
Published as a conference paper at ICLR 2024

ON THE MARKOV PROPERTY OF NEURAL ALGORITH-
MIC REASONING: ANALYSES AND METHODS

Montgomery Bohde∗, Meng Liu∗, Alexandra Saxton, Shuiwang Ji
Department of Computer Science & Engineering
Texas A&M University
College Station, TX 77843, USA
{mbohde,mengliu,allie.saxton,sji}@tamu.edu

ABSTRACT

Neural algorithmic reasoning is an emerging research direction that endows neural
networks with the ability to mimic algorithmic executions step-by-step. A common
paradigm in existing designs involves the use of historical embeddings in predicting
the results of future execution steps. Our observation in this work is that such
historical dependence intrinsically contradicts the Markov nature of algorithmic
reasoning tasks. Based on this motivation, we present our ForgetNet, which does
not use historical embeddings and thus is consistent with the Markov nature of
the tasks. To address challenges in training ForgetNet at early stages, we further
introduce G-ForgetNet, which uses a gating mechanism to allow for the selec-
tive integration of historical embeddings. Such an enhanced capability provides
valuable computational pathways during the model’s early training phase. Our
extensive experiments, based on the CLRS-30 algorithmic reasoning benchmark,
demonstrate that both ForgetNet and G-ForgetNet achieve better generalization
capability than existing methods. Furthermore, we investigate the behavior of
the gating mechanism, highlighting its degree of alignment with our intuitions
and its effectiveness for robust performance. Our code is publicly available at
https://github.com/divelab/ForgetNet.

1 INTRODUCTION

Neural algorithmic reasoning stands at the intersection of neural networks and classical algorithm
research. It involves training neural networks to reason like classical algorithms, typically through
learning to execute step-by-step algorithmic operations (Veličković & Blundell, 2021; Veličković
et al., 2022a). Since classical algorithms inherently possess the power to generalize across inputs of
varying sizes and act as “building blocks” for complicated reasoning pathways, learning to mimic
algorithmic execution can confirm and amplify the generalization and reasoning abilities of neural
network models (Xu et al., 2020; Deac et al., 2021; Numeroso et al., 2023; Veličković et al., 2022b).

Existing works based on the CLRS-30 benchmark (Veličković et al., 2022a) have demonstrated the
effectiveness of mimicking algorithmic operations in high-dimensional latent space (Veličković et al.,
2020b; Georgiev & Lió, 2020; Veličković et al., 2020a; 2022a; Ibarz et al., 2022; Diao & Loynd,
2023). As detailed in Section 3.1, they typically employ an encoder-processor-decoder framework
to learn the step-by-step execution of algorithms. At each step, the current algorithm state is first
embedded in a high-dimensional latent space via the encoder. The embedding is then given to the
processor to perform one step of computation in the latent space. The processed embeddings are then
decoded to predict the updated algorithm state, namely hints. Within this paradigm, a common
practice is to use historical embeddings in the current execution step. Our insight in this work is that
such historical dependence contradicts the intrinsic nature of classical algorithms.

Our work is motivated by the Markov property of algorithmic reasoning tasks; that is, the present
state is sufficient to fully determine the execution output of the current step. This observation led us
to investigate if the use of historical embeddings in the existing paradigm is indeed useful as it does

∗Equal contribution

1

https://github.com/divelab/ForgetNet


Published as a conference paper at ICLR 2024

not align with the underlying Markov property. Such a misalignment introduces noise, thus hindering
the model’s generalization ability, especially in out-of-distribution scenarios. To be consistent with
the Markov property, we present ForgetNet, which removes the dependency on historical embeddings
and explicitly embraces the Markov nature of algorithmic reasoning tasks. Such a modification,
while simple, fundamentally realigns the computational graph of the neural model with the inherent
structure of algorithmic processes. We observe that, although ForgetNet shows improvements across
a wide range of tasks, training such models may be challenging due to inaccurate intermediate state
predictions, especially at the early stages of training. To improve training, we further enhance our
design with G-ForgetNet, in which a regularized gating mechanism is introduced in order to align
with the Markov property during testing while still allowing for beneficial computational pathways
during training.

Our extensive experimental evaluations on the widely used CLRS-30 algorithmic reasoning bench-
mark demonstrate that both ForgetNet and G-ForgetNet outperform established baselines. In particu-
lar, G-ForgetNet achieves robust and promising performance in many different tasks, showing the
benefit of the proposed gating mechanism. Further in-depth analyses of the training dynamics and
gate behavior shed light on our understanding of the advantages of the proposed approaches. Overall,
the findings in this work demonstrate the importance of aligning model design with the underlying
Markov nature to achieve better generalization performance in neural algorithmic reasoning tasks.

2 RELATED WORK

Equipping neural networks with algorithmic reasoning abilities has gained increasing attention in
recent research. Early attempts (Zaremba & Sutskever, 2014; Graves et al., 2014; Kaiser & Sutskever,
2015; Graves et al., 2016; Joulin & Mikolov, 2015) in this direction typically use recurrent neural
networks with augmented memory mechanisms to mimic algorithms, showing that neural models
could learn algorithmic patterns from data. With the use of graph-based representations, graph
neural networks (GNNs) (Gilmer et al., 2017; Battaglia et al., 2018) can be applied naturally to
algorithmic reasoning tasks (Veličković et al., 2020b; Georgiev & Lió, 2020; Veličković et al., 2020a;
Xu et al., 2020; Yan et al., 2020; Dudzik & Veličković, 2022; Dwivedi et al., 2023). Intuitively,
the message passing schema in various GNNs can naturally model the propagation and iterative
nature of many classical algorithms. Recently, Veličković & Blundell (2021) outlines a blueprint
for neural algorithmic reasoning, proposing a general encoder-processor-decoder framework. The
framework, trained in algorithmic tasks, produces processors with potential applicability in real-world
applications. Such generalization and transferable reasoning capabilities have been showcased in a
few prior studies (Deac et al., 2021; Numeroso et al., 2023; Veličković et al., 2022b; Beurer-Kellner
et al., 2022). In addition, Xhonneux et al. (2021); Ibarz et al. (2022) have explored the generalization
ability of the processor across multiple algorithms.

To provide a comprehensive testbed for algorithm reasoning tasks, Veličković et al. (2022a) presents
the CLRS-30 benchmark, which covers 30 classical algorithms that span sorting, searching, dynamic
programming, geometry, graphs, and strings (Cormen et al., 2022). The CLRS-30 benchmark is
known for its out-of-distribution (OOD) testing setup (Mahdavi et al., 2022), where the input size of
testing samples is much larger than those during training. Such a setup provides a rigorous test for
the generalization capability of models, serving as a standard testbed for algorithmic reasoning tasks.
In the benchmark study, multiple representative neural models, including Deep Sets (Zaheer et al.,
2017), GAT (Veličković et al., 2018), MPNN (Gilmer et al., 2017), PGN (Veličković et al., 2020a),
and Memnet (Sukhbaatar et al., 2015), have been evaluated as the processor network within the
encoder-processor-decoder framework. Based on this benchmark, Ibarz et al. (2022) further proposes
Triplet-GMPNN, which employs a triplet message passing schema (Dudzik & Veličković, 2022)
and multiple improvements for the training stability of the encoder-processor-decoder framework.
Recently, Bevilacqua et al. (2023) proposes an additional self-supervised objective to learn similar
representations for inputs that result in identical intermediate computation. a common design in
the above methods is the incorporation of historical embeddings into current execution steps. In
this work, we highlight that such historical dependence poses a misalignment with the Markov
nature of the algorithmic execution. This insight motivates our proposed ForgetNet and its enhanced
version G-ForgetNet, which more faithfully align with the Markov nature by reconsidering the use of
historical embeddings.

