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ABSTRACT

The conventional few-shot classification aims at learning a model on a large la-
beled base dataset and rapidly adapting to a target dataset that is from the same
distribution as the base dataset. However, in practice, the base and the target
datasets of few-shot classification are usually from different domains, which is
the problem of cross-domain few-shot classification. We tackle this problem
by making a small proportion of unlabeled images in the target domain acces-
sible in the training stage. In this setup, even though the base data are suffi-
cient and labeled, the large domain shift still makes transferring the knowledge
from the base dataset difficult. We meticulously design a cross-level knowl-
edge distillation method, which can strengthen the ability of the model to ex-
tract more discriminative features in the target dataset by guiding the network’s
shallow layers to learn higher-level information. Furthermore, in order to al-
leviate the overfitting in the evaluation stage, we propose a feature denois-
ing operation which can reduce the feature redundancy and mitigate overfit-
ting. Our approach can surpass the previous state-of-the-art method, Dynamic-
Distillation, by 5.44% on 1-shot and 1.37% on 5-shot classification tasks on aver-
age in the BSCD-FSL benchmark. The implementation code will be available at
https://gitee.com/mindspore/models/tree/master/research/cv/CLDFD.

1 INTRODUCTION

Deep learning has achieved great success on image recognition tasks with the help of a large number
of labeled images. However, it is the exact opposite of the human perception mechanism which can
recognize a new category by learning only a few samples. Besides, a large amount of annotations is
costly and unavailable for some scenarios. It is more valuable to study few-shot classification which
trains a classification model on a base dataset and rapidly adapts it to the target dataset. However,
due to the constraint that the base data and the target data need to be consistent in their distributions,
the conventional few-shot classification may not cater to the demands in some practical scenarios.
For example, it may fail in scenarios where the training domain is natural images, but the evaluation
domain is satellite images. Considering this domain shift in practical applications, we focus on
cross-domain few-shot classification (CD-FSC) in this paper. Previous methods, such as (Mangla
et al., 2020; Adler et al., 2020; Tseng et al., 2020), can handle this problem with small domain gaps.
However, the CD-FSC problem with a large domain gap is still a challenge.

BSCD-FSC (Guo et al., 2020) is a suitable benchmark for studying this problem, where the base
dataset has natural images and the target datasets contain satellite images, crop disease images, skin
disease images and X-ray images of sundry lung diseases. On this benchmark, previous methods
following the traditional CD-FSC protocol train their models on the base dataset and evaluate them
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Figure 1: Our CD-FSC framework. The first phase is pre-training, which trains the teacher network
on the labeled base dataset by optimizing the cross-entropy loss. The second phase trains the stu-
dent network using our proposed cross-level distillation (CLD). The third phase fine-tunes a linear
classifier on a few labeled images in the target domain, and feature denoising (FD) is conducted to
remove the noise in the final feature vectors. The final phase classifies images in the target domain.

on the target dataset, but their performances are far from satisfactory. STARTUP (Phoo & Hariharan,
2021) and Dynamic-Distillation (Islam et al., 2021a) introduce a more realistic setup that makes a
small portion of the unlabeled target images accessible during the training phase. These target
images bring a prior to the model and dramatically promote the model’s performance on the target
datasets. Inspired by that, we follow their setup to explore the CD-FSC problem with a large domain
shift. In this work, we propose a cross-level distillation (CLD), which can effectively transfer the
knowledge from the base dataset and improve the performance of the student network on the target
domain. Besides, we propose feature denoising (FD) to remove the noise in the features during the
fine-tuning stage. Our CD-FSC framework is given in Figure 1.

