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ABSTRACT

Off-policy Reinforcement Learning (RL) is fundamental to realizing intelligent
decision-making agents by trial and error. The most notorious issue of off-policy
RL is known as Deadly Triad, i.e., Bootstrapping, Function Approximation, and
Off-policy Learning. Despite recent advances in bootstrapping algorithms with
better bias control, improvements in the latter two factors are relatively less studied.
In this paper, we propose an efficient and general off-policy RL algorithm based
on low-dimensional policy representations. Orthogonal to better bootstrapping,
our improvement is two-fold. On the one hand, the policy representation serves as
an additional input to the value function, allowing it to offer preferable function
approximation with less interference and better generalization. On the other hand,
the policy representation empowers off-policy RL methods to perform off-policy
learning in a more sufficient manner. Specifically, we perform additional value
learning for proximal historical policies along the learning process. This drives
the value generalization from learned policies and in turn, leads to more efficient
learning. We evaluate our algorithms on continuous control tasks and the empirical
results demonstrate consistent improvements in terms of efficiency and stability.

1 INTRODUCTION

Off-policy Reinforcement Learning is an important branch of reinforcement learning that has attracted
much attention thanks to its generality and application potential François-Lavet et al. (2018). In
off-policy RL, three widely utilized techniques are: Bootstrapping, Function Approximation, and
Off-policy Learning, collectively referred to as Deadly Triad Sutton (1988); Sutton & Barto (2018).
Despite high-profile empirical successes, sample inefficiency and learning instability due to the
Deadly Triad remain key issues of off-policy RL Achiam et al. (2019); Van Hasselt et al. (2018). This
greatly limits the deployment of off-policy RL in real-world scenarios. In recent years, significant
progress has been made by improving bootstrapping methods, resulting in more advanced off-policy
RL algorithms Fujimoto et al. (2018); Kuznetsov et al. (2020); Lan et al. (2020); Chen et al. (2021);
Liang et al. (2022). Nevertheless, the latter two factors (i.e., function approximation and off-policy
learning) receive relatively less attention. Moreover, existing works usually only focus on one
of these two factors, either how to design better function approximators from network structures
(usually modeled by neural networks) Ota et al. (2020); Shah & Kumar (2021) or compensate for the
discrepancy between the distributions of the policy of interest and the behavior policy Saglam et al.
(2022); Kumar et al. (2020).

Different from previous works, our work attempts to improve both simultaneously to obtain a
more advanced and general off-policy RL algorithm. Our idea is mainly inspired by the appealing
characteristics of policy representation in value generalization Harb et al. (2020); Faccio et al.
(2020); Tang et al. (2020); Raileanu et al. (2020); Sang et al. (2022). Specifically, policy parameters
Faccio et al. (2020) and policy representations Tang et al. (2020) obtained by encoding the policy
parameters are respectively used as inputs to the value function approximator to improve function
approximation for on-policy RL algorithms. In the offline setting, the PVN (Policy Evaluation
Networks) Harb et al. (2020) is proposed to approximate the expected return of multiple policies
with policy representations obtained by policy fingerprints as input. Furthermore, towards obtaining
preferable function approximation with better generalization across policies and tasks, Raileanu et al.
Raileanu et al. (2020) and Sang et al. Sang et al. (2022) propose to use both a policy representation
and a task representation as additional inputs to the value function approximator.
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Essentially, the aforementioned works propose different policy representations to improve function
approximation. Rather than limiting ourselves to function approximation, in this paper, we are
dedicated to exploring the potential of policy representation for both function approximation and
off-policy learning with respect to off-policy RL characteristics. This has not been discussed before.
First of all, we propose a new Bellman operator with policy representations to characterize off-policy
RL for the purpose of better value function approximation and generalization. Building upon the
proposed Bellman operator, we further develop a Generalized Off-Policy Evaluation manner (GOPE)
to improve sample efficiency. Moreover, we propose a simple and effective policy representation
learning method, named Layer-wise Permutation-invariant Encoder with Dynamic Masking (LPE-
DM), which follows the characteristics of policy data itself for learning policy representations.
To evaluate the effectiveness and generality of the proposed method, we present two practical
implementations of our method based on TD3 Fujimoto et al. (2018) and SAC Haarnoja et al. (2018b).
We evaluate them on six OpenAI continuous control tasks, and the empirical results indicate that our
algorithm significantly outperforms the benchmarks in each tested environment.

We summarize our main contributions below: 1) We propose an efficient and general off-policy RL
algorithm based on low-dimensional policy representations, which leverages value generalization
among policies to improve the learning process. 2) We propose a new policy representation learning
method for the effective encoding of policy networks. 3) Empirical results on popular OpenAI Gym
control tasks demonstrate the consistent superiority of our algorithms in terms of efficiency and
stability.

2 PRELIMINARY

2.1 REINFORCEMENT LEARNING

A Markov Decision Process (MDP) Puterman (2014) is usually defined by a five-tuple ⟨S,A, P, r, γ⟩,
with the state space S, the action space A, the transition probability P : S × A → ∆(S), the
reward function r : S × A → R and the discount factor γ ∈ [0, 1). ∆(X) denotes the proba-
bility distribution over X . A stationary policy π ∈ Π : S → ∆(A) is a mapping from states
to action distributions, which defines how to behave under specific states. An agent interacts
with the MDP at discrete timesteps by its policy π, generating trajectories with s0 ∼ ρ0(·),
at ∼ π(·|st), st+1 ∼ P (· | st, at) and rt+1 = r (st, at), where ρ0 is the initial state distri-
bution. The goal of an RL agent is to maximize the value defined as the expected cumulative
discounted returns Es0∼ρ0 [

∑∞
t=0 γ

trt+1 | s0]. Given a policy π, the discounted state visitation
distribution from initial states regarding ρ0 is defined as dπ(s). There exists an action-value function
Qπ(s, a) = Es∼dπ(s),a∼π [

∑∞
t=0 γ

trt+1 | s0 = s, a0 = a]. We compute the action-value function
through the Bellman operator, T πQπ(s, a) = Es′∈S [r + γQπ (s′, π (s′))] Sutton & Barto (2018).
The optimal action-value function Q∗(s, a) = maxa∈AQ

π(s, a) is obtained by the greedy actions of
the corresponding policy.

