ̃j − λ̃′j |

)
(43)

⩽ 2nJρ∥L− PL′P T ∥2, ∀P ∈ Sn, (44)

where (42) is by Lipschitz continuity of ρ, (43) makes use of the fact that either λ̃i ⩾ λ̃j and λ̃′i ⩾ λ̃′j ,
or λ̃i ⩽ λ̃j and λ̃′i ⩽ λ̃′j . The final step (44) stems from Lemma B.2.

To bound the second term of (40), we first split the eigenvalues λ̃′1, λ̃
′
2, . . . , λ̃

′
n into groups, namely

J1 = {λ̃′J0+1, . . . , λ̃
′
J1
}, J2 = {λ̃′J1+1, . . . , λ̃

′
J2
}, . . ., JL = {λ̃′JL−1+1, . . . , λ̃

′
JL
}, with J0 = 0 and

JL = n. We ask that λ̃′k+1 − λ̃′k > δ for all k = J0, J1, . . . , JL, and λ̃′k+1 − λ̃′k ⩽ δ for all other k.
We also denote by J (λ̃′i) the group where λ̃′i belong.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The consequence of such splitting is that for any eigenvalue λ̃′i of L′, all λ̃′j satisfying ρ(|λ̃′j−λ̃′i|) ̸= 0

belong to J (λ̃′i). Therefore, we actually have

min
Qi∈O(n)

∥∥∥∥concat [vjρ(|λ̃′j − λ̃′i|)]n
j=1
− concat

[
Pv′

jρ(|λ̃′j − λ̃′i|)
]n
j=1

Qi

∥∥∥∥
F

= min
Qi∈O(|J (λ̃′

i)|)

∥∥∥∥concat [vjρ(|λ̃′j − λ̃′i|)]
λ̃′
j∈J (λ̃′

i)
− concat

[
Pv′

jρ(|λ̃′j − λ̃′i|)
]
λ̃′
j∈J (λ̃′

i)
Qi

∥∥∥∥
F

.

(45)

Now, for any Qi ∈ O(|J (λ̃′i)|), we have∥∥∥∥concat [vjρ(|λ̃′j − λ̃′i|)]
λ̃′
j∈J (λ̃′

i)
− concat

[
Pv′

jρ(|λ̃′j − λ̃′i|)
]
λ̃′
j∈J (λ̃′

i)
Qi

∥∥∥∥
F

=

∥∥∥∥∥∥∥∥concat
vjρ(|λ̃′j − λ̃′i|)− ∑

k:λ̃′
k∈J (λ̃′

i)

Pv′
kρ(|λ̃′k − λ̃′i|)(Qi)kj

λ̃′
j∈J (λ̃′

i)

∥∥∥∥∥∥∥∥
F

(46)

⩽

∥∥∥∥∥∥∥∥concat
 ∑
k:λ̃′

k∈J (λ̃′
i)

Pv′
k

[
ρ(|λ̃′j − λ̃′i|)− ρ(|λ̃′k − λ̃′i|)

]
(Qi)kj

λ̃′
j∈J (λ̃′

i)

∥∥∥∥∥∥∥∥
F

+

∥∥∥∥∥∥∥∥concat
ρ(|λ̃′j − λ̃′i|)

vj −
∑

k:λ̃′
k∈J (λ̃′

i)

Pv′
k(Qi)kj

λ̃′
j∈J (λ̃′

i)

∥∥∥∥∥∥∥∥
F

(47)

⩽
∑

j:λ̃′
j∈J (λ̃′

i)

∥∥∥∥∥∥
∑

k:λ̃′
k∈J (λ̃′

i)

Pv′
k

[
ρ(|λ̃′j − λ̃′i|)− ρ(|λ̃′k − λ̃′i|)

]
(Qi)kj

∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥concat
ρ(|λ̃′j − λ̃′i|)

vj −
∑

k:λ̃′
k∈J (λ̃′

i)

Pv′
k(Qi)kj

λ̃′
j∈J (λ̃′

i)

∥∥∥∥∥∥∥∥
F

. (48)

Now we analyze the two terms in (48). For the first term,∥∥∥∥∥∥
∑

k:λ̃′
k∈J (λ̃′

i)

