
Published as a conference paper at ICLR 2023

DROPIT: DROPPING INTERMEDIATE TENSORS FOR
MEMORY-EFFICIENT DNN TRAINING

Joya Chen1∗, Kai Xu1∗, Yuhui Wang1, Yifei Cheng2, Angela Yao1
1National University of Singapore
2University of Science and Technology of China
joyachen@u.nus.edu {kxu,yuhuiw,ayao}@comp.nus.edu.sg chengyif@mail.ustc.edu.cn

ABSTRACT

A standard hardware bottleneck when training deep neural networks is GPU mem-
ory. The bulk of memory is occupied by caching intermediate tensors for gradient
computation in the backward pass. We propose a novel method to reduce this foot-
print - Dropping Intermediate Tensors (DropIT). DropIT drops min-k elements of
the intermediate tensors and approximates gradients from the sparsified tensors in
the backward pass. Theoretically, DropIT reduces noise on estimated gradients
and therefore has a higher rate of convergence than vanilla-SGD. Experiments
show that we can drop up to 90% of the intermediate tensor elements in fully-
connected and convolutional layers while achieving higher testing accuracy for
Visual Transformers and Convolutional Neural Networks on various tasks (e.g. ,
classification, object detection, instance segmentation). Our code and models are
available at https://github.com/chenjoya/dropit.

1 INTRODUCTION

The training of state-of-the-art deep neural networks (DNNs) (Krizhevsky et al., 2017; Simonyan &
Zisserman, 2015; He et al., 2016; Vaswani et al., 2017; Dosovitskiy et al., 2021) for computer vision
often requires a large GPU memory. For example, training a simple visual transformer detection
model ViTDet-B (Li et al., 2022), with its required input image size of 1024×1024 and batch size of
64, requires ∼700 GB GPU memory. Such a high memory requirement makes the training of DNNs
out of reach for the average academic or practitioner without access to high-end GPU resources.

When training DNNs, the GPU memory has six primary uses (Rajbhandari et al., 2020): network
parameters, parameter gradients, optimizer states (Kingma & Ba, 2015), intermediate tensors (also
called activations), temporary buffers, and memory fragmentation. Vision tasks often require train-
ing with large batches of high-resolution images or videos, which can lead to a significant memory
cost for intermediate tensors. In the instance of ViTDet-B, approximately 70% GPU memory cost
(∼470 GB) is assigned to the intermediate tensor cache. Similarly, for NLP, approximately 50% of
GPU memory is consumed by caching intermediate tensors for training the language model GPT-
2 (Radford et al., 2019; Rajbhandari et al., 2020). As such, previous studies (Gruslys et al., 2016;
Chen et al., 2016; Rajbhandari et al., 2020; Feng & Huang, 2021) treat the intermediate tensor cache
as the largest consumer of GPU memory.

For differentiable layers, standard implementations store the intermediate tensors for computing the
gradients during back-propagation. One option to reduce storage is to cache tensors from only some
layers. Uncached tensors are recomputed on the fly during the backward pass – this is the strategy
of gradient checkpointing (Gruslys et al., 2016; Chen et al., 2016; Bulo et al., 2018; Feng & Huang,
2021). Another option is to quantize the tensors after the forward computation and use the quantized
values for gradient computation during the backward pass (Jain et al., 2018; Chakrabarti & Moseley,
2019; Fu et al., 2020; Evans & Aamodt, 2021; Liu et al., 2022) – this is known as activation com-
pression training (ACT). Quantization can reduce memory considerably, but also brings inevitable
performance drops. Accuracy drops can be mitigated by bounding the error at each layer through
adaptive quantization (Evans & Aamodt, 2021; Liu et al., 2022), i.e. adaptive ACT. However, train-
ing time consequently suffers as extensive tensor profiling is necessary during training.

∗Equal contribution.

1

https://github.com/chenjoya/dropit

Published as a conference paper at ICLR 2023

In this paper, we propose to reduce the memory usage of intermediate tensors by simply dropping
elements from the tensor. We call our method Dropping Intermediate Tensors (DropIT). In the most
basic setting, dropping indices can be selected randomly, though dropping based on a min-k ranking
on the element magnitude is more effective. Both strategies are much simpler than the sensitivity
checking and other profiling strategies, making DropIT much faster than adaptive ACT.

During training, the intermediate tensor is transformed over to a sparse format after the forward
computation is complete. The sparse tensor is then recovered to a general tensor during backward
gradient computation with dropped indices filled with zero. Curiously, with the right dropping
strategy and ratio, DropIT has improved convergence properties compared to SGD. We attribute this
to the fact that DropIT can, theoretically, reduce noise on the gradients. In general, reducing noise
will result in more precise and stable gradients. Experimentally, this strategy exhibits consistent
performance improvements on various network architectures and different tasks.

To the best of our knowledge, we are the first to propose activation sparsification. The closest
related line of existing work is ACT, but unlike ACT, DropIT leaves key elements untouched, which
is crucial for ensuring accuracy. Nevertheless, DropIT is orthogonal to activation quantization, and
the two can be combined for additional memory reduction with higher final accuracy. The key
contributions of our work are summarized as follows:

• We propose DropIT, a novel strategy to reduce the activation memory by dropping the
elements of the intermediate tensor.

• We theoretically and experimentally show that DropIT can be seen as a noise reduction on
stochastic gradients, which leads to better convergence.

• DropIT can work for various settings: training from scratch, fine-tuning on classification,
object detection, etc. Our experiments demonstrate that DropIT can drop up to 90% of
the intermediate tensor elements in fully-connected and convolutional layers with a testing
accuracy higher than the baseline for CNNs and ViTs. We also show that DropIT is much
better regarding accuracy and speed compared to SOTA activation quantization methods,
and it can be combined with them to pursue higher memory efficiency.

2 RELATED WORK

Memory-efficient training. Current DNNs usually incur considerable memory costs due to huge
model parameters (e.g. GPTs (Radford et al., 2019; Brown et al., 2020)) or intermediate tensors
(e.g. , high-resolution feature map (Sun et al., 2019; Gu et al., 2022)). The model parameters and
corresponding optimizer states can be reduced with lightweight operations (Howard et al., 2017;
Xie et al., 2017; Zhang et al., 2022), distributed optimization scheduling (Rajbhandari et al., 2020),
and mixed precision training (Micikevicius et al., 2018). Nevertheless, intermediate tensors, which
are essential for gradient computation during the backward pass, consume the majority of GPU
memory (Gruslys et al., 2016; Chen et al., 2016; Rajbhandari et al., 2020; Feng & Huang, 2021),
and reducing their size can be challenging.