2



Published as a conference paper at ICLR 2024

Figure 1: An illustration of (a) the baseline, (b) ForgetNet, and (c) G-ForgetNet methods. E , P , and
D represent the encoder, processor, and decoder module, respectively.

3 ANALYSES ON THE MARKOV PROPERTY

In this section, we first recap the existing encoder-processor-decoder paradigm on the algorithmic
reasoning tasks given in the CLRS-30 benchmark. Then, we emphasize the Markov characteristic
of algorithmic executions. In addition, we highlight the existing misalignment between the use of
historical embeddings and this Markov property. Motivated by this observation, we present ForgetNet,
which removes such historical embeddings to achieve a closer alignment with the task’s nature. An
empirical study validates that ForgetNet achieves better generalization capability.

3.1 ENCODER-PROCESSOR-DECODER PARADIGM

Following prior research, we consider the algorithmic reasoning tasks as formulated in the CLRS-30
benchmark (Veličković et al., 2022a). For a certain algorithm, a single execution trajectory serves as a
data sample, which is composed of the input, output, and hints. Here, hints are a time series
of intermediate states of the algorithm execution. Typically, a data sample is represented as a graph
with n nodes, where n reflects the size of a particular sample. For example, in sorting algorithms,
elements in the input list of length n are denoted as n nodes. With such a graph representation, the
input, output, and hints at a particular time step are either located in node-level, edge-level, or
graph-level features. As detailed in Veličković et al. (2022a), there are five possible types of features,
including scalar, categorical, mask, mask one, and pointer, each accompanied by its
encoding/decoding strategies and associated loss functions.

Let us denote the node-level, edge-level, and graph-level features at time step t as {x(t)
i }, {e(t)ij }, and

g(t), respectively. Here, i indicates the node index and ij specifies the index of the edge between
node i and j. Note that in addition to the input, hints are also included in these features when
they are available. Most existing neural algorithmic learners (Veličković et al., 2020b; Georgiev
& Lió, 2020; Veličković et al., 2020a; 2022a; Ibarz et al., 2022; Diao & Loynd, 2023) adopt the
encoder-processor-decoder paradigm (Hamrick et al., 2018). Specifically, at each time step t, the
encoder first embeds the current features into high-dimensional representations as

x̄
(t)
i = fn

(
x
(t)
i

)
, ē

(t)
ij = fe

(
e
(t)
ij

)
, ḡ(t) = fg

(
g(t)

)
. (1)

Here, fn(·), fe(·), and fg(·) are the encoder layers, typically parameterized as linear layers. The
embeddings are then fed into a processor, which is parameterized as a graph neural network fGNN(·),
to perform one step of computation. The processor can be formulated as

z
(t)
i =

[
x̄
(t)
i ,h

(t−1)
i

]
, {h(t)

i } = fGNN

(
{z(t)

i }, {ē(t)ij }, ḡ
(t)
)
, (2)

where [·] denotes concatenation. It is worth noting that the processed node embeddings from the
previous step, {h(t−1)

i }, are used at each time step t. Initially, h(0)
i = 0 for all nodes. Subsequently,

the decoder, a linear model, uses the processed node embeddings {h(t)
i } to either predict the hints

for the next time step, or the output if it is at the final time step. Note that the encoder and decoder
should be task-tailored based on the feature types in the particular task. Additionally, the learnable
parameters of all neural modules are shared over time steps. To train the described encoder-processor-
decoder model, the loss is calculated based on the decoded hints at every step and the output at
the end.

3



Published as a conference paper at ICLR 2024

5 2 4 3 1

5 2 4 3 1 2 5 4 3 1

5 2 4 3 1

2 4 5 3 1

5 2 4 3 1Intermediate States 
(Hints)

Partially-Sorted 
Lists

Figure 2: Illustration of the execution steps in insertion sort. The top row represents the intermediate
states, while the bottom row shows the corresponding partially sorted lists. At a specific step, the
present state, denoted as the hints, includes the current order (the black pointers), the recently
inserted element (the green pointer), and the current iterator (the blue pointer). The present state can
fully determine the next intermediate state. The figure is adapted from Veličković et al. (2022a).

During training, either the ground truth hints or the hints predicted from the previous step can be
fed into the encoder, depending on whether teacher forcing is used. During inference, the step-by-step
hints are not available, and the encoder always receives the predicted hints from the previous
step. In the benchmark study by Veličković et al. (2022a), the ground truth hints are used with
50% probability during training, given that the training process would become unstable without
teacher forcing. While using the actual hints can stabilize training, it introduces discrepancies
between training and inference modes. Recently, Ibarz et al. (2022) proposes several techniques
to improve training stability, such as using soft hint prediction, specific initialization, and gradient
clipping tricks. More importantly, it demonstrates that, with such training stability, it is possible to
completely remove teacher forcing and enforce the model to rely on the hints predicted from the
previous step, thus aligning the training with inference and achieving better performance. Therefore,
as illustrated in Figure 1 (a), our study in this work specifically adopts and builds on this pipeline that
operates without relying on teacher forcing.

3.2 ALGORITHMIC NECESSITY OF HISTORICAL EMBEDDINGS

Markov nature of algorithmic executions. The Markov property refers to the principle that future
states depend only on the current state and not on the sequence of states that preceded it. It is important
to note that such fundamental property holds in the context of algorithmic reasoning tasks formulated
in the CLRS-30 benchmark because the entire algorithm state is given in each hints. To be specific,
within an algorithm’s sequential execution, the state at a time step t encompasses all necessary
information to unambiguously determine the state at the subsequent time step t + 1, preventing
the need to refer to any states preceding time step t. Let us take the insertion sort in Figure 2 as
an example. At any specific step, the intermediate state, represented as the hints, completely
determines the algorithmic execution output of that particular step, i.e., the next intermediate state.

Misalignment with the use of historical embeddings. Given the Markov nature of the task, we
revisit the necessity of using historical embeddings in the existing paradigm for algorithm reasoning.
As described in Section 3.1, a prevalent practice in the existing encoder-processor-decoder framework
is the incorporation of historical embeddings from previous steps into the current processor input.
This practice, which might seem to naturally borrow from design principles in graph neural networks
(GNNs) and recurrent neural networks (RNNs), intends to capture and propagate potentially relevant
information across time steps. However, it intrinsically contradicts the Markov nature of the task
as highlighted above. Given the Markov property of tasks within the CLRS-30 benchmark, the
progression of the algorithm should depend solely on the current state, given by the current hints.
The incorporation of historical embeddings from previous steps, while seemingly advantageous,
might inadvertently add unnecessary complexity to the model. Such an addition not only complicates
the model architecture but also introduces potential discrepancies and noise that might misguide
our neural learners away from the desired algorithmic trajectory, consequently compromising the
generalization ability.

