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ABSTRACT

We present a new method for category-specific 3D reconstruction from a single
image. A limitation of current deep learning color image-based 3D reconstruc-
tion models is that they do not generalize across datasets, due to domain shift. In
contrast, we show that one can learn to reconstruct objects across datasets through
shape priors learned from synthetic 3D data and a point cloud pose canonicaliza-
tion method. Given a single depth image at test time, we first place this partial
point cloud in a canonical pose. Then, we use a neural deformation field in the
canonical coordinate frame to reconstruct the 3D surface of the object. Finally,
we jointly optimize object pose and 3D shape to fit the partial depth observa-
tion. Our approach achieves state-of-the-art reconstruction performance across
several real-world datasets, even when trained without ground truth camera poses
(which are required by some of the state-of-the-art methods). We further show that
our method generalizes to different input modalities, from dense depth images to
sparse and noisy LIDAR scans.

1 INTRODUCTION

Reconstructing 3D object surfaces from images is a longstanding problem in the computer vision
community, with applications to robotics (Bylow et al.l 2013) or content creation (Huang et al.,
2017). Every computational approach aimed at 3D reconstruction has to answer the question of
which representation is best suited for the underlying 3D structure. An increasingly popular an-
swer is to use neural fields (Park et al., 2019; |Mescheder et al., |2019) for this task. These neural
fields, trained on 3D ground truth data, represent the de-facto gold standard regarding reconstruc-
tion quality. However, the reliance on 3D ground truth has, for now, limited these approaches to
synthetic data. To remove the reliance on 3D data, the community has shifted to dense (Milden-
hall et al.l [2020), or sparse (Zhang et al., 2021)) multi-view supervision with known camera poses.
Similarly, single-view 3D reconstruction methods have also made considerable progress by using
neural fields as their shape representation (Lin et al.| 2020; |Duggal & Pathakl [2022). While these
single-view methods can be trained from unconstrained image collections, they have not achieved
the high quality of multi-view or 3D ground truth supervised models. In this work, we aim to answer
the question: How can we achieve the reconstruction quality of 3D supervised methods from single
view observations in the wild?

With recent advances in generative modeling of synthetic 3D data (Gao et al., |2022), using 3D
data for supervision has become practical once again. However, the problem of aligning image
observations to canonical spaces remains challenging. One way to solve this alignment problem is
to learn the camera pose from data (Ye et al., 2021). However, learning camera pose prediction from
color images is a complex problem, and existing methods do not generalize to new datasets due to
domain shifts. Another promising research direction is the use of equivariant neural networks. For
example, Condor (Sajnani et al.,|2022)) and Equi-Pose (Li et al.,2021) use equivariant network layers
to canonicalize complete and partial point clouds through a self-supervised reconstruction loss.

Given an image taken from a calibrated camera, instead of using ground truth camera poses dur-
ing inference, as other single-view 3D reconstruction methods |Lin et al.[(2020); |Duggal & Pathak’
(2022), we suggest using a single depth image together with a pretrained canonicalization network
to register the partial point clouds to the canonical coordinate space. However, during our work we
found that canonical reconstruction methods are extremely sensitive to deviations in the estimated
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canonical pose (Section[d.3)). To recover from bad registration results, we jointly fine-tune 3D shape
and pose using only the partial shape (Figure 2). We achieve 3D reconstruction results on synthetic
data close to or better than the state-of-the-art. Furthermore, we show that using depth images as
input allows for generalization across various datasets, from dense depth in synthetic and natural
images to sparse depth inputs from LIDAR scans.
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Figure 1: We leverage synthetic 3D data to learn a shape prior. Using a pose registration algorithm,
we canonicalize partial point clouds to the canonical coordinate frame to generate diverse 3D recon-
structions.