Pv′
k

[
ρ(|λ̃′j − λ̃′i|)− ρ(|λ̃′k − λ̃′i|)

]
(Qi)kj

∥∥∥∥∥∥
=

∥∥∥∥concat{Pv′
k

[
ρ(|λ̃′j − λ̃′i|)− ρ(|λ̃′k − λ̃′i|)

]}
λ̃′
k∈J (λ̃′

i)
(Qi)·j

∥∥∥∥
F

(49)

⩽

∥∥∥∥concat{Pv′
k

[
ρ(|λ̃′j − λ̃′i|)− ρ(|λ̃′k − λ̃′i|)

]}
λ̃′
k∈J (λ̃′

i)

∥∥∥∥
F
∥(Qi)·j∥2 (50)

=

∥∥∥∥concat{Pv′
k

[
ρ(|λ̃′j − λ̃′i|)− ρ(|λ̃′k − λ̃′i|)

]}
λ̃′
k∈J (λ̃′

i)

∥∥∥∥
F

(51)

⩽
∑

k:λ̃′
k∈J (λ̃′

i)

∥Pv′
k∥
∣∣∣ρ(|λ̃′j − λ̃′i|)− ρ(|λ̃′k − λ̃′i|)∣∣∣ (52)

=
∑

k:λ̃′
k∈J (λ̃′

i)

∣∣∣ρ(|λ̃′j − λ̃′i|)− ρ(|λ̃′k − λ̃′i|)∣∣∣ . (53)

Here, (49) translates the first term of (48) into the form of matrix multiplication. Then (50) makes use
of Lemma B.3, and (51) further uses the fact that Qi is orthogonal. Finally, (53) stems from the fact

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

that v′
k is a normalized eigenvector. Regarding (53), we may discuss two cases. If both |λ̃′j − λ̃′i| ⩽ δ

and |λ̃′k − λ̃′i| ⩽ δ, then ∑
k:λ̃′

k∈J (λ̃′
i)

∣∣∣ρ(|λ̃′j − λ̃′i|)− ρ(|λ̃′k − λ̃′i|)∣∣∣
⩽ Jρ

∑
k:λ̃′

k∈J (λ̃′
i)

∣∣∣|λ̃′j − λ̃′i| − |λ̃′k − λ̃′i|∣∣∣ (54)

⩽ 2δJρ|J (λ̃′i)|. (55)

If at least one of |λ̃′j − λ̃′i| and |λ̃′k − λ̃′i| exceeds δ, we may assume without loss of generality that
|λ̃′j − λ̃′i| > δ. Then ρ(|λ̃′j − λ̃′i|) = ρ(δ) = 0 by continuity of ρ, and we still have∑

k:λ̃′
k∈J (λ̃′

i)

∣∣∣ρ(|λ̃′j − λ̃′i|)− ρ(|λ̃′k − λ̃′i|)∣∣∣
=

∑
k:λ̃′

k∈J (λ̃′
i)

∣∣∣ρ(δ)− ρ(|λ̃′k − λ̃′i|)∣∣∣ (56)

⩽ Jρ
∑

k:λ̃′
k∈J (λ̃′

i)

∣∣∣δ − |λ̃′k − λ̃′i|∣∣∣ (57)

⩽ 2δJρ|J (λ̃′i)|. (58)

Therefore, we conclude that∥∥∥∥∥∥
∑

k:λ̃′
k∈J (λ̃′

i)

Pv′
k

[
ρ(|λ̃′j − λ̃′i|)− ρ(|λ̃′k − λ̃′i|)

]
(Qi)kj

∥∥∥∥∥∥ ⩽ 2δJρ|J (λ̃′i)|, (59)

or ∑
j:λ̃′

j∈J (λ̃′
i)

∥∥∥∥∥∥
∑

k:λ̃′
k∈J (λ̃′

i)

Pv′
k

[
ρ(|λ̃′j − λ̃′i|)− ρ(|λ̃′k − λ̃′i|)

]
(Qi)kj

∥∥∥∥∥∥ ⩽ 2δJρ|J (λ̃′i)|2. (60)