2.2 OFF-POLICY RL

In deep RL, the action-value function is usually modeled by a differentiable function approximator
Qθ(s, a) with parameters θ, commonly known as Q-network. Qθ(s, a) is obtained by temporal
difference (TD) learning Sutton (1988) based on the Bellman Equation:

Qθ(s, a)← (r + γQθ−
(
s′, a′)), ∀s, s′ ∈ S, a, a′ ∈ A, (1)

whereQθ− is the target network for providing a fixed objective to the Q-network and ensuring stability
in the updates. Typically,Qθ− is updated by some proportion τ at each time step θ− ← τθ+(1−τ)θ−,
named soft-update. In continuous action spaces, it is intractable to obtain the maximum value of the
action-value function Saglam et al. (2022). Thus, a separate network named the actor network πϕ is
employed which selects actions on the observed states. πϕ with parameters ϕ is optimized by one-step
gradient ascent over the policy gradient∇ϕJ(ϕ) following the policy gradient theorem Sutton & Barto
(2018); Silver et al. (2014). In off-policy deep RL, the policy πϕ can be optimized using collected
data that are not necessarily obtained under the current policy πϕ, but from a behavioral policy πβ .
In this case, the deterministic policy gradient and stochastic policy gradient are respectively:

∇ϕJdet (ϕ) = Es∼dπβ (s)

[
∇aQθ(s, a)|a=πϕ(s)∇ϕπϕ(s)

]
, (2)
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∇ϕJsto (ϕ) = Es∼dπβ (s),a∼πϕ
[Qθ(s, a)∇ϕ log πϕ(a | s)] . (3)

The sample efficiency of off-policy RL is improved as they make use of any past experience Degris
et al. (2012). This may be especially useful in some scenarios where it may be costly or dangerous to
collect data using the learned policy.

3 OFF-POLICY RL WITH POLICY REPRESENTATION

Towards function approximation and off-policy learning, in this section, we first introduce the value
generalization based on the newly proposed Bellman operator Tπ (Sec. 3.1). Then, we propose a
more general and sufficient manner to perform off-policy learning via policy representations (Sec.
3.2). Finally, we present in detail a practical implementation of the proposed algorithm (Sec. 3.3).

3.1 VALUE GENERALIZATION WITH POLICY REPRESENTATION

In general, off-policy RL algorithms learn the action-value function Qπ through the Bellman operator
T π: T πQπ(s, a) = Es′∈S [r + γQπ (s′, π (s′))]. Thus, we present our algorithm starting from the
Bellman operator. Following the definition of the Bellman operator, we propose a new Bellman
operator Tπ regarding policy representation as follows:

Definition 3.1. Let Tπ : Q → Q be the operator on the policy representation-based action-value
function Q. For a given policy π ∈ Π, f(π) is a policy representation function that maps the policy π
to a low-dimensional policy representation χπ ∈ X . ∀s, s′ ∈ S, a, a′ ∈ A, the new Bellman operator
Tπ is defined as:

TπQπ(s, a, χπ) = Es′∈S
[
r + γQπ

(
s′, π

(
s′
)
, χπ

)]
. (4)

Tπ is a recursive operator which satisfies the compression map theorem Sutton & Barto (2018) with
a unique fixed-point Qπ, denoted as TπQπ = Qπ. Hence, for arbitrary policy π ∈ Π, we perform
multiple Bellman operations on its initial action-value function Qπ0 to obtain the unique fixed-point
Qπ , i.e., convergence to the action-value function of the policy π.

The learning process of action-value function based on the two Bellman operators T π and Tπ can be
expressed as limn→∞ T πn Qπ0 = Qπ and limn→∞ TπnQπ0 = Qπ, respectively. Somewhat naturally,
the closer Qπ0 and Qπ0 is to the true value Qπ, the smaller n is, resulting in the higher efficiency of
value learning. Thus, a key question is whether Qπ0 is closer to the true value Qπ than Qπ0 . We first
study the value approximation and value generalization in a two-policy case (i.e., πt,πt+1) where
only the value of policy πt is approximated by Qθ with parameters θ as below:

Definition 3.2 (Value Approximation with Tπ). We define a value learning process with Tπ, Pπ :

Θ
Tπ

−→ Θ̂. Given a policy π ∈ Π, the action-value function Qπ of π can be approximated by Qπ
θ̂
(χπ)

and the value approximation distance is defined as fθ̂(π) = ∥Qθ̂(χπ)−Q
π∥.

Theorem 3.3 (Value Generalization with Tπ). Given consecutive policies πt, πt+1 in policy iteration
process, if fθ̂t(πt) + fθ̂t(πt+1) ≤ ∥Qπt − Qπt+1∥, then ∥Qθ̂t(χπt+1

) − Qπt+1∥ ≤ ∥Qθ̂t(χπt
) −

Qπt+1∥.