Gradient checkpointing. To reduce the tensor cache, gradient checkpointing (Chen et al., 2016;
Gruslys et al., 2016; Feng & Huang, 2021) stores tensors from only a few layers and recomputes any
uncached tensors when performing the backward pass; in the worst-case scenario, this is equivalent
to duplicating the forward pass, so any memory savings come as an extra computational expense.
InPlace-ABN (Bulo et al., 2018) halves the tensor cache by merging batch normalization and ac-
tivation into a single in-place operation. The tensor cache is compressed in the forward pass and
recovered in the backward pass. Our method is distinct in that it does not require additional recom-
putation; instead, the cached tensors are sparsified heuristically.

Activation compression. (Jain et al., 2018; Chakrabarti & Moseley, 2019; Fu et al., 2020; Evans
& Aamodt, 2021; Chen et al., 2021; Liu et al., 2022) explored lossy compression on the activation
cache via low-precision quantization. (Wang et al., 2022) compressed high-frequency components
while (Evans et al., 2020) adopted JPEG-style compression. In contrast to all of these methods,
DropIT reduces activation storage via sparsification, which has been previously unexplored. In
addition, DropIT is more lightweight than adaptive low-precision quantization methods (Evans &
Aamodt, 2021; Liu et al., 2022).

2

Published as a conference paper at ICLR 2023

Cache 𝑎𝑎

Layer 𝑖𝑖 in forward pass

Parameter 𝜃𝜃

Input 𝑎𝑎

Forward
function

Layer 𝑖𝑖 in backward pass

Layer 𝑖𝑖 − 1

Gradient ∇𝜃𝜃

Output 𝑧𝑧

Gradient ∇𝑧𝑧

Gradient ∇𝑎𝑎

Layer 𝑖𝑖 + 1

Layer 𝑖𝑖 + 1

Layer 𝑖𝑖 − 1
Cached 𝑎𝑎

Parameter 𝜃𝜃

Backward
function

Layer i in backward pass

Part Gradient ▽θ

Gradient ∇𝑧𝑧

Gradient ▽a

Layer 𝑖𝑖 + 1

Layer i - 1

Padded
𝑅𝑅(�𝑎𝑎)

Parameter 𝜃𝜃

Backward
function

Cached �𝑎𝑎

Layer 𝑖𝑖 in forward pass

Parameter 𝜃𝜃

Input 𝑎𝑎

Forward
function

Layer 𝑖𝑖 − 1

Output z

Layer 𝑖𝑖 + 1DropIT

(a) Baseline

Cache 𝑎𝑎

Layer 𝑖𝑖 in forward pass

Parameter 𝜃𝜃

Input 𝑎𝑎

Forward
function

Layer 𝑖𝑖 in backward pass

Layer 𝑖𝑖 − 1

Gradient ∇𝜃𝜃

Output 𝑧𝑧

Gradient ∇𝑧𝑧

Gradient ∇𝑎𝑎

Layer 𝑖𝑖 + 1

Layer 𝑖𝑖 + 1

Layer 𝑖𝑖 − 1
Cached 𝑎𝑎

Parameter 𝜃𝜃

Backward
function

Layer i in backward pass

Part Gradient ▽θ

Gradient ∇𝑧𝑧

Gradient ▽a

Layer 𝑖𝑖 + 1

Layer i - 1

Padded
𝑅𝑅(�𝑎𝑎)

Parameter 𝜃𝜃

Backward
function

Cached �𝑎𝑎

Layer 𝑖𝑖 in forward pass

Parameter 𝜃𝜃

Input 𝑎𝑎

Forward
function

Layer 𝑖𝑖 − 1

Output z

Layer 𝑖𝑖 + 1DropIT

(b) DropIT

Figure 1: For a regular baseline network (a), the intermediate tensor is fully cached in the forward
pass to be used for gradient computation during the backward pass. For DropIT, elements of the
intermediate tensors are dropped during caching; only the retained elements with zero padding are
used for gradient computation during the backward pass. DropIT can save GPU memory for two
reasons. First, cached tensors are accumulated layer by layer during the forward pass, and DropIT
sparsifies them, thereby reducing maximum memory allocation. Second, backward tensors are re-
leased after use, making the memory cost associated with padding negligible. Best viewed in color.

Gradient approximation. Approximating gradients has been explored in large-scale distributed
training to limit communication bandwidth for gradient exchange. (Strom, 2015; Dryden et al.,
2016; Aji & Heafield, 2017; Lin et al., 2018) propose dropping gradients based on some fixed
thresholds and sending only the most significant entries of the stochastic gradients with the guar-
anteed convergence (Stich et al., 2018; Cheng et al., 2022; Chen et al., 2020). Instead of dropping
gradient components, DropIT directly drops elements within intermediate tensors as our objective
is to reduce the training memory.

3 METHODOLOGY

3.1 PRELIMINARIES

We denote the forward function and learnable parameters of the i-th layer as l and θ, respectively.
In the forward pass, l operates on the layer’s input a to compute the output z: 1

z = l(a, θ). (1)

For example, if layer i is a convolution layer, l would indicate a convolution operation with θ repre-
senting the kernel weights and bias parameter.

Given a loss function F (Θ), where Θ represents the parameters of the entire network, the gradient,
with respect to θ at layer i, can be estimated according to the chain rule as

∇θ ≜
∂F (Θ)

∂θ
= ∇z

∂z

∂θ
= ∇z

∂l(a, θ)

∂θ
, (2)

where ∇z ≜ ∂F (Θ)
∂z is the gradient passed back from layer i + 1. Note that the computation of

∂l(a,θ)
∂θ requires a if the forward function l involves tensor multiplication between a and θ. This is

the case for common learnable layers, such as convolutions in CNNs and fully-connected layers in
transformers. As such, a is necessary for estimating the gradient and is cached after it is computed

1Note that the output from the previous layer i−1, i.e. ai = zi−1. However, we assign different symbols
to denote the input and output of a given layer explicitly; this redundant notation conveniently allows us, for
clarity purposes, to drop the explicit reference of the layer index i as a superscript.

3

Published as a conference paper at ICLR 2023

Layer Type Parameter θ Tensor a

Convolution O(CaCzK
2) O(BCaLa)

Fully Connected O(CaCz) O(BLaCa)

Table 1: Space complexity for parameters and intermediate tensors in a single layer. B: batch size,
La: input sequence length (e.g. , width×height), Ca, Cz: the number of input, output channels, K:
convolutional kernel size. Typically, Ca, Cz,K would be fixed once the model has been built, so the
complexity for intermediate tensors would be considerable with large B,La.

during the forward pass, as illustrated in Figure 1(a). A common way to reduce storage for a is to
store a quantized version (Jain et al., 2018; Chakrabarti & Moseley, 2019; Fu et al., 2020; Evans
& Aamodt, 2021; Liu et al., 2022). Subsequent gradients in the backward pass are then computed
using the quantized a. The gradient ∇a can be estimated similarly via chain rule as

∇a ≜
∂F (Θ)

∂a
= ∇z

∂z

∂a
= ∇z

∂l(a, θ)

∂a
. (3)

Analogous to Eq. 2, the partial ∂l(a,θ)
∂a may depend on the parameter θ and θ is similarly stored in the

model memory. However, the stored θ always shares memory with the model residing in the GPU,
so it does not incur additional memory consumption. Furthermore, θ typically occupies much less
memory. In Table 1, the intermediate tensor’s space complexity becomes significant when B or La

is large, which is common in CV and NLP tasks.

