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ABSTRACT

Graph neural networks (GNNs) have achieved remarkable success in a variety of
machine learning tasks over graph data. Existing GNNs usually rely on message
passing, i.e., computing node representations by gathering information from the
neighborhood, to build their underlying computational graphs. Such an approach
has been shown fairly limited in expressive power, and often fails to capture global
characteristics of graphs. To overcome the issue, a popular solution is to use
Laplacian eigenvectors as additional node features, as they are known to contain
global positional information of nodes, and can serve as extra node identifiers
aiding GNNs to separate structurally similar nodes. Since eigenvectors naturally
come with symmetries—namely, O(p)-group symmetry for every p eigenvectors
with equal eigenvalue, properly handling such symmetries is crucial for the stability
and generalizability of Laplacian eigenvector augmented GNNs. However, using a
naive O(p)-group invariant encoder for each p-dimensional eigenspace may not
keep the full expressivity in the Laplacian eigenvectors. Moreover, computing
such invariants inevitably entails a hard split of Laplacian eigenvalues according
to their numerical identity, which suffers from great instability when the graph
structure has small perturbations. In this paper, we propose a novel method ex-
ploiting Laplacian eigenvectors to generate stable and globally expressive graph
representations. The main difference from previous works is that (i) our method
utilizes learnable O(p)-invariant representations for each Laplacian eigenspace of
dimension p, which are built upon powerful orthogonal group equivariant neural
network layers already well studied in the literature, and that (ii) our method deals
with numerically close eigenvalues in a smooth fashion, ensuring its better robust-
ness against perturbations. Experiments on various graph learning benchmarks
witness the competitive performance of our method, especially its great potential
to learn global properties of graphs.

1 INTRODUCTION

Numerous real-world data—such as molecules, electric circuits or social networks—can be repre-
sented by graphs. Machine learning over graphs is thus an important approach to find underlying
relations among them, and make predictions concerning novel data. So far, graph neural networks
(GNNs) have proved successful on a plethora of learning tasks over graphs (Wu et al., 2020; Zhou
et al., 2020), spanning across domains such as chemistry (Deshpande et al., 2002; Jin et al., 2018;
Reiser et al., 2022), biology (Stokes et al., 2020; Zitnik & Leskovec, 2017; Zitnik et al., 2018), social
recommendations (Ying et al., 2018) or electronic design automation (Lopera et al., 2021).

One of the most popularly adopted GNN architecture is message passing neural network (MPNN),
which maintains a representation vector hu for each node u, and iteratively updates it by gathering
information from the neighboring nodes of u. Despite its relative simplicity and efficiency, it
has several weaknesses that severely limit its performance. One important problem is its limited
expressive power, referring to the fact that MPNNs often fail to distinguish between two non-
isomorphic graphs, or two structurally different nodes with similar neighborhood configuration (Xu
et al., 2018; Zhang et al., 2021). Another issue is its inability to capture global properties of graphs,
meaning that it cannot truthfully learn long-range interactions within a graph, due to “oversquashing”
that occurs as a result of multiple message passing steps (Alon & Yahav, 2020; Dwivedi et al., 2022).
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In this paper, we refer to the former problem as a lack of local expressive power, while the latter as
one concerning global expressive power.

A great number of works have attempted to tackle the aforementioned weaknesses of MPNNs, which
we will review in Section 5 and Appendix C. For now, we restrict our discussion to one specific
approach—using Laplacian eigenvectors as node feature augmentations. Why are we particularly
interested in it? The reason is that Laplacian eigenvectors may alleviate both issues we raise above.
First, Laplacian eigenvectors provably contain rich local structural information (Cvetković et al.,
1997; Fürer, 2010; Rattan & Seppelt, 2023), and can thus serve as additional node labels, making
it easier for a GNN to separate nodes that are otherwise similar. Furthermore, they can reflect the
absolute position of each node within the graph (Von Luxburg, 2007), making GNNs aware of
potential long-range interactions. Indeed, a vast literature has regarded Laplacian eigenvectors
as so-called graph positional encodings, which play important roles both in MPNNs and graph
transformers (Dwivedi et al., 2021; 2023; Rampášek et al., 2022; Ying et al., 2021b).

Although Laplacian eigenvectors provide a promising solution for expressive graph representation
learning, there are some well-known constraints that one must take into account for their reliable
use. The first is orthogonal-group invariance. As is first pointed out by Wang et al. (2022); Lim
et al. (2022), given a Laplacian L, its eigen-decomposition is in general not unique. In fact, assuming
that v1, . . . ,vp are p mutually orthogonal normalized eigenvectors of a Laplacian L that correspond
to the same eigenvalue λ, then so are v′

1, . . . ,v
′
p, as long as the two groups of eigenvectors can

be associated via a p × p orthogonal matrix Q, namely V ′ = V · Q where V = (v1, . . . ,vp)
and V ′ = (v′

1, . . . ,v
′
p). One must ensure that the network output is invariant to such orthogonal

transformations, so as to produce identical representations for identical (i.e., isomorphic) graphs.
Another related but stricter constraint is stability, which, as formally defined by Huang et al. (2024),
demands that network outputs should be close when the input graph undergoes small perturbations. It
is easy to see that orthogonal-group invariance is a special case of stability in which the strength of
perturbation approaches zero.

To ensure orthogonal-group invariance (and furthermore, stability), Lim et al. (2022) and Huang
et al. (2024) both propose to extract spectral information from inner products between Laplacian
eigenvectors—namely, V V T with V = (v1, . . . ,vp) being the matrix consisting of p mutually
orthogonal normalized eigenvectors within an eigenspace of dimension p—instead of the eigenvectors
(v1, . . . ,vp) themselves. The inner product matrices V V T for different Laplacian eigenspaces are
then processed by invariant graph networks (IGNs) proposed in (Maron et al., 2018; 2019) to produce
node feature augmentations. Despite being provably invariant to O(p) transformations and even
stable (with carefully designed network architectures), their learning architectures based on inner
products are not flexible enough, and may lose much of the rich structural and positional information
carried by vanilla Laplacian eigenvectors. Earlier than the above two works, Wang et al. (2022) has
proposed a special message passing operation in which only the norms of differences between rows
of V are used, and proved its stability. However, this method even dismisses important eigenvalue
information by treating Laplacian eigenvectors from different eigenspaces uniformly. Given the
limitations of existing methods to utilize Laplacian eigenvectors, a natural question is whether we
can recover the information inherent in vanilla Laplacian eigenvectors while ensuring stability.
To make the question even more general, we may ask:

What is the representational limit of graph learning methods exploiting Laplacian
eigenvectors, given the stability constraint?

In this paper, we attempt to partially answer the general question posed above. Our main contributions
are summarized below.

• We propose vanilla orthogonal group equivariant augmentation (Vanilla OGE-Aug), a
novel method exploiting Laplacian eigenvectors to produce node feature augmentations.
Inspired by the property of orthogonal group invariance of invariant point cloud networks
(for example, Tensor Field Network (Thomas et al., 2018) and its variant (Finkelshtein
et al., 2022)) as well as their great expressive power, we use them to process the Laplacian
eigenvectors, enabling the construction of node feature augmentations much more expressive
than previous ones that make use of inner products between eigenvectors.
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• We theoretically prove that Vanilla OGE-Aug, combined with an MPNN, can lead to
universal representations of graphs, as long as the invariant point cloud networks we
use are powerful enough. Previous works have theoretically guaranteed the expressive
power of several specific invariant point cloud networks, which lays the foundations for the
practicality of our theoretical result.

• Although Vanilla OGE-Aug can be maximally expressive, it unfortunately lacks stability.
We then propose a smooth variant of Vanilla OGE-Aug, namely OGE-Aug, by trading
expressive power for better stability. Our approach is to use a series of “soft” masks to filter
Laplacian eigenvectors that belong to different eigenspaces, instead of hard-splitting and
separately processing them. We theoretically prove the stability of OGE-Aug, and evaluate
its empirical performance on various real-world graph datasets. The results indicate that
our method not only shows competitive performance on popular graph benchmarks, but is
surprisingly good at learning global properties of graphs.

2 PRELIMINARIES

We use G to denote the set of all simple, undirected graphs. For a graph G ∈ G, its node set and
edge set are denoted by V(G) and E(G) respectively. Graphs considered in this paper are usually
accompanied with node features, defined as a function from V(G) to Rd.

For a graph with n nodes labeled by 1, . . . , n respectively, its adjacency matrix is defined as A ∈
{0, 1}n×n in which Aij = 1 if and only if nodes i and j are connected; further, if the graph has node
features, the node features are represented by a matrix X ∈ Rn×d whose i-th row corresponds to the
feature of node i.

Given the adjacency matrix A ∈ {0, 1}n×n of graph G, we define the Laplacian of graph G as
L = D−A, in which D = diag(d(1), . . . , d(n)), with d(i) being the degree of node i (i = 1, . . . , n).
It is not hard to see that with G being simple and undirected, its Laplacian L is real symmetric,
and further positive semi-definite. Therefore, all eigenvalues of L are real non-negative. One may
also verify that 0 is always an eigenvalue of L (thus being the smallest eigenvalue of L). If L
has an eigenvalue λ with multiplicity µ, the linear subspace spanned by the µ mutually orthogonal
eigenvectors of L corresponding to λ is called an eigenspace of L with dimension µ.

Let A ∈ Rn×n. A is said to be orthogonal if AAT = ATA = I , with I being the identity matrix.
Given a positive integer n, we use O(n) to denote the set of all orthogonal matrices of shape n× n.
A 0-1 matrix A ∈ {0, 1}n×n is said to be a permutation matrix if each of its rows and columns has
exactly one 1-element. Let Sn be the set of all permutation matrices of shape n× n. It’s easy to see
that Sn ⊆ O(n).

To simplify our discussion below, we further introduce the following shorthands:

• Assume {V1, . . . ,Vk} ⊂ Rn×p is a set of n × p matrices, in which Vj can be row-wise
decomposed as Vj = (vj1, . . . ,vjn)

T , each vji ∈ Rp, i = 1, . . . , n. Further let g be a set
function, namely g : 2R

p → R. Then we use g({V1, . . . ,Vk}) ∈ Rn to denote the vector
whose i-th component equals g({v1i, . . . ,vki}), for i = 1, . . . , n.

• Given V1 ∈ Rn×p1 , . . . ,Vk ∈ Rn×pk , let concat [V1, . . . ,Vk] ∈ Rn×(p1+···+pk) be the
concatenation of V1, . . . ,Vk along the row dimension.

