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Abstract

Estimating camera motion in deformable scenes poses a complex and open research
challenge. Most existing non-rigid structure from motion techniques assume to
observe also static scene parts besides deforming scene parts in order to establish
an anchoring reference. However, this assumption does not hold true in certain
relevant application cases such as endoscopies. Deformable odometry and SLAM
pipelines, which tackle the most challenging scenario of exploratory trajectories,
suffer from a lack of robustness and proper quantitative evaluation methodolo-
gies. To tackle this issue with a common benchmark, we introduce the Drunkard’s
Dataset, a challenging collection of synthetic data targeting visual navigation and
reconstruction in deformable environments. This dataset is the first large set of
exploratory camera trajectories with ground truth inside 3D scenes where every
surface exhibits non-rigid deformations over time. Simulations in realistic 3D build-
ings lets us obtain a vast amount of data and ground truth labels, including camera
poses, RGB images and depth, optical flow and normal maps at high resolution
and quality. We further present a novel deformable odometry method, dubbed the
Drunkard’s Odometry, which decomposes optical flow estimates into rigid-body
camera motion and non-rigid scene deformations. In order to validate our data,
our work contains an evaluation of several baselines as well as a novel tracking
error metric which does not require ground truth data. Dataset and code: https:
//davidrecasens.github.io/TheDrunkard’ sOdometry/

1 Introduction

Deformable scenes are among the most challenging cases for visual navigation and multi-view
reconstruction. They may also be among the ones with the most relevant potential applications,
ranging from the reconstruction of deforming objects [ 1], faces [2], hands [3], human bodies [4]
(or animals’ [5]), clothing [6]) or the body interior for medical applications [7, 8, 9, 10]. Among
all potential applications for mapping and navigation in non-rigid scenes, medical ones stand out
as very different from the rest and are the target of our work. In certain medical procedures, such
as endoscopies, a camera navigates inside the human body, performing exploratory trajectories
that extend far beyond its field of view. For the rest of the applications mentioned, the camera
remains nearly or fully stationary and most views have a high degree of overlap. The field of Non-
Rigid Structure from Motion (NRSfM) has experienced significant progress in the last decades, e.g.

[11,12,13,14,15,16,17,18,19, 20, 21, 22, 23, 24]. However, most of them address small-scale
reconstructions and are of limited use in medical applications. For the few exceptions that cover
SLAM [25] in deformable scenes (e.g., [7, 8, 10, 26]), there are no clear benchmarks nor datasets to

support and track progress in the field.

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.


https://davidrecasens.github.io/TheDrunkard'sOdometry/
https://davidrecasens.github.io/TheDrunkard'sOdometry/

camera view

i
\- p:
Y} 4

3rd person view

N

Level 0 . Level 1 - Level 2 ‘ Level 3

Figure 1: Sample scene of the Drunkard’s Dataset. The dataset provides various levels of scene
deformation. Top row: Sample frames from Scene 0 over all difficulty levels 0 — 3. Bottom row:
External views showing the ground truth camera trajectory in green and the camera frame in purple.
With increasing deformation level the camera motion is more abrupt. See animations with Adobe
Reader, KDE Okular or YouTube.

Our main contribution in this work is motivated by this need for benchmarking exploratory camera
motion estimations in deforming scenes. Publicly available datasets imaging deforming scenes
do not cover exploratory trajectories, and the ones that do cover them do not have ground truth
geometric annotations. Our proposal is a synthetic dataset that we denote as the “Drunkard’s Dataset”,
containing a set of high-resolution RGB images, ground truth depth, optical flow, normal maps and
camera pose trajectories in synthetic but texture-realistic deforming scenes. In order to generate a
sufficient amount and variety of data, we imported the real-world scanned indoor 3D models of the
Habitat-Matterport 3D dataset [27], added dynamic deformations, and generated trajectories within
them. Figure 1 shows several data samples with the camera trajectory that advances over time. As the
original 3D models are real-world scans, camera trajectory and depth are in consistent metric scale
along scenes. To make it a scalable benchmark dataset, every scene was recorded under four different
levels of reconstruction difficulty, increasing the deformation and camera trajectory perturbations
(observe them in Figure 1). The Drunkard’s Dataset is unique in its kind, providing large-scale data
in deformable scenes, which will enable both, benchmarking non-rigid navigation and reconstruction
methods, as well as sufficient data to evaluate the potential benefits of deep learning. Please visit our
project website for further details and access to the dataset and source code.