Diverse 3D reconstructions

2 RELATED WORK

3D object reconstruction based on a conditional input, such as images or depth is an active research

area (Chen et al} 2019; [Mescheder et all,[2019; Mildenhall et al., [2020; [Sitzmann et al.,[2019} [Tul-
siani et al, 2017, [Hani et al., [2020). The defacto gold standard in terms of reconstruction quality

uses 3D ground truth data (Park et all, 2019; Mescheder et all, 2019). However, these approaches
are largely limited to synthetic data, such as Shapenet (Chang et al.,|2015). Reconstruction of real-
world shapes has been performed by transferring the learned representation across domains
et al.| 2022} [Bechtold et all,[202T)) or with the use of special depth sensors (Newcombe et al., 2011}
Choe et al., 2021)). However, collecting 3D ground truth data in the real world can be difficult. With
the development of neural rendering and inverse graphics methods, the requirement for 3D ground
truth has been relaxed in favor of dense multi-view supervision (Xu et al 2019; Mildenhall et al.}
2020} [Goel et al, Zhang et al.| [2021) or single view methods that require ground truth camera
poses (Lin et al., [2020; Duggal & Pathak}, 2022). However, not all applications allow for the collec-
tion of multi-view images, and estimating camera poses from images remains challenging. With the
advent of generative models for 3D shapes 2022), using 3D supervision has become an
interesting prospect once more. However, these 3D models are all living in a canonical coordinate
frame. Our work shows how we can leverage such canonical 3D data for shape reconstruction in the
wild.

2.1 3D RECONSTRUCTION FROM SINGLE VIEWS

There have been extensive studies on 3D reconstruction from single view images using various 3D
representations, such as voxels (Yan et al.} 2016} [Tulsiani et all 2017; Wu et al., 2018} [Yang et al.
2018; [Wu et al 2018; 2017), points (Fan et al., 2017} |Yang et al., 2019), primitives (Deng et al.
2020; [Chen et al.| [2020) or meshes (Kanazawa et al., 2018 |Goel et al., 2022)). Most of the methods
above use explicit representations, which suffer from limited resolution or fixed topology. Neural
rendering and neural fields provide an alternative representation to overcome these limitations. Re-

cent methods showed how to learn Signed Distance Functions (SDFs) (Xu et al., 2019;

2020; Duggal & Pathakl 2022) or volumetric representations such as occupancy (Ye et al., 2021),
which have shown great promise in learning category-specific 3D reconstructions from unstructured

image collections. However, these methods usually require additional information, such as ground
truth camera poses, which limits their applicability. In our work, we propose a method that does not
require ground truth camera poses and leverages widely available synthetic data to learn a category-
specific 3D prior model.
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2.2 LEARNING SHAPE RECONSTRUCTION THROUGH DEFORMATION

Learning a generalizable model that maps a low-dimensional latent code to 3D surfaces can suffer
from low-quality reconstructions. Category-specific deformable shape priors are useful to improve
the quality of the reconstruction (Blanz & Vetter, [1999; Engelmann et al.| 2017} Kanazawa et al.,
2018} |[Kar et al., 2015} [Loper et al., 2015; Mitchell et al., [2019). These methods generally learn
the deformation to an initial base shape. More recent work has used neural rendering together with
SDFs (Lin et al.|[2020; |Duggal & Pathak,2022) to learn 3D shape priors from image collections and
their associated camera poses. Other methods (Deng et al., 2021} [Zheng et al.| 2021) jointly learn
the deformation and the template shape in a canonical frame. In this work, we go one step further
and show how we can leverage template shape and deformation models for incomplete observations
registered to the template coordinate frame.