ForgetNet: removing the use of historical embeddings. As studied by Xu et al. (2020), it is
easier for neural networks to learn reasoning tasks where the computational graph of the neural
network aligns with the algorithmic structure of the task since the network only needs to learn simple
algorithm steps. Motivated by this intuition and the identified misalignment between the use of
historical embeddings and the Markov nature of neural algorithmic reasoning tasks, we suggest
removing the use of historical embeddings to align the computational graph of the neural model

4



Published as a conference paper at ICLR 2024

BF
S

Mini
mum

Se
gm

en
ts 

Int
ers

ec
t

Be
llm

an
-Fo

rd
Dijk

str
a

DAG
 Sh

ort
es

t P
ath

s

Ac
tiv

ity
 Se

lec
tor DFS

Grah
am

 Sc
an

Ins
ert

ion
 So

rt

Matr
ix 

Ch
ain

 Orde
r

Bri
dg

es
MST

-Pr
im

Top
olo

gic
al 

So
rt

Art
icu

lat
ion

 Po
int

s

Tas
k S

ch
ed

uli
ng

Jar
vis

' M
arc

h
MST

-Kr
us

ka
l

LC
S L

en
gth

Opti
mal 

BS
T

Bu
bb

le 
So

rt

Bin
ary

 Se
arc

h

Fin
d M

ax
. S

ub
arr

ay

Naïv
e S

trin
g M

atc
he

r
Quic

kso
rt

SC
C

Hea
ps

ort

Flo
yd

-W
ars

ha
ll

Kn
uth

-M
orr

is-
Pra

tt
Quic

kse
lec

t

Ove
ral

l A
ve

rag
e

0

20

40

60

80

100

Av
er

ag
e 

Sc
or

e 
[%

]

ForgetNet
Baseline

Figure 3: Comparison between ForgetNet and the baseline. Reported results are the average of 10
runs with random seeds. Numerical results can be found in Table 1.

with the task’s Markov nature. Specifically, following the notation in Eq. (2), we remove the use of
{h(t−1)

i } and only use the encoded node embeddings {x̄(t)
i } as the input node embeddings for the

processor. Formally, the processor as in Eq. (2) is replaced with

{h(t)
i } = fGNN

(
{x̄(t)

i }, {ē(t)ij }, ḡ
(t)
)
. (3)

While the modification of the model architecture seems simple, it non-trivially enables the updated
model to have a direct and coherent alignment with the underlying Markov nature of the neural algo-
rithmic reasoning task. The parameterized processor can thus focus on learning the one-step execution
of the algorithm, without the potential discrepancies introduced by using historical embeddings. This
new streamlined framework, as illustrated in Figure 1 (b), is termed ForgetNet.

Empirical validation. To verify our insight, using the full set of algorithms from the CLRS-30
benchmark, we train our ForgetNet alongside the existing architecture as a baseline (i.e., Figure 1 (b)
vs. Figure 1 (a)). The only difference between these two models is that the historical embeddings are
removed in ForgetNet. Using the standard OOD splits in the CLRS-30 benchmark, we perform 10
runs for each model on each algorithm task with a single set of hyperparameters. As demonstrated in
Figure 3, ForgetNet improves the performance over the baseline across 23/30 algorithmic reasoning
tasks. The improvements brought by removing historical embeddings are quite significant on several
tasks. For example, the absolute margins of improvement on DFS, insertion sort, and bubble sort
are 66.79%, 24.57%, and 13.19% respectively. By focusing purely on the relevant signals at the
current step, ForgetNet can generalize better to OOD testing samples, fitting more useful signals for
improved performance. In Appendix B.1, we further evaluate the performance of ForgetNet on the
multi-task setup following Ibarz et al. (2022). These empirical studies directly verify our insight that
it is effective to explicitly enforce the Markov property in neural algorithmic learners.

4 IMPROVED TRAINING VIA ADAPTIVE ALIGNMENT

In this section, we first identify the limitation of completely removing historical embeddings as
suggested in ForgetNet. In particular, inaccurate intermediate state predictions at the early stage
of the training will potentially lead to sub-optimal convergence. To alleviate this, we propose the
G-ForgetNet model, which uses a learnable gating mechanism and an additional regularization term
in order to capture the Markov property of ForgetNet without the subsequent training limitations.

4.1 LIMITATIONS OF ENTIRELY REMOVING HISTORICAL EMBEDDINGS

While our ForgetNet model demonstrates effectiveness on a diverse set of tasks, it underperforms
the baseline on several tasks, such as the Floyd-Warshall algorithm. A closer examination suggests
that during the early stage of training, the model struggles with producing accurate intermediate
predictions for certain algorithm tasks, which could lead the model towards suboptimal convergence.
To make this clear, with a slight abuse of notations, we let x and y(t) denote the input state and the t-th

5



Published as a conference paper at ICLR 2024

intermediate state, i.e., the hints, of an algorithmic trajectory sample, respectively. Accordingly,
ŷ(t) represents the intermediate state predicted at timestep t. In addition, E , P , and D represent
the computation included in the encoder, processor, and decoder, respectively. In our ForgetNet
model, the computational pathway x → E → P → D → y(1) naturally emerges as a desirable
pathway for training. This is because both x and y(1) are accurate, facilitating a high-quality
back-propagation signal. However, as we progress into extended paths for subsequent execution
steps, we expose the model to the pitfalls of inaccurate intermediate state predictions. For example,
the computational pathway associated with the loss function for the second intermediate state,
x → E → P → D → ŷ(1) → E → P → D → y(2), is impacted by the inaccuracies of the
prediction ŷ(1). Intuitively, this introduces noise for the processor P to learn the one-step execution of
the algorithm, since the processor receives inaccurate input at the second time step. Such inaccuracies
accumulate over time steps. This indicates that, during the early stages of training, the model
is primarily navigating these sub-optimal pathways, hindering its optimization. Additionally, by
removing the hidden states in ForgetNet, we have essentially removed a residual connection between
processor layers, making it more difficult for the model to backpropagate signals through many
consecutive processor layers. As an empirical illustration, Figure 4 shows the training loss of
ForgetNet and that of the baseline model for the Floyd-Warshall algorithm task. It indeed shows that
the training losses for ForgetNet are elevated during the early stage of training, leading to sub-optimal
convergence. We provide more results and deeper analysis of the training difficulties in ForgetNet in
Appendix B.2, where we observe that elevated losses in ForgetNet are primarily incurred during the
later steps of the hints time series, indicating the difficulties the model has with accumulation of
inaccurate intermediate predictions.