For the second term of (48), we have∥∥∥∥∥∥∥∥concat
ρ(|λ̃′j − λ̃′i|)

vj −
∑

k:λ̃′
k∈J (λ̃′

i)

Pv′
k(Qi)kj

λ̃′
j∈J (λ̃′

i)

∥∥∥∥∥∥∥∥
F

⩽

∥∥∥∥∥∥∥∥concat
vj − ∑

k:λ̃′
k∈J (λ̃′

i)

Pv′
k(Qi)kj

λ̃′
j∈J (λ̃′

i)

∥∥∥∥∥∥∥∥
F

(61)

=

∥∥∥∥concat [vj]λ̃′
j∈J (λ̃′

i)
− concat

[
Pv′

j

]
λ̃′
j∈J (λ̃′

i)
Qi

∥∥∥∥
F
. (62)

Here, (61) uses the fact that ρ(|λ̃′j − λ̃′i|) ∈ [0, 1], and (62) rewrites (61) into matrix multiplication.
We further transform (62) into∥∥∥∥concat [vj]λ̃′

j∈J (λ̃′
i)
− concat

[
Pv′

j

]
λ̃′
j∈J (λ̃′

i)
Qi

∥∥∥∥
F

⩽

∥∥∥∥concat [vj]λ̃′
j∈J (λ̃′

i)
QT
i − concat

[
Pv′

j

]
λ̃′
j∈J (λ̃′

i)

∥∥∥∥
F
∥QT

i ∥2 (63)

=

∥∥∥∥concat [Pv′
j

]
λ̃′
j∈J (λ̃′

i)
− concat [vj]λ̃′

j∈J (λ̃′
i)
QT
i

∥∥∥∥
F
, (64)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

in which (63) makes use of Lemma B.3, and (64) uses the fact that the spectral norm of an orthogonal
matrix is always 1. Now, we may apply Lemma B.1 on (64) to find that there exists Qi ∈ O(|J (λ̃′i)|),
such that ∥∥∥∥concat [Pv′

j

]
λ̃′
j∈J (λ̃′

i)
− concat [vj]λ̃′

j∈J (λ̃′
i)
QT
i

∥∥∥∥
F

⩽

√
8

δ
min

{√
|J (λ̃′i)| · ∥PL′P T −L∥2, ∥PL′P T −L∥F

}
. (65)

To arrive at (65), we exploit the fact that at boundaries of J (λ̃′i) (assumed to be λ̃′Jℓ−1+1 and λ̃′Jℓ),
we always have λ̃′Jℓ−1+1 − λ̃′Jℓ−1

> δ and λ̃′Jℓ+1 − λ̃′Jℓ > δ. Thus, we end up finding that∥∥∥∥∥∥∥∥concat
ρ(|λ̃′j − λ̃′i|)

vj −
∑

k:λ̃′
k∈J (λ̃′

i)

Pv′
k(Qi)kj

λ̃′
j∈J (λ̃′

i)

∥∥∥∥∥∥∥∥
F

⩽

√
8

δ
min

{√
|J (λ̃′i)| · ∥L− PL′P T ∥2, ∥L− PL′P T ∥F

}
. (66)

Plugging equations (60) and (66) into (48), we find that ∃Qi ∈ O(|J (λ̃′i)|), such that∥∥∥∥concat [vjρ(|λ̃′j − λ̃′i|)]
λ̃′
j∈J (λ̃′

i)
− concat

[
Pv′

jρ(|λ̃′j − λ̃′i|)
]
λ̃′
j∈J (λ̃′

i)
Qi

∥∥∥∥
F

⩽ 2δJρ|J (λ̃′i)|2 +
√
8

δ
min

{√
|J (λ̃′i)| · ∥L− PL′P T ∥2, ∥L− PL′P T ∥F

}
(67)

⩽ 2n2δJρ +

√
8

δ
∥L− PL′P T ∥F. (68)

Therefore,

min
Qi∈O(n)

∥∥∥∥concat [vjρ(|λ̃′j − λ̃′i|)]nj=1
− concat

[
Pv′

jρ(|λ̃′j − λ̃′i|)
]n
j=1

Qi

∥∥∥∥
F

⩽ 2n2δJρ +

√
8

δ
∥L− PL′P T ∥F. (69)

Plugging (44) and (69) into (40), we get

∥f(Ṽ smooth
i)− f(P Ṽ ′smooth

i)∥ ⩽ Jf

(
2nJρ∥L− PL′P T ∥2 + 2n2δJρ +

√
8

δ
∥L− PL′P T ∥F

)
.