2.3 POSE REGISTRATION AND 3D SHAPE CANONICALIZATION

Reliance on camera poses is an issue for many real-world datasets but a necessary step for neural
rendering or deformation-based models. Point cloud registration can estimate the object pose di-
rectly and has achieved good performance when matching point clouds of the same object; however,
these methods are unsuitable for single view pose estimation without a ground truth 3D model (Jiang
etal.[2021;Wuetal.,2021;/Qin et al.,[2022)). Category-level object pose estimation methods achieve
tremendous results, for supervised training mechanisms (Rempe et al., 2020; [Novotny et al., 2019
Wang et al., [2019), and using only self-supervision (Spezialetti et al., 2020; [Sun et al., 2021} [Li
et al., 2021; Sajnani et al., 2022; Katzir et al., [2022)). For example, Canonical Capsules (Sun et al.,
2021)) learn to represent object parts with pose-invariant capsules by training a Siamese network in
a self-supervised manner. Although the learned capsules can reconstruct the input point cloud in
the learned canonical frame, Canonical Capsules only works on complete point clouds. In contrast,
Equi-pose (Li et al.,|2021) can canonicalize both complete and partial point clouds. By leveraging
an SE(3) equivariant network, Equi-pose simultaneously learns to estimate object pose and canon-
ical point cloud completion. Our work shows that one can leverage Equi-pose with test time pose
refinement to get accurate shape reconstructions in canonical space.

2.4 PoOINTCLOUD COMPLETION

Instead of relying on ground truth camera poses, we use depth images to register the partial 3D point
cloud into a canonical frame. As we use depth images as input, our method closely relates to point
cloud completion algorithms. Early work used 3D convolutions to learn shape completion (Dai
et al., 2017; |Huang et al.| 2020). However, 3D convolutions are costly and operate on a canonical
voxel grid. More recently, PointNet encoders were used for shape completion (Liu et al.| 2020;
Yuan et al., 2018). Transformers have also been shown to work well on this task (Yu et al., 2021}
Yan et al., 2022)). However, these methods rely on points already in a canonical coordinate frame.
Further, these methods do not reconstruct the underlying surface of the object but output a limited
number of points. In contrast, out method does not rely on canonical input points and reconstructs
the underlying object surface with high fidelity.

3 METHOD

Given a single segmented RGB-D image of an object, our goal is to reconstruct the underlying 3D
surface without access to ground truth camera poses. To do so, we first learn a category-specific
3D template in the canonical coordinate frame together with an instance specific deformation field
by leveraging synthetic 3D data. During test time, rather than directly reconstructing the shape in
the camera coordinate frame, we use recent advances in point cloud canonicalization to transform a
partial depth scan to the canonical space for surface reconstruction. Next, we describe first how we
learn the 3D shape prior purely on synthetic data. Then we discuss how we reconstruct the surface
of an observed depth image by deforming the learned canonical template shape.
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Figure 2: We train a DIF-Net as our 3D representation on purely synthetic data in an auto-decoder
fashion. During inference, we lift the depth image into 3D using the known camera intrinsics and
estimate an initial transformation between the camera frame and the canonical frame. We jointly
optimize the object pose and 3D shape to fit the partial observation. Trainable parameters/network
parts are marked in red.

!

3.1 3D SHAPE PRIOR

Given a set of 3D objects O;, our goal is to learn a category-specific 3D shape prior together with
a latent space describing the variation in shapes. Instead of directly mapping a low dimensional
latent code z; € R™ to the 3D shape, we follow recent advances in learning 3D shape priors through
deformation of a canonical template (Zheng et al.,|2021; |Deng et al.l[2021). We jointly learn our 3D
shape prior, represented as a neural network, and latent codes z; through the auto-decoder framework
presented in Park et al.|(2019). To generate high-quality 3D reconstructions, we use signed distance
fields (SDFs). SDF is a function that assigns each point z; € R? a scalar value s; € R

SDF(.T]) =Sy, (1)

representing the distance to the closest object surface. The sign of s; indicates whether a point is in-
side (negative) or outside (positive) of the object, and the surface can be extracted as a mesh through
marching cubes (Lorensen & Clinel [1987). We use a DIF-Net as our 3D shape prior network (Deng
et al.,|2021)) and mention the necessary background for completeness. Please see Deng et al.| (2021}
for additional details. The 3D representation network consists of a neural template field and a defor-
mation field. We use the template field to capture common structures among a category of shapes
by keeping the weights shared across all instances in the training set. The template field takes a 3D
coordinate x; as input and predicts the signed distance to the closest surface s:

T:2;eR* = 3€R (2)