4.2 G-FORGETNET: ADAPTIVE USE OF HISTORICAL EMBEDDINGS

In light of the aforementioned limitation, we further introduce G-ForgetNet with a regularized gating
mechanism that restores important computational pathways during training and learns to align with
the Markov property. The core motivation behind this proposal is that while inclusion of information
from previous layers does not align with the inherent Markov nature of the task, it can provide
helpful support, especially during the early stage of training, where it can mitigate the effects of
inaccurate intermediate predictions and facilitate higher quality backpropagation signals. Further,
the added loss penalty encourages the model to obey the Markov property that was shown to be
beneficial in Section 3.2. Specifically, by including h

(t−1)
i in Eq. (2) as a component of the input

for the processor at time step t, it can enrich the model with useful computational pathways, such as
x → E → P → P → D → y(2) associated with the loss function for the second intermediate state.
In general, the introduced computational pathways x → E → P → · · · → P → D → y(t), where
there are t sequentially applied processors, are valuable for training the processor P to capture one-
step algorithmic execution. This is because y(t) is the accurate output after executing the algorithm
for t steps from the input x. In essence, these pathways create an alternative route, circumventing the
challenges posed by inaccurate intermediate state predictions, especially at the early stage of training.

Based on the above intuition, in G-ForgetNet, we further introduce a learnable gating mechanism that
modulates the use of historical embeddings. Formally, Eq. (2) is replaced with

z
(t)
i =

[
x̄
(t)
i , g

(t)
i ⊙ h

(t−1)
i

]
, {h(t)

i } = fGNN

(
{z(t)

i }, {ē(t)ij }, ḡ
(t)
)
, (4)

where the gate g
(t)
i has the same dimensions as h(t−1)

i and ⊙ denotes element-wise product. Here,
we employ a simple multi-layer perceptron (MLP) to obtain the gate as

g
(t)
i = σ

(
MLP

([
x̄
(t)
i ,h

(t−1)
i

]))
, (5)

where σ(·) is the sigmoid function. An illustration of G-ForgetNet is in Figure 1 (c). Finally, we
introduce a modified hints loss function that includes a regularization term on the magnitude of
g
(t)
i as

Loss(t) = L
(
ŷ(t), y(t)

)
+ λ

∑
i

∥∥∥g(t)
i

∥∥∥ (6)

Where L
(
ŷ(t), y(t)

)
is the standard hints loss functions used in the CLRS-30 benchmark, which

depends on the type and location of features contained in y(t). At the early stage of training, we

6



Published as a conference paper at ICLR 2024

Table 1: Test OOD micro-F1 score of the baseline, ForgetNet, and G-ForgetNet methods. The cells
are highlighted if their corresponding results are better than the baseline.

Algorithm Baseline ForgetNet G-ForgetNet Algorithm Baseline ForgetNet G-ForgetNet
Activity Selector 93.02%±1.62 97.17%±0.20 99.03%±0.10 Jarvis’ March 85.44%±3.26 85.21%±2.83 88.53%±2.96

Articulation Points 95.01%±2.09 90.16%±2.25 97.97%±0.58 Knuth-Morris-Pratt 3.96%±1.33 18.96%±4.19 12.45%±3.12

Bellman-Ford 97.67%±0.28 98.45%±0.13 99.18%±0.11 LCS Length 76.24%±1.38 84.60%±0.47 85.43%±0.47

BFS 99.45%±0.11 99.32%±0.16 99.96%±0.01 Matrix Chain Order 86.31%±0.86 94.83%±0.43 91.08%±0.51

Binary Search 62.79%±4.31 74.41%±2.11 85.96%±1.59 Minimum 96.42%±1.35 99.01%±0.10 99.26%±0.08

Bridges 89.58%±4.79 94.74%±2.00 99.43%±0.15 MST-Kruskal 87.42%±1.12 85.08%±1.12 91.25%±0.40

Bubble Sort 61.93%±6.24 75.12%±2.97 83.19%±2.59 MST-Prim 92.35%±0.87 94.14%±0.50 95.19%±0.33

DAG Shortest Paths 97.92%±0.28 98.18%±0.24 99.37%±0.03 Naı̈ve String Matcher 80.32%±6.66 62.22%±3.55 97.02%±0.77

DFS 30.33%±4.77 97.12%±1.68 74.31%±5.03 Optimal BST 78.14%±1.26 80.19%±0.76 83.58%±0.49

Dijkstra 96.78%±0.72 98.32%±0.13 99.14%±0.06 Quickselect 1.45%±0.34 1.61%±0.38 6.30%±0.85

Find Max. Subarray 63.67%±1.70 64.57%±1.42 78.97%±0.70 Quicksort 47.86%±6.34 61.92%±6.25 73.28%±6.25

Floyd-Warshall 53.00%±1.17 38.14%±1.09 56.32%±0.86 Segments Intersect 97.83%±0.11 98.55%±0.09 99.06%±0.39

Graham Scan 91.82%±1.20 95.49%±0.27 97.67%±0.14 SCC 44.83%±2.74 50.80%±2.67 53.53%±2.48

Heapsort 48.09%±5.42 46.90%±5.96 57.47%±6.08 Task Scheduling 80.93%±0.21 86.31%±0.46 84.55%±0.35

Insertion Sort 70.62%±8.26 95.19%±0.77 98.40%±0.21 Topological Sort 84.67%±3.93 92.63%±1.55 99.92%±0.02

intuitively anticipate the gate to be more “open”, i.e., the magnitude of g(t)
i to be large, thus enriching

the model with the aforementioned beneficial pathways. As training progresses and the model starts
predicting more reliable intermediate predictions, the dependence on historical embeddings should
diminish, i.e., the gate becomes more “closed”, to honor the Markov nature. Since the scale of the
hints losses varies drastically for each algorithm, we use a heuristic to select the value of λ for
each algorithm based on the loss values; further details can be found in Appendix A.1.

5 EXPERIMENTS

In this section, we perform comprehensive experiments to evaluate the proposed G-ForgetNet model,
by addressing the following questions. (1) Can our G-ForgetNet model, equipped with the regularized
gating mechanism, consistently perform better than the baseline model? How does it perform in the
several tasks where ForgetNet underperforms the baseline? Does it help the early stage of training?
(2) How is the G-ForgetNet model compared to a boarder range of prior methods? (3) What are
the dynamics of the gating mechanism within G-ForgetNet? To what extent does it align with our
expectations?

Datasets and setup. We perform experiments on the standard out-of-distribution (OOD) splits
present in the CLRS-30 algorithmic reasoning benchmark (Veličković et al., 2022a). To be specific,
we train on inputs with 16 or fewer nodes, and use inputs with 16 nodes for validation. During
testing, for most algorithms, there are 32 trajectories with inputs of 64 nodes. For algorithms
where the ouputs are associated with graph-level features, rather than node-level or edge-level,
there are 64× more trajectories, ensuring a consistent number of targets across all tasks.

For the baseline, ForgetNet, and G-ForgetNet introduced in Section 3.1, 3.2, and 4.2 respectively, we
conduct 10 runs for each model in each task, with a single set of hyperparameters. Specifically, we
employ the Adam optimizer (Kingma & Ba, 2015) with a cosine learning rate scheduler and an initial
learning rate of 0.0015. The models are trained for 10,000 steps with a batch size of 32.