Theorem 3.3 can be proved by the Triangle Inequality. Based on the Theorem 3.3, the value learning
at policy πt+1 starts from the generalized value estimation Qθ̂t(χπt+1

). Conversely, with respect
to the action-value function without policy representation, the value learning at policy πt+1 starts
from the Qθ̂t which is equivalent to Qθ̂t(χπt

). Thus, Tπ with policy representation offers value
generalization among the policy space. In particular, under bootstrapping-based TD learning, value
generalization can be obtained from Qθ̂t(χπt+1) and Q

θ̂t
−(χπt+1). Taking a further step from the two-

policy case above, we recall the Generalized Policy Iteration (GPI) Sutton (1988) followed by most
RL algorithms, the consecutive value approximation for the policies along the policy improvement

path can be described as θ−1

Pπ0−→ θ0
Pπ1−→ θ1 · · · . The value learning from each πt and πt+1 during

GPI can be similarly considered as the two-policy case. Thus, importing policy representation into
GPI-based off-policy RL can greatly improve value learning efficiency.
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3.2 GENERALIZED OFF-POLICY EVALUATION WITH POLICY REPRESENTATION

In this section, we mainly investigate how to make use of policy representation to improve off-policy
evaluation. To the best of our knowledge, there is no related work to improve the off-policy evaluation
process from the policy representation perspective. As introduced in Sec.2.2, the key characteristic of
off-policy evaluation is that the value approximation is performed using the experiences collected
by the encountered policies along the policy improvement path, which improves sample efficiency
compared to on-policy evaluation. In order to further enhance the advantages of off-policy evaluation
in terms of sample efficiency, we propose a generalized off-policy evaluation manner with policy
representation. Specifically, unlike traditional off-policy evaluation which is limited to the current
policy to be learned, we borrow policy representations to achieve off-policy evaluation of any
historical policy using any historical transition experience. We refer to the generalized off-policy
evaluation manner as GOPE.

GOPE. During the GPI (θ−1
Tπ0
n−→ θ0, · · · , θt

T
πt+1
n−→ θt+1, · · · ), for a value approximation process

θt
T
πt+1
n−→ θt+1, we perform off-policy learning of the historical policies, i.e., θt

P
π∈ΠGPI

t−→ θ′t
T
πt+1
n−→ θt+1.

ΠGPIt denotes the policy subset obtained along the GPI at the t-th iteration. Thanks to the off-policy
learning manner provided by one-step TD estimation, ∀πi ∈ ΠGPIt , the value learning process with
Tπ is:

Qπi
θ (s, a, χπi)← r + γQπi

θ−

(
s′, πi(s

′), χπi

)
,∀(s, a, r, s′) ∈ B. (5)

Significantly different from previous work Faccio et al. (2020), B indicates the experience replay
buffer shared by all policies. In other words, the value approximation of policy πi is not limited to the
samples {(s, a, r, s′, πi(s′))} generated by the interaction between the policy πi and the environment.
The number of samples {(s, a, r, s′, πi(s′))} is very limited and it’s not really an off-policy evaluation
manner using samples {(s, a, r, s′, πi(s′))}. Thus, GOPE greatly improves the sample efficiency
of off-policy RL. Notably, the effectiveness of GOPE relies on policy representations, without
which value generalization among policy space does not exist. That is, this learning manner, i.e.,

θt
P

π∈ΠGPI
t−→ θ′t

T
πt+1
n−→ θt+1 alone may be ineffective under no-policy representations. Regarding this,

we verified it in ablation experiments 5.2.

3.3 A PRACTICAL IMPLEMENTATION OF THE PROPOSED ALGORITHM

The Sec.3.1 and 3.2 detail how policy representation boosts the off-policy RL from both function
approximation and off-policy learning. Next, combining the general and popular value estimation
method, Clipped Double Q-learning (CDQ) adopted in off-policy RL Fujimoto et al. (2018); Haarnoja
et al. (2018b), we propose a practical implementation of the proposed algorithm.

Following Double Q-learning algorithm Hasselt (2010); Van Hasselt et al. (2016), CDQ consists of
double estimator, i.e., Qθ1 , Qθ2 . To alleviate the overestimation problem, CDQ proposes to simply
upper-bound the less biased value estimate Qθ2 by the biased estimate Qθ1 . Thus, for policy πϕ,
the update target that both critic Qθ1 , Qθ2 share is y = r + γmini=1,2Qθ−i

(s′, πϕ (s
′)). In this

work, replacing Qθi , Qθ−i with Qθi , Qθ−i , we propose a policy representation-based CDQ method.
Furthermore, the value approximation of both critics is formulated below, for i=1, 2:

Qθi(s, a, fψ(πϕ))← r + γ min
i=1,2

Q
θ−i

(
s′, πϕ

(
s′
)
, fψ−(πϕ)

)
. (6)

fψ(·) denotes the policy encoder with parameter ψ. In particular, in order to adapt to the target network
Qθ−i , we maintain a target policy encoder fψ−(·). The target policy encoder fψ−(·) is updated by
ψ− ← τψ + (1 − τ)ψ−. Fig.7 illustrates the architecture of CDQ with policy representation.
Additionally, we empirically investigate other architectures and perform experimental validation
on four Mujoco-based environments. More results can be found in Appendix B. From Eq. 6, our
algorithm only uses policy representations and is not limited to a particular off-policy RL algorithm,
which greatly improves the generality of our algorithm. To illustrate the generality of our algorithm,
we use CDQ-based TD3 Fujimoto et al. (2018) and SAC Haarnoja et al. (2018a) as the baselines
respectively, and compare them with our algorithms TD3-GOPE and SAC-GOPE. Due to space
limitations, we present only TD3-GOPE in Algorithm 1, and SAC-GOPE is presented in Appendix E.
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Algorithm 1 TD3-GOPE
Initialize critic networks Qθ1 ,Qθ2 , actor network πϕ and policy encoder network fψ , with random
parameters θ1, θ2, ϕ, ψ, target networks θ1− ← θ1, θ2− ← θ2, ϕ− ← ϕ, ψ− ← ψ, replay buffer
B,B′, policy buffer D and update interval M
for iteration t = 0, 1, 2, · · · do

Select action a and observe reward r and new state s′. Store transition tuple (s, a, r, s′) in B.
Store policy (ϕ, ϕ−) in D

Value learning of historical policies

if iteration t%M = 0 then
Sample mini-batch of n policies from D and mini-batch of N transitions (s, a, r, s′) from

B
for v = 1, 2, · · · , n do
a′ ← πϕ−

v
(s′), store N transition tuple (s, a, r, s′, a′, v) in B′

end for
Sample mini-batch of N transitions (s, a, r, s′, a′, v) from B′
Update critics and policy encoder parameter θi, ψ by approximating the action-value

functions of historical policies with the experiences in D,B,B′ (Eq.6)
Update target networks θ−i ← τθi + (1− τ)θ−i , ψ− ← τψ + (1− τ)ψ−