The detail of CLD is shown in Figure 2, which distills a teacher’s deeper layers to a student’s shal-
lower layers, where the student and the teacher share the same structure. Unlike the distillation
methods in STARTUP and Dynamic-Distillation, which only distill the teacher’s last layer to the
student’s last layer, our CLD leads the shallow layers of the student to mimic the features generated
from the deeper levels of the teacher so that the student can learn more deeper semantic information
and extract more discriminative features on the target dataset. Additionally, since the teacher net-
works in STARTUP and Dynamic-Distillation are pre-trained on the base dataset only, the teacher’s
observation of the target data is biased. In order to calibrate the bias, we design an iterative process
by building another network which shares the same structure and parameters with the historical stu-
dent network, named old student network. In each training iteration, the features from the teacher
and the old student in the same layers are dynamically fused to guide the corresponding layers of
the student. The latter the training iteration, the fewer fusion features from the teacher network,
and the more from the old student network. Due to the target data used in training is unlabeled, the
self-supervised loss is introduced to excavate the target domain information further.

The self-supervised loss not only supports the network in mining valuable information on the target
domain, but also brings a phenomenon where the final feature vector for classification has a small
number of dominant (strongly activated) elements with the others are close to zero (Hua et al., 2021;
Kalibhat et al., 2022). We find that during the fine-tuning phase in Figure 1, these small activated
elements are redundant and considered as noise. Our FD operation keeps the top h largest elements
and sets the others to zero. It is experimentally verified that FD can greatly improve the model’s
performance.

Above all, our main contributions are summarized below:

• We propose a cross-level distillation (CLD) framework, which can well transfer the knowl-
edge of the teacher trained on the base dataset to the student. We also use an old student
network mechanism is also necessary to calibrate the teacher’s bias learned from the base
data.

• Considering the noisy feature activations, we design a feature denoising (FD) operation
that can significantly improve the performance of our model.

• Extensive experiments are conducted to verify that our proposed CLD and FD can achieve
state-of-the-art results on the BSCD-FSL benchmark with large domain gaps.
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2 RELATED WORK

Cross-domain few-shot classification. The cross-domain few-shot classification is firstly defined
by (Chen et al., 2018), which trains a model on the base dataset and evaluates it on the target dataset
in a different domain from the base dataset. LFT (Tseng et al., 2020) simulates the domain shift from
the base dataset to the target dataset by meta-learning and inserts linear layers into the network to
align the features from the different domains. Meta-FDMixup (Fu et al., 2021) uses several labeled
images from the target dataset for domain-shared feature disentanglement and feeds the domain-
shared features to the classifier. FLUTE (Triantafillou et al., 2021) learns the universal templates of
features across multi-source domains to improve the transferability of the model. However, all these
methods concentrate on the CD-FSC problem with small domain shifts. Some methods handle CD-
FSC with large domain gaps, in which the target datasets have obvious dissimilarity from the base
dataset on perspective distortion, semantics, and/or color depth. For example, ConfeSS (Das et al.,
2021) extracts useful feature components from labeled target images. ATA (Wang & Deng, 2021)
does not require any prior of the target dataset and proposes a plug-and-play inductive bias-adaptive
task augmentation module. CI (Luo et al., 2022) trains an encoder on the base dataset and converts
the features of the target data with a transformation function in the evaluation stage. UniSiam (Lu
et al., 2022) adopts a self-supervised approach to address the CD-FSC problem. Among the methods
dealing with large domain shifts, STARTUP (Phoo & Hariharan, 2021) is a strong baseline, which
uses a few unlabeled target images in the training stage. It firstly trains a teacher network on the base
dataset in a supervised fashion and transfers the teacher’s knowledge to the student by knowledge
distillation (KD). It jointly optimizes the cross-entropy loss with the base dataset, contrastive loss of
the unlabeled target images and the KD loss to upgrade the student network. Dynamic-Distillation
(Islam et al., 2021a) also uses a small number of unlabeled images and KD. The main difference
between Dynamic-Distillation and STARTUP is that the former upgrades the pre-trained teacher
dynamically by exponential moving averages, while the latter fixes the teacher. In our work, we
follow their data setup allowing a small proportion of the unlabeled target images to be seen during
the training phase. Different from the two methods that perform KD at the last layers of the teacher
and the student, our KD is carried out at cross levels. Besides, our denoising operation further
improves the performance.