More baselines. Beyond the baseline paradigm introduced in Section 3.1, we further include more
existing state-of-the-art methods for comparison. Specifically, we first involve the notable methods
studied in the CLRS-30 benchmark, including Memnet (Sukhbaatar et al., 2015), MPNN (Gilmer
et al., 2017), and PGN (Veličković et al., 2020a). These models serve as the processor in the encoder-
processor-decoder framework, which is trained with noisy teacher forcing in the benchmark setup.
Furthermore, we include the recently proposed Triplet-GMPNN method (Ibarz et al., 2022), which
develops a set of techniques to stabilize training, thus removing teacher forcing completely to align
the training and inference. Moreover, the processor network in Triplet-GMPNN is a message passing
network which incorporates messages from triplets of nodes. Our introduced baseline, ForgetNet, and
G-ForgetNet, i.e., the three methods in Figure 1, are built on the framework as developed by Ibarz
et al. (2022). Differing from the baseline described in Section 3.1, Triplet-GMPNN has an additional
update gate. It is worth noting that such a gate is different from our introduced gating mechanism in
G-ForgetNet in terms of both motivation and architectural design. In particular, the update gate in
Triplet-GMPNN is placed ahead of the decoder and aims to update the processed embeddings for a
subset of nodes at each time step and keep the remaining unchanged, whereas our gate mechanism is

7



Published as a conference paper at ICLR 2024

Table 2: Test OOD micro-F1 score of G-ForgetNet and existing methods. The highest scores are
highlighted in bold, while the second-highest scores are underlined. Results for individual algorithms
can be found in Table 3.

Algorithm Memnet MPNN PGN Triplet-GMPNN G-ForgetNet
Div. & C. 13.05%±0.08 20.30%±0.49 65.23%±2.56 76.36%±0.43 78.97%±0.70

DP 67.95%±2.19 65.10%±0.73 70.58%±0.84 81.99%±1.30 86.70%±0.49

Geometry 45.14%±2.36 73.11%±4.27 61.19%±1.14 94.09%±0.77 95.09%±1.16

Graphs 24.12%±1.46 62.80%±2.55 60.25%±1.57 81.41%±1.53 88.80%±0.84

Greedy 53.42%±1.13 82.39%±1.74 75.85%±1.27 91.22%±0.40 91.79%±0.23

Search 34.35%±0.20 41.20%±0.61 56.11%±0.36 58.61%±1.05 63.84%±0.84

Sorting 71.53%±0.97 11.83%±0.91 15.46%±1.18 60.38%±5.27 78.09%±3.78

Strings 1.52%±0.24 3.21%±0.58 2.04%±0.16 49.09%±4.78 54.74%±1.95

Overall Average 38.03% 51.02% 52.31% 75.98% 82.89%
> 99% 0/30 1/30 1/30 1/30 9/30
> 97% 0/30 1/30 1/30 5/30 13/30
> 95% 0/30 2/30 2/30 7/30 14/30

designed to enforce the Markov property of algorithmic reasoning and is supported by a regularization
term in the loss function. Another recent model, Hint-ReLIC (Bevilacqua et al., 2023), uses an
additional self-supervised learning objective based on data augmentations. Given such augmentations
and different setups, our model and Hint-ReLIC are not directly comparable. We expect that a fusion
of our model and Hint-ReLIC could further boost the performance, and we leave such an evaluation
to future work as the code of Hint-ReLIC is not yet publicly available.

0 2000 4000 6000 8000 10000
# Training Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

ni
ng

 L
os

s

Baseline
ForgetNet
G-ForgetNet

Figure 4: Training curves for the base-
line, ForgetNet, and G-ForgetNet meth-
ods on the Floyd-Warshall task. The
shaded region indicates the standard de-
viation. Figure is smoothed for clarity.

G-ForgetNet vs. ForgetNet vs. the baseline. In Sec-
tion 3.2, we have demonstrated the effectiveness of our
ForgetNet model which removes historical embeddings to
honor the Markov nature of algorithmic reasoning. Here,
we further compare the three methods included in Figure 1
to evaluate the effectiveness of our proposed gating mech-
anism in the G-ForgetNet model. In Table 1, we report the
average test results over 10 runs for each model in each
algorithm. While ForgetNet surpasses the baseline across
23/30 tasks, G-ForgetNet consistently achieves improved
performance over the baseline on all 30 tasks. In the sev-
eral tasks where ForgetNet underperforms the baseline,
such as the Floyd-Warshall and naı̈ve string matcher tasks,
G-ForgetNet demonstrates consistent improvements over
the baseline. For example, in the naı̈ve string matcher
task, while ForgetNet performs worse than the baseine,
G-ForgetNet outperforms the baseline by an absolute mar-
gin of 16.70%. This demonstrates the effectiveness of
the proposed gating mechanism, which is able to capture
the benefits of honoring the Markov property without the
training difficulties of ForgetNet.

As clarified in Section 4.2, the proposed gating structure is expected to enhance the early stage of
training, thus improving the final convergence in many tasks. To empirically verify such intuition,
in Figure 4, we illustrate the training losses of the baseline, ForgetNet, and G-ForgetNet models in
the Floyd-Warshall task. We observe that ForgetNet indeed faces challenges during the early stages,
leading to sub-optimal convergence compared to the baseline in this task. The G-ForgetNet model,
can effectively sidestep the early training pitfalls, thereby leading to a better convergence at the end
of training in this task. This verifies our intuition that the additional computational pathways in
G-ForgetNet can help enhance the early stages of training. In Appendix B we dive deeper into the
loss curves corresponding to different execution steps for several algorithms and demonstrate that the
loss experienced by ForgetNet at each execution step tends to escalate more sharply as the algorithmic
execution progresses than G-ForgetNet. This observation validates our earlier intuition in Section 4.2
that the gating mechanism in G-ForgetNet introduces computational pathways that act as corrective

8



Published as a conference paper at ICLR 2024

signals against accumulated errors. By offering these pathways, G-ForgetNet can circumvent the
pitfalls posed by inaccurate intermediate predictions, thereby facilitating the optimization of the
losses corresponding to later execution steps. Overall, G-ForgetNet outperforms ForgetNet in 26/30
tasks and improves the overall average score from 78.98% in ForgetNet to 82.89% in G-ForgetNet.

Compared to more existing methods. We further extend our comparison of G-ForgetNet to more
existing methods, including the aforementioned Memnet, MPNN, PGN, and Triplet-GMPNN methods.
The results of these methods are obtained from the respective literature (Veličković et al., 2022a;
Ibarz et al., 2022). As summarized in Table 2, G-ForgetNet emerges as the top performer in 25/30
algorithmic tasks. Compared to the previous state-of-the-art method Triplet-GMPNN, G-ForgetNet
improves the mean test performance across all 30 tasks from 75.98% to 82.89%. Additionally,
G-ForgetNet surpasses the 99% threshold on 9/30 algorithms, compared to the prior best of just
1/30. Further, G-ForgetNet achieves large performance increases on several algorithms. For example,
G-ForgetNet achieves a test score of 97.02% in the naı̈ve string matcher task, while the previous
state-of-the-art performance is 78.67%, and G-ForgetNet achieves a test score of 98.40% on insertion
sort, compared to the previous state-of-the-art of 78.14%. This comparison further demonstrates the
effectiveness of our proposed method.

0 2000 4000 6000 8000 10000
# Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Hi
dd

en
 S

ta
te

 N
or

m

Baseline
G-ForgetNet

Figure 5: Average L2 norm value
throughout the training process on the
Floyd-Warshall task. The shaded region
indicates the standard deviation.