3 UNIVERSAL GRAPH REPRESENTATION WITH LAPLACIAN EIGENVECTORS

Despite the great number of works showing the efficacy of using Laplacian eigenvectors in graph
learning tasks, few (Fürer, 2010; Rattan & Seppelt, 2023) have studied theoretically their expressive-
ness upper-bound—namely, to what extent can the information of a graph be learned, merely
from its Laplacian eigenvectors? This is a weaker version of the general question we pose in
Section 1, with the stability constraint removed. In this section, we will show that the answer to this
weaker question is rather optimistic: ignoring the stability constraint, Laplacian eigenvectors can
actually lead to universal representations of graphs. To reach the point, we start by reconsidering the
problem of finding universal graph representations from the perspective of Laplacian eigenvalues and
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eigenvectors (Proposition 3.2), and then give a concrete construction of such universal representation
(Proposition 3.5).

We first present the definition for universal representations of graphs.

Definition 3.1 (Universal representation). Let f be a function mapping each pair (G,XG) to a
real value f(G,XG) ∈ R, where G ∈ G is a graph and XG ∈ R|V(G)|×d stands for node features
accompanied with G. Further let AG be the adjacency matrix of graph G. The function f is said
to be a universal representation if the following condition holds: for any two pairs (G,XG) and
(H,XH), f(G,XG) = f(H,XH) if and only if ∃P ∈ S|V(G)|,

AG = PAHP T , XG = PXH . (1)

In other words, f should produce equal outputs only for graphs that are identical up to a permutation
of nodes.

Next, we will associate the concept of universal representations with eigendecompositions of graph
Laplacians. We denote LG the Laplacian of a simple, undirected graph G. Due to the properties
of graph Laplacians (stated in Section 2), we may assume that LG has K distinct real eigenvalues
λ1, . . . , λK , with 0 = λ1 < λ2 < · · · < λK . We further use µj to denote the multiplicity
of eigenvalue λj , and Vj ∈ R|V(G)|×µj the set of mutually orthogonal normalized eigenvectors
corresponding to λj (each column of Vj being an eigenvector that has L2-norm scaled to 1), for
j = 1, . . . ,K. Following Fürer (2010), we also denote

Spec G = ((λ1, µ1), (λ2, µ2), . . . , (λK , µK)) (2)

the spectrum of G.

Given the above notations, the following proposition is straightforward.

Proposition 3.2. LetG,H ∈ G with |V(G)| = |V(H)|. Let AG and AH be their adjacency matrices
respectively. The following two statements are equivalent:
(i) ∃P ∈ S|V(G)|,AG = PAHP T .
(ii) Both of the following conditions hold.

• Spec G = Spec H .

• Let the spectrum of G (and thus H) be ((λ1, µ1), . . . , (λK , µK)), and Vj ,V
′
j ∈ R|V(G)|×µj

be sets of mutually orthogonal normalized eigenvectors belonging to G,H respectively,
both corresponding to eigenvalue λj , for j = 1, . . . ,K. There exists P ∈ S|V(G)| and
Qj ∈ O(µj) (j = 1, . . . ,K), such that

Vj = PV ′
jQj . (3)

We include the proof in Appendix A. Proposition 3.2 implies that in order to find universal rep-
resentations of a graph, it may be helpful to find a sufficiently expressive representation for each
of its Laplacian eigenspace. Nevertheless, such representation must stay invariant under actions
of O(p)-group elements for an eigenspace of dimension p, due to the existence of arbitrary Qj

matrices (j = 1, . . . ,K). Thus, we are motivated to define as following an O(p)-invariant universal
representation.

Definition 3.3 (O(p)-invariant universal representation). Let f :
⋃∞
n=0 Rn×p →

⋃∞
n=0 Rn×1. Given

an input V ∈ Rn×p, f outputs a column vector f(V ) ∈ Rn×1. The function f is said to be an
O(p)-invariant universal representation if given V ,V ′ ∈ Rn×p and P ∈ Sn, the following two
conditions are equivalent: (i) f(V ) = P f(V ′); (ii) ∃Q ∈ O(p), such that V = PV ′Q.

By Definition 3.3, an O(p)-invariant universal representation is one that assigns an output to each
point of a point set embedded in Rp, in a way that is invariant to global O(p) rotations, equivariant to
point permutations, and injective with respect to all possible point set configurations. Such networks
have been named universal point cloud networks, whose design has been intensively studied, as we
will survey in Section 5.

We still need another definition which follows Zaheer et al. (2017).
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Definition 3.4 (Universal set representation). Let X be a non-empty set. A function f : 2X → R is
said to be a universal set representation if ∀X1, X2 ∈ 2X , f(X1) = f(X2) if and only if the two
sets X1 and X2 are equal.

We remark that the problem of finding a universal set representation, at least for finite subsets of a
countable universe X , has been fully addressed by Zaheer et al. (2017), using the deep set architecture
they propose.

With Definitions 3.3 and 3.4, we are now ready to present our main result on constructing universally
expressive graph representations.

Proposition 3.5. For each p = 1, 2, . . ., let fp be anO(p)-invariant universal representation function.
Further let g : 2R

3 → R be a universal set representation. Then the following function

r(G,XG) = GNN
(
AG, concat

[
XG, g

({
concat

[
µj1n, λj1n, fµj (Vj)

]}K
j=1

)])
(4)

is a universal representation (by Definition 3.1). Here n = |V(G)|, ((λ1, µ1), . . . , (λK , µK)) is the
spectrum of G, and Vj ∈ Rn×µj are the µj mutually orthogonal normalized eigenvectors of LG
corresponding to λj . We denote 1n an all-1 vector of shape n× 1. GNN is a maximally expressive
MPNN such as the one proposed in (Xu et al., 2018).

The proof is also given in Appendix A. By Proposition 3.5, the problem of finding a universal repre-
sentation of graphs is completely reduced to that of finding O(p)-invariant universal representations
of point sets (as constructions for other components are already known). Therefore, directly applying
existing point cloud networks (such as those we will mention in Section 5) to graph Laplacian
eigenspaces following equation (4) immediately results in a fairly large design space of GNNs, and
universality of the resulting GNN directly follows from universality of the underlying point cloud
network.

One may find that equation (4) takes the form of a node feature augmented MPNN. The observation
is made explicit with the following definition.

Definition 3.6 (Vanilla OGE-Aug). Let fp be an O(p)-invariant universal representation, for each
p = 1, 2, . . ., and g : 2R

3 → R be a universal set representation. Define Z : G →
⋃∞
n=1 Rn as

Z(G) = g
({

concat
[
µj1|V(G)|, λj1|V(G)|, fµj

(Vj)
]}K
j=1

)
, (5)

in which the notations follow Proposition 3.5. For G ∈ G, Z(G) is called a vanilla orthogonal
group equivariant augmentation, or Vanilla OGE-Aug on G.

We end this section by discussing the complexity of computing Z(G). The typical complexity of a
universal point cloud network is n exp(Õ(dim))1, where dim is the coordinate dimension. Thus, the
complexity of computing equation (5) is n exp(Õ(maxj µj)). Our worst-case complexity (in which
maxj µj ∼ n) matches that of a typical algorithm for graph isomorphism problem (GI). Nevertheless,
real-world graphs usually have maxj µj ≪ n, making our method computationally affordable in
general.

4 INCORPORATING THE STABILITY CONSTRAINT

Proposition 3.5 has theoretically confirmed the possibility of finding universal graph representa-
tions with Laplacian eigenvectors, even when the backbone GNN is a (relatively weak) MPNN.
Nevertheless, naively applying the network architecture proposed in Proposition 3.5 (or Vanilla
OGE-Aug) may not necessarily bring performance gain, due to one important weakness—instability.
As is mentioned in Section 1, instability refers to the proneness to produce very different outputs as
the input undergoes small perturbations. Instability of Vanilla OGE-Aug stems from the fact that
it treats Laplacian eigenspaces of different dimensions separately. As an example, let λ be a
K-fold eigenvalue of Laplacian L, whose K corresponding eigenvectors should be encoded by an
O(K)-invariant universal representation fK ; after a small perturbation on L, the K-dimensional

1Õ(f(n)) means a complexity linear in f(n) if ignoring poly-logarithm factors, i.e., O(logk f(n)).

5
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eigenspace corresponding to λ might split into two smaller eigenspaces of dimensions k1 and k2
respectively (i.e., the degeneracy of λ is partially lifted), which should be alternatively encoded by
fk1 and fk2 . Since the functions fK and fk1 (or fk2 ) can be very different with K ̸= k1,K ̸= k2, the
output can vary a lot even if the changes in L (or changes in the K eigenvalues and eigenvectors) are
small.2 An important lesson from the above discussion is that a “hard split” of Laplacian eigenvectors
into separate eigenspaces can be susceptible to perturbations. Hence, model predictions should not
absolutely rely on such a “hard split” (especially, not relying on the dimension of each eigenspace)
for the sake of stability.

According to equation (5), in Vanilla OGE-Aug there are two occurrences of explicit dependencies
on eigenspace dimensions µj (j = 1, . . . ,K), namely (i) µj being concatenated as a number, and
(ii) a different fµj

being used for each value of µj . To maintain stability, such dependencies should
either be removed, or be replaced by functions not sensitive to the exact eigenspace splitting. Our
attempt towards this goal is as follows.
Definition 4.1 (OGE-Aug). Let G be a graph with n nodes. Let f be an O(n)-invariant universal
representation function. Define

V smooth
j = concat [V1ρ(|λ1 − λj |),V2ρ(|λ2 − λj |), . . . ,VKρ(|λK − λj |)] , (6)

where ρ : R⩾0 → [0, 1] is a continuous smoothing function with ρ(0) = 1 and limx→+∞ ρ(x) = 0,
and other notations follow Proposition 3.5. Further let ϕ : R2 → Rm and ψ : Rm → R be
parameterized functions that apply row-wise on n× 2 and n×m matrices, respectively. Then

Z(G) = ψ

 K∑
j=1

µjϕ
(
concat

[
λj1n, f(V

smooth
j )

]) (7)

is called an orthogonal group equivariant augmentation, or OGE-Aug on G.

There are some remarkable points regarding OGE-Aug. First, instead of using a different orthogonal
group invariant encoder for different eigenspace dimensions, a single O(n)-invariant encoder f is
used to encode eigenvectors coming from all eigenspaces. The dependency on eigenspace dimensions
µj (j = 1, . . . ,K) appears only in the form of a weighted sum, which is insensitive to the exact
splitting of Laplacian eigenspaces. Moreover, a continuous smoothing function ρ is used to keep
the eigenvectors aware of the eigenspace where they belong, as well as the eigenspaces nearby.
As ρ becomes more and more centered at 0 (namely, ρ(0) = 1 and ρ(x) → 0 for all x > 0), each
eigenspace gets encoded by its own portion of parameters from f that are not shared with each other;
contrarily, with ρ being flatter, more parameters are shared across eigenspaces. In other words, the
shape of ρ controls the “degree of smoothness” of OGE-Aug.