Note that the template field does not have to represent a valid object but fuses common structures
from various objects into a single neural field (see Figure [f] for some examples of the template
shapes). To deform the template to a specific object instance, we use a deformation field together
with a structural correction field

D:x; € R® — (v,As) € R% 3)

The vector v deforms a point in the instance space to the template space, and the correction factor
As modifies the SDF value of point x; if it still differs from the ground truth value. The correction
factor is beneficial for categories with significant shape variations. For example, for chairs, there
exist instances with and without armrests. We use a Hyper-Network (Sitzmann et al.,2019; Mitchell
et al.,|2019) to condition the deformation field on a latent code. With a learned template field 7" and
deformation field D, the SDF value of a point x; can be obtained with

s; =T (z; +v) +As =T (z; + Dy(z;)) + Dalz;). 4)
3.2 TRAINING DIF
During training we use the auto-decoder framework (Sitzmann et al., [2019; [Park et al., 2019) to

jointly learn latent codes z; and the weights of the DIF network that predicts SDF values § = U(x).
Given a collection of shapes with ground truth SDF values on the object surface and in free space,



Under review as a conference paper at ICLR 2023

we first apply an SDF regression loss from |Sitzmann et al.|(2020) as

Logp =Y O [Ti(x)—s|+ Y (1= (VE(2),n) + > _[IVT(@)| =1+ D p(Ti(x))),

t zEQ z€S; zeN pEQ\S;
o)

where s and n denote the ground truth SDF value and normal, V is the spatial gradient of the
neural field, €2 is the 3D space in which values are sampled, and s; is the shape surface. We select
an equal number of surface and free space points uniformly at random to compute this loss. The
first term in Equ. [5] regresses the SDF value; the second term learns consistent normals on the
shape surface, the third term is the eikonal equation that enforces unit norm or the spatial gradients,
and the last term penalizes SDF values close to 0 which are far away from the object surface with
p(s) = exp(—3d-|s|),0 >> 1. For more details on this loss, check|Sitzmann et al.|(2019). We further
apply multiple regularization terms to help learn smooth deformations and consistent latent space.
The first regularization term applies Lo regularization on the embeddings as £, = ), ||2;||2. Prior
work by Deng et al.| (2021) showed that learning a template shape that captures common attributes
across a category is improved by enforcing normal consistency across all shapes by regularizing the
normals of the template networks with

Enormal = Z Z (1 - <VT('T + Dv(x))vn» (6)
i xTES;
We further want deformations to be smooth and the optional corrections to the SDF field to be
small, which is enforced with the following two loss terms Lspmooth = »_; 2 VD, (x)||2 and
L=, 2calDas(x)|. The overall loss to training the 3D shape prior is
L= Esdf + M Lnormal + A2L: + A3Lsmooth + ASKC) @)
with the A terms weighing the relative importance of each loss term.

zeQ |

3.3 POINT CLOUD LIFTING AND CANONICALIZATION DURING TESTING

Given a single RGB-D image and known camera intrinsic parameters during test time, we lift the
depth image to a partial 3D point cloud. In order to predict the deformation field of the observed
object, we first bring the observed partial point cloud to the canonical coordinate frame by leveraging
Equi-pose (Li et al.| [2021) as our pose estimation module. Equi-pose applies a SE(3)-equivariant
network to learn category-specific canonical shape reconstruction and pose estimation in a self-
supervised manner. By enforcing consistency between the invariant shape reconstruction and the
input point cloud transformed by the estimated pose, Equi-pose can estimate the pose of the input
point cloud with respect to the learned canonical frame. Therefore, we first input a complete template
shape in our canonical frame to Equi-pose such that the transformation between our canonical frame
and Equi-pose’s canonical frame can be obtained. This way, we can transform any observed partial
point cloud to our canonical frame using Equi-pose as a pose estimator. However, the estimated pose
from Equi-pose can only serve as a noisy initialization. We show in Section [3.4/ how our method
further optimizes for the pose to achieve accurate shape reconstruction.