Value learning of current policy

Sample mini-batch of N transitions (s, a, r, s′) from B
Update critics and policy encoder parameter θi, ψ by approximating the action-value function

of current policy with the experiences in B (Eq.6)
Update actor ϕ← argmaxϕ E(s,a,r,s′)∼B(Qθ1 (s, πϕ (s) , fψ(πϕ)))
Update target networks θ−i ← τθi+(1−τ)θ−i , ϕ− ← τϕ+(1−τ)ϕ−, ψ− ← τψ+(1−τ)ψ−

end for

4 DYNAMIC MASKING FOR POLICY NETWORK REPRESENTATION LEARNING

To derive general off-policy deep RL algorithms with GOPE, a tricky question is how to learn
low-dimensional policy representations for better approximation and generalization of action-value
function Qθ(χπ) across policies. Intuitively, policy representations optimized based on TD learning
contain the most relevant features with value approximation. Thus, we consider using TD loss to
optimize policy representations. For practical implementation, we further consider 1) the policy data
sources for learning policy representations and 2) the encoder fψ for learning policy representations.

4.1 POLICY DATA

In essence, any data characterizing policies can be used as the policy data sources, such as parameters
of a policy network, trajectories, etc. However, compared with the trajectories with high randomness,
the parameters of a policy network are usually available and highly deterministic. Thus, we learn
policy representations from policy parameters. Generally, we consider a policy network to be an
MLP with well-represented state features (e.g., features extracted by CNN for pixels or by LSTM for
sequences) as input. In DRL, the size of policy networks is usually 64× 64, 256× 256, or larger.
The high-dimensional policy parameters raise the question of whether to use all parameters to learn
policy representations. This motivates a hypothesis: some neural nodes of the policy network may
not be active in parameter updates and action decisions during the learning process, and the policy
parameters associated with these neural nodes may not be helpful to learning policy representations.
To verify the hypothesis, we investigate the evolvement of neural nodes of the policy network during
the learning process. We first train a TD3 and a SAC agent on Mujoco-based tasks and store policies
{ϕi}i=1,··· ,N at intervals of 200 steps over the course of training. Ranging from the initial policy πϕ1

to the final policy πϕN
, we iteratively accumulate the amount of parameter change of two adjacent

policies, i.e., πϕi ,πϕi+1 for each parameter dimension k, denoted as δk. Assuming that the dimension
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Figure 1: Average amount of parameter change of policy network neural nodes on the Ant during the
learning process. The x-axis represents the indices of neural nodes, and the y-axis is the normalized
average amount of parameter change.
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Figure 2: An illustration for Layer-wise Permutation-invariant Encoder with Dynamic Masking
(LPE-DM). l0, l1,2 and l3 denote the numbers of units for the input layer, hidden layer, and output
layer, respectively. In dynamic masking, the red dots indicate the parameters being masked. Taking
the first hidden node of l1 as an example, its association parameters are the first row of [l1, l0 + 1]
and the first column of [l2, l1 + 1].

of the policy parameters is K, then δk is defined as:

δk =

i=N−1∑
i=1

|ϕki − ϕki+1|, k = 1 · · ·K, (7)

where ϕki represents the parameter of the kth dimension for the policy πϕi . Further, we calculate
the average amount of parameter change in the association parameters for each neural node j
(j = 1, . . . , J) of the policy network, denoted as δ̄j . In Fig. 1, we show the activity of neural nodes
for the policy network on the Ant for both algorithms. The significant differences in the activity of
neural nodes of the policy network, illustrated in Fig.1, provide empirical validation of our hypothesis.

4.2 POLICY ENCODING

Based on the empirical discovery above, a natural idea of learning policy representations is to only
make use of the neural nodes that are active in parameter change. To this end, we propose Dynamic
Masking (DM): a method that allows us to dynamically mask neural nodes with low activity during the
learning process. Given a policy πϕ, it can be characterized using the policy parameters ϕ̃i associated
with neural nodes with high activity. Specifically, in order to preserve the inter-layer structures of
policy, ϕ̃i can be obtained by layer-wise masking nodes according to masking ratio η and the amount
of parameter change of nodes δ̄j of each layer. As the policy updates, we dynamically update the
masked node set at an interval of 50 steps, and the policy representation is always calculated with the
latest mask results.

To better characterize policies, we further propose a Layer-wise Permutation-invariant Encoder
with Dynamic Masking (LPE-DM), fψ(ϕ̃). LPE-DM is illustrated in Fig. 2, which consists of
five steps: Layer-wise Extraction, Concatenate & Transpose, Dynamic Masking, Mean-Reducing,
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Table 1: Evaluation of TD3-GOPE in terms of learning stability and efficiency. The results of
evaluation returns (± half a std) over 10 trials for algorithms are reported. The best results are bolded
for each environment.

Environment Ave-Evaluation Max-Evaluation

RanP TD3 TD3-GOPE RanP TD3 TD3-GOPE

HalfCheetah -363.75±83.99 7866.79±546.25 9048.27±168.56 -340.60±92.09 9920.17±750.17 11254.0±159.42
Hopper 21.43±8.23 2464.53±159.18 2778.23±101.82 22.72±8.73 3659.1±28.97 3666.16±26.83

Walker2d -7.76±1.67 2573.99±286.84 3241.44±194.73 -6.99± 2.23 4187.83±287.79 4819.58±156.07
Ant 926.89±14.53 2265.99±97.2 3606.0±281.72 937.77±15.32 3474.56±219.35 5203.67±365.05

InvDouPend 72.53±5.79 8463.32±90.4 8761.04±48.12 78.34±9.45 9336.3±7.95 9355.73±1.39
LunarLander -206.35±68.91 226.08±9.61 241.40±6.03 146.22±41.30 292.26±1.91 292.58±2.57

Norm. Agg. 0 1 1.26 (↑ 26%) 0 1 1.16 (↑ 16%)

Table 2: Evaluation of SAC-GOPE in terms of learning stability and efficiency. The results of
evaluation returns (± half a std) over 10 trials for algorithms are reported. The best results are bolded
for each environment.