(70)

Combining everything together, we eventually arrive at

∥Z(G)− PZ(G′)∥F ⩽ nJψJϕ

[
(
√
n+ 2nJρJf)∥L− PL′P T ∥2

+ Jf

(
2n2δJρ +

√
8

δ
∥L− PL′P T ∥F

)]
. (71)

By choosing a δ value that minimizes the RHS of equation (71), we get

∥Z(G)− PZ(G′)∥F ⩽ nJψJϕ
[
(
√
n+ 2nJρJf)∥L− PL′P T ∥2

+ 4
4
√
2Jf
√
Jρn∥L− PL′P T ∥1/2F

]
, (72)

which is our desired final result.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C OTHER RELATED WORKS

Expressive GNNs. As is shown by Xu et al. (2018), the expressive power of MPNNs is upper-
bounded by that of 1-dimensional Weisfeiler-Leman test (1-WL). This implies that MPNNs can fail
to discriminate many non-isomorphic graph pairs, potentially leading to their weakness in capturing
important structural information or multi-node interactions. A great number of works have attempted
to improve the expressive power of GNNs, in the sense that to make them better either at solving
the graph isomorphism problem (GI), or at approximating certain graph functions. Those existing
works can be roughly categorized into three families: (1) methods utilizing additional combinatorial
features (Barceló et al., 2021; Bouritsas et al., 2022; Li et al., 2020); (2) methods applying message
passing among higher-order tuples of nodes, or higher-order GNNs (Bodnar et al., 2021; Feng et al.,
2023; Maron et al., 2018; 2019; Morris et al., 2019; 2020; Zhang et al., 2023; Zhou et al., 2023b;c);
(3) methods decomposing input graphs into bags of subgraphs, or subgraph GNNs (Bevilacqua et al.,
2024; Cotta et al., 2021; Frasca et al., 2022; Huang et al., 2023; Kong et al., 2023; Qian et al., 2022;
You et al., 2021; Zhang & Li, 2021; Zhou et al., 2023b). While methods belonging to class (1) enjoy
the lowest complexities, they often generalize worse due to their use of hand-crafted features. On
the contrary, higher-order GNNs and subgraph GNNs bring more systematic gains to the expressive
power, but their computational complexities are much higher than MPNNs. Hence, a trade-off
between expressive power and efficiency is an important issue for the design of expressive GNNs.

Graph transformers. Graph transformers (Chen et al., 2022; Dwivedi et al., 2021; Rampášek et al.,
2022; Wang et al., 2024; Ying et al., 2021b) treat each node within a graph as a separate token, and
use a standard transformer architecture to update node features (or embeddings of tokens). With
attention mechanism, graph transformers take into account the interactions between all pairs of nodes
(instead of only connected node pairs, as in traditional MPNNs), and are naturally good at capturing
long-range interactions (Dwivedi et al., 2022). One of the central issues regarding graph transformers
is the design of structural and positional encodings of nodes, in order to make transformers aware of
adjacency information. Kim et al. (2022); Zhou et al. (2024) analyze the theoretical expressive power
of graph transformers and their high-order versions as well as the effects of positional encodings.

D EXPERIMENTAL DETAILS

D.1 DATASET DESCRIPTIONS

The statistics of used datasets in the paper (except for DrugOOD) are summarized in Table 5.

Table 5: Overview of the datasets used in the paper.