3.2 DROPPING INTERMEDIATE TENSORS

Let X denote the set of all indices for an intermediate tensor a. Suppose that X is partitioned into
two disjoint sets Xd and Xr, i.e. Xr ∩ Xd = ∅ and Xr ∪ Xd = X . In DropIT, we introduce a
dropping operation D(·) to sparsify a into â, where â consists of the elements aXr

and the indices
Xr, i.e. â = D(a) = {aXr

,Xr}. The sparse â can be used as a substitute for a in Eq. 2. While
sparsification can theoretically reduce both storage and computation time, we benefit only from
storage savings in practice. We retain general matrix multiplication because the sparsity rate is
insufficient for sparse matrix multiplication to provide meaningful computational gains. As such,
the full intermediate tensors are recovered for gradient computation, i.e. ∇θ ≈ ∇z ∂l(R(â),θ)

∂θ , where
R(·) represents the process that inflates â back to a general matrix with dropped indices filled with
zero. The overall procedure is demonstrated in Figure 1(b).

Consider for a convolutional layer with Cz kernels of size K × K. For the jth kernel, where j ∈
[1, Cz], the gradient at location (u, v) for the kth channel is given by convolving incoming gradient
∇z and input a:

∇θj,k(u, v) =
∑

(n,x,y)∈X

∇znj (x, y)a
n
k (x

′, y′), (4)

where x′=x + u and y′=y + v. The set X in this case would denote the set of all sample indices
n ∈ [1, B] and all location indices (x, y) ∈ [1,W]× [1, H] in the feature map. Without any loss in
generality, we can partition X into two disjoint sets Xr and Xd to split Eq. 4 as

∇θj,k(u, v) =
[∑
(n,x,y)∈Xd

∇znj (x, y)a
n
k (x

′, y′) +
∑

(n,x,y)∈Xr

∇znj (x, y) a
n
k (x

′, y′)

︸ ︷︷ ︸
⊤θj,k(u,v)

]
. (5)

Assume now, that some element ank (x
′, y′) is small or near-zero; in CNNs and Transformers, such an

assumption is reasonable due to preceding batch/layer normalization and ReLU or GeLU activations
(see Figure 3). Accordingly, this element’s contribution to the gradient will also be correspondingly
small. If we assign the spatial indices (x, y) in sample n of all small or near-zero elements to Xd,
then we can approximate the gradient ∇θj,k(u, v) with simply the second term of Eq. 5. We denote
the approximated gradient as gdropit = ⊤θj,k(u, v).

4

Published as a conference paper at ICLR 2023

Input 𝑎𝑎 Output 𝑧𝑧Weight 𝜃𝜃

× →

Cache �𝑎𝑎

Gradient ∇𝑧𝑧

Weight 𝜃𝜃𝑇𝑇
← ×

Gradient ∇𝑎𝑎

𝑅𝑅 �𝑎𝑎 𝑇𝑇

← ×

Gradient ⊤𝜃𝜃
(approximated)

Gradient ∇𝑧𝑧

Dropping Function 𝑫𝑫(⋅)
(e.g., Random, γ = 0.9)

(a) Forward

Input 𝑎𝑎 Output 𝑧𝑧Weight 𝜃𝜃

× →

Cache �𝑎𝑎

Gradient ∇𝑧𝑧

Weight 𝜃𝜃𝑇𝑇
← ×

Gradient ∇𝑎𝑎

𝑅𝑅 �𝑎𝑎 𝑇𝑇

← ×

Gradient ⊤𝜃𝜃
(approximated)

Gradient ∇𝑧𝑧

Dropping Function 𝑫𝑫(⋅)
(e.g., Random, γ = 0.9)

(b) Backward

Figure 2: Forward and backward of DropIT on the fully-connected layer (without bias). In the
forward pass, we sparsify the cache tensor and drop γ percentage storage. In the backward pass,
only saved elements participate in the gradient computation.

4 2 0 2 4

Value
0

2

4

Co
un

t (
10

6)

blocks.11.attn.qkv
= 70%

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8

Value
0

2

4 blocks.11.attn.proj
= 70%

4 2 0 2 4

Value
0

2

4 blocks.11.mlp.fc1
= 70%

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Value
0

2

4 blocks.11.mlp.fc2
= 70%

Figure 3: Distribution of element values in intermediate tensors’ on DeiT-Ti. Dropped elements are
shaded in grey. DropIT with min-k only discards elements that are close to zero. Here we only show
the final block while observing that the distributions of other blocks are similar.

For a fully connected layer, the approximated gradient can be defined similarly as

gdropit = ⊤θj,k =
∑
n∈Xr

∇znj ank . (6)

A visualization of the gradient approximation is shown in Figure 2. With the approximated gradient,
we can use any standard deep learning optimization scheme to update the parameters.

3.3 DROPPING FUNCTION D(·)

We define the overall dropping rate as γ = |Xr|
BCa

for a fully connected layer and γ = |Xr|
BCaHW for

a convolutional layer. γ can be varied and will be used later to define the dropping function D(·).
As we aim to drop elements with minimal contribution to the gradient, it is logical to perform a
min-k based selection on the elements’ magnitudes before dropping the elements. As a baseline
comparison, we also select Xd based on uniform random sampling. We investigate the following
options for D(·):
Random Elements: γ fraction of elements are dropped randomly within a mini-batch.

Min-K Elements: Within a mini-batch, we drop the smallest γ fraction of elements according to
their absolute magnitudes.

5

Published as a conference paper at ICLR 2023

3.4 THEORETICAL ANALYSIS

Below, we analyze convergence for dropping min-k elements. The gradient of Stochastic Gradient
Descent (SGD) is commonly viewed as Gradient Descent (GD) with noise:

gsgd = ggd + n(0, ξ2), (7)

where n represents some zero-mean noise distribution with a variance of ξ2 introduced by variation
in the input data batches.

With min-k dropping, the gradient becomes biased; we assume it can be modeled as:

gmin-k = αggd + βn(0, ξ2). (8)

That is, min-k dropping results in a bias factor α while affecting noise by a factor of β. α and β vary
each iteration, i.e., α = {α1, α2, ..., αt} and β = {β1, β2, ..., βt}. Additionally in Appendix A.2,
we provide a nonlinear approximation to gmin−k that achieves same convergence.

By scaling the learning rate with a factor of 1
α , the gradient after min-k dropping as given in Eq. 8

can also be expressed as:

gmin-k = ggd +
β

α
n(0, ξ2). (9)

We can formally show (see Appendix A.3) that E[α] ≥ E[β] ≥ 1− γ and therefore E[βα] ≤ 1. This
suggests that min-k dropping reduces the noise of the gradient. With less noise, better theoretical
convergence is expected.