Dynamics of the gating mechanism. In order to under-
stand the behavior of the gating mechanism and gauge
its alignment with our anticipations, we empirically in-
vestigate its dynamics during training. Specifically, we
compute the L2 norm of the hidden states, h(t)

i before be-
ing passed to the processor and then normalize by dividing
by the square root of the hidden state dimension. In G-
ForgetNet, the L2 norm is taken after gating g

(t)
i ⊙h

(t−1)
i ,

so we are effectively measuring how much of the hidden
states are allowed to pass into the processor. For every
sample in the validation set, we consistently monitor the
average L2 norm over both nodes and algorithmic exe-
cution steps, along the training iterations. In Figure 5,
we illustrate the average L2 norm over all samples in the
validation set during the training process for the Floyd-
Warshall task for the baseline and for G-ForgetNet. We
observe that the baseline hidden state norm is fairly con-
stant and has a relatively large magnitude, indicating that
it is fitting historical noise during training, whereas G-ForgetNet declines to nearly zero. This
empirically validates that the dynamics of the gating mechanism align with our intuition in this task.
That is, the gating mechanism is open during the beginning of training, thus enhancing early training
while progressively focusing on the Markov nature of algorithmic tasks. We generally observe similar
trends across all of the CLRS-30 algorithms, with more tasks shown in Appendix A.2. We further
validate the importance of the loss penalty included in G-ForgetNet in Appendix A.3, where we
investigate the behavior of the G-ForgetNet model without the loss penalty. We observe that without
the loss penalty, the model still exhibits declining trends in the hidden state norm, however it will not
converge to 0 as desired. The performance of G-ForgetNet without the penalty is still better than the
baselines, however the performance is significantly improved with the penalty. This aligns with our
intuitions since the penalty ensures that G-ForgetNet is consistent with the Markov property.

6 CONCLUSION

In this work, we highlight a key misalignment between the prevalent practice of incorporating
historical embeddings and the intrinsic Markov characteristics of algorithmic reasoning tasks. In
response, we propose ForgetNet, which explicitly honors the Markov nature by removing the use
of historical embeddings, and its adaptive variant, G-ForgetNet, equipped with a gating mechanism
and subsequent loss penalty in order to capture the benefits of the Markov property without the
training difficulties found in ForgetNet. Our comprehensive experiments on the CLRS-30 benchmark
demonstrate the superior generalization capabilities of both models compared to established baselines.
In summary, this work reveals the importance of aligning model design with the Markov nature in
neural algorithmic reasoning tasks, paving the way for more advancements in future research.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

This work was supported in part by National Science Foundation grants IIS-2243850 and IIS-2006861.

REFERENCES

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Luca Beurer-Kellner, Martin Vechev, Laurent Vanbever, and Petar Veličković. Learning to configure
computer networks with neural algorithmic reasoning. Advances in Neural Information Processing
Systems, 35:730–742, 2022.

Beatrice Bevilacqua, Kyriacos Nikiforou, Borja Ibarz, Ioana Bica, Michela Paganini, Charles Blundell,
Jovana Mitrovic, and Petar Veličković. Neural algorithmic reasoning with causal regularisation. In
International Conference on Machine Learning, pp. 2272–2288. PMLR, 2023.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2022.

Andreea-Ioana Deac, Petar Veličković, Ognjen Milinkovic, Pierre-Luc Bacon, Jian Tang, and Mladen
Nikolic. Neural algorithmic reasoners are implicit planners. Advances in Neural Information
Processing Systems, 34:15529–15542, 2021.

Cameron Diao and Ricky Loynd. Relational attention: Generalizing transformers for graph-structured
tasks. In The Eleventh International Conference on Learning Representations, 2023.

Andrew J Dudzik and Petar Veličković. Graph neural networks are dynamic programmers. Advances
in Neural Information Processing Systems, 35:20635–20647, 2022.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 24
(43):1–48, 2023.

Dobrik Georgiev and Pietro Lió. Neural bipartite matching. arXiv preprint arXiv:2005.11304, 2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, et al.
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626):
471–476, 2016.

Jessica B Hamrick, Kelsey R Allen, Victor Bapst, Tina Zhu, Kevin R McKee, Joshua B Tenenbaum,
and Peter W Battaglia. Relational inductive bias for physical construction in humans and machines.
arXiv preprint arXiv:1806.01203, 2018.

Borja Ibarz, Vitaly Kurin, George Papamakarios, Kyriacos Nikiforou, Mehdi Bennani, Róbert
Csordás, Andrew Joseph Dudzik, Matko Bošnjak, Alex Vitvitskyi, Yulia Rubanova, et al. A
generalist neural algorithmic learner. In Learning on Graphs Conference, pp. 2–1. PMLR, 2022.

Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-augmented recurrent
nets. Advances in neural information processing systems, 28, 2015.

Łukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. arXiv preprint arXiv:1511.08228,
2015.

10



Published as a conference paper at ICLR 2024

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In The Eleventh
International Conference on Learning Representations, 2015.

Sadegh Mahdavi, Kevin Swersky, Thomas Kipf, Milad Hashemi, Christos Thrampoulidis, and Renjie
Liao. Towards better out-of-distribution generalization of neural algorithmic reasoning tasks.
Transactions on Machine Learning Research, 2022.

Danilo Numeroso, Davide Bacciu, and Petar Veličković. Dual algorithmic reasoning. In The Eleventh
International Conference on Learning Representations, 2023.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. Advances in
neural information processing systems, 28, 2015.

Petar Veličković and Charles Blundell. Neural algorithmic reasoning. Patterns, 2(7), 2021.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Petar Veličković, Lars Buesing, Matthew Overlan, Razvan Pascanu, Oriol Vinyals, and Charles
Blundell. Pointer graph networks. Advances in Neural Information Processing Systems, 33:
2232–2244, 2020a.

Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural execution
of graph algorithms. In International Conference on Learning Representations, 2020b.

Petar Veličković, Adrià Puigdomènech Badia, David Budden, Razvan Pascanu, Andrea Banino, Misha
Dashevskiy, Raia Hadsell, and Charles Blundell. The CLRS algorithmic reasoning benchmark. In
International Conference on Machine Learning, pp. 22084–22102. PMLR, 2022a.

Petar Veličković, Matko Bošnjak, Thomas Kipf, Alexander Lerchner, Raia Hadsell, Razvan Pascanu,
and Charles Blundell. Reasoning-modulated representations. In Learning on Graphs Conference,
pp. 50–1. PMLR, 2022b.

Louis-Pascal Xhonneux, Andreea-Ioana Deac, Petar Veličković, and Jian Tang. How to transfer
algorithmic reasoning knowledge to learn new algorithms? Advances in Neural Information
Processing Systems, 34:19500–19512, 2021.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
What can neural networks reason about? In International Conference on Learning Representations,
2020.

Yujun Yan, Kevin Swersky, Danai Koutra, Parthasarathy Ranganathan, and Milad Hashemi. Neural
execution engines: Learning to execute subroutines. Advances in Neural Information Processing
Systems, 33:17298–17308, 2020.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint arXiv:1410.4615, 2014.