Self-supervised learning. Self-supervised learning is widely used in the scenarios where labels are
not available for training. It defines a “pretext task” to pre-train a network. For example, (Gidaris
et al., 2018) pre-trains the model by predicting the rotation angle of the image. One popular method
is contrastive learning, such as SimCLR (Chen et al., 2020) which pulls different augmented versions
of the same image closer and pushes the versions from different images away. Beyond contrastive
learning, BYOL (Grill et al., 2020) and SimSiam (Chen & He, 2021) rely only positive pairs.

Knowledge distillation. (Hinton et al., 2015) firstly propose knowledge distillation by guiding a
compact network (student) to mimic the output of a large network (teacher). Since features in the
intermediate layers are informative, some previous methods distill the teacher’s intermediate features
(Romero et al., 2014) or attention maps of the features (Zagoruyko & Komodakis, 2017). Besides,
self-distillation methods, such as BYOT (Zhang et al., 2019), distill the last layer of the network to
its own shallower layers. BYOT’s teacher and student are the same network.

In our framework (Figure 2), in addition to the KD in the intermediate layers, we design an old
student that shares the same structure as the student but with different parameters. The introduction
of this old student not only alleviates the teacher’s bias learned from the base dataset, but also has
the effect of assembling multiple historic students during training.

3 METHODOLOGY

3.1 PRELIMINARY

During the training period, we follow the setting in STARTUP (Phoo & Hariharan, 2021) and
Dynamic-Distillation (Islam et al., 2021a), where a labeled base dataset DB and a few unlabeled
target images sampled from the target dataset DT are available. In the testing stage, the support set
DS comprises N classes, and K samples are randomly selected from each class in DT, which is the
so-called N -way K-shot task. The support set DS is for fine-tuning a new classifier with the frozen
encoder (the student network in this work). The images in the query set DQ are randomly picked
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Figure 2: Framework of CLD for knowledge distillation (KD). The teacher network is pre-trained
on the labeled base dataset with the cross-entropy loss and is fixed during KD. When training the
student network, the target image x is augmented into x1, x2 and x3. Then x1,x2 is fed to both the
student and the teacher, and x3 is fed to the old student. At the i-th iteration, the parameters of the
old student are a copy of those of the student at (i− τ)-th iteration. The feature sil of the student is
firstly projected by ωl for dimensionality alignment, where l is the block index. Then we fuse the
features til+1 and oi

l+1 obtaining ui
l+1, which are from the (l + 1)-th block of the teacher and the

old student, respectively. The KD is conducted by forcing ωl(s
i
l) to mimic ui

l+1. Additionally, the
self-supervised loss Lss is introduced on the student network.

from the selected N classes for evaluating the classification accuracy. The support set DS and the
query set DQ have no overlap.

3.2 CROSS-LEVEL DISTILLATION

The proposed cross-level distillation (CLD) framework is shown in Figure 2. The teacher network
ft is pre-trained on DB with the cross-entropy loss. The student network fs is expected to inherit
the knowledge of the teacher and extract discriminative features of DT. However, the teacher’s
observation of the target data is biased since it is pre-trained on the base dataset only. In the i-th
training iteration, if the features extracted by the student f i

s directly mimic the features of the teacher,
the teacher’s bias will be transferred to the student. To reduce the bias, we introduce an old student
network f i

o, which is a copy of f i−τ
s , where the hyper-parameter τ denotes the training iteration

interval between f i−τ
s and f i

s .