Similar to convergence proofs in most optimizers, we will assume that the loss function F is L-
smooth. Under the L-smooth assumption, for SGD with a learning rate η and min-k dropping with
a learning rate η

αt
, we can reach the following convergence after T iterations:

SGD:
1

T
E

T∑
t=1

∥∇F (xt)∥2 ≤ 2(F (x1)− F (x∗))

Tη
+ ηLξ2 (10)

DropIT with min-k:
1

T
E

T∑
t=1

∥∇F (xt)∥2 ≤ 2(F (x1)− F (x∗))

Tη
+ ηLξ2

1

T

T∑
t=1

β2
t

α2
t

, (11)

where x∗ indicates an optimal solution. Full proof can be found in Appendix A.1. Note that the two
inequalities differ only by the second term in the right-hand side. αt represents the bias caused by
dropping at the t-th iteration and βt measures the noise reduction effect after dropping. We further
investigate α and β in the supplementary and show that under certain conditions, E[α] ≥ E[β],
thereby reducing the noise and improving the convergence of DropIT from standard SGD.

3.5 DROPIT FOR NETWORKS

For some layers, e.g. normalization and activations, ∂l(a,θ)
∂a may also depend on a. In these cases,

we do not drop the cache of intermediate tensors as this will affect subsequent back-propagation.
For DropIT, dropping happens only when the gradient flows to the parameters, which prevents the
aggregation of errors from approximating the gradient.

Now, we have discussed dropping tensor elements from the cache of a single layer. DropIT is the-
oretically applicable for all convolutional and fully-connected layers in a network since it does not
affect the forward pass. For Visual Transformers (Dosovitskiy et al., 2021), we apply DropIT for
most learnable layers, though we ignore the normalization and activations like LayerNorm (Ba et al.,
2016) and GELU (Hendrycks & Gimpel, 2016)). The applicable layers include fully-connected lay-
ers in multi-head attention and MLPs in each block, the beginning convolutional layer (for patches
projection), and the final fully-connected classification layer. For CNNs the applicable layers in-
clude all convolutional layers and the final fully-connected classification layer. We leave networks
unchanged during inference.

6

Published as a conference paper at ICLR 2023

Strategy Dropping Rate γ
0%(Baseline) 10% 20% 30% 40% 50% 60% 70% 80% 90%

Random 72.1∗ 72.4 72.4 72.0 71.7 70.8 69.6 68.1 65.8 60.8
Min-K 72.1∗ 72.1 72.1 72.2 72.4 72.5 72.4 72.1 70.8 66.4

∗ From Touvron et al. (2021)’s official implementation, we obtain 72.13 with public weights and our training.

Table 2: Ablation study on dropping strategy and dropping rate. Reported results are top-1 accuracy
on the ImageNet-1k validation set, achieved by DeiT-Ti training from scratch on the ImageNet-1k
training set. We highlight that the accuracy is higher than baseline (≥72.1).

0 50 100 150 200 250 300
Epoch

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Lo
ss

1 10

6.0

6.4

6.8

146 155

4.18

4.22

4.26 291 300

3.68

3.71

3.74

=0%
=20%
=40%
=50%
=60%
=70%

Figure 4: Training loss curves of Min-K DropIT. Baseline (γ = 0%) is bolded. γ = 80%, 90% are
hidden as their losses are obviously higher than the baseline. γ = 10%, 30% are also hidden for
easier viewing. γ = 40%∼70% achieve lower loss than baseline at the end. Best viewed in color.

4 EXPERIMENTS

In this section, we present a comprehensive evaluation of DropIT’s effectiveness, leveraging experi-
ments on training from scratch on ImageNet-1k (Russakovsky et al., 2015). Our results demonstrate
that DropIT outperforms existing methods by achieving lower training loss, higher testing accuracy,
and reduced GPU memory consumption. We showcase the versatility of DropIT in various fine-
tuning scenarios, such as ImageNet-1k to CIFAR-100 (Krizhevsky et al., 2009), object detection,
and instance segmentation on MS-COCO (Lin et al., 2014). Furthermore, we compare DropIT with
recent state-of-the-art ACT methods (Pan et al., 2022; Liu et al., 2022) and establish its superiority
in terms of accuracy, speed, and memory cost.

4.1 EXPERIMENTAL DETAILS

Models. For image classification, we employed DeiT (Touvron et al., 2021) instead of vanilla
ViT (Dosovitskiy et al., 2021) since it doesn’t require fine-tuning from ImageNet-21k. DeiT and
ViT share the same architecture, differing only in their training hyper-parameters. Additionally,
for transfer learning, we utilized Faster/Mask R-CNN models (Ren et al., 2017; He et al., 2017) to
evaluate our approach in object detection and instance segmentation.

Implementation Details. We use the official implementations of DeiT (without distillation) and
Faster/Mask R-CNN, and keep all hyper-parameters consistent. The only difference is that we com-
pute gradients using DropIT. Our implementation is based on PyTorch 1.12 (Paszke et al., 2019),
and we utilize torch.autograd package. During the forward pass, we use DropIT to convert the
dense tensor to coordinate format, and recover it during the backward pass. The min-k strategy of
DropIT is implemented by torch.topk, which retains elements with the largest absolute value,
based on a proportion of 1−γ. The corresponding indices of these elements are also maintained. For
all experiments, we follow DeiT (Touvron et al., 2021) and set a fixed random seed of 0. We mea-
sure training speed and memory on NVIDIA RTX A5000 GPUs. Additional details can be found in
Appendix A.8.

7

Published as a conference paper at ICLR 2023

(a) CIFAR-100 fine-tuning results. DeiT net-
works are initialized from their publicly avail-
able pre-trained ImageNet-1k weights.

Network DropIT Top-1 Accuracy

DeiT-S - 89.7
γ = 90% 90.1

DeiT-B - 90.8
γ = 90% 91.3

(b) Detection & instance segmentation on COCO.
R50-FPN denotes ResNet-50 with FPN (Lin et al.,
2017), initialized from public ImageNet-1k weights.

Network DropIT APbox APmask

Faster R-CNN
(R50-FPN)

- 37.0 n/a
γ = 90% 37.2 n/a

Mask R-CNN
(R50-FPN)

- 37.9 34.5
γ = 80% 38.5 34.5

Table 3: Fine-tuning with DropIT on image classification, object detection & instance segmentation.

Cached Dropping Rate γ
γ = 0% γ = 60% γ = 70% γ = 80% γ = 90%

Tensor 11.26 G 4.50 G (−60%) 3.38 G (−70%) 2.25 G (−80%) 1.13 G (−90%)

Table 4: Memory cost of DropIT cached tensors (without indices) for different γ. DropIT can
precisely reduce the memory by γ. The measured model is DeiT-S with a batch size of 1024.