Dataset #Graphs Avg. # Avg. # Prediction Prediction Metricnodes edges level task

QM9 130,000 18.0 37.3 graph regression Mean Abs. Error
ZINC 12,000 23.2 24.9 graph regression Mean Abs. Error

Alchemy 202,579 10.0 10.4 graph regression Mean Abs. Error
PCQM-Contact 529,434 30.1 61.0 inductive link link ranking MRR

CLUSTER 12,000 117.20 4,301.72 node classification Accuracy
PATTERN 14,000 117.47 4,749.15 node classification Accuracy

ogbg-molhiv 41,127 25.5 27.5 graph classification AUROC

D.2 IMPLEMENTATION DETAILS

D.2.1 ARCHITECTURE DESIGN

To implement OGE-Aug practically, the central issue is to choose a proper orthogonal-group invariant
encoder f in equation (7). In our experiments, we uniformly adopt a point cloud network architecture
similar to the one proposed in (Finkelshtein et al., 2022). We provide the detailed implementation in
Algorithm 1. Here, LinearQ,bshape1→shape2

or LinearQshape1→shape2
means a linear transformation operating

on the last dimension of shape1 and transforming it into shape2, either with or without bias b. In

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Algorithm 1: Practical implementation of OGE-Aug.

Data: Node features X ∈ Rn×d, the matrix of Laplacian eigenvectors V = (v1, . . . ,vn) ∈
Rn×n, and Ṽ smooth

1 , . . . , Ṽ smooth
n ∈ Rn×n as defined in equation (29).

Result: Node feature augmentations Z ∈ Rn×h.
(a) Preparation. Given weight matrices Qinit

0 ∈ Rd×h, binit0 ∈ Rh,Qinit
1 ,Qinit

2 ∈ R1×h,

W(0) ← Linear
Qinit

0 ,binit
0

(·,d)→(·,h)(X) ; # W(0) ∈ Rn×h

W(1) ← Linear
Qinit

1

(·,·,1)→(·,·,h)(V .unsqueeze(−1)) ; # W(1) ∈ Rn×n×h

W
(2)
a,j,k,: ← Linear

Qinit
2

1→h

[
(Ṽ smooth

j)ak(Ṽ
smooth
k)aj

]
; # W(2) ∈ Rn×n×n×h

(b) Updates. Alternately apply the following two types of layers for N times.
(i) Tensor product layer. Given input W(0),W(1),W(2), weight matrices Qprod

0 ,Qprod
1 ,

Qprod
2 ,Rprod

0 ,Rprod
1 ,Rprod

2 ∈ Rh×h, bprod0 ∈ Rh and c ∈ R3×3,
1⃝W

(1)
norm ← Normalize(W(1), dim = 1);

2⃝W
(2)
norm ← Normalize(W(2), dim = (1, 2));

3⃝ W̃(0),W̃(1),W̃(2) ← σ
(
Linear

Qprod
0 ,bprod

0

(·,h)→(·,h) (W
(0))
)
,Linear

Qprod
1

(·,·,h)→(·,·,h)(W
(1)
norm),

Linear
Qprod

2

(·,·,·,h)→(·,·,·,h)(W
(2)
norm), where σ(·) is a normalization layer followed by

element-wise SiLU;

4⃝W
(0)
ij ←W

(0)
ij +matmul

[
c00W

(0)
ij W̃

(0)
ij + c01

∑
kW

(1)
ikjW̃

(1)
ikj +

c02
∑
k,ℓW

(2)
ikℓjW̃

(2)
ikℓj ,R

prod
0

]
;

5⃝W
(1)
ikj ←W

(1)
ikj +matmul

[
c10W

(1)
ikjW̃

(0)
ij + c12

∑
ℓW

(1)
iℓjW̃

(2)
ikℓj ,R

prod
1

]
;

6⃝W
(2)
ikℓj ←W

(2)
ikℓj +matmul

[
c20W

(2)
ikℓjW̃

(0)
ij + c11ρ

2(|λ̃k − λ̃ℓ|)W(1)
ikjW̃

(1)
iℓj +

c22ρ
2(|λ̃k − λ̃ℓ|)

∑
mW

(2)
ikmjW̃

(2)
imℓj ,R

prod
2

]
;

(ii) Message passing layer. Given input W(0),W(1),W(2), adjacency matrix A and weight
matrices Qmsg

0 ,Qmsg
1 ,Qmsg

2 ∈ Rh×h, bmsg
0 ∈ Rh,

1⃝W
(1)
norm ← Normalize(W(1), dim = 1);

2⃝W
(2)
norm ← Normalize(W(2), dim = (1, 2));