3.4 JOINTLY OPTIMIZING SHAPE AND POSE

Once we trained the 3D shape prior network and the partial input point cloud is roughly aligned in
the canonical space, we reconstruct the object surface by optimizing only the latent code and the
object pose with the fixed prior network. As canonical 3D reconstruction methods are sensitive to
minor deviations between estimated and canonical coordinate frames [.5] we jointly optimize the
latent code z; and the initial transformation by minimizing the SDF values at the observed depth
points. At the same time, we sample random points in free space for the Eikonal term to ensure that
the neural field is an SDF. We represent the translation as a three-dimensional vector initialized to
zero and used the continuous 6D rotation parametrization from Zhou et al.| (2019)) for rotations. We
choose a random latent code from the learned latent space as our initialization z; and optimize

minzi,R,tﬁsdf + )\2£Z. (8)

Note that we keep the weights of the prior network fixed to search for the latent representation that
minimizes the SDF value at the points in the partial point cloud.
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4 EXPERIMENTS

Datasets We include three categories in our experiments: car, chair, and airplane. We use synthetic
data from the ShapeNet dataset (Chang et al.,2015)) to train our deformation and template networks
using 3D ground truth. Then our method trained on Shapenet is directly evaluated on the following
datasets: ShapeNet (Chang et al.l |2015), Pix3D chairs (Lim et al.| 2013), Pascal3D+ (Xiang et al.,
2014) and the DDAD (Guizilini et al., [2020) dataset. Since Pascal3D+ and Pix3D do not contain
depth scans, we generate the partial point clouds by removing invisible points of the CAD models
using the ground truth camera poses. Since DDAD does not provide reconstruction ground truth, we
show the performance of our method on real-world noisy scans qualitatively with DDAD. See the
appendix for additional information on datasets, baselines, and implementation details.

Implementation Details In line with prior work we train the 3D shape network on three categories
in the Shapenet (Chang et al.,|2015)) dataset, namely car, chair and plane. The networks are trained
using the Adam optimizer (Kingma & Bal|[2014). We use batch size 128 shapes per iteration and use
4000 points on the surface, and 4000 randomly sampled points in free space per object. Training
takes 10 hours on four NVIDIA V100 GPUs.

Baselines We compare against the state-of-the-art in single view, category-specific 3D object recon-
struction: i) SDF-SRN (Lin et al.} 2020}, a neural field method that represents the object in camera
coordinate frame and uses a neural renderer with silhouette supervision. ii) Closest to our method
is TARS-3D |Duggal & Pathak| (2022), a method that uses ground truth camera poses to render a
deformed template shape in canonical space to the image coordinate frame. Note that TARS-3D
has access to ground truth camera poses during inference, while our method estimates this infor-
mation on the fly. As our method is closely related to point cloud completion, we further compare
our method against a transformer-based point cloud completion method PoinTr (Yu et al.,[2021). In
contrast to the baselines, our model is only trained on Shapenet and does not have access to any 3D
or camera pose information during inference except the partial depth scan.

Evaluation Metrics In this work, we follow Tatarchenko et al.[ (2019) and report the F1-score at
threshold 1% as our primary evaluation metric. We additionally report the bidirectional chamfer
distance (CD), multiplied by a factor of 1e4 for readability.

4.1 3D RECONSTRUCTION ON SYNTHETIC SHAPENET DATA

Table|1|shows quantitative results of testing all approaches on the holdout test set of Shapenet. Our
method outperforms the baselines in the car and plane categories with ground truth camera poses
and is competitive in the chair category. We investigate cases where no ground truth camera poses
are available and initialize our method and PoinTr with the Equi-pose estimates. Even without ac-
cess to ground truth camera poses, our method performs comparable to or better than the baseline
methods. We can see that PoinTr suffers greatly when the coordinates are not in the canonical coor-
dinate system, showing that our approach of combining canonicalization with shape reconstruction
is necessary for 3D shape reconstruction on real-world depth data. Our method’s 3D reconstructions
are more faithful to the underlying ground truth mesh. PoinTr outputs only a limited number of
points and does not reconstruct the underlying surface, nor does it give us correspondences between
shapes in a category.