4.2 IMPACT ON ACCURACY

Training from scratch on ImageNet-1k. Table 2 shows that training DeiT-Ti from scratch without
DropIT (baseline) has a top-1 accuracy of 72.1 on ImageNet-1k. Random dropping matches or
improves the accuracy (72.4) when γ ≤ 20%, but with higher γ (γ ≥ 30%), accuracy progressively
decreases from the baseline. The phenomenon can be explained by the following: (1) Small amounts
of random dropping (γ ≤ 20%) can be regarded as adding random noise to the gradient. The noise
has a regularization effect on the network optimization to improve the accuracy, similar to what
was observed in previous studies (Neelakantan et al., 2015; Evans & Aamodt, 2021). (2) Too much
random dropping (γ ≥ 30%) results in deviations that can no longer be seen as small gradient noise,
hence reducing performance.

With min-k dropping, DropIT can match or exceed the baseline accuracy over a wide range of γ
(≤ 70%). Intuitively, training from scratch should be difficult with DropIT, especially under large
dropping rates, as the computed gradients are approximations. However, our experiments demon-
strate that DropIT achieves 0.4% and 0.3% higher accuracy in γ = 50% and 60%, respectively. In
fact, DropIT can match the baseline accuracy even after discarding 70% of the elements.

Fig. 4 compares the loss curves when training from scratch on the baseline DeiT-Ti model without
and with DropIT using a min-k strategy. The loss curves of DropIT with various γ values follow
the same trend as the baseline; up to some value of γ, the curves are also but are consistently lower
than the baseline, with γ = 50%, 60% achieving the lowest losses and highest accuracies. As such,
we conclude that DropIT accurately approximates the gradient while reducing noise, as per our
theoretical analysis.

Fine-tuning on CIFAR-100. Table 3(a) shows that DeiT networks can be fine-tuned with DropIT
to achieve higher than baseline accuracies even while dropping up to 90% intermediate elements.
Compared to training from scratch from Table 2, DropIT can work with a more extreme dropping
rate (90% vs. 70%). We interpret that this is because the network already has a good initialization
before fine-tuning, thereby simplifying the optimization and allowing a higher γ to be used.

Backbone fine-tuning, head network training from scratch, on COCO. We investigated DropIT
in two settings: training from scratch and fine-tuning from a pre-trained network. We also studied
a backbone network initialized with ImageNet pre-training, while leaving others, such as RPN and
R-CNN head, uninitialized, which is common practice in object detection. Table 3(b) shows that
DropIT can steadily improve detection accuracy (APbox). When γ = 80%, we observed an impres-
sive 0.6 AP gain in Mask R-CNN, although this gain was not observed in APmask. We believe that
the segmentation performance may be highly related to the deconvolutional layers in the mask head,
which are not currently supported by DropIT. We plan to investigate this further in future work.
These experiments demonstrate the effectiveness of DropIT on CNNs, and in Appendix A.4, we
demonstrate the effectiveness of DropIT for ResNet training on ImageNet-1k.

8

Published as a conference paper at ICLR 2023

Benchmark FC Cache Others Cache Acc MaxM MaxM (-Index) Speed (ms)

DeiT-S on
CIFAR-100

none none 89.7 6.66 G 6.66 G 172
DropIT (γ = 90%) none 90.1 5.59 G 5.29 G 212

MESA (8-bit) MESA (8-bit) 89.7 3.52 G 3.52 G 416
DropIT(γ = 90%) MESA (8-bit) 89.9 3.27 G 2.97 G 375

GACT (4-bit) GACT (4-bit) 89.7 2.16 G 2.16 G 290+49∗

DropIT(γ = 90%) GACT (4-bit) 90.0 2.27 G 1.97 G 286+25∗

∗Note: GACT has a time-consuming sensitivity profiling computation every 1000 iterations. It costs 49.81 and
25.43 (+DropIT) seconds in our benchmark. So we add an average of this time over 1000 iterations).

Table 5: Compare and combine with state-of-the-art ACT methods. FC: fully-connected. MaxM:
maximum memory. MaxM (- Index): maximum memory without index (moved to CPU). We follow
MESA to use batch size 128 to measure memory and speed on a single GPU.

4.3 IMPACT ON MEMORY & SPEED, SOTA COMPARISON

Intermediate Tensor Cache Reduction. Table 4 shows the intermediate tensor cache reduction
achieved by DropIT. In DropIT applied layers (FC layers of DeiT-S), the total reserved activation
(batch size = 1024) is 11.26 G. When we use DropIT to discard activations, the memory reduction is
precisely controlled by γ, i.e. γ = 90% means the reduction is 11.26×0.9. DropIT does incur some
memory cost for indexing, but as we show next, the maximum GPU memory can still be reduced.

Comparison and Combination with SOTA. In Table 5, we compare and combine DropIT with
state-of-the-art activation quantization methods. Measuring performance individually, with γ =
90%, DropIT improves accuracy by 0.4 and reduces maximum memory by 1.07 G (1.37G activations
- 0.3G indexing), and slightly increases the time (40 ms) per iteration. The max memory reduction is
less than that shown Table 4 because activations from non-applicable layers still occupy considerable
memory. Therefore, a natural idea to supplement DropIT is to perform activation quantization for
layers without DropIT. We next present the combination results of DropIT with recent methods
MESA (Pan et al., 2022) and GACT (Liu et al., 2022).

As shown in Table 5, MESA can reduce memory with 8-bit quantization and it has no impact on the
baseline accuracy (89.7). However, the time cost of the MESA algorithm is also considerable, and
is 416/172 ≈ 2.4× slower than baseline and 416/212 ≈ 2× more than DropIT, with no accuracy
improvement in CIFAR-100 finetuning. MESA achieves 71.9 accuracy of DropIT-Ti on ImageNet-
1k, but DropIT can go up to 72.5 (Table 2, γ = 50%). We can combine MESA with DropIT by
applying DropIT in the conv/fc layers and applying MESA in the other layers. Together, the
accuracy, memory, and speed are all improved over MESA alone, conclusively demonstrating the
effectiveness of DropIT.

We compare similarly to GACT; Table 5 shows that at 4 bits, it can reduce max-memory even
further. Combining GACT with DropIT marginally increases the max-memory due to DropIT’s
indexing consumption; however, there are both accuracy and speed gains. Furthermore, GACT
reports 0.2∼0.4 APbox loss on COCO (Liu et al., 2022), though our DropIT can produce 0.6 APbox

improvement on COCO (Table 3(b)). To sum up, DropIT has its unique advantages in terms of
accuracy and speed compared to existing activation quantization methods. Although it saves less
memory than the latter, we can combine the two to achieve higher memory efficiency.