11



Published as a conference paper at ICLR 2024

BF
S

Top
olo

gic
al 

So
rt

Bri
dg

es

DAG
 Sh

ort
es

t P
ath

s
Mini

mum
Be

llm
an

-Fo
rd

Dijk
str

a

Se
gm

en
ts 

Int
ers

ec
t

Ac
tiv

ity
 Se

lec
tor

Ins
ert

ion
 So

rt

Art
icu

lat
ion

 Po
int

s
Grah

am
 Sc

an

Naïv
e S

trin
g M

atc
he

r
MST

-Pr
im

MST
-Kr

us
ka

l

Matr
ix 

Ch
ain

 Orde
r

Jar
vis

' M
arc

h
Bin

ary
 Se

arc
h

LC
S L

en
gth

Tas
k S

ch
ed

uli
ng

Opti
mal 

BS
T

Bu
bb

le 
So

rt

Fin
d M

ax
. S

ub
arr

ay DFS
Quic

kso
rt

Hea
ps

ort

Flo
yd

-W
ars

ha
ll

SC
C

Kn
uth

-M
orr

is-
Pra

tt
Quic

kse
lec

t

Ove
ral

l A
ve

rag
e

0

20

40

60

80

100

Av
er

ag
e 

Sc
or

e 
[%

]

G-ForgetNet
ForgetNet
Baseline

Figure 6: Comparison between the baseline, ForgetNet, and G-ForgetNet. Reported results are the
average of 10 runs with random seeds. Numerical results can be found in Table1

A FURTHER G-FORGETNET ANALYSIS

In Figure 6 we compare G-ForgetNet with ForgetNet and the baseline model, and in Table 3, we
provide the full numeric results for G-ForgetNet compared with Memnet, MPNN, PGN, and Triplet-
GMPNN.

A.1 LAMBDA HEURISTIC

Since the scale of the loss function varies drastically between algorithms, it is not possible to use a
single value for λ across all algorithms. In general, it is non-trivial to select optimal values for this
parameter, and in this work, we use a heuristic to select reasonable values for λ. Specifically, we
select λ such that the gate penalty makes up approximately half of the total training loss after 6,000
training steps. Intuitively, with such a schedule, the model will spend the first 6,000 steps simply
learning to execute the algorithm, then during the remaining 4,000 steps, the model will focus on
learning single-step executions in accordance with the Markov property. As demonstrated in Table 2,
this simple heuristic has quite robust performance across the entire set of CLRS-30 algorithms. We
acknowledge that such a simple penalty schedule and heuristic is unlikely to be optimal and will be
approved upon by future works.

A.2 GATE ANALYSIS

In Figure 7 we include more figures of the hidden state’s L2 norm for G-ForgetNet and the baseline,
as in Section 5. These further support that our G-ForgetNet model does enforce the Markov property
during testing as we observe the L2 norm converge to 0.

12



Published as a conference paper at ICLR 2024

Table 3: Test OOD micro-F1 score of G-ForgetNet and existing methods. The highest scores are
highlighted in bold, while the second-highest scores are underlined.

Algorithm Memnet MPNN PGN Triplet-GMPNN G-ForgetNet
Activity Selector 24.10%±2.22 80.66%±3.16 66.80%±1.62 95.18%±0.45 99.03%±0.10

Articulation Points 1.50%±0.61 50.91%±2.18 49.53%±2.09 88.32%±2.01 97.97%±0.46

Bellman-Ford 40.04%±1.46 92.01%±0.28 92.99%±0.34 97.39%±0.19 99.18%±0.11

BFS 43.34%±0.04 99.89%±0.05 99.63%±0.29 99.73%±0.04 99.96%±0.01

Binary Search 14.37%±0.46 36.83%±0.26 76.95%±0.13 77.58%±2.35 85.96%±1.59

Bridges 30.26%±0.05 72.69%±4.78 51.42%±7.82 93.99%±2.07 99.43%±0.15

Bubble Sort 73.58%±0.78 5.27%±0.60 6.01%±1.95 67.68%±5.50 83.19%±2.59

DAG Shortest Paths 66.15%±1.92 96.24%±0.56 96.94%±0.16 98.19%±0.30 99.37%±0.03

DFS 13.36%±1.61 6.54%±0.51 8.71%±0.24 47.79%±4.19 74.31%±5.03

Dijkstra 22.48%±2.39 91.50%±0.50 83.45%±1.75 96.05%±0.60 99.14%±0.06

Find Max. Subarray 13.05%±0.08 20.30%±0.49 65.23%±2.56 76.36%±0.43 78.97%±0.70

Floyd-Warshall 14.17%±0.13 26.74%±1.77 28.76%±0.51 48.52%±1.04 56.32%±0.86

Graham Scan 40.62%±2.31 91.04%±0.31 56.87%±1.61 93.62%±0.91 97.67%±0.14

Heapsort 68.00%±1.57 10.94%±0.84 5.27%±0.18 31.04%±5.82 57.47%±6.08

Insertion Sort 71.42%±0.86 19.81%±2.08 44.37%±2.43 78.14%±4.64 98.40%±0.21

Jarvis’ March 22.99%±3.87 34.86%±12.39 49.19%±1.07 91.01%±1.30 88.53%±2.96

Knuth-Morris-Pratt 1.81%±0.00 2.49%±0.86 2.00%±0.12 19.51%±4.57 12.45%±3.12

LCS Length 49.84%±4.34 53.23%±0.36 56.82%±0.21 80.51%±1.84 85.43%±0.47

Matrix Chain Order 81.96%±1.03 79.84%±1.40 83.91%±0.49 91.68%±0.59 91.08%±0.51

Minimum 86.93%±0.11 85.34%±0.88 87.71%±0.52 97.78%±0.55 99.26%±0.08

MST-Kruskal 28.84%±0.61 70.97%±1.50 66.96%±1.36 89.80%±0.77 91.25%±0.40

MST-Prim 10.29%±3.77 69.08%±7.56 63.33%±0.98 86.39%±1.33 95.19%±0.33

Naı̈ve String Matcher 1.22%±0.48 3.92%±0.30 2.08%±0.20 78.67%±4.99 97.02%±0.77

Optimal BST 72.03%±1.21 62.23%±0.44 71.01%±1.82 73.77%±1.48 83.58%±0.49

Quickselect 1.74%±0.03 1.43%±0.69 3.66%±0.42 0.47%±0.25 6.30%±0.85

Quicksort 73.10%±0.67 11.30%±0.10 6.17%±0.15 64.64%±5.12 73.28%±6.25

Segments Intersect 71.80%±0.90 93.44%±0.10 77.51%±0.75 97.64%±0.09 99.06%±0.39

SCC 16.32%±4.78 24.37%±4.88 20.80%±0.64 43.43%±3.15 53.53%±2.48

Task Scheduling 82.74%±0.04 84.11%±0.32 84.89%±0.91 87.25%±0.35 84.55%±0.35

Topological Sort 2.73%±0.11 52.60%±6.24 60.45%±2.69 87.27%±2.67 99.92%±0.02

Overall Average 38.03% 51.02% 52.31% 75.98% 82.89%
> 99% 0/30 1/30 1/30 1/30 9/30
> 97% 0/30 1/30 1/30 5/30 13/30
> 95% 0/30 2/30 2/30 7/30 14/30

13



Published as a conference paper at ICLR 2024

0 2000 4000 6000 8000 10000
# Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Hi
dd

en
 S

ta
te

 N
or

m

Activity Selector

Baseline
G-ForgetNet

0 2000 4000 6000 8000 10000
# Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Hi
dd

en
 S

ta
te

 N
or

m

Bridges

Baseline
G-ForgetNet

0 2000 4000 6000 8000 10000
# Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Hi
dd

en
 S

ta
te

 N
or

m

Binary Search
Baseline
G-ForgetNet

0 2000 4000 6000 8000 10000
# Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Hi
dd

en
 S

ta
te

 N
or

m

Topological Sort

Baseline
G-ForgetNet

Figure 7: Average L2 norm value throughout the training process on the activity selector, bridges,
binary search, and topological sort algorithms. Shaded regions indicate standard deviation.