Table 1: 3D reconstruction results on synthetic test data. We report chamfer distance (CD) | and
F-score at threshold 0.01 (F@1%)1. T with ground truth camera poses.

Car Chair Plane
Methods
CD(}) Fel(t) Cb(l) Fel(t) CD({) Fel(1)

SDF-SRN (Lin et al.|[2020)f 9.965 0.404 27.562 0.283 12.374 0.459
TARS-3D (Duggal & Pathak/|[2022)T  10.175 0412 28.823 0.272 11.302 0.418
PoinTr (Yu et al.|[2021)" 13.249 0.264 12.834 0.352 3.637 0.685
Ours’ 6.181 0.497 27.292 0.343 4.495 0.768
PoinTr (Yu et al.|[2021) 56.435 0.125 36.714 0.230 23.713 0.302
Ours 9.371 0.439 32.138 0.334 16.562 0.631
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4.2 3D RECONSTRUCTION ON SHAPENET WITH OCCLUSION

This section investigates how our method performs when the observed object is occluded. For this
experiment, we generate occluded area for the Shapenet test data as presented in Figure 3] To study
the influence of a wide variety of occlusions, we use rectangular overlap regions and generate over-
lap ratios from 5 - 85%. We apply models trained on Shapenet on the occlusion task for all methods.
As shown in Table 2] our method outperforms all the baselines without access to ground truth cam-
era poses despite not seeing any occluded data during training. Compared to the other baselines,
PoinTr has a higher tolerance to occlusion. However, point cloud completion methods cannot pre-
dict the object’s surface. Moreover, these methods usually predict the complete point cloud by
adding predicted points to the input. Therefore, the predicted point clouds are not guaranteed to
be uniformly distributed and can have a higher density around the input points, resulting in lower
Chamfer distance, as shown in Figure@ In contrast, our method does not have these drawbacks and
can reconstruct the occluded surface by leveraging the learned category-level prior with high fidelity
in terms of F-score.

Table 2: 3D reconstruction results on occluded data from the synthetic test set. We report chamfer
distance (CD) | and F-score at threshold 0.01 (F@1%)?. T with ground truth camera poses.

Car Chair Plane

Methods

w. gt camera pose CD(}) Fe@el(t) CD(}) Fel(f) CD(}) Fel (1)
SDF-SRN (Lin et al.| 2020} 25.863 0243  156.825  0.122 72255  0.256
TARS-3D (Duggal & Pathak|[2022)"  23.806  0.241  108.976  0.131  58.998  0.263
PoinTr (Yu et al.] 2021)7 22.110 0208  19.079 0297  6.168  0.601
Ours’ 6457 0497 35972 0297 15725  0.654
PoinTr (Yu et al.|2021) 59.292  0.1225 54327  0.184 37425 0322
Ours 11.155 0390 45886  0.273  22.223  0.580

Input Image SDF-SRN TARS PoinTr Ours

N <

Figure 3: Qualitative result on the occluded Shapenet dataset.

4.3 3D RECONSTRUCTION ON PASCAL3D+ AND P1xX3D

For this experiment, we test the generalization capabilities of our approach. We directly apply our
model trained on Shapenet for reconstructing Pascal3D+ objects. TARS-3D and PoinTr also ap-
ply network weights trained on Shapenet to this task, while SDF-SRN is trained directly on the
Pascal3D+ dataset. As shown in Table [3] our method again outperforms the other surface recon-
struction methods without access to ground truth camera poses. Figure [d] shows that our method
generates reasonable outputs.
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Table 3: 3D reconstruction results on the Pascal3D+ and Pix3D dataset. We report chamfer distance
(CD) | and F-score at threshold 1% (F@1%)1. T with ground truth camera poses.

Pascal3D+ Pix3D

Methods Car Chair Plane Chair
CD(l) Fel(t) CDb(}) Fel(t) CD() Fel() CD(l) Fel(?)