Environment Ave-Evaluation Max-Evaluation

RanP SAC SAC-GOPE RanP SAC SAC-GOPE

HalfCheetah -363.75±83.99 8765.53±133.77 9908.77±101.9 -340.60±92.09 12431.71±52.78 13394.42±476.68
Hopper 21.43±8.23 2064.33±216.12 2180.57±98.04 22.72±8.73 3503.37±89.04 3295.36±117.82

Walker2d -7.76±1.67 3312.06±150.46 3748.67±189.07 -6.99± 2.23 5102.93±213.06 5427.39±217.68
Ant 926.89±14.53 2416.79±169.40 3825.16±139.74 937.77±15.32 3911.47±525.99 5633.17±174.72

InvDouPend 72.53±5.79 8983.37±30.96 9019.36±31.56 78.34±9.45 9359.37±0.22 9359.53±0.26
LunarLander -206.35±68.91 182.97±13.08 232.61±11.14 146.22±41.30 284.0±1.35 283.23±1.75

Norm. Agg. 0 1 1.23 (↑ 23%) 0 1 1.11 (↑ 11%)

and Concatenate. Specifically, with respect to Mean-Reducing, MR
(
fψ,i(DM([Wi ⊕ bi]⊤))

)
=

1

l̃i+1

∑l̃i+1
j=1 fψ,i

(
DM(([Wi ⊕ bi]⊤))j,·

)
. Each row of DM([Wi ⊕ bi]⊤), indexing by the subscript

j, ·, describes a transformation of the i-layer into the next layer. All the rows are fed into fψ,i sepa-
rately and are then averaged into zi. The key to LPE-DM is to explicitly consider the characteristics
of policy network structures (i.e., the intra-layer and inter-layer structures) and the variation of policy
parameters during the learning process. Thus, it is an efficient encoding method tailored for policy
network representation.

5 EXPERIMENTS

To evaluate our algorithm, we conduct experiments on the OpenAI Gym continuous control tasks
Brockman et al. (2016). We run each task for 1 million time steps with evaluations every 5000 time
steps, where each evaluation reports the average reward over 10 episodes with no exploration noise.

5.1 COMPARATIVE EVALUATION

In Sec.3.3, we present a practical implementation of our algorithm based on CDQ. To be specific, fol-
lowing the original CDQ, we also maintain a pair of critics i.e., Qθ1(s, a, fψ(πϕ)), Qθ2(s, a, fψ(πϕ))
along with a single actor πϕ. For our implementation for the critic, we utilize a two-layer feedforward
neural network of 256 and 256 hidden nodes, respectively. We optimize a two-layer policy network
with 64 hidden nodes for each layer, resulting in over 4k to 10k policy parameters depending on the
tasks. The policy storage interval is 10 update steps and we maintain a proximal policy buffer D of
size 2000, which maintains a low memory overhead. The above setting applies to all experiments in
the paper. We list common hyperparameters in Table 5 and Table 6.

The experimental results of our implementations (TD3-GOPE, SAC-GOPE) and the correspond-
ing baselines (RA (Random Agent), TD3 and SAC) are reported in Table 1 and Table 2, respec-
tively. We defer the full learning curves to Appendix F (see Fig. 8, 9). In Table 1 and Table
2, we report two performance metrics: 1) the average performance attained over the course of
training (denoted Ave-Evaluation), which is a measure of the stability of RL algorithms over the
course of training and 2) the max performance attained by the algorithm after a fixed number of
gradient steps (denoted Max-Evaluation). In addition, we evaluate the aggregated improvement
(denoted Norm. Agg.) of our algorithm on multiple tasks using a random agent and TD3, SAC

7
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Figure 3: The x-axis represents four tasks, and the y-axis is the
normalized average return. Our method (Tπ) in each environment
is chosen as a normalized baseline. Conclusion: In both TD3 and
SAC cases, our method outperforms the original Bellman operator
(T π), which empirically proves the value generalization with Tπ .

for normalization, respec-
tively. The empirical results
demonstrate that our methods
(TD3-GOPE, SAC-GOPE)
consistently improve the
benchmarks on all tasks tested.
Moreover, compared with
TD3, our method improves
26% and 16% with respect
to Ave-Evaluation and Max-
Evaluation, respectively;
Compared with SAC, our
method improves 23% and
11% with respect to Ave-
Evaluation and Max-Evaluation, respectively. The significant improvement demonstrates the
advantages of our algorithm in terms of learning efficiency and stability.

5.2 ABLATION STUDY

Next, we investigate further the efficacy of each component of the proposed method. Concretely, we
conduct ablation experiments to answer the following three questions:

1. Can the implicit generalization of Bellman operator Tπ with policy representation offer better
function approximation? (Sec.3.1) 2. Can generalized off-policy evaluation further improve value
generalization and learning efficiency? (Sec.3.2) 3. Is LPE-DM an effective method to encode policy
network parameters? (Sec.4)

To answer the first question, we compare the performance difference between T π and Tπ. We use
TD3 and SAC as practical implementations of T π, respectively. Correspondingly, we replace only
Qθ with Qθ(χπ) in the TD3 and SAC as practical implementations of Tπ with policy representation,
respectively. The experimental results in Fig.3 show that the Bellman operator Tπ outperforms its
original counterpart, which empirically demonstrates that implicit generalization of Bellman operator
Tπ with policy representation offer better function approximation.