To simplify the KD complexity, we divide each backbone of fs, fo, and ft into L residual blocks.
Let sil , o

i
l , and til be the features obtained by the student, the old student, and the teacher in the l-th

block at the i-th iteration. The fusion between til and oi
l is defined as:

ui
l = αioi

l + (1− αi)til, (1)

where αi = i
T is a dynamic weight with T being the total number of training iterations. The KD

loss Li
dis in the i-th iteration is defined as:

Li
dis =


∑L

l=1 ∥ωl(s
i
l)− til+1∥22 if i ≤ τ

∑L
l=1 ∥ωl(s

i
l)− ui

l+1∥22 otherwise,
(2)

where ωl(·) is a projector of the l-th student’s block for feature dimensionality alignment. It is
comprised of a convolutional layer, a batch normalization operator and ReLU activation. Note that
the KD in Equation 2 is from the (l + 1)-th block of the teacher to the l-th block of the student. In
our experiments, we find that this style is better than others (see Section 4.3).

The total loss L for training the student network is:

L = Lss + λLdis, (3)
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where Lss is a self-supervised loss, and λ is a weight coefficient of loss function for balancing the
two losses.

For Lss, off-the-shelf self-supervised losses like SimCLR (Chen et al., 2020) or BYOL (Grill et al.,
2020) can be used. The contrastive loss in SimCLR is:

Lsimclr = − 1

|B|
∑

m,n∈B

log
exp (sim (zm, zn) /γ)∑2|B|

q=1,q ̸=m exp (sim (zm, zq) /γ)
, (4)

where zm, zn and zq are the projected embeddings of different augmentations, (m,n) is a positive
pair from the same image, sim(·) is a similarity function, B is a mini-batch of unlabeled target
images, and γ is a temperature coefficient. The self-supervised loss in BYOL is:

Lbyol =
∑
m∈B

2− 2 · sim(p(zm), z′m)

∥p(zm)∥2 · ∥zm′∥2
, (5)

where zm and z′m are embeddings of the online network and the target network, respectively, and
p(·) is a linear predictor.

Note that the last convolution block of the student network is not involved in KD and is trained by
minimizing Lss only. The reason is that the last block mainly discovers semantic information that is
highly domain-specific. Therefore, we constrain it on the target data rather than letting it learn from
the teacher that is pre-trained on the base data.

3.3 FEATURE DENOISING

The self-supervised loss brings a phenomenon where the final feature vector for classification has
a small number of strongly activated elements while the others are close to zero (Hua et al., 2021;
Kalibhat et al., 2022). These elements of small magnitudes are regarded as noise, which may cause
overfitting. We propose a feature denoising (FD) operation to remove their contribution during the
fine-tuning phase (see Figure 1). FD keeps the largest h elements of the feature from the student
network and zeros the other elements. The FD operation is only performed on the feature sL in
the last layer of the student network. Specifically, let sL = [s(L,1), s(L,2), . . . , s(L,DL)] and s̃L =
[s̃(L,1), s̃(L,2), . . . , s̃(L,DL)] be the features before and after the FD operation, respectively, where
DL is the feature’s dimensionality. Then the FD operation is defined as:

s̃L,d =

{
(sL,d)

β if sL,d ∈ toph(sL), d = 1, 2, ..., DL

0 otherwise,
(6)

where β is a hyper-parameter which makes the non-zero elements more distinguishable and toph(·)
is the operator selecting the largest h elements of the feature. Finally, s̃M is fed to the classifier for
fine-tuning.

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION

Datasets. We evaluate the proposed CLD and FD for the CD-FSC problem on the BSCD-FSL
benchmark (Guo et al., 2020) with large domain gaps. The miniImageNet dataset (Vinyals et al.,
2016) serves as the base dataset DB which has sufficient labeled images. EuroSAT (Helber et al.,
2019), CropDisease (Mohanty et al., 2016), ISIC (Codella et al., 2019) and ChestX (Wang et al.,
2017) in BSCD-FSL are the unlabeled target datasets DT . We follow the training protocol in
STARTUP (Phoo & Hariharan, 2021) and Dynamic-Distillation (Islam et al., 2021a), which al-
lows the whole labeled training set of miniImageNet and a small proportion (20%) of unlabeled
target images available during the training period. The remaining 80% of target images are utilized
for fine-tuning and evaluating by building 5-way K-shot tasks, K ∈ {1, 5}.