Scientific progress is in many occasions based on well-established and public benchmarks. This has
been the specific case in computer vision research in the last decades, up to the point that the existence
of some benchmarks is highly correlated with scientific progress in the field. Data repositories are also
essential nowadays not only to benchmark different methods, but also to train deep neural networks.
However, collecting large amounts of data with non-rigid content is challenging due to difficulties in
annotation, as argued by Li et al. [2]. Indeed, some very popular datasets are synthetic [28, 29].

Capturing large-scale data in sufficiently large non-rigid spaces, in order to benchmark odome-
try/SLAM methods, is even more challenging. Having ground truth annotations, in particular in the
medical domain, hugely increases the challenge. The most popular medical datasets [30, 31, 32, 33]
are small, lack geometric ground truth, or both. As a result, comparisons between methods are very
often inaccurate, inconclusive or questionable. This motivates our work.

The second contribution of this paper is the Drunkard’s Odometry (see Figure 2), a flow-based
odometry method for camera motion estimation from RGB-D sequences in deformable scenes. Our
method is inspired by the pose estimation of DROID-SLAM [34] and by the 3D scene flow prediction
of RAFT-3D [35]. Our novelty compared to both is that our architecture models potential scene
deformations.
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Figure 2: Overview of the Drunkard’s Odometry pipeline.

As third contribution, in order to validate methods also in non-annotated data, we present a novel
metric, the Absolute Palindrome Trajectory Error (APTE). Our novel metric is based on running
odometry methods forwards and backwards in a sequence of images, and comparing the pose errors
between the first and last frames through different loop lengths. This metric may be useful for
validating methods in realistic setups, but it is limited to relative errors between two poses, and hence
it is not as informative as metrics using ground truth labels. For this reason, we believe that APTE in
real sequences should not be trusted on its own, but as a complement to a larger and more informative
set of metrics in our simulated Drunkard’s Dataset.

2 Related Work

Structure from Motion, visual odome- Explo-

try and visual SLAM methods for rigid ~Pataset Sim/Real GT ¢y #Frames  Domain
scenes are .commonly evalqated n .a De Aguiar et al. [36] Real v X ~ 6K Human bodies
well established set of publicly avail- paust[37] Real o« X ~ 9K  Human bodies
able datasets [42, 43, 44, 45, 46, 47, NRSfM Challenge [32] Real v X - Objects

], with ground truth geometric an- DeformingThingsdD [3§] ~ Sim /X ~ 122K Humans & animals
notations and under the same metrics, °F¢ [l Sim /X~ 20K Faces

. 1s . EndoMapper [33] Real X v ~ 4M Colonoscopies
which facilitates comparisons between :

. Hamlyn [39, 30, 40, 41] Real X v ~ 93K Laparoscopies

them and progress 1n the field. Large' Drunkard’s (ours) Sim v v ~ 416K Indoor scenes

scale annotations for geometric ground
truth are quite challenging in real sce- Table 1: Overview of existing non-rigid dataset specifica-
narios, and still contain small errors due tions compared to our Drunkard’s dataset.