Next, we quantitatively characterize the stability of OGE-Aug. To this end, we first present our
definition of stability, following (though slightly different from) (Huang et al., 2024).
Definition 4.2 (Stability, following Definition 3.1 of (Huang et al., 2024)). A function f , operating
on the Laplacian L of a graph G and producing a node feature augmentation Z ∈ R|V(G)|×d, is said
to be stable, if there exist constants c1, C1, . . . , cm, Cm > 0, such that for any two Laplacians L,L′,

∥f(L)− P∗f(L
′)∥F ⩽ max

ℓ=1,...,m

{
Cℓ · ∥L− P∗L

′P T
∗ ∥

cℓ
F

}
, (8)

in which ∥·∥F stands for Frobenius norm, and P∗ = argminP∈Sn ∥L−PL′P T ∥F is the permutation
matrix matching L and L′ (assuming both L and L′ are of size n× n).

We are now ready to give our theoretical result on the stability of OGE-Aug. We assume that the
following conditions hold for functions ψ, ϕ, f and ρ.

1. ψ, ϕ and ρ are Lipschitz continuous, with Lipschitz constants Jψ, Jϕ and Jρ respectively.
Namely,

∥ψ(X)− ψ(X ′)∥F ⩽ Jψ∥X −X ′∥F, ∀X,X ′ ∈ Rn×m, (9)

∥ϕ(X)− ϕ(X ′)∥F ⩽ Jϕ∥X −X ′∥F, ∀X,X ′ ∈ Rn×2, (10)

|ρ(x)− ρ(x′)| ⩽ Jρ|x− x′|, ∀x, x′ ∈ R⩾0. (11)
2We remark that a similar problem pertains to BasisNet (Lim et al., 2022). See the discussion in Appendix C

of Huang et al. (2024).
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2. f satisfies the following condition: ∃Jf > 0,

∥f(X)− f(X ′)∥ ⩽ Jf min
Q∈O(n)

∥X −X ′Q∥F, ∀X,X ′ ∈ Rn×n. (12)

One may think of f as Jf -Lipschitz continuous after rotating its arguments along the same
direction.

3. There exists a constant δ > 0, such that ρ(x) = 0 for all x > δ.

Given the above assumptions, we have
Proposition 4.3 (Stability of OGE-Aug). With the assumptions on ψ, ϕ, f and ρ specified above,
OGE-Aug defined by (7) is stable. To be specific, given two graphs G,G′ ∈ G with Laplacians L and
L′ respectively, there exists a proper value of δ such that

∥Z(G)− P∗Z(G
′)∥F ⩽ nJψJϕ

[
(
√
n+ 2nJρJf )∥L− P∗L

′P T
∗ ∥2

+ 4
4
√
2Jf
√
Jρn∥L− P∗L

′P T
∗ ∥

1/2
F

]
, (13)

where ∥ ·∥2 is the spectral norm which is no larger than the Frobenius norm ∥ ·∥F, and n = |V(G)| =
|V(G′)|.

We give the proof in Appendix B. To ensure that the inequality (13) holds, in principle we need to
tune δ for different G and G′. However, in our experiments we simply take δ as a hyperparameter
designated before actual training.

Finally, we discuss practical implementations of OGE-Aug. While presenting the universality result
(Proposition 3.5), we have assumed that fp (p = 1, 2, . . .) can universally represent all O(p)-invariant
and permutation-equivariant functions on point sets embedded in Rp. This universality requirement
is inherited to OGE-Aug (Definition 4.1). Namely, we still require that f is an O(n)-invariant
universal representation. We now point out that such universality requirement, despite producing
maximally expressive networks in theory, can be impractical to implement. First, with f being
universal, the resulting network architecture has a typical complexity of n exp(Õ(n)) which is
generally unacceptable. Moreover, insisting on the universality of f can be harmful to the stability of
OGE-Aug, since a more expressive f might result in a larger Lipschitz constant Jf . Therefore, in our
actual implementation of OGE-Aug, we no longer require f to be universal. Instead, we adopt as f a
Cartesian tensor based point cloud network (Finkelshtein et al., 2022) with Cartesian tensors up to
the second order used. We include more experimental details, as well as a complexity analysis for
our implementation, in Appendix D.

5 RELATED WORKS

Graph representation learning with Laplacian eigenvectors. It is well-known that eigenvectors
of graph Laplacian corresponding to the smallest eigenvalues contain “positional” information of
nodes. A number of works have thus adopted Laplacian eigenvectors as a technique for node feature
augmentation. As we have mentioned in Section 1, there are two important issues regarding the
application of Laplacian eigenvectors in graph representation learning, namely orthogonal group
invariance (or sign-and-basis invariance) and stability. Some early works (Dwivedi & Bresson, 2020;
Kreuzer et al., 2021) have noticed the sign invariance problem and tried to alleviate it by randomly
flipping the signs of Laplacian eigenvectors, while completely ignored the basis invariance problem.
Lim et al. (2022) is the first work to formally state and systematically address the sign-and-basis
invariance issue. Nevertheless, it fails to meet the stronger requirement of stability. So far, only two
works (Wang et al., 2022; Huang et al., 2024) have seriously discussed the stability issue by giving
mathematical definitions for it, and proposing learning methods that are provably stable.

Orthogonal-group invariant networks. A neural network is said to be orthogonal-group invariant
if it takes as input one or more vector(s) (say, for instance, each of dimension p), and outputs an
O(p)-invariant scalar, i.e., a value that remains invariant as the input vector system undergoes an
O(p) transformation. As is pointed out by, e.g., Bronstein et al. (2021), orthogonal-group invariance
is a desirable property for learning tasks on molecular data or point clouds, in which Euclidean
coordinates play important roles.
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Orthogonal-group equivariance is a property closely related to invariance. A network is O(p)-
equivariant if it takes as input one (or a set of) arbitrary representation(s)3 ofO(p) (with p-dimensional
vectors being a special case), and outputs another (or another set of) representation(s) of O(p), in a
way that whenever the input system undergoes the action of an O(p) group element, the output also
undergoes an action corresponding to the same element. In practice, invariant networks are usually
constructed by stacking multiple equivariant layers, along with a final invariant layer. Regarding the
intermediate orthogonal group representations they use, existing works on the design of invariant
networks mainly take one of the four approaches: (i) utilizing scalar or vector representations (Deng
et al., 2021; Li et al., 2024; Satorras et al., 2021; Villar et al., 2021); (ii) utilizing hand-crafted
higher-order representations (Gasteiger et al., 2020; 2021; Schütt et al., 2021); (iii) utilizing higher-
order Cartesian tensor representations (Finkelshtein et al., 2022; Ruhe et al., 2024); (iv) utilizing
higher-order irreducible representations (Batzner et al., 2022; Bogatskiy et al., 2020; Cohen et al.,
2018; Fuchs et al., 2020; Thomas et al., 2018).

Similar to the question of expressive power of GNNs, there exists the question of whether an
orthogonal-group invariant network can express all possible geometric configurations (either of a
single vector or of a point cloud) up to an arbitrary orthogonal transformation. Invariant networks
possessing the above property are usually called universal. There have been a few works establishing
theoretically the universality of some of the aforementioned architectures. Villar et al. (2021) shows
that universality can be achieved merely using scalar and vector representations, as long as interaction
terms including sufficiently many vectors are allowed, and that the network output is restricted to be
scalars or vectors. Li et al. (2024) further shows by construction that an invariant network can be
already universal with 4-vector interaction terms, even if all intermediate representations are restricted
scalar. Regarding methods using higher-order representations, Dym & Maron (2020) proves the
universality of two specific architectures exploiting higher-order irreducible representations of SO(3)—
Tensor Field Networks (TFN) (Thomas et al., 2018) and SE(3)-Transformers (Fuchs et al., 2020).
Based on TFN, Finkelshtein et al. (2022) proposes another universal architecture utilizing Cartesian
tensor representations. The universality results reviewed above have laid theoretical foundations for
our proposed method.

We leave the discussion on more related works to Appendix C.

6 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the performance of our methods. We
adopt several popular real-world datasets, including: (1) QM9 (Ramakrishnan et al., 2014); (2)
ZINC12k (Dwivedi et al., 2020); (3) Alchemy (Chen et al., 2019); (4) PCQM-Contact (Dwivedi
et al., 2022); (5) CLUSTER (Dwivedi et al., 2023); (6) PATTERN (Dwivedi et al., 2023); (7) ogbg-
molhiv (Hu et al., 2021); (8) DrugOOD (Ji et al., 2022). Results on the first four datasets are given
below, while other experimental results are given in Appendix D. Dataset statistics are summarized in
Table 5. We also provide detailed experimental settings in Appendix D.

QM9. QM9 (Ramakrishnan et al., 2014) is a graph property regression dataset containing 130k small
molecules and 19 regression targets. We use a commonly adopted 0.8/0.1/0.1 training/validation/test
split ratio, and report the results of the first 12 targets. Several representative expressive GNNs
are selected as baselines, including MPNN, 1-2-3-GNN (Morris et al., 2019), DTNN (Wu et al.,
2017), DeepLRP (Chen et al., 2020), PPGN (Maron et al., 2019), NGNN (Zhang & Li, 2021),
KP-GIN+ (Feng et al., 2022), IDMPNN (Zhou et al., 2023b) and PST (Wang et al., 2024). The results
are shown in Table 1. From Table 1, we find that OGE-Aug achieves competitive performance on all
12 targets. We also notice that our method achieves a relatively low MAE on targets U0, U , H and G,
compared with subtree- or subgraph-based methods such as MPNN, NGNN or KP-GIN+, as well as
other Laplacian eigenvector augmented GNNs like PST. This fact indicates that our method has the
ability to capture global properties of graphs, since those targets are macroscopic thermodynamic
properties of molecules and heavily depend on long-range interactions (for example, intermolecular
forces like hydrogen bonds).

3In our context, a representation of O(p) means a vector lying in a linear space L, given that a group
homomorphism from O(p) to the general linear group GL(L) on L exists.
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Table 1: QM9 results (MAE ↓). Highlighted are first, second best results.