Implementation details. We implement our model using the MindSpore Lite tool (Mindspore).
For a fair comparison, all the methods use ResNet-10 (Guo et al., 2020) as the backbone. Our
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Table 1: The averaged 5-way 1-shot and 5-shot averaged accuracy and 95% confidence interval
among 600 episodes are given. The reported results of SimCLR (Base) and previous state-of-the-art
Dynamic-Distillation are from (Islam et al., 2021a). The results of CI are from (Luo et al., 2022).
The results of ATA are from (Wang & Deng, 2021). The performance of ConFeSS refers to (Das
et al., 2021) and they do not give the confidence interval. The champion results are marked in bold.

EuroSAT CropDisease ISIC ChestX

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Transfer 58.42±0.94 75.31±0.71 68.45±0.87 89.12±0.52 32.82±0.60 47.13±0.58 22.48±0.41 26.65±0.43

SimCLR (Base) 58.28±0.90 80.83±0.64 68.26±0.86 83.44±0.61 32.15±0.59 45.90±0.58 22.37±0.42 26.63±0.46

CI 58.82±0.92 76.26±0.70 61.58±0.88 89.25±0.51 32.43±0.56 44.04±0.55 23.23±0.41 27.20±0.44

Transfer+SimCLR 65.92±0.88 81.83±0.59 81.39±0.80 94.85±0.38 33.86±0.61 47.25±0.59 22.91±0.45 27.03±0.43

STARTUP 65.24±0.88 81.60±0.59 78.18±0.83 92.86±0.44 34.15±0.62 46.42±0.58 22.86±0.43 26.98±0.43

ATA 65.94±0.50 79.47±0.30 77.82±0.50 88.15±0.50 34.70±0.40 45.83±0.30 21.67±0.20 23.60±0.20

BYOL 64.38±0.93 82.44±0.56 67.15±1.17 89.40±0.63 29.21±0.51 41.44±0.51 21.66±0.31 25.99±0.43

ConFeSS − 84.65 − 88.88 − 48.85 − 27.09

Dynamic-Distillation 73.14±0.84 89.07±0.47 82.14±0.78 95.54±0.38 34.66±0.58 49.36±0.59 23.38±0.43 28.31±0.46

SimCLR 75.10±0.85 90.17±0.43 88.54±0.80 96.09±0.39 35.71±0.66 48.84±0.61 22.00±0.42 24.84±0.41

BYOL+CLD+FD (ours) 72.78±0.84 88.50±0.45 86.94±0.73 95.85±0.38 37.70±0.67 51.19±0.63 24.34±0.44 30.15±0.44

SimCLR+CLD+FD (ours) 82.52±0.76 92.89±0.34 90.48±0.72 96.58±0.39 39.70±0.69 52.29±0.62 22.39±0.44 25.98±0.43

(a)

(b)

Block-1 Block-2 Block-3 Block-4

Figure 3: t-SNE results of (a) STARTUP and (b) SimCLR+CLD+FD at different blocks on the
EuroSAT dataset. It is obvious that our method can extract more discriminative features.

model is optimized by SGD with the momentum 0.9, weight decay 1e-4, and batch size 32 for 600
epochs. The learning rate is 0.1 at the beginning and decays by 0.1 after the 300th epoch and 500th
epoch. The hyper-parameters λ in Equation 3, and h and β in Equation 6 are set to 2, 64, and 0.4,
respectively. For fine-tuning and evaluating the student network, we randomly sample 600 episodes
of 5-way K-shot tasks. The performance is represented by the average classification accuracy over
the 600 episodes within the 95% confidence interval. In each episode, the parameters of the student
are frozen. An additional linear classifier is fine-tuned by minimizing the cross-entropy loss. The
above mentioned hyperparameters are determined based on the EuroSAT dataset only, and then they
are used for evaluation on all the datasets, showing the generalization ability of our method.