to the accuracy of the equipment (GPS

or motion capture systems) used. An accurate approximation of the depth and camera pose could
be recorded with sensors, but could not obtain such a good quality of optical flow and normal maps.
In real-world applications that involve significant deformations, such as endoscopies, these sensors
cannot be even equipped. While we could attempt to simulate a small-scale scenario using moving
blankets or bouncy castles, it would fall short in terms of capturing a wide range of textures, defor-
mations, and camera trajectories. Virtual environments, on the other hand, offer a superior solution,
providing a rich and diverse representation of the complex conditions that are found in real-world
settings. Synthetic datasets solve these issues at the price of the sim-to-real gap, and are common for
benchmarking methods on navigation and reconstruction on rigid scenes [49, 50, 51, 52, 27]. For
similar reasons, synthetic datasets are widely used in other computer vision tasks, such as stereo and
flow [53, 28, 54, 29, 55, 56], depth [57, 58], object recognition and segmentation [59], object pose
estimation and tracking [60], and scene segmentation, understanding and reasoning [61, 62, 63]. For
additional insights and references on the use of synthetic data in deep learning, the reader is referred
to the excellent survey by Nikolenko [64].

Note that, in most of the datasets cited, in particular those for faces and humans bodies, the camera is
almost stationary. For the few datasets where the camera moves sufficiently, exploring new areas,
the covered region is in any case reduced, deformations are small or there is absence of geometric



ground truth (see Table 1). This poses difficulties for benchmarking methods for odometry and SLAM
targeting non-rigid environments, such as [7, 9]. Odometry and SLAM methods for deformable
scenes are scarce in the literature, being [65, 7, 8, 9, 26, 10, 66, 67] the most representative ones.
However, they are all based on feature matching or direct tracking, which make them unstable in
challenging sequences. Differently, our Drunkard’s Odometry is based on scene flow, which makes it
significantly more robust.

3 The Drunkard’s Dataset
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Figure 3: Sample images of the Drunkard’s Dataset with their corresponding depth, optical flow
and normal maps. Non-rigid deformations are simulated by smooth deformations of all scene parts.

The Drunkard’s Dataset is a publicly available set of 19 different camera trajectory recordings of
19 different deforming indoor scenes, where each one has been recorded four times, one for each
difficulty level. For each level, we generated over 100K frames and recorded camera poses, RGB
images, depths, optical flow and normal maps at 1920 x 1920, being the camera poses and the depth
in consistent real-world metric scale throughout different scenes. Find sample images in Figure 3.

We used Blender [68] to render the deformations of the 19 real-world scanned indoor 3D models of
the Habitat-Matterport 3D dataset [27]. We manually designed camera trajectories such that every
room in each building is visited once and the camera trajectory returns at the starting point, except for
scenes 4, 9 and 14, in which the camera traverses the building three times, but in each loop visiting
the rooms in different order. The Blender files are publicly available, along with the scripts we used
for generating them, so that anyone can render in-house versions of the Drunkard’s Dataset scenes
modifying parameters of deformations, pose trajectory, resolution or camera type among others.

As Table 2 details, level O stands for zero deformation and camera noise, resulting in a rigid scene
and a smooth camera motion, well suited for rigid SEIM/SLAM methods. The following levels have
an increasing degree of deformation and trajectory noise. Having four levels of difficulty allows to
benchmark both rigid and non-rigid methods in a graduated manner.

Difficulty level ~Deformations  Trajectory noise Table 2: Overview of the four difﬁculty levels. Defor-

Level 0 0 0 mation and camera trajectory noises increases with higher
Level 1 Low Low : : :

Lovel 2 Medium Medium lev_els..At }evel 0 there is p(?lther deformation nor camera
Level 3 High High noise, i.e. it represents a rigid scene and a smooth motion.