5 CONCLUSION

In this paper, we propose the Dropping Intermediate Tensors (DropIT) method to reduce the GPU
memory cost during the training of DNNs. Specifically, DropIT drops elements in intermediate
tensors to achieve a memory-efficient tensor cache, and it recovers sparsified tensors from the re-
maining elements in the backward pass to compute the gradient. Our experiments show that DropIT
can improve the accuracies of DNNs and save GPU memory on different backbones and datasets.
DropIT provides a new perspective to reduce GPU memory costs during DNN training. For future
work, DropIT can be explored in training large (vision-)language models.

9

Published as a conference paper at ICLR 2023

6 ACKNOWLEDGEMENTS

This research is supported by the National Research Foundation, Singapore under its NRF Fellow-
ship for AI (NRF-NRFFAI1-2019-0001). Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not reflect the views of National
Research Foundation, Singapore.

REFERENCES

Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent. In
EMNLP, pp. 440–445, 2017.

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv: 1607.06450,
2016.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In NeurIPS, volume 33, pp. 1877–
1901, 2020.

Samuel Rota Bulo, Lorenzo Porzi, and Peter Kontschieder. In-place activated batchnorm for
memory-optimized training of dnns. In CVPR, pp. 5639–5647, 2018.

Ayan Chakrabarti and Benjamin Moseley. Backprop with approximate activations for memory-
efficient network training. In NeurIPS, pp. 2426–2435, 2019.

Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang, Ion Stoica, Michael W. Mahoney, and
Joseph Gonzalez. Actnn: Reducing training memory footprint via 2-bit activation compressed
training. In ICML, pp. 1803–1813, 2021.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv, 1604.06174, 2016.

Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai, and
Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign
dropout. NeurIPS, pp. 2039–2050, 2020.

Feng Cheng, Mingze Xu, Yuanjun Xiong, Hao Chen, Xinyu Li, Wei Li, and Wei Xia. Stochastic
backpropagation: A memory efficient strategy for training video models. In CVPR, pp. 8301–
8310, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021.

Nikoli Dryden, Tim Moon, Sam Ade Jacobs, and Brian Van Essen. Communication quantization
for data-parallel training of deep neural networks. In MLHPC workshop, pp. 1–8, 2016.

R. David Evans and Tor M. Aamodt. AC-GC: lossy activation compression with guaranteed conver-
gence. In NeurIPS, pp. 27434–27448, 2021.

R David Evans, Lufei Liu, and Tor M Aamodt. Jpeg-act: accelerating deep learning via transform-
based lossy compression. In ISCA, pp. 860–873, 2020.

Jianwei Feng and Dong Huang. Optimal gradient checkpoint search for arbitrary computation
graphs. In CVPR, pp. 11433–11442, 2021.

10

Published as a conference paper at ICLR 2023

Fangcheng Fu, Yuzheng Hu, Yihan He, Jiawei Jiang, Yingxia Shao, Ce Zhang, and Bin Cui. Don’t
waste your bits! squeeze activations and gradients for deep neural networks via tinyscript. In
ICML, pp. 3304–3314, 2020.

Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. Memory-efficient
backpropagation through time. In NeurIPS, pp. 4125–4133, 2016.

Kerui Gu, Linlin Yang, and Angela Yao. Dive deeper into integral pose regression. In ICLR, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pp. 770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. In ICCV, pp.
2980–2988, 2017.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arxiv:1606.08415, 2016.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv:1704.04861, 2017.

Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia Tang, and Gennady Pekhimenko. Gist:
Efficient data encoding for deep neural network training. In ISCA, pp. 776–789, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convo-
lutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer back-
bones for object detection. In ECCV, pp. 280–296, 2022.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In ECCV, pp.
740–755, 2014.

Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan, and Serge J. Be-
longie. Feature pyramid networks for object detection. In CVPR, pp. 936–944, 2017.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compression: Reducing
the communication bandwidth for distributed training. In ICLR, 2018.

Xiaoxuan Liu, Lianmin Zheng, Dequan Wang, Yukuo Cen, Weize Chen, Xu Han, Jianfei Chen,
Zhiyuan Liu, Jie Tang, Joey Gonzalez, Michael Mahoney, and Alvin Cheung. GACT: Activation
compressed training for generic network architectures. In ICML, pp. 14139–14152, 2022.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich Elsen, David Garcı́a,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training. In ICLR, 2018.

Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach,
and James Martens. Adding gradient noise improves learning for very deep networks.
arXiv:1511.06807, 2015.

Zizheng Pan, Peng Chen, Haoyu He, Jing Liu, Jianfei Cai, and Bohan Zhuang. Mesa: A memory-
saving training framework for transformers. arXiv:2111.11124, 2022.

Adam Paszke, Sam Gross, and Francisco et al Massa. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, pp. 8026–8037, 2019.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

11

Published as a conference paper at ICLR 2023

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: memory optimizations
toward training trillion parameter models. In SC, pp. 20, 2020.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards real-time
object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell., 39(6):
1137–1149, 2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Fei-Fei
Li. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis., 115(3):211–252, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with memory. In
NeurIPS, pp. 4452–4463, 2018.

Nikko Strom. Scalable distributed DNN training using commodity GPU cloud computing. In Inter-
speech, pp. 1488–1492, 2015.

Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-resolution representation learning for
human pose estimation. In CVPR, pp. 5693–5703, 2019.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
ICML, pp. 10347–10357, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, pp. 6000–6010,
2017.

Guanchu Wang, Zirui Liu, Zhimeng Jiang, Ninghao Liu, Na Zou, and Xia Hu. A concise framework
of memory efficient training via dual activation precision. arXiv:2208.04187, 2022.

Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In CVPR, pp. 5987–5995, 2017.

David Junhao Zhang, Kunchang Li, Yali Wang, Yunpeng Chen, Shashwat Chandra, Yu Qiao, Luoqi
Liu, and Mike Zheng Shou. Morphmlp: An efficient mlp-like backbone for spatial-temporal
representation learning. In ECCV, pp. 230–248, 2022.

12

Published as a conference paper at ICLR 2023

A APPENDIX

A.1 COMPLETE CONVERGENCE ANALYSIS

Here we prove convergence of DropIT with min-k dropping strategy. By scaling the learning rate
with a factor of 1

α , the gradient of min-k dropping is modeled as:

gmin-k = ggd +
β

α
n(0, ξ2). (12)

where n is zero-mean noise with a variance of ξ2, and α, β are varied each iteration.

We assume that the loss function F is L-smooth, i.e., F is differentiable and there exists a constant
L > 0 such that

F (y) ≤ F (x) + ⟨∇F (x), y − x⟩+ L

2
∥y − x∥2, ∀x, y ∈ Rd. (13)

Performing Taylor expansion we have:

E[F (xt+1)] ≤ F (xt)− ⟨∇F (xt), xt+1 − xt⟩+
η2L

2
E[∥∇F (xt)∥2]

≤ F (xt)− η∥∇F (xt)∥2 +
η2Lξ2β2

t

2α2
t

(14)

Rearranging the terms of the above inequality and dividing by η
2 , we obtain:

∥∇F (xt)∥2 ≤ 2(F (xt)− E[F (xt+1)])

η
+

ηLξ2β2
t

α2
t

(15)

Summing up from t = 1 to T and divided by T , we get:

1

T
E

T∑
t=1

∥∇F (xt)∥2 ≤ 2(F (x1)− F (x∗))

Tη
+ ηLξ2

1

T

T∑
t=1

β2
t

α2
t

(16)

where x∗ indicates an optimal solution.