4.2 MAIN RESULTS

We select several basic and competitive methods for comparison in Table 1. The basic model is
Transfer that trains the encoder on the labeled base dataset with the cross-entropy loss. SimCLR
(Base) (Chen et al., 2020) trains the model on the base dataset (miniImageNet) with the contrastive
loss of SimCLR. CI (Luo et al., 2022) trains the encoder on the base dataset and converts the fea-
tures of the target dataset with a transformation function in the evaluation stage. Transfer+SimCLR
is proposed in (Islam et al., 2021b) and exhibits good transferability, which simultaneously opti-
mizes the cross-entropy loss on the base dataset and the contrastive loss of SimCLR on the target
dataset. STARTUP (Phoo & Hariharan, 2021) trains the model with three loss functions: cross-
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(a) B2-to-B1

Student United Teacher

(b) B3-to-B2

Student United Teacher Student United Teacher

(c) B4-to-B3

Figure 4: Different single-block distillation structures. B2-to-B1 means that the second block of the
teacher is distilled to the first block of the student. B3-to-B2 and B4-to-B3 are similar.

Table 2: Results of different single-block distillation stuctures on EuroSAT (5-way 1-shot). B2-to-
B1, B3-to-B2, and B4-to-B3 are defined in Figure 4.

SimCLR B2-to-B1 B3-to-B2 B4-to-B3 CLD

75.10±0.85 78.54±0.80 78.38±0.77 77.92±0.83 79.38±0.82

entropy loss on the labeled base dataset, and contrastive loss and KD loss on the unlabeled target
domain. ATA (Wang & Deng, 2021) designs a plug-and-play inductive bias-adaptive task augmen-
tation module. BYOL (Grill et al., 2020) is trained on the target dataset. ConfeSS (Das et al.,
2021) uses labeled target images to find out the useful components of the target image features.
Dynamic-Distillation (Islam et al., 2021a) designs a distillation loss that draws support from the
dynamically updated teacher network. SimCLR trains the encoder on unlabeled target data only
and shows good generalization ability. For our method, we build two models BYOL+CLD+FD and
SimCLR+CLD+FD, which use Equations 5 and 4 for self-supervised losses, respectively.

Table 1 gives the comparisons among our models and the baselines. All the best results on the four
datasets are obtained by either of our two models. In particular on EuroSAT, our SimCLR+CLD+FD
can bring 9.38% and 7.42% gains over Dynamic-Distillation and SimCLR on the 5-way 1-shot
task, respectively. On average, on the four datasets, SimCLD+CLD+FD outperforms Dynamic-
Distillation significantly (58.77% vs. 53.33%) for 1-shot; 66.94% vs. 65.57% for 5-shot. Be-
sides, although SimCLR+CLD+FD and BYOL+CLD+FD are based on SimCLR and BYOL, re-
spectively, the performances of SimCLR and BYOL are improved greatly. Finally, we visualize
the feature distributions of STARTUP and our SimCLR+CLD+FD in Figure 3. It can be seen that
SimCLR+CLD+FD exhibits better clustering results at all the blocks, especially at the last one.

4.3 ABLATION STUDY ON CROSS-LEVEL DISTILLATION

(a) same-level distillation

Student United Teacher

(b) one-to-all distillation

Student United Teacher Student United Teacher

(c) CLD

Figure 5: Different multi-blocks distillation structures. (a) and (b) are two common KD methods.
(c) is our cross-level KD.