4 The Drunkard’s Odometry

Given a pair of RGB-D images {I,,Z;}, I, € R¥*"*3 and Z; € R¥*" i € {1, 2}, our Drunkard’s
Odometry estimates a dense scene flow T* € SE(3)“*" between them, and the relative camera
motion T* € SE(3) iteratively (k € {1,..., M} stands for the iterative block step). T* contains
pixel-wise rigid-body transformations that ideally, i.e. in absence of noise, maps every 3D point P; =
7~ (u;, z;) —corresponding to pixel j € I;, back-projected from the pixel with image coordinates
u; € y (£ is the image domain for I;) and its sensor (ground truth) depth z; = Zl[uj}— to its
ground truth equivalent 3D point P;» = 7~ (@1, z;:) back-projected from the true associated pixel
with image coordinates U, € €)a (€22 as the image domain for Iy) and sensor depth z;; = Zo (@]
77! (u, z) stands for the inverse projection model. As the estimated scene flow T* might be affected
by noise, we will denote as P?, = T* [u;] P; the transformation of P, to the local frame of I,
that in general will not coincide the true corresponding point P;.. TF [u;] is composed of the rigid
transformation coming from the camera motion T* and the one coming from the non-rigid surface
deformations T% [u;] € SE(3), so that T* [u;] = T*T% [u;]. If the scene is rigid P;’?/ = TFPY,
and if it is deforming P%, = TFT} [u,] P
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Figure 4: Drunkard’s Odometry architecture in detail.
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Our iterative pose estimation model, shown in detail in Figure 4, is based on the foundations of the
3D flow estimation architecture of RAFT-3D [35], which does not have pose estimation capabilities
at all. Firstly, a pose regression network encodes both color images I; and Iy and outputs a initial
pre-estimate for the camera motion TP, This rigid transformation is used for initialization, so that
for any u; pixel of camera 1 TP™ [u;] = T%". Additionally, we encode both images I; and I5 in two
feature maps, which we use to build a 4D correlation pyramid between the features of all pixel pairs
at four different scales, each scale halving the resolution of the previous one. From T* and Z at
each iteration k, we can obtain dense 2D pixel correspondences u; — u;

ub =7 (77 (wy, %), T [uy]) M

where 7 (P, T [u]) stands for the pinhole camera projection model. At the beginning of each iteration,
these correspondences are used to sample the correlation features from the fixed 4D correlation
pyramid and it is one of the inputs of the update block. The estimated optical flow OF € Rw*"*2

coming from these correspondences is also an input for the update block, being O* [u;] = u?/ —uj.

The update block also takes as input an inverse depth residual obtained from the difference between
the estimated inverse depth map A5 € R**" and the sensor inverse depth Ay € R*", Ay [ul] =

/2> [ul], Yul, € Q. Values for A5 are interpolated from the grid defined by A5 ;, = Aj[uf] =

e?TP;?,. es=(00 1)T acts as a selector of the third dimension of the 3D point.



A pair of context features that extracts semantic and contextual information from image 1 are also
pre-rendered before entering the iterative process using a context encoder network and given to the
update block. One context feature map is kept fixed during all iterations and another is used as
initialization of the hidden state of the General Recurrent Unit (GRU) [69], which is at the heart of
the update block (see the network fine-grained details in the supplementary material).

At each iteration k, the estimates for T* and T* are mapped to the Lie algebra with a logarithm map
to result in a twist field t* = loggp ) (T*) and t§ = loggps)(TF) before being given to the update

block. The update operator outputs a set of updates for the optical flow OF, for the twist camera
pose t’g and for the inverse depth AE, the hidden state of the recurrent network, a mask and a set of
rigid-motion embeddings and confidence maps. These last two maps, next to the updated estimate of
A% and OF, and Z, are used by the least-squares optimizer block to update T* (see details in [35]
for this update). Scene flow is updated as T*! = T* expgp3) (t¥).

Internally the network works at 1/ 8" of the original resolution, and the estimated mask at each

iteration of the update block is used to perform a convex upsampling to the original resolution of T*
and intermediate updated 2D flow O*P™ ¢ R**"*2 by the update block.

The supervision comes from comparing the estimated optical flow O* obtained from T* and Z; with
Eq 1 and the intermediate pre-estimated Q%P with the ground truth optical flow O € R**"*2the
inverse depth error between Ay and A, the relative camera pose error of T, and the initial guess
pre-estimated by the pose network Th* against T'.. The total loss results in

Eg:)ie + Z ’YJW k Eﬂow + ‘Cdepth + Epose) ) (2)

with £ = = Zuj g||0k — Ol + w;||O** — O||;) being the optical flow loss term, £§epth =
w2 Y oy ||Ak[uj] Az[u;]||1 the inverse depth loss term, and Lpose = w3||loggps) (T.TZ1)|y and
Lhose = wy[loggs) (T2°T ;1) || the relative camera pose loss terms. w; stands for the relative
weight of the [*" loss term and ~ weights each loop.