Target MPNN 1-2-3-GNN DTNN DeepLRP PPGN NGNN KP-GIN+ 4-IDMPNN PST OGE-Aug

µ 0.358 0.476 0.244 0.364 0.231 0.433 0.358 0.398 0.023 0.0822
α 0.89 0.27 0.95 0.298 0.382 0.265 0.233 0.226 0.078 0.159
ϵHOMO 0.00541 0.00337 0.00388 0.00254 0.00276 0.00279 0.00240 0.00263 0.00110 0.00140
ϵLUMO 0.00623 0.00351 0.00512 0.00277 0.00287 0.00276 0.00236 0.00286 0.00081 0.00144
∆ϵ 0.0066 0.0048 0.0112 0.00353 0.00406 0.00390 0.00333 0.00398 0.0016 0.00198
⟨R2⟩ 28.5 22.9 17.0 19.3 16.7 20.1 16.49 10.4 0.93 5.55
ZPVE 0.00216 0.00019 0.00172 0.00055 0.00064 0.00015 0.00017 0.00013 0.000095 0.000149
U0 2.05 0.0427 2.43 0.413 0.234 0.205 0.0682 0.0189 0.121 0.0526
U 2.00 0.111 2.43 0.413 0.234 0.200 0.0553 0.0152 0.120 0.0356
H 2.02 0.0419 2.43 0.413 0.229 0.249 0.0575 0.0160 0.118 0.0439
G 2.02 0.0469 2.43 0.413 0.238 0.253 0.0484 0.0159 0.119 0.0441
cv 0.42 0.0944 0.27 0.129 0.184 0.0811 0.0869 0.0890 0.0363 0.0681

ZINC. ZINC12k (Dwivedi et al., 2020) is a subset of the ZINC250k dataset containing 12k
molecules, and the task is molecular property (constrained solubility) regression evaluated by mean
absolute error (MAE). We follow the official split of the dataset. We include common baselines such
as GIN (Xu et al., 2018), PNA (Corso et al., 2020), DeepLRP (Chen et al., 2020), OSAN (Qian et al.,
2022), KP-GIN+ (Feng et al., 2022), GNN-AK+ (Zhao et al., 2021) and CIN (Bodnar et al., 2021).

We also include previous methods mak-
ing use of Laplacian eigenvectors to pro-
duce node feature augmentations (which
are usually named positional encodings
or PEs), such as PEG (Wang et al.,
2022), SignNet (Lim et al., 2022), Basis-
Net (Lim et al., 2022) and SPE (Huang
et al., 2024), as well as graph trans-
formers such as SAN (Kreuzer et al.,
2021), Graphormer (Ying et al., 2021a),
GraphGPS (Rampášek et al., 2022) and
Specformer (Bo et al., 2023). Among
the graph transformer baselines, SAN,
GraphGPS and Specformer also encode
spectral information through other ap-
proaches. Regarding our OGE-Aug, we
consider both GINE (Hu et al., 2019)
(which belongs to the MPNN family)
and the GPS as base models. As
shown in Table 2, OGE-Aug outper-
forms all baseline methods even com-
bined with the simple GINE backbone
without global attention.

Table 2: Zinc12K results (MAE ↓). Shown is the
mean ± std of 5 runs.

Method Test MAE

GIN 0.163± 0.004
PNA 0.188± 0.004
GSN 0.115± 0.012
OSAN 0.187± 0.004
KP-GIN+ 0.119± 0.002
GNN-AK+ 0.080± 0.001
CIN 0.079± 0.006

GIN, with PEG 0.144± 0.008
GIN, with SignNet 0.085± 0.003
GIN, with BasisNet 0.155± 0.007
GIN, with SPE 0.069± 0.004

SAN 0.139± 0.006
Graphormer 0.122± 0.006
GPS 0.070± 0.004
Specformer 0.066± 0.003

GINE, with OGE-Aug (ours) 0.066± 0.002
GPS, with OGE-Aug (ours) 0.064 ± 0.003

Alchemy. Alchemy (Chen et al., 2019)
is also a graph-level small molecu-
lar property regression dataset from
the TUDatasets. We adopt message-
passing GNN backbones, and consider
alternative expressive PEs including
PEG (Wang et al., 2022), SignNet (Lim
et al., 2022), BasisNet (Lim et al., 2022)
and SPE (Huang et al., 2024). As
shown in Table 3, our OGE-Aug sig-
nificantly outperforms all these base-
lines and achieves state-of-the-art per-
formance.

Table 3: Experiments on Alchemy. Shown is the
mean ± std of 5 runs with different random seeds.

Model PE Test MAE ↓
GIN None 0.112± 0.001
GIN PEG (8) 0.114± 0.001
GIN SignNet (All) 0.113± 0.002
GIN BasisNet (All) 0.110± 0.001
GIN SPE (All) 0.108± 0.001

GINE OGE-Aug (ours) 0.087 ± 0.001
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Table 4: Experiments on PCQM-Contact dataset from the long-range graph benchmarks (LRGB).
Highlighted are the first, second, third best results.

model PE PCQM-Contact (MRR ↑)
GCN None 0.3234± 0.0006
GINE None 0.3180± 0.0027
GatedGCN None 0.3218± 0.0011
Transformer LapPE 0.3174± 0.0020
SAN LapPE 0.3350± 0.0003
SAN RWSE 0.3341± 0.0006
GPS LapPE 0.3337± 0.0006
GPS EdgeRWSE 0.3408 ± 0.0003
GPS Hodge1Lap 0.3407± 0.0004
Exphormer None 0.3637±0.0020
GPS OGE-Aug (ours) 0.3543 ± 0.0004

PCQM-Contact. As part of the long-range graph benchmarks (LRGB) (Dwivedi et al., 2022),
PCQM-Contact is a dataset derived from the PCQM4Mv2 dataset along with the corresponding
3D molecular structures. The task is a binary link ranking measured by the Mean Reciprocal Rank
(MRR), which requires the capability of capturing long range interactions. MPNN baselines include
GCN (Kipf & Welling, 2016), GINE (Hu et al., 2019), and GatedGCN (Bresson & Laurent, 2017),
while graph transformer baselines include Transformer, SAN, Exphormer (Shirzad et al., 2023) and
GPS combined with positional encodings (PEs) like LapPE (Kreuzer et al., 2021), RWSE (Dwivedi
et al., 2021), EdgeRWSE (Zhou et al., 2023a) and Hodge1Lap (Zhou et al., 2023a). We combine
GPS with our OGE-Aug and achieve the second best performance across all baselines, which verifies
the benefit of bringing in long-range information via OGE-Aug.

7 CONCLUSION

In this paper, we propose to apply orthogonal group invariant neural networks on Laplacian
eigenspaces of graphs, so as to produce node feature augmentations that may possess great ex-
pressive power. We present Vanilla OGE-Aug and OGE-Aug as two instances of our proposed
framework, of which the former illustrates the potential of our method to achieve universal represen-
tation of graphs, while the latter is provably stable and practically useful. Extensive experiments have
verified the outstanding performance of OGE-Aug on various benchmarks as well as its capability to
learn global properties of graphs. We remark that our approach to incorporating stability into graph
learning methods based on Laplacian eigenvectors, i.e., by ensuring smoothness while processing
different Laplacian eigenspaces, is a general technique, and can be applied to other machine learning
domains where eigenvalues and eigenvectors are of significant interest.
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A PROOFS OF PROPOSITIONS IN SECTION 3

A.1 PROOF OF PROPOSITION 3.2

Proof. We denote n = |V(G)|. Let LG and LH be the Laplacians of G and H , respectively. We first
show that statement (i) is equivalent to the following: ∃P ∈ Sn,LG = PLHP T . By definition of
permutation matrices, for any P ∈ Sn there exists a bijective function p : {1, . . . , n} → {1, . . . , n}
such that Pij = 1p(i)=j . Therefore, we have LG = PLHP T ⇔ LGij = LHp(i)p(j). Since the
off-diagonal part of LG (or LH ) is −AG (or −AH ), LGij = LHp(i)p(j) implies AGij = AHp(i)p(j).
Thus AG = PAHP T follows from LG = PLHP T . To see the other direction, notice that given
AG = PAHP T or AGij = AHp(i)p(j), we have

(PDHP T )ij = DHp(i)p(i)1i=j =

n∑
k=1

AHp(i)p(k)1i=j =

n∑
k=1

AGik1i=j = DGij , (14)

or simply DG = PDHP T . Thus LG = PLHP T .

Next, we prove that statement (ii) is equivalent to ∃P ∈ Sn,LG = PLHP T . Assuming that
statement (ii) is true, one may make use of the identities

LG =

K∑
j=1

λjVjV
T
j , LH =

K∑
j=1

λjV
′
j V

′T
j , (15)

to observe that LG = PLHP T . To see the other direction, notice that LG = PLHP T implies that
LG and LH are similar, and thus Spec G = Spec H as similar matrices share the set of eigenvalues
combined with their corresponding multiplicities. Moreover, if the columns of V ′

j constitute the set
of mutually orthogonal normalized eigenvectors of LH corresponding to eigenvalue λj , then the
columns of PV ′

j contain mutually orthogonal normalized eigenvectors of LG corresponding to the
same eigenvalue, for j = 1, . . . ,K. Therefore, each column of Vj must be a linear combination of
columns of PV ′

j , namely

Vj = PV ′
jQj , (16)

for some Qj ∈ Rµj×µj . Further imposing the constraint that V T
j Vj = Iµj×µj

yields QT
j Qj =

Iµj×µj , or Qj ∈ O(µj). Thus the proof is made.

A.2 PROOF OF PROPOSITION 3.5

Proof. By Definition 3.1, we only need to prove that r(G,XG) = r(H,XH) if and only if ∃P ∈ Sn
such that AG = PAHP T and XG = PXH , for any two graphs G,H with accompanying node
features XG,XH . By Proposition 3.2, the latter condition is equivalent to the conjunction of the
following:

1. Spec G = Spec H .

2. ∃P ∈ Sn and Qj ∈ O(µj) (j = 1, . . . ,K), such that XG = PXH , and Vj = PV ′
jQj ,

for j = 1, . . . ,K.

Our notations follow those in Proposition 3.2. Now, given that the above two conditions are true,
we immediately get fµj

(Vj) = P fµj
(V ′

j ) due to the fact that fµj
is an O(µj)-invariant universal

representation. Thus, we have

concat
[
µj1n, λj1n, fµj

(Vj)
]
= P concat

[
µj1n, λj1n, fµj

(V ′
j )
]
. (17)

Similarly, since g operates on individual rows of set elements, the permutation matrix P passes
through the operation of g. Therefore,

g
({

concat
[
µj1n, λj1n, fµj

(Vj)
]}K
j=1

)
= P g

({
concat

[
µj1n, λj1n, fµj

(V ′
j )
]}K
j=1

)
. (18)
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If we let

X ′
G = concat

[
XG, g

({
concat

[
µj1n, λj1n, fµj (Vj)

]}K
j=1

)]
, (19)

X ′
H = concat

[
XH , g

({
concat

[
µj1n, λj1n, fµj (V

′
j )
]}K
j=1

)]
, (20)

then X ′
G = PX ′

H . Since message passing GNNs are invariant with respect to node permutations,
we know that

r(G,XG) = GNN(AG,X
′
G) = GNN(PAHP T ,PX ′

H) = GNN(AH ,X
′
H) = r(H,XH),

(21)

thus proving one direction of the proposition.