For simplicity, the combination (according to Equation 1) of the teacher and the old student in Figure
2 is denoted as the united teacher in Figure 4 and Figure 5. In these experiments, Lsimclr is used as
Lss and FD is not employed. Table 2 gives the results of SimCLR, different single-block distillation
structures, and CLD on EuroSAT (5-way 1-shot). We can notice that all the single-block distillation
structures perform better than SimCLR, and CLD can outperform all the single-block distillation
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Table 3: Results of different multi-blocks KD structures.
EuroSAT CropDisease ISIC ChestX

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

SimCLR 75.10±0.85 90.17±0.43 88.54±0.80 96.09±0.39 35.71±0.66 48.84±0.61 22.00±0.42 24.84±0.41

same-level distillation 75.48±0.85 90.71±0.40 88.14±0.80 95.76±0.44 36.56±0.65 50.51±0.58 22.12±0.42 25.20±0.42

one-to-all distillation 77.70±0.83 91.80±0.38 89.11±0.79 95.83±0.44 36.69±0.64 50.64±0.62 22.10±0.43 24.77±0.43

CLD 79.38±0.82 92.78±0.35 89.43±0.78 96.08±0.43 37.82±0.68 52.28±0.61 22.08±0.43 25.08±0.42

0.15

0.25

0.35

0.45

0.55

0.65

0.75

Block-1 Block-2 Block-3 Block-4

R
an

d 
In

de
x

SimCLR
same-level distillation
one-to-all distillation
CLD

Figure 6: Rand Index values in the residual blocks of the methods in Table 3.

structures. Table 3 gives the results of SimCLR, different multi-blocks distillation structures and
CLD. Compared with SimCLR without KD, all the multi-blocks KD structures improve the model’s
overall performance. Second, the one-to-all KD outperforms the same-level KD in most cases.
Finally, our CLD performs best on average among the three multi-blocks KD structures.

We further explore the reason that CLD can exceed other methods. Rand Index (Rand, 1971) is a
metric to reflect the quality of feature clustering. The bigger Rand Index is, the better clustering the
method provides. Figure 6 is comprised of the Rand Index values of the features in each residual
block on the EuroSAT test dataset. Our CLD increases more than all the other methods in each
block. It means that our CLD can pick up more discriminative information at each level so that the
model gradually hunts the useful features as the network deepens.

Next, we examine the usefulness of the old student and the effect of the training iteration interval τ
(Section 3.2). Table 4 shows the experimental results of different settings. First, CLD without the old
student outperforms SimCLR. Second, using the old student is better than not using it. Considering
the performance and the memory requirement, we choose τ = 1 in all the other experiments on the
four datasets.

Table 4: Effects of the old student and the training iteration interval τ . All the methods in the table
use Lsimclr as Lss.

EuroSAT CropDisease ISIC ChestX

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

SimCLR 75.10±0.85 90.17±0.43 88.54±0.80 96.09±0.39 35.71±0.66 48.84±0.61 22.00±0.42 24.84±0.41

CLD (w/o old student) 76.85±0.83 91.58±0.40 88.72±0.78 95.85±0.43 37.04±0.65 50.90±0.60 21.40±0.32 23.91±0.39

CLD (τ = 0) 78.56±0.82 92.32±0.35 89.11±0.81 95.69±0.45 37.82±0.69 51.17±0.62 22.03±0.43 25.12±0.44

CLD (τ = 1) 79.38±0.82 92.78±0.35 89.43±0.78 96.08±0.43 37.82±0.68 52.28±0.61 22.08±0.43 25.08±0.42

CLD (τ = 10) 78.18±0.81 92.17±0.36 89.24±0.80 95.83±0.44 38.02±0.68 51.77±0.62 22.02±0.43 25.04±0.43

CLD (τ = 100) 78.79±0.80 92.44±0.37 89.56±0.81 96.06±0.42 36.81±0.65 50.60±0.62 22.29±0.43 25.17±0.43

4.4 ABLATION STUDY ON FEATURE DENOISING

On EuroSAT, the model SimCLR+CLD+FD is used to find optimal h and β on the 5-way 1-shot
tasks. As shown in Figure 7, h = 64 and β = 0.4 are chosen for the best accuracy.

With h = 64 and β = 0.4 in FD, we compare using FD or not in Table 5. We can see that the first
five models are improved with FD, while the last two are not. The different positions, which the
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Figure 7: (a) Accuracy vs. h when β = 0.4. (b) Accuracy vs. β when h = 64.