S Experiments

In this section, we show the evaluation results of our Drunkard’s Odometry against several relevant
baselines in two non-rigid datasets: our synthetic Drunkard’s and the real Hamlyn data [39, 30, 40, 41].

Drunkard’s Setup. We trained our Drunkard’s Odometry in all scenes of the Drunkard’s Dataset
except the test ones, with around 90 — 10% ratio for training and testing, respectively, of the
difficulty level 1 with an input resolution of 320 x 320, batch size of 12, learning rate of 10~%, Adam
optimizer [70], weight decay of 10>, 12 iterations of the iterative block during training and test,
hyperparameters wy = 0.2, we = 100, wg = 200 and w4 = 6, and during 10 epochs (~ 3 days) on a
single RTX Nvidia Titan. An ablation study available in the Supplementary Material was performed
to obtain the hyperparameter values. Everything was trained from scratch except for the pose network
encoder which was pre-trained on ImageNet [71].

Drunkard’s Benchmark. We put to fight our Drunkard’s Odometry in the Drunkard’s Dataset
benchmark against the gold-standard SfM pipeline COLMARP [72, 73], that searches for matches
across all images in an offline manner using only the RGB channels of our images; the robust
and accurate DROID-SLAM [34] that uses a combination of local-online and global-offline bundle
adjustment refinements, trained also in virtual environments of buildings with optical flow and with a
well-proved generalization capability between datasets, evaluated using the same RGB-D images as
Drunkard’s Odometry; and the frame-to-frame tracking designed for non-rigid endoscopic scenes
Endo-Depth-and-Motion (EDaM) [9] that here uses the RGB plus the single-view estimated depth
maps by a network trained self-supervisely on monocular images of KITTI [43]. The non-rigid
SftM SD-DefSLAM [26] was tested but fails in the beginning of the sequences. Complex non-rigid
optimization methods such as this one are unstable and tend to fail in difficult sequences with
complicated 3D surfaces and abrupt camera trajectories like the ones in our Drunkard’s Dataset.



Level 0 Level 1 Level 2 Level 3
Align- frames RPE RPE ATE frames RPE RPE ATE frames RPE RPE ATE frames RPE RPE ATE

Scene Method ment  [%]T [em] [ [m]d  [%]T [em]) [P [m]}  [%]1 [em]d [P [m])  [%]1 [em]d [P [m]{
COLMAP [72] Sim(3) 42 036 010 0.11 42 085 0.180.12 42 1.89 035 0.81 25 3.64 0.51 1.14
DROID-SLAM [34] SE(3) 100 0.77 028 238 100 141 042179 100 2.53 0.69 126 100 3.58 1.01 1.00

0 EDaM [9] Sim(3) 100 1.83 121 149 100 1.82 137183 100 205 1.72 195 100 2.66 227 2.01

EDaM w/ GT depth SE(3) 100 2.05 1.13 2.01 100 228 128 1.78 100 2.89 1.17 224 100 3.57 2.152.42
Drunkard’s Odometry SE(3) 100 0.34 0.10 0.67 100 0.59 0.16 1.08 100 1.14 0.28 1.35 100 1.82 0.48 1.74

COLMAP [72] Sim(3) 32 0.38 0.083 0.10 32 12 0.150.24 32 3.2 0.30 0.90 23 859 0.71 2.31
DROID-SLAM [34] SE(3) 0 - - - 0 - - - 0 - - - 0 - - -
4 EDaM [9] Sim(3) 100 5.50 2.16 485 100 5.27 227481 100 539 256 479 100 5.88 2.96 4.90

EDaM w/ GT depth SE(3) 100 6.01 2.02 7.58 100 5.99 2.14 726 100 6.31 2.40 7.94 30 6.81 2.90 2.66
Drunkard’s Odometry SE(3) 100 0.60 0.14 1.21 100 0.83 0.181.39 100 143 0.28 246 100 2.26 0.46 4.66