For the other direction, notice that a maximally expressive message passing GNN is as powerful as
the 1-WL test (Xu et al., 2018), and strictly stronger than a universal set encoder (regarding the set
of node features).4 Therefore, by construction (4), r(G,XG) = r(H,XH) implies that ∃P ∈ Sn,
X ′
G = PX ′

H , where X ′
G is defined in equation (19) but X ′

H should be alternatively defined as

X ′
H = concat

[
XH , g

({
concat

[
µ′
j1n, λ

′
j1n, fµ′

j
(V ′

j )
]}K′

j=1

)]
, (22)

since we have not yet proved that G and H share spectra. The above fact further translates into
XG = PXH and

g
({

concat
[
µj1n, λj1n, fµj

(Vj)
]}K
j=1

)
= P g

({
concat

[
µ′
j1n, λ

′
j1n, fµ′

j
(V ′

j )
]}K′

j=1

)
. (23)

Since g is a universal set representation, the sets on both sides are equal up to an element-wise
application of P . As a consequence,

{(µj , λj)}Kj=1 = {(µ′
j , λ

′
j)}K

′

j=1, (24)

or Spec G = Spec H . Now that G and H share spectra, we may assume that the eigenvalues
{λj}Kj=1 are in an order such that 0 = λ1 < λ2 < · · · < λK . We then arrive at equation (17),
and subsequently fµj

(Vj) = P fµj
(V ′

j ), for each j = 1, . . . ,K. Due to fµj
being an O(µj)-

invariant universal representation, we end up finding that ∃Qj ∈ O(µj) (j = 1, . . . ,K), such that
Vj = PV ′

jQj . So far we have proved the other direction of the proposition.

B PROOF OF PROPOSITION 4.3

Before proving Proposition 4.3, we present some useful lemmas. We quote these lemmas directly
from (Huang et al., 2024).
Lemma B.1 (Davis-Kahan theorem, Proposition A.1 of (Huang et al., 2024), see also (Yu et al.,
2015)). Let A,A′ be n × n real symmetric matrices. Let λ1 ⩽ · · · ⩽ λn be eigenvalues of A
sorted in increasing order (possibly with repeats). Let the columns of V ,V ′ ∈ O(n) contain
mutually orthogonal normalized eigenvectors of A,A′ respectively, sorted in increasing order of
their corresponding eigenvalues. Let J = {s, s+ 1, . . . , t} ⊆ {1, . . . , n} be a contiguous interval
of indices, and [V ]J , [V

′]J be matrices of shape n× |J | whose columns are the s-th, (s+ 1)-th,
. . ., t-th column of V and V ′, respectively. Then

min
Q∈O(|J |)

∥[V ]J − [V ′]JQ∥F ⩽

√
8min

{√
|J |∥A−A′∥2, ∥A−A′∥F

}
min{λs − λs−1, λt+1 − λt}

. (25)

For convenience, we define λ0 = −∞ and λn+1 = +∞.
Lemma B.2 (Weyl’s inequality, Proposition A.2 of (Huang et al., 2024)). Given a real symmetric
matrix A, let λi(A) be its i-th smallest eigenvalue. For any two real symmetric matrices A,A′ of
shape n× n, |λi(A)− λi(A′)| ⩽ ∥A−A′∥2 holds for all i = 1, . . . , n.

4Indeed, a message passing GNN with a maximally expressive pooling layer and no message passing layers
is equivalent to a deep set, the latter having proved to be a universal set encoder by Zaheer et al. (2017).
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Lemma B.3 (Lemma A.1 of (Huang et al., 2024)). Assume A1A2 · · ·Ap is a valid matrix multipli-
cation. Then ∥∥∥∥∥

p∏
k=1

Ak

∥∥∥∥∥
F

⩽

(
ℓ−1∏
k=1

∥Ak∥2

)
∥Aℓ∥F

(
p∏

k=ℓ+1

∥AT
k ∥2

)
. (26)

Now we can present the proof of Proposition 4.3.

Proof. We will prove the uniform result that for any two graphs G,G′ ∈ G with Laplacians L,L′

respectively, and for any P ∈ Sn, there exists a value of δ such that

∥Z(G)− PZ(G′)∥F ⩽ nJψJϕ
[
(
√
n+ 2nJρJf )∥L− PL′P T ∥2

+ 4
4
√
2Jf
√
Jρn∥L− PL′P T ∥1/2F

]
. (27)

We may first rewrite equation (7) as

Z(G) = ψ

(
n∑
i=1

ϕ
(
concat

[
λ̃i1n, f(Ṽ

smooth
i )

]))
, (28)

in which λ̃i is the i-th smallest eigenvalue of L (including repeats when counting orders), and

Ṽ smooth
i = concat

[
v1ρ(|λ̃1 − λ̃i|),v2ρ(|λ̃2 − λ̃i|), . . . ,vnρ(|λ̃n − λ̃i|)

]
, (29)

where column vectors v1,v2, . . . ,vn ∈ Rn×1 are mutually orthogonal normalized eigenvectors
corresponding to eigenvalues λ̃1, λ̃2, . . . , λ̃n respectively. With equation (28), we have completely
removed the dependency on eigenspace dimensions in Z(G). We then have

∥Z(G)− PZ(G′)∥F =

∥∥∥∥∥ψ
(

n∑
i=1

ϕ
(
concat

[
λ̃i1n, f(Ṽ

smooth
i )

]))

− Pψ

(
n∑
i=1

ϕ
(
concat

[
λ̃′i1n, f(Ṽ

′smooth
i )

]))∥∥∥∥∥
F

(30)

=

∥∥∥∥∥ψ
(

n∑
i=1

ϕ
(
concat

[
λ̃i1n, f(Ṽ

smooth
i )

]))

− ψ

(
n∑
i=1

ϕ
(
concat

[
λ̃′i1n, f(P Ṽ ′smooth

i )
]))∥∥∥∥∥

F

(31)

⩽ Jψ

∥∥∥∥∥
n∑
i=1

ϕ
(
concat

[
λ̃i1n, f(Ṽ

smooth
i )

])
−

n∑
i=1

ϕ
(
concat

[
λ̃′i1n, f(P Ṽ ′smooth

i )
])∥∥∥∥∥

F

(32)

⩽ Jψ

n∑
i=1

∥∥∥ϕ(concat [λ̃i1n, f(Ṽ smooth
i )

])
− ϕ

(
concat

[
λ̃′i1n, f(P Ṽ ′smooth

i )
])∥∥∥

F
(33)

⩽ JψJϕ

n∑
i=1

∥∥∥concat [(λ̃i − λ̃′i)1n, f(Ṽ smooth
i )− f(P Ṽ ′smooth

i )
]∥∥∥

F
(34)

⩽ JψJϕ

n∑
i=1

[√
n
∣∣∣λ̃i − λ̃′i∣∣∣+ ∥f(Ṽ smooth

i )− f(P Ṽ ′smooth
i )∥

]
. (35)

The equality on (31) is due to the fact that ψ and ϕ operate row-wise on the n rows of their arguments,
and that f is permutation equivariant. (32) and (34) stem from the Lipschitz continuities of ψ and ϕ,
respectively. (33) is due to triangular inequality. Now it suffices to bound the two terms in (35).
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For the first term, we invoke Lemma B.2 to get

n∑
i=1

∣∣∣λ̃i − λ̃′i∣∣∣ ⩽ n∑
i=1

∥L− PL′P T ∥2 = n∥L− PL′P T ∥2, ∀P ∈ Sn. (36)

This is because for any P ∈ Sn, PL′P T has the same sequence of eigenvalues as L′, namely
λ̃′1, λ̃

′
2, . . . , λ̃

′
n.

For the second term, we have

∥f(Ṽ smooth
i )− f(P Ṽ ′smooth

i )∥ ⩽ Jf min
Qi∈O(n)

∥Ṽ smooth
i − P Ṽ ′smooth

i Qi∥F (37)

= Jf min
Qi∈O(n)

∥∥∥concat [v1ρ(|λ̃1 − λ̃i|), . . . ,vnρ(|λ̃n − λ̃i|)
]

− concat
[
Pv′

1ρ(|λ̃′1 − λ̃′i|), . . . ,Pv′
nρ(|λ̃′n − λ̃′i|)

]
Qi

∥∥∥
F

(38)

⩽ Jf min
Qi∈O(n)

{∥∥∥concat [v1ρ(|λ̃1 − λ̃i|), . . . ,vnρ(|λ̃n − λ̃i|)
]

− concat
[
v1ρ(|λ̃′1 − λ̃′i|), . . . ,vnρ(|λ̃′n − λ̃′i|)

]∥∥∥
F

+
∥∥∥concat [v1ρ(|λ̃′1 − λ̃′i|), . . . ,vnρ(|λ̃′n − λ̃′i|)

]
− concat

[
Pv′

1ρ(|λ̃′1 − λ̃′i|), . . . ,Pv′
nρ(|λ̃′n − λ̃′i|)

]
Qi

∥∥∥
F

}
(39)

= Jf

√√√√ n∑
j=1

[
ρ(|λ̃j − λ̃i|)− ρ(|λ̃′j − λ̃′i|)

]2
+ Jf min

Qi∈O(n)

∥∥∥concat [v1ρ(|λ̃′1 − λ̃′i|), . . . ,vnρ(|λ̃′n − λ̃′i|)
]

− concat
[
Pv′

1ρ(|λ̃′1 − λ̃′i|), . . . ,Pv′
nρ(|λ̃′n − λ̃′i|)

]
Qi

∥∥∥
F
.

(40)

Here, (37) is due to our assumption on f , (38) follows from definitions of Ṽ smooth
i and Ṽ ′smooth

i , while
(39) stems from triangular inequality. Now, for the first term of (40), we have√√√√ n∑

j=1

[
ρ(|λ̃j − λ̃i|)− ρ(|λ̃′j − λ̃′i|)

]2
⩽

n∑
j=1

∣∣∣ρ(|λ̃j − λ̃i|)− ρ(|λ̃′j − λ̃′i|)∣∣∣ (41)

⩽ Jρ

n∑
j=1

∣∣∣|λ̃j − λ̃i| − |λ̃′j − λ̃′i|∣∣∣ (42)

⩽ Jρ

n∑
j=1

(
|λ̃i − λ̃′i|+ |λ̃j − λ̃′j |

)
(43)

⩽ 2nJρ∥L− PL′P T ∥2, ∀P ∈ Sn, (44)

where (42) is by Lipschitz continuity of ρ, (43) makes use of the fact that either λ̃i ⩾ λ̃j and λ̃′i ⩾ λ̃′j ,
or λ̃i ⩽ λ̃j and λ̃′i ⩽ λ̃′j . The final step (44) stems from Lemma B.2.