To answer the second question, we propose two groups of ablation experiments. For brevity, we
abbreviate the policy representation as PR. The first one is the proposed GOPE vs. GOPE-w/o PR.
We retain the generalized off-policy evaluation manner but do not use the policy representation,
named GOPE-w/o PR. On the contrary, the other is GOPE vs. OPE-w/PR. We retain the policy
representation but do not use the generalized off-policy evaluation manner, named OPE-w/PR, for
which the learning frequency of the action-value function is identical to GOPE. Besides, we use TD3
and SAC as practical implementations of OPE. If the performance can be improved by learning Qθ in
the generalized off-policy evaluation manner or by learning Qθ(χπ) more times, then GOPE-w/o PR
and OPE-w/PR should be comparable to our algorithm. Instead, Fig. 4 shows that the performance
of GOPE-w/o PR and OPE-w/PR is much lower than the GOPE. The empirical results show that
the generalized off-policy evaluation with policy representation is crucial to further improve the
performance of off-policy RL algorithm and the two (i.e., GOPE and PR) are complementary.

To answer the third question, we consider five policy representation learning methods in terms of both
policy encoder and dynamic masking methods. To highlight the superiority of LPE, we compared
it with unencoded policy parameters (Params) Faccio et al. (2020) and a multilayer perceptron
(MLP)-based policy encoder. The policy parameters, as the source data for policy representations,
can themselves be used as an uncompressed policy representation. The MLP-based policy encoder
flattens the policy into a vector input and utilizes a two-layer feedforward neural network of 256 and
256 hidden nodes. In addition, we also compare the fixed randomly generated policy representation
of 64 dimensions, named as RPR. LPE-DM represents our method. Fig. 5 reports the experimental
results on different methods respectively. Obviously, as an original policy representation, the policy
parameters are far worse than other policy encoding methods, mainly due to their high-dimensional
and highly nonlinear, offering no help in the function approximation. Compared to the MLP-based
policy encoder, the most significant characteristic of LPE is that it explicitly considers both the
intra-layer and inter-layer structures. LPE-DM shows consistent advantages in the tested tasks,
especially in Ant environment.
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Figure 4: The x-axis represents four test tasks,
and the y-axis is the normalized average re-
turn. Our method (GOPE) in each environ-
ment is chosen as a normalized baseline. Con-
clusion: In both TD3 and SAC cases, our
method is better than the comparison meth-
ods (OPE, OPE-w/PR, GOPE-w/o PR), which
empirically proves the efficacy of generalized
off-policy evaluation with policy representa-
tion.
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Figure 5: The x-axis represents four test tasks,
and the y-axis is the normalized average re-
turn. Our method (LPE-DM) in each task is
chosen as a normalized baseline. Conclusion:
In both TD3 and SAC cases, our method is
better than the comparison methods (RPR,
Params, MLP, LPE), which empirically illus-
trates that LPE with DM is an efficacy method
for learning policy representations from pol-
icy parameters.

5.3 ADDITIONAL DISCUSSION

In this section, we discuss the correlation between value generalization and learning performance.
We first define a value generalization metric, ∆ based on TD update rule:

∆ =

T∑
t=1

E(s,a,r,s′)∼B[ϵπt − ϵπt+1 ], (8)

ϵπt =

i=2∑
i=1

(Qθi(s, a, χπt)− y)2, ϵπt+1 =

i=2∑
i=1

(Qθi
(
s, a, χπt+1

)
− y)2, (9)

where y = r + γmini=1,2 Qθ−i
(
s′, πt+1 (s

′) , χπt+1

)
. ϵπt − ϵπt+1 measures the difference of fitting

TD target y using Qθ(χπ) with two adjacent policy representations (i.e., χπt
, χπt+1, marked in blue).

We repeat the experiment 30 trials with different random seeds on HalfCheetah and Walker2d tasks,
respectively, and store the evaluation returns and the value generalization metric of each experiment.
To increase the reliability of the experimental results, we adopt two correlation coefficients, Pearson
(P-Corr) and Spearman (S-Corr). From Fig. 6, we can obtain 1) value generalization ∆ is positive
(x-axis) (i.e., on the whole, ϵπt ≥ ϵπt+1), which indicates that Qθ(χπ) has the ability of positive
generalization. 2) The results of the two correlation coefficients are around 0.6, which indicates that
the positive generalization of Qθ(χπ) improves learning performance.

6 CONCLUSION
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Figure 6: The correlation between the value generalization (x-axis)
and the average return (y-axis) of our algorithm. Each dot represents
a random trial. Conclusion: Pearson and Spearman both show a
weak positive correlation between the above two.

This paper proposes a sim-
ple, efficient, and generalized
deep off-policy RL algorithm,
GOPE. It adopts the pro-
posed Bellman operator Tπ
and a generalized off-policy
evaluation manner with low-
dimensional policy representa-
tion for better value approxi-
mation and value generaliza-
tion and thus greatly improves
sample efficiency in off-policy
RL. Furthermore, this work first investigates the evolvement of neural nodes of the policy network
during the learning process and proposes a policy representation learning approach towards policy
networks. The empirical results demonstrate that our algorithm is general enough to incorporate into
other off-policy algorithms.
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A PROOF OF THEOREM 3.3

Proof. Due to Triangle Inequality, we have:

fθ̂t(πt) + ∥Qθ̂t(χπt)−Qπt+1∥ ≥ ∥Qπt −Qπt+1∥
i.e., ∥Qθ̂t(χπt)−Qπt∥+ ∥Qθ̂t(χπt)−Qπt+1∥ ≥ ∥Qπt −Qπt+1∥

(10)

Combined with condition

fθ̂t(πt) + fθ̂t(πt+1) ≤ ∥Qπt −Qπt+1∥
i.e., ∥Qθ̂t(χπt)−Qπt∥+ ∥Qθ̂t(χπt+1)−Qπt+1∥ ≤ ∥Qπt −Qπt+1∥

(11)

Chain above two inequality,

fθ̂t(πt) + fθ̂t(πt+1) ≤ ∥Qπt −Qπt+1∥ ≤ fθ̂t(πt) + ∥Qθ̂t(χπt)−Qπt+1∥
i.e., ∥Qθ̂t(χπt+1