COLMAP [72] Sim(3) 100 0.40 0.08 0.20 80 1.12 0.16 0.53 100 3.58 0.356 1.38 31 495 0.46 2.45
DROID-SLAM [34] SE(3) 100 0.56 021 1.25 100 1.52 0.39 1.56 100 3.16 0.67 243 100 4.69 1.02 2.70
5 EDaM [Y] Sim(3) 100 3.05 1.98 2.82 100 3.13 2.112.73 100 3.57 246 299 100 4.12 2.98 2.86

EDaM w/ GT depth SE(3) 100 4.63 195 400 100 4.65 2.07286 100 5.21 243 4.19 100 6.01 2.91 4.03
Drunkard’s Odometry SE(3) 100 0.45 0.13 0.47 100 0.74 0.18 0.70 100 1.44 0.29 1.24 100 2.40 0.49 2.45

Table 3: Trajectory errors for Drunkard’s test scenes for all difficulty levels. Note that COLMAP
is an offline method and is only shown for reference. Our odometry method mostly outperforms the

compared online odometry methods. Best results are highlighted as first, second , and third .

We chose scenes 0, 4 and 5 as the test ones with 3.816, 4.545 and 1.655 frames respectively. The
rest of the scenes were used for training. The trajectories estimated by COLMAP and EDaM are
compared against the ground truth after Sim(3) alignment, as they are up-to-scale. DROID-SLAM
and our Drunkard’s are aligned to the ground truth with a SE(3) transformation, as the RGB-D input
allows them to estimate the real scale. As using Sim(3) against SE(3) is not totally fair since the
former applies a scale correction, we also test EDaM using the ground truth depth maps so we can
apply SE(3) alignment. The reported metrics are: Relative Position Error (RPE) for translation and
rotation, that measures the local accuracy of the estimated trajectory against the ground truth between
consecutive frames, and the Absolute Trajectory Error (ATE) for translation that computes the global
consistency between both trajectories (see [74] for details).

For each sequence, the percentage of registered frames over the total is shown, a metric in which
COLMAP shows poor performance. As a consequence, its trajectory metrics are influenced positively
as it excludes frames that are challenging to track and probably would have increased the error.
This is beneficial in particular for the ATE, as it takes into account the global consistency rather
than frame-to-frame errors like the RPE, and happens earlier in higher deforming scenes. Also note
that DROID-SLAM is very GPU-memory demanding, in part because of the final global bundle
adjustment and it is not able work with long sequences like Scene 4. However, our Drunkard’s
Odometry and EDaM are more robust, partly due to tracking only between adjacent frames.

Table 3 shows our results. Note that our Drunkard’s Odometry practically always outperforms
DROID-SLAM and EDaM (with and without ground truth depth) in RPE and ATE, also in rigid
scenes, even if our model is trained exclusively in non-rigid scenes and does not use loop closure
or full bundle adjustment. The gap is significantly larger at higher deformation levels, for which
the Drunkard’s Odometry errors increase much less. This demonstrates that our method is able to
generalize at predicting surface deformations. Only COLMAP is able to outperform our Drunkard’s
Odometry in ATE. Note, in any case, that COLMAP has a much lower recall, as it only estimates
camera motion for a substantially lower percentage of frames. If we focus on RPE, a more fair metric
in this case, our Drunkard’s Odometry is on par to COLMAP at lower deformation levels, and clearly
outperforms it at higher ones.

Validation in real endoscopies. We used the Hamlyn dataset [30], that contains intracorporeal
endoscopic RGB scenes with weak textures, deformations and reflections. Specifically, we chose
scenes 1 and 17 (see Figure 5), which are significant exploratory ones. Most of Hamlyn’s videos have
very small camera motions, being of no interest for benchmarking odometry methods. We slightly
cropped the images to remove black pixels at the borders. Depth data was taken from the public
tracking test data of EDaM [9] which was estimated by a single-view dense depth network trained in
a self-supervised manner in all Hamlyn scenes except for the test ones. Note that this depth does not
have the same quality as the real ground truth one from the Drunkard’s Dataset.