Table 5: Comparison of using FD or not on EuroSAT (5-way 1-shot).
SimCLR BYOL SimCLR+CLD BYOL+CLD one-to-all distillation Transfer+SimCLR STARTUP

w/o FD 75.10±0.85 64.38±0.93 79.38±0.82 69.47±0.84 77.70±0.83 65.92±0.88 65.24±0.88

w/ FD 78.02±0.77 69.80±0.85 82.52±0.76 72.78±0.84 80.62±0.77 63.97±0.85 60.87±0.88

∆ +2.92 +5.42 +3.20 +3.31 +2.92 -1.95 -4.37

auxiliary loss (cross-entropy and/or KD) is applied to in the two groups, are shown in Figures 8(a)
and 8(b), respectively. The reason why FD does not help in Figure 8(b) is that the loss Laux used in
the final layer reduces the noisy elements of the final feature vector for classification.

ℒ!! ℒ"#$ ℒ"#$ℒ!!

ℒ!!

ℒ"#$

Figure 8: Lss is the self-supervised loss and
Laux includes other losses such as the cross-
entropy and KD losses. (a) Laux is applied to
intermediate layers. (b) Laux is applied to the
final layer.

λ

Figure 9: Results of SimCLR+CLD+FD with the
different λ values on the EuroSAT dataset (5-way
1-shot).

4.5 ABLATION STUDY ON WEIGHT COEFFICIENT OF LOSS FUNCTION

We give the results of SimCLR+CLD+FD with the different λ values in Equation 3 on the EuroSAT
dataset (5-way 1-shot), as shown in Figure 9. We can see that the best result is obtained with λ = 2.
So we set λ = 2 in all the related experiments.

5 CONCLUSION

In this work, we handle the CD-FSC problems with large domain gaps between the base dataset and
the target datasets. We propose the cross-level distillation KD for better transferring the knowledge
of the base dataset to the student. We also present the feature denoising operation for mitigating
the overfitting. Our method improves the performance of a strong baseline Dynamic-Distillation by
5.44% on 1-shot and 1.37% on 5-shot classification tasks on average in the BSCD-FSL benchmark,
establishing new state-of-the-art results.
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A APPENDIX

A.1 RESULTS OF THE DIFFERENT BATCH SIZES

We present the results of the SimCLR+CLD+FD trained with different batch sizes on the EuroSAT
dataset (5-way 1-shot) in Figure 10. We can see that the optimal batch size is 32, so we utilize this
value in all the experiments of our method.
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Figure 10: Results of the SimCLR+CLD+FD with the different batch sizes on the EuroSAT dataset
(5-way 1-shot).

A.2 RESULTS OF THE DIFFERENT PERCENTAGES OF UNLABELED IMAGES

Figure 11 shows that as more unlabeled target images become available, the accuracy of the model
will gradually converge to a plateau.

Figure 11: Results of the SimCLR+CLD+FD with the different percentages on the EuroSAT dataset
(5-way 1-shot).

A.3 RESULTS WITH SELF-SUPERVISED PRE-TRAINED TEACHER

Table 6: Results with self-supervised & supervised pre-trained teacher.
EuroSAT CropDisease ISIC ChestX

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

SimCLR+CLR+FD (self-supervised) 80.30±0.72 91.63±0.36 89.94±0.72 96.50±0.35 37.42±0.46 49.36±0.64 22.58±0.43 25.96±0.43

SimCLR+CLR+FD (supervised) 82.52±0.76 92.89±0.34 90.48±0.72 96.58±0.39 39.70±0.69 52.29±0.62 22.39±0.44 25.98±0.43
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On the EuroSAT dataset (5-way 1-shot), we give the results of the SimCLR+FD+CLD where the
teacher is pre-trained in a self-supervised scheme. The performances of the SimCLR+CLD+FD are
shown in Table 6.
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