SDF-SRN (Lin et al.|2020)f 16740 0245 24374 0216  29.7457  0.169 60432  0.158
TARS-3D 2022)1  19.129 02427  79.8922  0.1577  83.866  0.140 55555  0.197
PoinTr 17.859 0221 11769  0.302 4.701 0525  13.092 0377
Ours' 13.370 0302 16804 0274 54286 0289  31.165  0.335
PoinTr (Yu et al.[2021) 80.896  0.064 21251 0216  35.095 0231 35527 0283
Ours 15516 0283  17.328 0275 54849 0276 35729  0.335

We further test our method on another chair dataset, namely the chair category of the Pix3D dataset.
As shown in Table 3] our method outperforms the baselines. PoinTr again achieves a lower Chamfer
distance, which does not fully represent the reconstruction quality. As shown in Figure @ PoinTr
generates point clouds that are not uniformly distributed while our method predicts smooth surfaces.

SDF-SRN TARS

Input Image

Figure 4: Qualitative results on the Pascal3D+ (top) and Pix3D (bottom) datasets.

4.4 3D RECONSTRUCTION ON REAL-WORLD NOISY SCANS

Finally, we apply our method trained on Shapenet directly to real-world noisy LIDAR scans. To
demonstrate our tolerance to noise in the point clouds, we test our method on an autonomous driving
benchmark DDAD (Guizilini et all, 2020). DDAD contains urban scenes scanned using LiDARs
mounted on self-driving cars. To showcase our method, we extract frames that include other driving
cars and crop the LiDAR scans of other cars with masked images. Finally, these noisy LiDAR scans
are fed to the pose estimation module and our deformation field to reconstruct the surfaces. Since
DDAD does not contain ground truth CAD models, we present the qualitative results in Figure [3}
Note that our method does not have access to the image but only the noisy LiDAR point clouds.
Despite large portions of missing parts and the noise in the LiDAR scans, our method can still
reconstruct reasonable car surfaces without access to ground truth camera poses.

4.5 ABLATION STUDY AND FAILURE CASES

In this section, we conduct an ablation study to asses the importance of optimizing the pose during
inference. The main results are shown in Table El On the left, we show the ground truth mesh
overlaid with the partial input points with pose optimization (blue) and without (green). We can see
a noticeable reduction in F1 scores and a significant reduction in the reconstruction quality. The
chamfer score difference between reconstruction methods across the dataset is slight, though, con-
firming |Tatarchenko et al.| (2019) in that chamfer distance is not an ideal metric for 3D reconstruc-
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Figure 5: Qualitative results on the DDAD dataset.

tion. This ablation study shows that canonical reconstruction methods are sensitive to deviations in
the estimated canonical coordinate frame. This result is also confirmed by the poor performance of
PoinTr on input points where the estimated canonical coordinate frame is off (see Tables[T|and [3).

Table 4: Ablation of our method with and without pose optimization during inference. Left, we
show the ground truth mesh overlayed with the optimized and non-optimized pose. We show the
resulting optimized surfaces with and without pose optimization in the middle and right.

Pose optim. \ \ v
CD | 23.008 | 22223
F1 ‘ 0.313 ‘ 0.580
Shape

5 CONCLUSION AND FUTURE WORK

We introduced a new method for complete 3D surface reconstruction of an object from real-world
depth images. Our method relies on a representation obtained solely by training on synthetic data,
which allows for extracting high-quality, category-specific geometry. We showed that even small
errors in pose estimation lead to significant errors in 3D reconstruction. Therefore a simple method
which uses an independently trained pose estimator followed by reconstruction in the object frame
does not yield good reconstruction results. Instead, we presented a finetuning scheme to optimize
the object surface and pose jointly during inference. We also showed that learning strong 3D priors
benefits the 3D reconstruction of occluded objects. Our method generalizes across datasets and input
modalities, from dense depth images to sparse LIDAR point clouds. While our process still exhibits
failure modes when the error in the estimated pose is large, this could be alleviated by combining
pose estimation and 3D reconstruction in an end-to-end trainable manner. We hope our work will
inspire further work in this direction.
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