Scene #Frames Method APTE|

EDaM [9] 0.0044
DROID-SLAM [34] 0.0019
Drunkard’s trained w/o deform. 0.0055
Drunkard’s trained w/ deform. ~ 0.0045

EDaM [9] 0.0236
DROID-SLAM [34] 0.0338
Drunkard’s trained w/o deform. 0.0309
Drunkard’s trained w/ deform. = 0.0214

(a) Scene 1 (b) Scene 17 (c) Tracking Results

Figure 5: Sample color and depth frames and APTE results for the Hamlyn test videos.

Since the Hamlyn dataset lacks ground truth camera poses, we propose a novel ground truth-free
trajectory metric to measure the quality of the estimated odometries. The key idea is to generate
loopy videos by duplicating and reversing a given image sequence and concatenating it to the end of
the original sequence. The generated "palindrome video" is twice as long as the original sequence
and any tracking method should ideally loop back to its starting position. We then simply measure
the discrepancy between start and end pose and accumulate it over various loop lengths. We denote
the new metric as the Absolute Palindrome Trajectory Error (APTE) and define it as

k k
Z;cvz APTE/C . back
APTE = Skl with APTE; = || | [] T [l || » ®
j=1

Jj=1 9

where N is the total number of frames and APTEy, the translation Root Mean Squared Error (RMSE)
of between the first and last pose of the sub-trajectory loop k. This last pose of the loop & is the result
of sequentially applying to the starting camera pose —the identity Z € SE(3)- the first & estimated
relative camera poses T for the scene plus the first k£ estimated relative camera poses for the same
scene but ran backwards ch‘wk. Then, the APTE, is the module of the translation of this last
estimated pose. We note that the APTE error is trivially minimized if all transformations are zero or
close to the origin, but these cases are easy to check visualizing the trajectory.

Table 5c shows our APTE metric in the Hamlyn test scenes for the baselines that are able to track
the whole scene (EDaM and DROID-SLAM) and two versions of our Drunkard’s Odometry, one
trained only in rigid scenes of the Drunkard’s Dataset, i.e. scenes from difficulty level 0, and other in
deformable scenes, specifically from level 1. SD-DefSLAM [26] was also tested here and breaks
after a few frames, far from the full lenght of the trajectory, even having originally been built and
tested in Hamlyn. In consequence, it is not possible to compute the APTE since we need the full
trajectory run forward and backward. Before computing the APTE, all the trajectories are scaled
with the one given by Sim(3) alignment, having as reference the trajectory estimated by EDaM, since
it showed a good qualitative tracking performance in Endo-Depth-and-Motion [9].

Figure 6 helps to visualize how the APTEy, values evolve as the length of the loops grows. Notice
that a longer loop does not always mean higher APTE. This is because there can be some specific
problematic frames with a bad pose estimation that induce a drift accumulation in the following ones
getting worse APTE,, measures. However, this can be reversed if the tracking recovers partially
during the way back in the loop. The single APTE values shown in the main paper are the average
of all the APTE,, measures.

Figure 7 collects the estimated 3D camera trajectories in the Hamlyn test scenes for all the baselines.
It is noteworthy how DROID-SLAM is incorrectly producing sharp and chaotic trajectories around
the origin, particularly evident in Scene 1 and partially in Scene 17. This can be further observed in
Figure 6b, where the plot of DROID-SLAM becomes similar to the others in the second half of the
video. The other methods produce smoother and plausible estimates. The qualitative evaluation of
visualizing the trajectories and the quantitative by the APTE complement each other. The former
helps in recognizing when a method is producing entirely incorrect camera poses, while the latter
provides an objective measure for comparing methods when the trajectories already appear good and
plausible.