To bound the second term of (40), we first split the eigenvalues λ̃′1, λ̃
′
2, . . . , λ̃

′
n into groups, namely

J1 = {λ̃′J0+1, . . . , λ̃
′
J1
}, J2 = {λ̃′J1+1, . . . , λ̃

′
J2
}, . . ., JL = {λ̃′JL−1+1, . . . , λ̃

′
JL
}, with J0 = 0 and

JL = n. We ask that λ̃′k+1 − λ̃′k > δ for all k = J0, J1, . . . , JL, and λ̃′k+1 − λ̃′k ⩽ δ for all other k.
We also denote by J (λ̃′i) the group where λ̃′i belong.
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The consequence of such splitting is that for any eigenvalue λ̃′i of L′, all λ̃′j satisfying ρ(|λ̃′j−λ̃′i|) ̸= 0

belong to J (λ̃′i). Therefore, we actually have

min
Qi∈O(n)

∥∥∥∥concat [vjρ(|λ̃′j − λ̃′i|)]n
j=1
− concat

[
Pv′

jρ(|λ̃′j − λ̃′i|)
]n
j=1

Qi

∥∥∥∥
F

= min
Qi∈O(|J (λ̃′

i)|)

∥∥∥∥concat [vjρ(|λ̃′j − λ̃′i|)]
λ̃′
j∈J (λ̃′

i)
− concat

[
Pv′

jρ(|λ̃′j − λ̃′i|)
]
λ̃′
j∈J (λ̃′

i)
Qi

∥∥∥∥
F

.

(45)

Now, for any Qi ∈ O(|J (λ̃′i)|), we have∥∥∥∥concat [vjρ(|λ̃′j − λ̃′i|)]
λ̃′
j∈J (λ̃′

i)
− concat

[
Pv′

jρ(|λ̃′j − λ̃′i|)
]
λ̃′
j∈J (λ̃′

i)
Qi

∥∥∥∥
F

=

∥∥∥∥∥∥∥∥concat
vjρ(|λ̃′j − λ̃′i|)− ∑

k:λ̃′
k∈J (λ̃′

i)

Pv′
kρ(|λ̃′k − λ̃′i|)(Qi)kj


λ̃′
j∈J (λ̃′

i)

∥∥∥∥∥∥∥∥
F

(46)

⩽

∥∥∥∥∥∥∥∥concat
 ∑
k:λ̃′

k∈J (λ̃′
i)

Pv′
k

[
ρ(|λ̃′j − λ̃′i|)− ρ(|λ̃′k − λ̃′i|)

]
(Qi)kj


λ̃′
j∈J (λ̃′

i)

∥∥∥∥∥∥∥∥
F

+

∥∥∥∥∥∥∥∥concat
ρ(|λ̃′j − λ̃′i|)

vj −
∑

k:λ̃′
k∈J (λ̃′

i)

Pv′
k(Qi)kj


λ̃′
j∈J (λ̃′

i)

∥∥∥∥∥∥∥∥
F

(47)

⩽
∑

j:λ̃′
j∈J (λ̃′

i)

∥∥∥∥∥∥
∑

k:λ̃′
k∈J (λ̃′

i)

Pv′
k

[
ρ(|λ̃′j − λ̃′i|)− ρ(|λ̃′k − λ̃′i|)

]
(Qi)kj

∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥concat
ρ(|λ̃′j − λ̃′i|)

vj −
∑

k:λ̃′
k∈J (λ̃′

i)

Pv′
k(Qi)kj


λ̃′
j∈J (λ̃′

i)

∥∥∥∥∥∥∥∥
F

. (48)

Now we analyze the two terms in (48). For the first term,∥∥∥∥∥∥
∑

k:λ̃′
k∈J (λ̃′

i)

Pv′
k

[
ρ(|λ̃′j − λ̃′i|)− ρ(|λ̃′k − λ̃′i|)

]
(Qi)kj

∥∥∥∥∥∥
=

∥∥∥∥concat{Pv′
k

[
ρ(|λ̃′j − λ̃′i|)− ρ(|λ̃′k − λ̃′i|)

]}
λ̃′
k∈J (λ̃′

i)
(Qi)·j

∥∥∥∥
F

(49)

⩽

∥∥∥∥concat{Pv′
k

[
ρ(|λ̃′j − λ̃′i|)− ρ(|λ̃′k − λ̃′i|)

]}
λ̃′
k∈J (λ̃′

i)

∥∥∥∥
F
∥(Qi)·j∥2 (50)

=

∥∥∥∥concat{Pv′
k

[
ρ(|λ̃′j − λ̃′i|)− ρ(|λ̃′k − λ̃′i|)

]}
λ̃′
k∈J (λ̃′

i)

∥∥∥∥
F

(51)

⩽
∑

k:λ̃′
k∈J (λ̃′

i)

∥Pv′
k∥
∣∣∣ρ(|λ̃′j − λ̃′i|)− ρ(|λ̃′k − λ̃′i|)∣∣∣ (52)

=
∑

k:λ̃′
k∈J (λ̃′

i)

∣∣∣ρ(|λ̃′j − λ̃′i|)− ρ(|λ̃′k − λ̃′i|)∣∣∣ . (53)

Here, (49) translates the first term of (48) into the form of matrix multiplication. Then (50) makes use
of Lemma B.3, and (51) further uses the fact that Qi is orthogonal. Finally, (53) stems from the fact
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that v′
k is a normalized eigenvector. Regarding (53), we may discuss two cases. If both |λ̃′j − λ̃′i| ⩽ δ

and |λ̃′k − λ̃′i| ⩽ δ, then ∑
k:λ̃′

k∈J (λ̃′
i)

∣∣∣ρ(|λ̃′j − λ̃′i|)− ρ(|λ̃′k − λ̃′i|)∣∣∣
⩽ Jρ

∑
k:λ̃′

k∈J (λ̃′
i)

∣∣∣|λ̃′j − λ̃′i| − |λ̃′k − λ̃′i|∣∣∣ (54)

⩽ 2δJρ|J (λ̃′i)|. (55)

If at least one of |λ̃′j − λ̃′i| and |λ̃′k − λ̃′i| exceeds δ, we may assume without loss of generality that
|λ̃′j − λ̃′i| > δ. Then ρ(|λ̃′j − λ̃′i|) = ρ(δ) = 0 by continuity of ρ, and we still have∑

k:λ̃′
k∈J (λ̃′

i)

∣∣∣ρ(|λ̃′j − λ̃′i|)− ρ(|λ̃′k − λ̃′i|)∣∣∣
=

∑
k:λ̃′

k∈J (λ̃′
i)

∣∣∣ρ(δ)− ρ(|λ̃′k − λ̃′i|)∣∣∣ (56)

⩽ Jρ
∑

k:λ̃′
k∈J (λ̃′

i)

∣∣∣δ − |λ̃′k − λ̃′i|∣∣∣ (57)

⩽ 2δJρ|J (λ̃′i)|. (58)

Therefore, we conclude that∥∥∥∥∥∥
∑

k:λ̃′
k∈J (λ̃′

i)

Pv′
k

[
ρ(|λ̃′j − λ̃′i|)− ρ(|λ̃′k − λ̃′i|)

]
(Qi)kj

∥∥∥∥∥∥ ⩽ 2δJρ|J (λ̃′i)|, (59)

or ∑
j:λ̃′

j∈J (λ̃′
i)

∥∥∥∥∥∥
∑

k:λ̃′
k∈J (λ̃′

i)

Pv′
k

[
ρ(|λ̃′j − λ̃′i|)− ρ(|λ̃′k − λ̃′i|)

]
(Qi)kj

∥∥∥∥∥∥ ⩽ 2δJρ|J (λ̃′i)|2. (60)

For the second term of (48), we have∥∥∥∥∥∥∥∥concat
ρ(|λ̃′j − λ̃′i|)

vj −
∑

k:λ̃′
k∈J (λ̃′

i)

Pv′
k(Qi)kj


λ̃′
j∈J (λ̃′

i)

∥∥∥∥∥∥∥∥
F

⩽

∥∥∥∥∥∥∥∥concat
vj − ∑

k:λ̃′
k∈J (λ̃′

i)

Pv′
k(Qi)kj


λ̃′
j∈J (λ̃′

i)

∥∥∥∥∥∥∥∥
F

(61)

=

∥∥∥∥concat [vj ]λ̃′
j∈J (λ̃′

i)
− concat

[
Pv′

j

]
λ̃′
j∈J (λ̃′

i)
Qi

∥∥∥∥
F
. (62)

Here, (61) uses the fact that ρ(|λ̃′j − λ̃′i|) ∈ [0, 1], and (62) rewrites (61) into matrix multiplication.
We further transform (62) into∥∥∥∥concat [vj ]λ̃′

j∈J (λ̃′
i)
− concat

[
Pv′

j

]
λ̃′
j∈J (λ̃′

i)
Qi

∥∥∥∥
F

⩽

∥∥∥∥concat [vj ]λ̃′
j∈J (λ̃′

i)
QT
i − concat

[
Pv′

j

]
λ̃′
j∈J (λ̃′

i)

∥∥∥∥
F
∥QT

i ∥2 (63)

=

∥∥∥∥concat [Pv′
j

]
λ̃′
j∈J (λ̃′

i)
− concat [vj ]λ̃′

j∈J (λ̃′
i)
QT
i

∥∥∥∥
F
, (64)
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in which (63) makes use of Lemma B.3, and (64) uses the fact that the spectral norm of an orthogonal
matrix is always 1. Now, we may apply Lemma B.1 on (64) to find that there exists Qi ∈ O(|J (λ̃′i)|),
such that ∥∥∥∥concat [Pv′

j

]
λ̃′
j∈J (λ̃′

i)
− concat [vj ]λ̃′

j∈J (λ̃′
i)
QT
i

∥∥∥∥
F

⩽

√
8

δ
min

{√
|J (λ̃′i)| · ∥PL′P T −L∥2, ∥PL′P T −L∥F

}
. (65)

To arrive at (65), we exploit the fact that at boundaries of J (λ̃′i) (assumed to be λ̃′Jℓ−1+1 and λ̃′Jℓ),
we always have λ̃′Jℓ−1+1 − λ̃′Jℓ−1

> δ and λ̃′Jℓ+1 − λ̃′Jℓ > δ. Thus, we end up finding that∥∥∥∥∥∥∥∥concat
ρ(|λ̃′j − λ̃′i|)

vj −
∑

k:λ̃′
k∈J (λ̃′

i)