3⃝ W̃(0),W̃(1),W̃(2) ← σ
(
Linear

Qmsg
0 ,bmsg

0

(·,h)→(·,h)(W
(0))
)
,Linear

Qmsg
1

(·,·,h)→(·,·,h)(W
(1)
norm),

Linear
Qmsg

2

(·,·,·,h)→(·,·,·,h)(W
(2)
norm), where σ(·) is a normalization layer followed by

element-wise SiLU;
4⃝W

(0)
i: ←W

(0)
i: +

∑
k AikW̃

(0)
k: ;

5⃝W
(1)
i:: ←W

(1)
i:: +

∑
k AikW̃

(1)
k:: ;

6⃝W
(2)
i::: ←W

(2)
i::: +

∑
k AikW̃

(2)
k:::;

(c) Output. Z ←W(0).

PyTorch, such operations would translate to nn.Linear modules. The operator matmul operates
similarly to torch.matmul. The function ρ(x) takes the form

ρ(x) =

{
1
2

(
1 + cos πxδ

)
, 0 ⩽ x ⩽ δ,

0, x > δ,
(73)

where δ is a hyperparameter.

We now discuss the complexity of Algorithm 1 as well as its connections to our theoretically proposed
OGE-Aug (Definition 4.1). It is not hard to notice that the most computationally costly steps of
Algorithm 1 are those to compute ρ2(|λ̃k − λ̃ℓ|)

∑
mW

(2)
ikmjW̃

(2)
imℓj and

∑
k AikW̃

(2)
k:::. If we use

dense matrices to store all the necessary data, the time complexity to compute those two terms are
O(n4) and O(n2m), where n and m refer to the number of nodes and edges of G, respectively.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Nevertheless, since the smoothing function ρ(·) is only non-zero when its argument is sufficiently
close to zero, we find that W(2)

i::j is a sparse matrix with only O(nmaxj µj) non-zero elements,
for each i = 1, . . . , n and j = 1, . . . , h. Here, maxj µj means the maximum multiplicity of G’s
Laplacian eigenvalues. Therefore, by storing W(2) as a sparse matrix, the above two terms can
be computed in O(n2 maxj µ

2
j) and O(mmaxj µj) time respectively, resulting a practical time

complexity of O((n2 maxj µj +m) ·maxj µj), which is generally lower than O(n3).

We remark that although Algorithm 1 uses only tensors up to second order, it is not hard to generalize
Algorithm 1 to accommodate higher-order tensors based on Ṽ smooth

1 , . . . , Ṽ smooth
n , resulting in a

model with higher complexities and better expressive power. When the tensor order reaches n, our
implementation of OGE-Aug can produce universally expressive graph representations, recovering our
theoretical result. Since this would entail an unaffordable complexity of O(n · nn) = n exp(Õ(n)),
Algorithm 1 is adopted practically instead, at the cost of some expressivity.

Finally, we point out that Algorithm 1 does not tightly follow equation (7), in that (i) apart from using
V smooth
1 , . . . ,V smooth

K (to build second-order tensors), Algorithm 1 also uses information directly
from the raw Laplacian eigenvectors (to build first-order tensors), and that (ii) Algorithm 1 allows
mixing of V smooth

j with different j. Despite those differences, Algorithm 1 maintains the key idea of
OGE-Aug: only information from two Laplacian eigenspaces whose corresponding eigenvalues are
“not too far away” from each other would be multiplied into W(2), and the algorithm has no explicit
dependence on the multiplicities of Laplacian eigenvalues. Thus, the stability result demonstrated in
Proposition 4.3 can similarly hold for Algorithm 1, though the accurate bound may be different.