One clear conclusion we can extract is that our model performs better if it is trained in non-rigid
scenes rather than rigid. Again, this shows its capacity to learn deformation patterns and retrieve
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Figure 6: Camera tracking performance on the Hamlyn dataset. APTE; values along the
N different k-frames-length-loops in Hamlyn’s scenes 1 (a) and 17 (b) for EDaM [9], DROID-
SLAM [34] and Drunkard’s Odometry (ours) with and without having been trained in deformable
scenes of the Drunkard’s Dataset (i.e. trained in level 1 and O, respectively). The training on deforming
scene substantially improves the performance of our method.

DROID-SLAM EDaM Drunkard’s trained w/o deform. Drunkard’s trained w/ deform.

Scene 1

Scene 17

Figure 7: Estimated 3D trajectories in Hamlyn test scenes for different methods. See animations
with Adobe Reader, KDE Okular or YouTube.

a more stable camera pose under real-world non-rigid challenging scenes, and even trained in a
different domain. Besides, DROID-SLAM’s superiority of APTE in Scene 1 results invalidated by
observing how it completely fails to estimate the trajectory in Figure 7. This validates the robustness
of the Drunkard’s Odometry pipeline in addressing the domain gap problem. Another interesting
point to comment on is that the advantage of our Drunkard’s Odometry over EDaM may not be clear
enough. Their performances are similar in Scene 1, while Drunkard’s is better for Scene 17. The
evaluation in our dataset shows that our Drunkard’s Odometry is significantly better than EDaM.
This indeed shows the motivation and benefit for our Drunkard’s Dataset: looking at Table 3 we can
confidently claim that our Drunkard’s Odometry is better than EDaM for camera trajectory estimation.
The apparent disagreement with the Hamlyn evaluation may arise from the fact that deformations are
not graduated in Hamlyn, and qualitatively they are very small, which may benefit rigid methods.

Limitations. Our Drunkard’s Dataset’s most clear limitation is that it is synthetic. However, as we
argued, we believe that the difficulties for acquiring high-quality data with ground truth annotations
in the target application domains motivates their use. Notice that it is not possible to record true
ground truth optical flow in real-world sequences, as we do not have access to the exact pixel motion
information. It is precisely this optical flow availability which unlocks the use of powerful flow-based
models trained in synthetic deformable data which generalize well to real non-rigid scenes. Despite
the real indoor images of the Drunkard’s Dataset may resemble real deformable scenes in texture and
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shape, such as bouncy castles, moving fabrics or canvas, they are far from the medical application
environment. Still, we think that generating medical data with realistic deformations, fluids or textures
in large scale is out of reach. As a proof, such data does not exist yet and motivates the use of the
Drunkard’s data. Our Drunkard’s Odometry has all the limitations inherent to a frame-to-frame
tracking method. Drift accumulates very quickly, and even if our sequences are loopy we do not
either detect loop closures or correct our trajectories based on them. However, the SLAM literature
shows that SLAM methods (e.g., [75]) can be built on top of odometry ones (e.g., [76]).

6 Conclusions

Estimating camera motion in deformable scenes is a challenging research problem relatively under-
explored in the literature, and for which a lack of clear benchmarks slows down research progress. In
this work, we created the Drunkard’s Dataset, a large-scale simulated dataset with perfect ground
truth and a wide variety of scenes and deformation levels to train and validate deep neural models. In
addition, we propose the Drunkard’s Odometry method for deformable scenes to validate our dataset.
The method minimizes a scene flow loss, but as its main contribution, intrinsically decomposes
the estimated twist flow into two components: The majority of motion is aimed to be explained
by a rigid-body camera motion, and all remaining motion is explained by scene deformations. In
contrast to most existing works our method does not require a static scene part for estimating a
reference coordinate frame which is crucial in fully deforming scenarios like endoscopy. To also
assess odometry estimates in the absence of ground truth data, we further define a novel ground
truth-free metric for trajectory evaluation that measures the cyclic consistency of a tracking algorithm.
Both the dataset and source code for our baseline method are publicly available. Our experimental
results validate our dataset, illustrates its challenges, and also shows that our Drunkard’s Odometry is
able to outperform relevant baselines.
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