Pv′
k(Qi)kj


λ̃′
j∈J (λ̃′

i)

∥∥∥∥∥∥∥∥
F

⩽

√
8

δ
min

{√
|J (λ̃′i)| · ∥L− PL′P T ∥2, ∥L− PL′P T ∥F

}
. (66)

Plugging equations (60) and (66) into (48), we find that ∃Qi ∈ O(|J (λ̃′i)|), such that∥∥∥∥concat [vjρ(|λ̃′j − λ̃′i|)]
λ̃′
j∈J (λ̃′

i)
− concat

[
Pv′

jρ(|λ̃′j − λ̃′i|)
]
λ̃′
j∈J (λ̃′

i)
Qi

∥∥∥∥
F

⩽ 2δJρ|J (λ̃′i)|2 +
√
8

δ
min

{√
|J (λ̃′i)| · ∥L− PL′P T ∥2, ∥L− PL′P T ∥F

}
(67)

⩽ 2n2δJρ +

√
8

δ
∥L− PL′P T ∥F. (68)

Therefore,

min
Qi∈O(n)

∥∥∥∥concat [vjρ(|λ̃′j − λ̃′i|)]nj=1
− concat

[
Pv′

jρ(|λ̃′j − λ̃′i|)
]n
j=1

Qi

∥∥∥∥
F

⩽ 2n2δJρ +

√
8

δ
∥L− PL′P T ∥F. (69)

Plugging (44) and (69) into (40), we get

∥f(Ṽ smooth
i )− f(P Ṽ ′smooth

i )∥ ⩽ Jf

(
2nJρ∥L− PL′P T ∥2 + 2n2δJρ +

√
8

δ
∥L− PL′P T ∥F

)
.

(70)

Combining everything together, we eventually arrive at

∥Z(G)− PZ(G′)∥F ⩽ nJψJϕ

[
(
√
n+ 2nJρJf )∥L− PL′P T ∥2

+ Jf

(
2n2δJρ +

√
8

δ
∥L− PL′P T ∥F

)]
. (71)

By choosing a δ value that minimizes the RHS of equation (71), we get

∥Z(G)− PZ(G′)∥F ⩽ nJψJϕ
[
(
√
n+ 2nJρJf )∥L− PL′P T ∥2

+ 4
4
√
2Jf
√
Jρn∥L− PL′P T ∥1/2F

]
, (72)

which is our desired final result.
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C OTHER RELATED WORKS

Expressive GNNs. As is shown by Xu et al. (2018), the expressive power of MPNNs is upper-
bounded by that of 1-dimensional Weisfeiler-Leman test (1-WL). This implies that MPNNs can fail
to discriminate many non-isomorphic graph pairs, potentially leading to their weakness in capturing
important structural information or multi-node interactions. A great number of works have attempted
to improve the expressive power of GNNs, in the sense that to make them better either at solving
the graph isomorphism problem (GI), or at approximating certain graph functions. Those existing
works can be roughly categorized into three families: (1) methods utilizing additional combinatorial
features (Barceló et al., 2021; Bouritsas et al., 2022; Li et al., 2020); (2) methods applying message
passing among higher-order tuples of nodes, or higher-order GNNs (Bodnar et al., 2021; Feng et al.,
2023; Maron et al., 2018; 2019; Morris et al., 2019; 2020; Zhang et al., 2023; Zhou et al., 2023b;c);
(3) methods decomposing input graphs into bags of subgraphs, or subgraph GNNs (Bevilacqua et al.,
2024; Cotta et al., 2021; Frasca et al., 2022; Huang et al., 2023; Kong et al., 2023; Qian et al., 2022;
You et al., 2021; Zhang & Li, 2021; Zhou et al., 2023b). While methods belonging to class (1) enjoy
the lowest complexities, they often generalize worse due to their use of hand-crafted features. On
the contrary, higher-order GNNs and subgraph GNNs bring more systematic gains to the expressive
power, but their computational complexities are much higher than MPNNs. Hence, a trade-off
between expressive power and efficiency is an important issue for the design of expressive GNNs.

Graph transformers. Graph transformers (Chen et al., 2022; Dwivedi et al., 2021; Rampášek et al.,
2022; Wang et al., 2024; Ying et al., 2021b) treat each node within a graph as a separate token, and
use a standard transformer architecture to update node features (or embeddings of tokens). With
attention mechanism, graph transformers take into account the interactions between all pairs of nodes
(instead of only connected node pairs, as in traditional MPNNs), and are naturally good at capturing
long-range interactions (Dwivedi et al., 2022). One of the central issues regarding graph transformers
is the design of structural and positional encodings of nodes, in order to make transformers aware of
adjacency information. Kim et al. (2022); Zhou et al. (2024) analyze the theoretical expressive power
of graph transformers and their high-order versions as well as the effects of positional encodings.

D EXPERIMENTAL DETAILS

D.1 DATASET DESCRIPTIONS

The statistics of used datasets in the paper (except for DrugOOD) are summarized in Table 5.

Table 5: Overview of the datasets used in the paper.

Dataset #Graphs Avg. # Avg. # Prediction Prediction Metricnodes edges level task

QM9 130,000 18.0 37.3 graph regression Mean Abs. Error
ZINC 12,000 23.2 24.9 graph regression Mean Abs. Error

Alchemy 202,579 10.0 10.4 graph regression Mean Abs. Error
PCQM-Contact 529,434 30.1 61.0 inductive link link ranking MRR

CLUSTER 12,000 117.20 4,301.72 node classification Accuracy
PATTERN 14,000 117.47 4,749.15 node classification Accuracy

ogbg-molhiv 41,127 25.5 27.5 graph classification AUROC

D.2 IMPLEMENTATION DETAILS

D.2.1 ARCHITECTURE DESIGN

To implement OGE-Aug practically, the central issue is to choose a proper orthogonal-group invariant
encoder f in equation (7). In our experiments, we uniformly adopt a point cloud network architecture
similar to the one proposed in (Finkelshtein et al., 2022). We provide the detailed implementation in
Algorithm 1. Here, LinearQ,bshape1→shape2

or LinearQshape1→shape2
means a linear transformation operating

on the last dimension of shape1 and transforming it into shape2, either with or without bias b. In

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Algorithm 1: Practical implementation of OGE-Aug.

Data: Node features X ∈ Rn×d, the matrix of Laplacian eigenvectors V = (v1, . . . ,vn) ∈
Rn×n, and Ṽ smooth

1 , . . . , Ṽ smooth
n ∈ Rn×n as defined in equation (29).

Result: Node feature augmentations Z ∈ Rn×h.
(a) Preparation. Given weight matrices Qinit

0 ∈ Rd×h, binit0 ∈ Rh,Qinit
1 ,Qinit

2 ∈ R1×h,

W(0) ← Linear
Qinit

0 ,binit
0

(·,d)→(·,h)(X) ; # W(0) ∈ Rn×h

W(1) ← Linear
Qinit

1

(·,·,1)→(·,·,h)(V .unsqueeze(−1)) ; # W(1) ∈ Rn×n×h

W
(2)
a,j,k,: ← Linear

Qinit
2

1→h

[
(Ṽ smooth

j )ak(Ṽ
smooth
k )aj

]
; # W(2) ∈ Rn×n×n×h

(b) Updates. Alternately apply the following two types of layers for N times.
(i) Tensor product layer. Given input W(0),W(1),W(2), weight matrices Qprod

0 ,Qprod
1 ,

Qprod
2 ,Rprod

0 ,Rprod
1 ,Rprod

2 ∈ Rh×h, bprod0 ∈ Rh and c ∈ R3×3,
1⃝W

(1)
norm ← Normalize(W(1), dim = 1);

2⃝W
(2)
norm ← Normalize(W(2), dim = (1, 2));

3⃝ W̃(0),W̃(1),W̃(2) ← σ
(
Linear

Qprod
0 ,bprod

0

(·,h)→(·,h) (W
(0))
)
,Linear

Qprod
1

(·,·,h)→(·,·,h)(W
(1)
norm),

Linear
Qprod

2

(·,·,·,h)→(·,·,·,h)(W
(2)
norm), where σ(·) is a normalization layer followed by

element-wise SiLU;

4⃝W
(0)
ij ←W

(0)
ij +matmul

[
c00W

(0)
ij W̃

(0)
ij + c01

∑
kW

(1)
ikjW̃

(1)
ikj +

c02
∑
k,ℓW

(2)
ikℓjW̃

(2)
ikℓj ,R

prod
0

]
;

5⃝W
(1)
ikj ←W

(1)
ikj +matmul

[
c10W

(1)
ikjW̃

(0)
ij + c12

∑
ℓW

(1)
iℓjW̃

(2)
ikℓj ,R

prod
1

]
;

6⃝W
(2)
ikℓj ←W

(2)
ikℓj +matmul

[
c20W

(2)
ikℓjW̃

(0)
ij + c11ρ

2(|λ̃k − λ̃ℓ|)W(1)
ikjW̃

(1)
iℓj +

c22ρ
2(|λ̃k − λ̃ℓ|)

∑
mW

(2)
ikmjW̃

(2)
imℓj ,R

prod
2

]
;

(ii) Message passing layer. Given input W(0),W(1),W(2), adjacency matrix A and weight
matrices Qmsg

0 ,Qmsg
1 ,Qmsg

2 ∈ Rh×h, bmsg
0 ∈ Rh,

1⃝W
(1)
norm ← Normalize(W(1), dim = 1);

2⃝W
(2)
norm ← Normalize(W(2), dim = (1, 2));

3⃝ W̃(0),W̃(1),W̃(2) ← σ
(
Linear

Qmsg
0 ,bmsg

0

(·,h)→(·,h)(W
(0))
)
,Linear

Qmsg
1

(·,·,h)→(·,·,h)(W
(1)
norm),

Linear
Qmsg

2

(·,·,·,h)→(·,·,·,h)(W
(2)
norm), where σ(·) is a normalization layer followed by

element-wise SiLU;
4⃝W

(0)
i: ←W

(0)
i: +

∑
k AikW̃

(0)
k: ;

5⃝W
(1)
i:: ←W

(1)
i:: +

∑
k AikW̃

(1)
k:: ;

6⃝W
(2)
i::: ←W

(2)
i::: +

∑
k AikW̃

(2)
k:::;

(c) Output. Z ←W(0).

PyTorch, such operations would translate to nn.Linear modules. The operator matmul operates
similarly to torch.matmul. The function ρ(x) takes the form

ρ(x) =

{
1
2

(
1 + cos πxδ

)
, 0 ⩽ x ⩽ δ,

0, x > δ,
(73)

where δ is a hyperparameter.