D.2.2 OTHER DETAILS OF THE PRACTICAL IMPLEMENTATION

We implement OGE-Aug with the PyGHO library (Wang & Zhang, 2023). To integrate OGE-Aug
with other base models including MPNN and graph transformers, we also implement our methods
building on the GraphGPS (Rampášek et al., 2022) code base, where we build OGE-Aug as a plug-and-
play module. The module takes in Laplacians as inputs and processes the eigenvalues/eigenvectors
using # PE layers with dimension PE hidden dim, and outputs an embedding with dimension
PE dim; see Table 6 for detailed settings. In this module, we use permutation-equivariant set
function (Zaheer et al., 2017) to process the eigenvalues and multiply the eigenvalue embeddings
to the eigenvectors. Moreover, we also multiply eigenvectors with eigenvectors to initialize the
higher order representations. After that, this module will product each node’s representation with its
neighbors’ and update the representation iteratively. The embedding is then combined with other
node features and other optional positional encodings, then fed jointly into downstream layers (which
consist of various GNN and graph transformer modules). Therefore, OGE-Aug can be either used
solely or integrated easily with arbitrary backbones.

We also implement a version where OGE-Aug modules act on the embeddings of nodes and edges,
which can be viewed as operating on weighted or latent Laplacians incorporating node and edge
features. However, we experimentally find that processing the original Laplacians with OGE-Aug
and encoding the node/edge features separately via other encoders (as explained above) yields better
performance.

In addition, to make OGE-Aug more robust, we add a small-scale noise (typically a Gaussian noise
with mean zero and variance 10−5) to the Laplacians in the training process. We also randomly
permute the Laplacians and do inverse permutation to the output eigenvectors to simulate the noise
caused by the permutation and the numerical algorithm. We use the original Laplacians in the
inference stage.

D.3 EXPERIMENTAL SETTINGS

As explained earlier, we integrate our OGE-Aug with the GraphGPS code base, and thus also follow
their experimental settings. With only mild hyperparameter search, we achieve SOTA or highly
competitive results on all datasets. The adopted hyperparameters in our experiments are summarized
in Table 6.

Here † for QM9 suggests that experiments on these four targets U0, U,G,H are conducted using the
PyGHO code version without GraphGPS. ∗ for ZINC means that the transformer is not necessary

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 6: Hyperparameters of the experiments.

Hyperparameters QM9 ZINC Alchemy PCQM-Contact

Layers 10 10 16 6
Hidden dim 64 64 128 96
MPNN GINE GINE GINE GatedGCN
Attention Transformer† Transformer∗ - Transformer
Heads 4 4 - 4
Dropout 0 0 0 0
Attention dropout 0.2 0.5 - 0.1
Graph pooling sum sum sum edge dot

Positional encoding OGE-Aug(29) OGE-Aug(37) OGE-Aug(12) OGE-Aug + LapPE
PE hidden dim 64 64 64 32
PE dim 28 28 28 16
PE # layer 4 4 4 3

Batch size 256 32 128 64
Learning rate 0.001 0.001 0.001 0.0005
Epochs 500 2000 1000 100
Warmup epochs 50 50 50 10
Weight decay 1e-5 1e-5 1e-5 0

Parameters 783249 617677 1968352 845632
Time (epoch/total) 139s/19.3h 28s/15.6h 5s/1.4h 1541s/42.8h

Table 7: Five-run results on CLUSTER, PATTERN and ogbg-molhiv.

Method CLUSTER (Acc ↑) PATTERN (Acc ↑) ogbg-molhiv (AUROC ↑)
GCN 68.50 ± 0.98 71.89 ± 0.34 75.99 ± 1.19
GIN 64.72 ± 1.55 85.39 ± 0.14 77.07 ± 1.49
GAT 70.59 ± 0.45 78.27 ± 0.19 -
GatedGCN 73.84 ± 0.33 85.57 ± 0.09 78.74 ± 1.19
SAN 76.69 ± 0.65 86.58 ± 0.37 77.85 ± 2.47
K-Subgraph SAT 77.86 ± 0.10 86.85 ± 0.37 -
GraphGPS 78.02 ± 0.18 86.69 ± 0.59 78.80 ± 1.01
Exphormer 78.07 ± 0.04 86.74 ± 0.15 -
OGE-Aug 78.33 ± 0.13 86.87 ± 0.33 80.01 ± 0.59

- actually we can achieve highly competitive results even without global attention. When we use
transformers, we reduce the PE hidden dimension to 32, PE dimension to 16, and PE # layers to 3,
resulting 505905 total number of parameters and 14.9h total training time, which are both less than
the case without transformers.