A.2 MODELING MIN-k DROPPING GRADIENT WITH NONLINEAR FUNCTION

We can replace Eq. 8 (gradient model of min-k dropping) with nonlinear function and still achieve
the same convergence as in Eq. 10.

The gradient is biased with min-k dropping, we assume it can be modeled as:

gmin-k = ggd + βn(0, ξ2) + b, (17)

where b is a bias and ||b||2 ≤ (1−α)||ggd||2. α and β varies each iteration, i.e., α = {α1, α2, ..., αt}
and β = {β1, β2, ..., βt}.

13

Published as a conference paper at ICLR 2023

Assuming the loss function F is L-smooth, we obtain:

EF (xt+1) ≤ F (xt)− ⟨∇F (xt), xt+1 − xt⟩+
η2L

2
E||∇F (xt) + b||2

= f(xt)− η⟨∇F (xt),∇F (xt) + b⟩+ η2Lξ2β2
t

2

≤ f(xt)− η⟨∇F (xt),∇F (xt) + b⟩+ η

2
||∇F (xt) + b||2 + η2Lξ2β2

t

2

= f(xt)−
η

2

(
2⟨∇F (xt),∇F (xt) + b⟩ − ||∇F (xt) + b||2

)
+

η2Lξ2β2
t

2

= f(xt)−
η

2

(
||∇F (xt)||2 − ||b||2

)
+

η2Lξ2β2
t

2

≤ f(xt)−
ηαt

2
||∇F (xt)||2 +

η2Lξ2β2
t

2
(18)

Rearranging the terms of the above inequality and dividing by ηαt

2 , we obtain:

∥∇F (xt)∥2 ≤ 2(F (xt)− E[F (xt+1)])

ηαt
+

ηLξ2β2
t

αt

(19)

Using a learning rate of η
αt

instead, we have:

∥∇F (xt)∥2 ≤ 2(F (xt)− E[F (xt+1)])

η
+

ηLξ2β2
t

α2
t

(20)

Summing up from t = 1 to T and divided by T , we get:

1

T
E

T∑
t=1

∥∇F (xt)∥2 ≤ 2(F (x1)− F (x∗))

Tη
+ ηLξ2

1

T

T∑
t=1

β2
t

α2
t

(21)

where x∗ indicates an optimal solution. The convergence is exactly the same as in Appendix A.1.

test

Optimizer Learning Rate Convergence
SGD η ∆F

Tη + ηLξ2

SGD η
α α∆F

Tη + 1
αηLξ

2

DropIT η
α

∆F
Tη + ηLξ2 1

T

∑T
t=1

β2
t

α2
t

DropIT (modeling nonlinearity as in A.2) η
α

∆F
Tη + ηLξ2 1

T

∑T
t=1

β2
t

α2
t

Table 6: Theoretical convergences of SGD and DropIT under L-smooth condition

In Table 6, we compare convergence of SGD and DropIT under various learning rates. Under a fixed
learning rate, SGD and DropIT differ no both convergence speed (the 1st term in convergence) and
error (the 2nd term in convergence formula). For a fair setting, we compare SGD with learning rate
η and DropIT with learning rate η

α . With a fixed convergence speed, DropIT theoretically achieves
lower error.

A.3 THEORETICAL ANALYSIS ON α AND β

In this section we compare the gradients of SGD and DropIT with min-k dropping. Note we slightly
change the notation of the gradients from gsgd and gmink in the main paper to improve clarity for

14

Published as a conference paper at ICLR 2023

element-wise analysis. We denote the gradient of SGD as G and DropIT as G′. Both gradients
are computed by an input tensor A and intermediate tensor Z. In DropIT we drop γ percent of the
elements in A. Thus we have:

G = A× Z (22)

G′ = (A⊙D)× Z, (23)

where ⊙ is element-wise multiplication and D is a dropping mask where each element is either 1 or
0.

From an element-wise viewpoint, we rewrite the computation of gradients:

gij =
∑
k

aikzkj (24)

g′ij =
∑
k

aikdikzkj , (25)

where dik is a mask, i.e., dik is either 0 or 1 depending on aik.

For the simplicity of analysis, we assume A and Z are independent. Let µ be the mean value of
A and c be the mean of dropped elements, after dropping, A ⊙ D has a mean of µ − c. Taking
expectation over all possible inputs, we have:

E[g′ij] = E[αgij]

=
µ− c

µ

∑
k

aikzkj

=
µ− c

µ
gij . (26)

Therefore the bias caused by dropping is expected to be µ−c
µ . Assuming the mean value of A is µ

and the mean of dropped value is c, after dropping, D(A) has a mean of µ− c. Thus the bias caused
by dropping is E[α] = µ−c

µ . Recall that we drop elements with small absolute values. In the extreme
case where every element in A has the same value as µ, c will reach the upper bound γµ. Therefore,
E[α] ≥ 1− γ.

Now we analyze on noise and compute β. Due to the variation on input samples, we have noise in
A and Z, which results in noise in G and G′. To highlight the noise, we rewrite a noisy element x
as x̄ + nx, where x̄ is the mean value of x and nx is a zero-mean noise. Applying it to Eq.24 and
Eq.25 we arrive at:

ḡij + ng =
∑
k

(āik + na)(z̄kj + nz) (27)

ḡ′ij + ng′ =
∑
k

dik(āik + na)(z̄kj + nz). (28)

Focusing on the noise of gradients, we obtain:

ng =
∑
k

(āiknz + z̄kjna + nanz) (29)

ng′ =
∑
k

(dikāiknz + dikz̄kjna + diknanz). (30)

Recall that dik is a mask depending on aik and therefore depending on āik, thus from Eq.26 we have

E[dikāik] =
µ− c

µ
āik ≈ āik > (1− γ)āik. (31)

15

Published as a conference paper at ICLR 2023

Dataset Method Top-1 Top-5 Memory (GB)

CIFAR-100

ResNet-18 (32× 32) 77.96 94.05 648
ResNet-18 (32× 32) + DropIT (γ = 0.8) 78.17 94.19 598

ViT-B/16 (224× 224) 90.32 98.88 20290×4
ViT-B/16 (224× 224) + DropIT (γ = 0.9) 90.90 99.02 16052×4

ImageNet

ResNet-18 (224× 224) 69.76 89.08 2826
ResNet-18 (224× 224) + DropIT (γ = 0.8) 69.85 89.39 2600

ViT-B/16 (224× 224) 83.40 96.96 20290×4
ViT-B/16 (224× 224) + DropIT (γ = 0.9) 83.61 97.01 16056×4

Table 7: More results of different network architecture achieved by DropIT. ResNet-18 results are
training from scratch, and ViT-B/16 are fine-tuning from public ImageNet-21k weights.