)−Qπt+1∥ ≤ ∥Qθ̂t(χπt
)−Qπt+1∥

(12)

B DETAILS OF THE POLICY REPRESENTATION-BASED CLIPPED DOUBLE
Q-LEARNING METHOD

In this work, we discuss four variants for policy representation-based CDQ implementation. Con-
cretely, we consider the TD3 algorithm based on CDQ which maintains a pair of actors (πϕ, πϕ−)
and critics (Qθ1 , Qθ2). In the first variant, we maintain a pair of policy encoders (fψ(ϕ), fψ−(ϕ)),
taking the parameters ϕ of policy πϕ as input. The value approximation of both critics is formulated
as: ① Qθi(s, a, fψ(ϕ)) ← r + γmini=1,2 Qθ−i

(
s′, πϕ− (s′) , fψ−(ϕ)

)
. In the second variant, we

maintain a pair of policy encoders (fψ(ϕ), fψ−(ϕ−)), taking the parameters ϕ of policy πϕ and
the parameters ϕ− of policy πϕ− as input, respectively. The value approximation of both critics
is formulated as: ② Qθi(s, a, fψ(ϕ)) ← r + γmini=1,2 Qθ−i

(
s′, πϕ− (s′) , fψ−(ϕ−)

)
. In the third

variant, we maintain a pair of policy encoders (fψ(ϕ−), fψ−(ϕ−)) , taking the parameters ϕ− of pol-
icy πϕ− as input. The value approximation of both critics is formulated as: ③ Qθi(s, a, fψ(ϕ−))←
r + γmini=1,2 Qθ−i

(
s′, πϕ− (s′) , fψ−(ϕ−)

)
. In the fourth variant, we maintain two pairs of policy

encoders (fψ1,2
(ϕ), fψ−

1,2
(ϕ)), taking the parameters ϕ of policy πϕ as input. The value approximation

of both critics is formulated as: ④ Qθi(s, a, fψi
(ϕ))← r + γmini=1,2 Qθ−i (s

′, πϕ− (s′) , fψ−
i
(ϕ)).

Table B reports the experimental results of the four variants (PRCDQ-v1, PRCDQ-v2, PRCDQ-v3,
PRCDQ-v4) as well as the baselines (RA, TD3). The empirical results show the superiority of the
first variant which is adopted in our algorithm.

C DETAILS OF GENERALIZED OFF-POLICY EVALUATION WITH POLICY
REPRESENTATION

Policy representations endow Qθ(χπ) with the property of generalizing across policies. However,
during the learning process, the knowledge obtained through the value learning of early historical
policies may be too old to benefit the generalization of Qθ(χπ) across policies. Therefore, we propose
to only perform the value learning of the proximal policies of the current policy. To be specific, the
policy storage interval is 10 update steps and we maintain a proximal policy buffer D of size 2000,
which maintains a low memory overhead. With TD3 as the baseline, Table C reports the experimental
results of different buffer sizes. Compared with the cases of size = 0 (i.e., value learning without
performing historical policies) and size = all (i.e., value learning with performing all historical
policies), the value learning of proximal historical policies (size = 500, size = 2000) obtains better
results with respect to the Ave-Evaluation, which demonstrates that the advantages of the proposed
GOPE in terms of stability and learning efficiency. In the future, we will explore better historical
policy sampling methods.
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Table 3: Discussion of different implementation variants for policy representation-based Clipped
Double Q-learning. Average evaluation returns and Max evaluation returns (± half a std) over 10
trials for algorithms. The best results are bolded.

Environment Ave-Evaluation

RanP TD3 PRCDQ-v1 PRCDQ-v2 PRCDQ-v3 PRCDQ-v4

HalfCheetah -363.75±83.99 7866.79±546.25 8620.37±110.55 8181.73±405.1 7961.49±310.02 8724.56±138.04
Hopper 21.43±8.23 2464.53±159.18 2544.11±122.45 2588.21±129.02 2427.17±38.0 2536.36±131.46

Walker2d -7.76±1.67 2573.99±286.84 3271.57±169.02 3147.0±259.95 3302.85±152.21 3425.49±86.56
Ant 926.89±14.53 2265.99±97.2 3034.7±300.83 2998.42±396.9 2645.82±204.38 2497.67±72.48

Norm. Agg. 0 1 1.24 (↑ 24%) 1.21 (↑ 21%) 1.14 (↑ 14%) 1.16 (↑ 16%)

Environment Max-Evaluation

RanP TD3 PRCDQ-v1 PRCDQ-v2 PRCDQ-v3 PRCDQ-v4

HalfCheetah -340.6±92.09 9920.17±750.17 10664.98±198.68 10637.38±271.78 10461.47±530.02 11182.97±236.79
Hopper 22.72±8.73 3659.1±28.97 3644.91±29.2 3633.78±36.7 3637.92±49.27 3637.23±35.15

Walker2d -6.99±2.23 4187.83±287.79 4854.9±226.1 4951.48±229.64 4835.86±228.55 5196.72±159.75
Ant 937.77±15.32 3474.56±219.35 4609.4±549.87 4479.09±436.54 4039.76±519.72 3801.51±412.43

Norm. Agg. 0 1 1.17 (↑ 17%) 1.16 (↑ 16%) 1.11 (↑ 11%) 1.12 (↑ 12%)

ℚ𝜃1 ℚ𝜃1− ℚ𝜃2 ℚ𝜃2−

𝑓𝜓 𝑓𝜓−

TD-error
Figure 7: The illustration diagram for the policy representation-based Clipped Double Q-learning. The
black solid arrows indicate forward propagation and the red dashed arrows are backward propagation.

D HYPERPARAMETERS

Table 5 shows the common hyperparameters of the algorithm used in all our experiments. Table 6
shows the structure of the actor network and critic network for TD3-GOPE and SAC-GOPE. To be
specific, we utilize a two-layer feed-forward neural network of 64 and 64 hidden units with ReLU
activation (except for the output layer) for the actor network. Similarly, the critic network also uses a
two-layer feed-forward neural network of 256 and 256 hidden units with ReLU activation.