D.4 OTHER EXPERIMENTAL RESULTS

Other graph benchmarks. We evaluate the performance of OGE-Aug on three additional graph
learning benchmarks: CLUSTER (Dwivedi et al., 2023), PATTERN (Dwivedi et al., 2023) and
ogbg-molhiv (Hu et al., 2021). CLUSTER and PATTERN are node classification datasets, while
ogbg-molhiv is a graph classification dataset. The results are summarized in Table 7. We quote the
baseline results directly from Rampášek et al. (2022) and Shirzad et al. (2023). One may find that
OGE-Aug outperforms all baselines on the three datasets.

OOD benchmarks. We evaluate the OOD performance of OGE-Aug on DrugOOD (Ji et al., 2022),
an OOD benchmark for drug discovery. We consider three domains on which distribution shifts exist,
namely Assay (which assay the molecule belongs to), Scaffold (core structure of the molecule) and
Size (size of the molecule). For each domain, the dataset is divided into five splits: the training set,
the in-distribution (ID) validation/test sets, and the out-of-distribution (OOD) validation/test sets. The
data distribution of OOD splits is different from that of ID splits regarding the specific domain. The

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 8: AUROC (the larger, the better) results on DrugOOD.

Domain Method ID-Val ID-Test OOD-Val OOD-Test
(AUROC) (AUROC) (AUROC) (AUROC)

Assay

No PE 92.92 92.89 71.02 71.68
PEG 92.51 92.57 70.86 71.98
SignNet 92.26 92.43 70.16 72.27
BasisNet 88.96 89.42 71.19 71.66
SPE 92.84 92.94 71.26 72.53
OGE-Aug 94.88 86.75 82.26 73.73

Scaffold

No PE 96.56 87.95 79.07 68.00
PEG 95.65 86.20 79.17 69.15
SignNet 95.48 86.73 77.81 66.43
BasisNet 85.80 78.44 73.36 66.32
SPE 96.32 88.12 80.03 69.64
OGE-Aug 95.02 86.54 78.67 65.94

Size

No PE 93.78 93.60 82.76 66.04
PEG 92.46 92.67 82.12 66.01
SignNet 93.30 93.20 80.67 64.03
BasisNet 86.04 85.51 75.97 60.79
SPE 92.46 92.67 82.12 66.02
OGE-Aug 94.65 84.88 78.44 64.64

task is graph-level binary classification, i.e., to predict whether the drug is active. We use AUROC as
the evaluation metric.

The experimental results are shown in Table 8. We choose PE methods from (Huang et al., 2024)
as our baselines. Our OGE-Aug outperforms all baselines on the Assay domain, and achieves
comparable results on Scaffold and Size domains. Moreover, the performance of our method is better
than that of BasisNet on 5 out of the 6 OOD evaluation targets, verifying the benefits of possessing
theoretically guaranteed stability.

Ablation studies. Finally, we study the effect of the smoothing function ρ(·) in OGE-Aug. We use
ZINC as the evaluation dataset. We take GINE as the base model, and apply either Vanilla OGE-Aug,
or OGE-Aug with different smoothing functions ρ(·) (all of them taking the form of equation (73)
but with different hyperparameters δ). The results are shown in Table 9.

We find that applying Vanilla OGE-Aug instead of OGE-Aug leads to significant performance drop,
which verifies the importance of ensuring stability by introducing the smoothing function ρ. We also
observe that as long as the hyperparameter δ is not too close to zero, the performance varies little
with different choices of δ.

Table 9: Ablation studies on ZINC.

Method MAE (↓)
Vanilla OGE-Aug 0.098
OGE-Aug (δ = 5× 10−3) 0.066
OGE-Aug (δ = 5× 10−2) 0.066
OGE-Aug (δ = 5× 10−1) 0.065

27

	Introduction
	Preliminaries
	Universal graph representation with Laplacian eigenvectors
	Incorporating the stability constraint
	Related works
	Experiments
	Conclusion
	Proofs of propositions in Section 3
	Proof of Proposition 3.2
	Proof of Proposition 3.5

	Proof of Proposition 4.3
	Other related works
	Experimental details
	Dataset descriptions
	Implementation details
	Architecture design
	Other details of the practical implementation

	Experimental settings
	Other experimental results