Because γ percent of D is 0 and the other 1 − γ percent of D is 1, we obtain E[dik] = 1 − γ.
Plugging them in Eq.30 we have:

E[ng′] = E[βng]

=
∑
k

(
µ− c

µ
āiknz + (1− γ)z̄kjna + (1− γ)nanz)

≤ µ− c

µ

∑
k

(āiknz + z̄kjna + nanz)

= E[αng], (32)

where the inequality is satisfied due to c ≤ γµ.

This result tells us E[β] ≤ E[α], which suggests DropIT with min-k dropping has a noise reduction
effect and should converge better than SGD.

A.4 RESNET-50 TRAINING FROM SCRATCH ON IMAGENET-1K

We follow torchvision training script to train ResNet with and without DropIT. No hyper-
parameters are changed. When γ = 70%, ResNet-50 with DropIT achieves 76.3 top-1 accuracy,
slightly higher than baseline’s 76.1 accuracy, demonstrating the effectiveness of DropIT.

A.5 MORE NETWORK RESULTS

We present more results of different network architectures as shown in Table 7. ResNet-18 are
trained from scratch by 90 epochs on ImageNet, totally following torchvision reference code.
ViT-B/16 is fine-tuned in 3 epochs from its ImageNet-21k pretrained weights. Our proposed DropIT
can improve the accuracy for these setting with lower GPU memory cost.

A.6 WHY DROPIT IS NOT USED FOR THE NETWORK FIRST & FINAL LAYERS

We do not apply DropIT to conv/fc layer if it is the first/final layer of the network. The reason is
that this does not save memory:

(1) The first layer: The logic of our DropIT on saving memory can be concluded as: creating a
smaller tensor xdropped (i.e. by torch.topk) from input tensor x, then the input tensor x will be
automatically released by python garbage collection. However, popular code style is like:

1 dataloader = ...
2 loss_func = ...
3

4 def model(x):
5 x = layer1(x)
6 x = layer2(x) # x can be released with DropIT
7 ...
8 x = layeri1(x) # x can be released with DropIT
9 x = layeri(x) # x can be released with DropIT, but cannot save

maximum memory

16

Published as a conference paper at ICLR 2023

10 return x
11

12 for x, y in dataloader:
13 x = model(x) # x will not be released with DropIT
14 loss_func(x, y).backward()
15 ...

As we can see, in the dataloader loop, the input x to model can only be recycled when model
running is finished. So, using DropIT in layer1 will not reduce maximum memory — instead, it
will increase the maximum memory as DropIT created a new xdropped.

(2) The final layer: it is easy to understand that DropIT using in the final layer has no effect on
memory. See the code block, when running to layeri, the maximum memory should be layer1
∼ layeri1 cached tensors plus x input to layeri. If we use DropIT at layeri, then there
would be an extra xdropped produced, making the maximum memory even higher.

A.7 HOW TO SELECT γ OF DROPIT

From our experiments, we recommend γ = 70% for training from scratch and γ = 80, 90% for fine-
tuning. As DropIT incurs memory cost for indexing, γ should be larger than 50% to be meaningful
(assuming index data type is int32 with the same number of bits of float32 for activation).
Empirically, we observe that γ is reflected consistently in both training loss and testing accuracy. A
too-high γ which will bias the gradient will have training losses higher than the baseline. As such,
an alternative way to select γ is to observe the training loss after a some iterations (e.g. 100); if it is
lower than the baseline, then the testing accuracy is likely to improve as well.

A.8 MORE EXPERIMENTAL DETAILS

We list the detailed key training hyper-parameters, though they are totally the same with the offical
implementations:

• DeiT-Ti, training from scratch, ImageNet-1k, w/wo DropIT2: batch size 1024, AdamW optimizer,
learning rate 10−3, weight decay 0.05, cosine LR schedule, 300 epochs, with auto mixed precision
(AMP) training;

• DeiT-S, finetuning from official DeiT-S ImageNet-1k weights, CIFAR-100, w/wo DropIT3: batch
size 768, SGD optimizer (momentum 0.9), learning rate 10−2, weight decay 10−4, cosine LR sched-
ule, 1000 epochs, with AMP training;

• DeiT-B, finetuning from official DeiT-B ImageNet-1k weights, CIFAR-100, w/wo DropIT4: batch
size 768, SGD optimizer (momentum 0.9), learning rate 10−2, weight decay 10−4, cosine LR sched-
ule, 1000 epochs, with AMP training;

• Faster R-CNN, finetuning from torchvision ResNet-50 ImageNet-1k weights (V1), COCO,
w/wo DropIT5: batch size 16, SGD optimizer (momentum 0.9), learning rate 0.02, weight decay
10−4, Multistep LR schedule (16,22 epochs), 26 epochs, without AMP training;

• Mask R-CNN, finetuning from torchvision ResNet-50 ImageNet-1k weights (V1), COCO,
w/wo DropIT6: batch size 16, SGD optimizer (momentum 0.9), learning rate 0.02, weight decay
10−4, Multistep LR schedule (16,22 epochs), 26 epochs, without AMP training.

2https://www.github.com/facebookresearch/deit/blob/main/README_deit.md
3https://www.github.com/facebookresearch/deit/issues/45
4https://www.github.com/facebookresearch/deit/issues/45
5https://www.github.com/pytorch/vision/tree/main/references/detection#

faster-r-cnn-resnet-50-fpn
6https://www.github.com/pytorch/vision/tree/main/references/detection#

mask-r-cnn

17

https://www.github.com/facebookresearch/deit/blob/main/README_deit.md
https://www.github.com/facebookresearch/deit/issues/45
https://www.github.com/facebookresearch/deit/issues/45
https://www.github.com/pytorch/vision/tree/main/references/detection##faster-r-cnn-resnet-50-fpn
https://www.github.com/pytorch/vision/tree/main/references/detection##faster-r-cnn-resnet-50-fpn
https://www.github.com/pytorch/vision/tree/main/references/detection##mask-r-cnn
https://www.github.com/pytorch/vision/tree/main/references/detection##mask-r-cnn

	Introduction
	Related work
	Methodology
	Preliminaries
	Dropping intermediate tensors
	Dropping Function D()
	Theoretical Analysis
	DropIT for Networks

	Experiments
	Experimental details
	Impact on Accuracy
	Impact on Memory & Speed, SOTA Comparison

	Conclusion
	Acknowledgements
	Appendix
	Complete Convergence Analysis
	Modeling min-k dropping gradient with nonlinear function
	Theoretical analysis on a and b
	ResNet-50 training from scratch on ImageNet-1k
	More network results
	Why DropIT is not used for the Network first & final layers
	How to select of DropIT
	More Experimental Details