We now discuss the complexity of Algorithm 1 as well as its connections to our theoretically proposed
OGE-Aug (Definition 4.1). It is not hard to notice that the most computationally costly steps of
Algorithm 1 are those to compute ρ2(|λ̃k − λ̃ℓ|)

∑
mW

(2)
ikmjW̃

(2)
imℓj and

∑
k AikW̃

(2)
k:::. If we use

dense matrices to store all the necessary data, the time complexity to compute those two terms are
O(n4) and O(n2m), where n and m refer to the number of nodes and edges of G, respectively.
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Nevertheless, since the smoothing function ρ(·) is only non-zero when its argument is sufficiently
close to zero, we find that W(2)

i::j is a sparse matrix with only O(nmaxj µj) non-zero elements,
for each i = 1, . . . , n and j = 1, . . . , h. Here, maxj µj means the maximum multiplicity of G’s
Laplacian eigenvalues. Therefore, by storing W(2) as a sparse matrix, the above two terms can
be computed in O(n2 maxj µ

2
j ) and O(mmaxj µj) time respectively, resulting a practical time

complexity of O((n2 maxj µj +m) ·maxj µj), which is generally lower than O(n3).

We remark that although Algorithm 1 uses only tensors up to second order, it is not hard to generalize
Algorithm 1 to accommodate higher-order tensors based on Ṽ smooth

1 , . . . , Ṽ smooth
n , resulting in a

model with higher complexities and better expressive power. When the tensor order reaches n, our
implementation of OGE-Aug can produce universally expressive graph representations, recovering our
theoretical result. Since this would entail an unaffordable complexity of O(n · nn) = n exp(Õ(n)),
Algorithm 1 is adopted practically instead, at the cost of some expressivity.

Finally, we point out that Algorithm 1 does not tightly follow equation (7), in that (i) apart from using
V smooth
1 , . . . ,V smooth

K (to build second-order tensors), Algorithm 1 also uses information directly
from the raw Laplacian eigenvectors (to build first-order tensors), and that (ii) Algorithm 1 allows
mixing of V smooth

j with different j. Despite those differences, Algorithm 1 maintains the key idea of
OGE-Aug: only information from two Laplacian eigenspaces whose corresponding eigenvalues are
“not too far away” from each other would be multiplied into W(2), and the algorithm has no explicit
dependence on the multiplicities of Laplacian eigenvalues. Thus, the stability result demonstrated in
Proposition 4.3 can similarly hold for Algorithm 1, though the accurate bound may be different.

D.2.2 OTHER DETAILS OF THE PRACTICAL IMPLEMENTATION

We implement OGE-Aug with the PyGHO library (Wang & Zhang, 2023). To integrate OGE-Aug
with other base models including MPNN and graph transformers, we also implement our methods
building on the GraphGPS (Rampášek et al., 2022) code base, where we build OGE-Aug as a plug-and-
play module. The module takes in Laplacians as inputs and processes the eigenvalues/eigenvectors
using # PE layers with dimension PE hidden dim, and outputs an embedding with dimension
PE dim; see Table 6 for detailed settings. In this module, we use permutation-equivariant set
function (Zaheer et al., 2017) to process the eigenvalues and multiply the eigenvalue embeddings
to the eigenvectors. Moreover, we also multiply eigenvectors with eigenvectors to initialize the
higher order representations. After that, this module will product each node’s representation with its
neighbors’ and update the representation iteratively. The embedding is then combined with other
node features and other optional positional encodings, then fed jointly into downstream layers (which
consist of various GNN and graph transformer modules). Therefore, OGE-Aug can be either used
solely or integrated easily with arbitrary backbones.

We also implement a version where OGE-Aug modules act on the embeddings of nodes and edges,
which can be viewed as operating on weighted or latent Laplacians incorporating node and edge
features. However, we experimentally find that processing the original Laplacians with OGE-Aug
and encoding the node/edge features separately via other encoders (as explained above) yields better
performance.

In addition, to make OGE-Aug more robust, we add a small-scale noise (typically a Gaussian noise
with mean zero and variance 10−5) to the Laplacians in the training process. We also randomly
permute the Laplacians and do inverse permutation to the output eigenvectors to simulate the noise
caused by the permutation and the numerical algorithm. We use the original Laplacians in the
inference stage.

D.3 EXPERIMENTAL SETTINGS

As explained earlier, we integrate our OGE-Aug with the GraphGPS code base, and thus also follow
their experimental settings. With only mild hyperparameter search, we achieve SOTA or highly
competitive results on all datasets. The adopted hyperparameters in our experiments are summarized
in Table 6.

Here † for QM9 suggests that experiments on these four targets U0, U,G,H are conducted using the
PyGHO code version without GraphGPS. ∗ for ZINC means that the transformer is not necessary
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Table 6: Hyperparameters of the experiments.

Hyperparameters QM9 ZINC Alchemy PCQM-Contact

# Layers 10 10 16 6
Hidden dim 64 64 128 96
MPNN GINE GINE GINE GatedGCN
Attention Transformer† Transformer∗ - Transformer
# Heads 4 4 - 4
Dropout 0 0 0 0
Attention dropout 0.2 0.5 - 0.1
Graph pooling sum sum sum edge dot

Positional encoding OGE-Aug(29) OGE-Aug(37) OGE-Aug(12) OGE-Aug + LapPE
PE hidden dim 64 64 64 32
PE dim 28 28 28 16
PE # layer 4 4 4 3

Batch size 256 32 128 64
Learning rate 0.001 0.001 0.001 0.0005
# Epochs 500 2000 1000 100
# Warmup epochs 50 50 50 10
Weight decay 1e-5 1e-5 1e-5 0

# Parameters 783249 617677 1968352 845632
Time (epoch/total) 139s/19.3h 28s/15.6h 5s/1.4h 1541s/42.8h

Table 7: Five-run results on CLUSTER, PATTERN and ogbg-molhiv.

Method CLUSTER (Acc ↑) PATTERN (Acc ↑) ogbg-molhiv (AUROC ↑)
GCN 68.50 ± 0.98 71.89 ± 0.34 75.99 ± 1.19
GIN 64.72 ± 1.55 85.39 ± 0.14 77.07 ± 1.49
GAT 70.59 ± 0.45 78.27 ± 0.19 -
GatedGCN 73.84 ± 0.33 85.57 ± 0.09 78.74 ± 1.19
SAN 76.69 ± 0.65 86.58 ± 0.37 77.85 ± 2.47
K-Subgraph SAT 77.86 ± 0.10 86.85 ± 0.37 -
GraphGPS 78.02 ± 0.18 86.69 ± 0.59 78.80 ± 1.01
Exphormer 78.07 ± 0.04 86.74 ± 0.15 -
OGE-Aug 78.33 ± 0.13 86.87 ± 0.33 80.01 ± 0.59

- actually we can achieve highly competitive results even without global attention. When we use
transformers, we reduce the PE hidden dimension to 32, PE dimension to 16, and PE # layers to 3,
resulting 505905 total number of parameters and 14.9h total training time, which are both less than
the case without transformers.

D.4 OTHER EXPERIMENTAL RESULTS

Other graph benchmarks. We evaluate the performance of OGE-Aug on three additional graph
learning benchmarks: CLUSTER (Dwivedi et al., 2023), PATTERN (Dwivedi et al., 2023) and
ogbg-molhiv (Hu et al., 2021). CLUSTER and PATTERN are node classification datasets, while
ogbg-molhiv is a graph classification dataset. The results are summarized in Table 7. We quote the
baseline results directly from Rampášek et al. (2022) and Shirzad et al. (2023). One may find that
OGE-Aug outperforms all baselines on the three datasets.

OOD benchmarks. We evaluate the OOD performance of OGE-Aug on DrugOOD (Ji et al., 2022),
an OOD benchmark for drug discovery. We consider three domains on which distribution shifts exist,
namely Assay (which assay the molecule belongs to), Scaffold (core structure of the molecule) and
Size (size of the molecule). For each domain, the dataset is divided into five splits: the training set,
the in-distribution (ID) validation/test sets, and the out-of-distribution (OOD) validation/test sets. The
data distribution of OOD splits is different from that of ID splits regarding the specific domain. The
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Table 8: AUROC (the larger, the better) results on DrugOOD.

Domain Method ID-Val ID-Test OOD-Val OOD-Test
(AUROC) (AUROC) (AUROC) (AUROC)

Assay

No PE 92.92 92.89 71.02 71.68
PEG 92.51 92.57 70.86 71.98
SignNet 92.26 92.43 70.16 72.27
BasisNet 88.96 89.42 71.19 71.66
SPE 92.84 92.94 71.26 72.53
OGE-Aug 94.88 86.75 82.26 73.73

Scaffold

No PE 96.56 87.95 79.07 68.00
PEG 95.65 86.20 79.17 69.15
SignNet 95.48 86.73 77.81 66.43
BasisNet 85.80 78.44 73.36 66.32
SPE 96.32 88.12 80.03 69.64
OGE-Aug 95.02 86.54 78.67 65.94

Size

No PE 93.78 93.60 82.76 66.04
PEG 92.46 92.67 82.12 66.01
SignNet 93.30 93.20 80.67 64.03
BasisNet 86.04 85.51 75.97 60.79
SPE 92.46 92.67 82.12 66.02
OGE-Aug 94.65 84.88 78.44 64.64

task is graph-level binary classification, i.e., to predict whether the drug is active. We use AUROC as
the evaluation metric.

The experimental results are shown in Table 8. We choose PE methods from (Huang et al., 2024)
as our baselines. Our OGE-Aug outperforms all baselines on the Assay domain, and achieves
comparable results on Scaffold and Size domains. Moreover, the performance of our method is better
than that of BasisNet on 5 out of the 6 OOD evaluation targets, verifying the benefits of possessing
theoretically guaranteed stability.

Ablation studies. Finally, we study the effect of the smoothing function ρ(·) in OGE-Aug. We use
ZINC as the evaluation dataset. We take GINE as the base model, and apply either Vanilla OGE-Aug,
or OGE-Aug with different smoothing functions ρ(·) (all of them taking the form of equation (73)
but with different hyperparameters δ). The results are shown in Table 9.

We find that applying Vanilla OGE-Aug instead of OGE-Aug leads to significant performance drop,
which verifies the importance of ensuring stability by introducing the smoothing function ρ. We also
observe that as long as the hyperparameter δ is not too close to zero, the performance varies little
with different choices of δ.

Table 9: Ablation studies on ZINC.

Method MAE (↓)
Vanilla OGE-Aug 0.098
OGE-Aug (δ = 5× 10−3) 0.066
OGE-Aug (δ = 5× 10−2) 0.066
OGE-Aug (δ = 5× 10−1) 0.065
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