E PSEUDO-CODE OF SAC-GOPE

The pseudo-code of the proposed algorithm, SAC-GOPE is in Algorithm 2.

F COMPLETE LEARNING CURVES

Fig. 8 and Fig. 9 shows the learning curves of RanP, TD3, SAC, TD3-GOPE and SAC-GOPE
corresponding to the results in Table 1 and Table 2.
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Table 4: Discussion of buffer size for proximal policies. Average evaluation returns and Max
evaluation returns (± half a std) over 10 trials for algorithms. The best results are bolded for each
environment.

Environment Ave-Evaluation
size=all size=2000 size=500 size=0

HalfCheetah 8990.75±133.98 9048.27±168.56 8920.27±223.68 8693.77±226.57
Hopper 2758.75±108.01 2778.23±101.82 2779.54±86.74 2579.82±38.96

Walker2d 2268.95±371.82 3241.44±194.73 3496.18±217.25 3416.55±258.93
Ant 2579.88±717.87 3606.0±281.72 3073.98±375.69 3223.43±245.85

Environment Max-Evaluation
size=all size=2000 size=500 size=0

HalfCheetah 11152.91±124.74 11254.0±159.42 11110.28±118.06 10803.12±447.49
Hopper 3657.07±19.92 3666.16±26.83 3707.71±25.66 3728.67±40.22

Walker2d 3980.16±74.25 4819.58±156.07 4881.04±209.69 5123.22±263.97
Ant 4253.95±526.31 5203.67±365.05 4424.04±556.08 5288.47±323.18

Algorithm 2 SAC-GOPE
Initialize critic networks Qθ1 ,Qθ2 , actor network πϕ and policy encoder network fψ , with random
parameters θ1, θ2, ϕ, ψ, target networks θ1− ← θ1, θ2− ← θ2, ψ− ← ψ, replay buffer B,B′,
policy buffer D and update interval M
for iteration t = 0, 1, 2, · · · do

Select action a and observe reward r and new state s′. Store transition tuple (s, a, r, s′) in B.
Store policy ϕ in D

Value learning of historical policies

if iteration t%M = 0 then
Sample mini-batch of n policies from D and mini-batch of N transitions (s, a, r, s′) from

B
for v = 1, 2, · · · , n do
a′, log πϕv

(·|s′)← πϕv
(s′), store N transition tuple (s, a, r, s′, a′, log πϕv

(·|s′), v) in
B′

end for
Sample mini-batch of N transitions (s, a, r, s′, a′, log πϕv

(·|s′), v) from B′
y ← r + γ(mini=1,2 Qθ−i

(
s′, a′, fψ−(πϕv

)
)
− α log πϕv

(·|s′))
Update critics and policy encoder parameter
θi, ψ ← argminθi,ψ E(s,a,r,s′,a′,log πϕv (·|s′),v)∼B′

∑i=2
i=1

1
2 (y −Qθi (s, a, fψ(πϕv

)))
2

Update target networks θ′i ← τθi + (1− τ)θ′i, ψ′ ← τψ + (1− τ)ψ′

Value learning of current policy

Sample mini-batch of N transitions (s, a, r, s′) from B
y ← r + γ(mini=1,2 Qθ−i

(
s′, πϕ (s

′) , fψ−(πϕ)
)
− α log πϕ(·|s′))

Update critics and policy encoder parameter
θi, ψ ← argminθi,ψ E(s,a,r,s′)∼B

∑i=2
i=1

1
2 (y −Qθi (s, a, fψ(πϕ)))

2

Update actor ϕ← argmaxϕ E(s,a,r,s′)∼B(mini=1,2 Qθi (s, πϕ (s) , fψ(πϕ))−α log πϕ(·|s))
Update target networks θ−i ← τθi + (1− τ)θ−i , ψ− ← τψ + (1− τ)ψ−

end for
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Table 5: Common hyperparameters. We use ‘-’ to denote the ‘not applicable’ situation.
Hyperparameters TD3-GOPE SAC-GOPE

Actor Learning Rate 10−3 3×10−4

Critic Learning Rate 10−3 3×10−4

Target Action Noise 0.2 -
Actor Training Interval 2 steps 1 step

Masking Ratio (η) 0.6 0.6
Discount Factor (γ) 0.99 0.99

Soft Replacement Ratio 0.005 0.002
Replay Buffer Size 200k time steps 200k time steps

Batch Size 100 128
Training Interval 1 step 1 step

Optimizer Adam Adam

Masking Ratio (η) 0.6 0.6
Policy Representation Dimension (pr dim) 64 64

Update interval (M ) 10 10

Table 6: Structure of actor network and critic network. We use ‘-’ to denote the ‘not applicable’
situation.

Method Layer Actor Network (π(a|s)) Critic Network (Q(χπ))

TD3-GOPE

Fully Connected (state dim, 64) (state dim + action dim + pr dim, 256)
Activation ReLU ReLU

Fully Connected (64, 64) (256, 256)
Activation ReLU ReLU

Fully Connected (64, action dim) (256, 1)
Activation tanh None

SAC-GOPE

Fully Connected (state dim, 64) (state dim + action dim + pr dim, 256)
Activation ReLU ReLU

Fully Connected (64, 64) (256, 256)
Activation ReLU ReLU

Fully Connected (64, action dim) (256, 1)
Activation None None

Fully Connected (64, action dim) -
Activation None -
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Figure 8: Learning curves for the OpenAI gym continuous control tasks. The shaded region represents
half a standard deviation of the average evaluation over 10 trials. Curves are smoothed uniformly for
visual clarity.
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Figure 9: Learning curves for the OpenAI gym continuous control tasks. The shaded region represents
half a standard deviation of the average evaluation over 10 trials. Curves are smoothed uniformly for
visual clarity.
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