14



Published as a conference paper at ICLR 2024

Table 4: Test OOD micro-F1 score of the baseline, G-ForgetNet without penalty, and G-ForgetNet
methods. The cells are highlighted if their corresponding results are better than the baseline. The
highest scores are highlighted in bold.

Algorithm Baseline G-ForgetNet w/o penalty G-ForgetNet Algorithm Baseline G-ForgetNet w/o penalty G-ForgetNet
Activity Selector 93.02%±1.62 96.76%±0.34 99.03%±0.10 Jarvis’ March 85.44%±3.26 88.61%±2.58 88.53%±2.96

Articulation Points 95.01%±2.09 98.97%±0.15 97.97%±0.58 Knuth-Morris-Pratt 3.96%±1.33 3.84%±0.79 12.45%±3.12

Bellman-Ford 97.67%±0.28 98.85%±0.14 99.18%±0.11 LCS Length 76.24%±1.38 80.33%±1.68 85.43%±0.47

BFS 99.45%±0.11 99.57%±0.09 99.96%±0.01 Matrix Chain Order 86.31%±0.86 86.83%±1.23 91.08%±0.51

Binary Search 62.79%±4.31 82.49%±1.66 85.96%±1.59 Minimum 96.42%±1.35 99.56%±0.03 99.26%±0.08

Bridges 89.58%±4.79 96.38%±1.46 99.43%±0.15 MST-Kruskal 87.42%±1.12 91.38%±0.58 91.25%±0.40

Bubble Sort 61.93%±6.24 64.78%±3.71 83.19%±2.59 MST-Prim 92.35%±0.87 94.51%±0.88 95.19%±0.33

DAG Shortest Paths 97.92%±0.28 98.70%±0.20 99.37%±0.03 Naı̈ve String Matcher 80.32%±6.66 93.79%±1.63 97.02%±0.77

DFS 30.33%±4.77 47.97%±4.42 74.31%±5.03 Optimal BST 78.14%±1.26 79.14%±1.73 83.58%±0.49

Dijkstra 96.78%±0.72 98.46%±0.23 99.14%±0.06 Quickselect 1.45%±0.34 2.06%±0.52 6.30%±0.85

Find Max. Subarray 63.67%±1.70 77.65%±1.05 78.97%±0.70 Quicksort 47.86%±6.34 70.17%±3.98 73.28%±6.25

Floyd-Warshall 53.00%±1.17 54.60%±1.14 56.32%±0.86 Segments Intersect 97.83%±0.11 99.27%±0.05 99.06%±0.39

Graham Scan 91.82%±1.20 97.32%±0.26 97.67%±0.14 SCC 44.83%±2.74 59.78%±2.80 53.53%±2.48

Heapsort 48.09%±5.42 59.09%±8.80 57.47%±6.08 Task Scheduling 80.93%±0.21 80.28%±0.22 84.55%±0.35

Insertion Sort 70.62%±8.26 87.90%±2.59 98.40%±0.21 Topological Sort 84.67%±3.93 90.36%±2.84 99.92%±0.02

A.3 PENALTY ANALYSIS

In Table 4, we report the performance of our G-ForgetNet model without the loss penalty, i.e., with
just the gate mechanism. We observe that, even without the loss penalty, the model still outperforms
the baseline on 28/30 algorithms, however the average score is only 79.31% compared to 82.88%
with the penalty. Additionally, G-ForgetNet without penalty outperforms G-ForgetNet with penalty
on 7 algorithms, however these cases are very small improvements. Overall, this study empirically
shows us the importance of the penalty in the G-ForgetNet model, which aligns with our intuition that
the penalty is necessary in order to enforce the Markov property. Finally, we provide a comparison of
the L2 norm of the gated hidden states in G-ForgetNet with and without the penalty in Figure 8. On
the activity selector algorithm, the G-ForgetNet model without the penalty still consistently decreases
during training, however it does not reach the same final convergence as the model with the penalty,
and on Floyd-Warshall, G-ForgetNet without the penalty is fairly constant throughout training, again
demonstrating the necessity of the loss penalty to enforce the Markov property in G-ForgetNet.

0 2000 4000 6000 8000 10000
# Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Hi
dd

en
 S

ta
te

 N
or

m

Activity Selector
Baseline
G-ForgetNet w/o Penalty
G-ForgetNet

0 2000 4000 6000 8000 10000
# Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Hi
dd

en
 S

ta
te

 N
or

m

Floyd-Warshall
Baseline
G-ForgetNet w/o Penalty
G-ForgetNet

Figure 8: Average hidden state L2 norm value throughout the training process on the activity selector
and Floyd-Warshall algorithms. Shaded regions indicate standard deviation.

B MORE EXPERIMENTAL RESULTS

B.1 MULTI-TASK EXPERIMENTS

Prior works (Xhonneux et al., 2021; Ibarz et al., 2022) have investigated jointly learning multiple
algorithms using a single processor. We follow the multi-task setup in Ibarz et al. (2022) and train a
single ForgetNet processor on all 30 CLRS algorithms while keeping separate encoders and decoders

15



Published as a conference paper at ICLR 2024

BF
S

Bri
dg

es

Matr
ix 

Ch
ain

 Orde
r

Mini
mum

Jar
vis

' M
arc

h
Grah

am
 Sc

an
Dijk

str
a

Ac
tiv

ity
 Se

lec
tor

Ins
ert

ion
 So

rt

Top
olo

gic
al 

So
rt

DAG
 Sh

ort
es

t P
ath

s

Se
gm

en
ts 

Int
ers

ec
t

Art
icu

lat
ion

 Po
int

s
MST

-Pr
im

MST
-Kr

us
ka

l

Bin
ary

 Se
arc

h
Quic

kso
rt

LC
S L

en
gth

Tas
k S

ch
ed

uli
ng

Opti
mal 

BS
T

Be
llm

an
-Fo

rd
Hea

ps
ort

Bu
bb

le 
So

rt
SC

C
DFS

Fin
d M

ax
. S

ub
arr

ay

Naïv
e S

trin
g M

atc
he

r

Kn
uth

-M
orr

is-
Pra

tt

Flo
yd

-W
ars

ha
ll

Quic
kse

lec
t

Ove
ral

l A
ve

rag
e

0

20

40

60

80

100

Av
er

ag
e 

Sc
or

e 
[%

]

ForgetNet
Baseline

Figure 9: Comparison between the ForgetNet multi-task model and the baseline multi-task model.
Average of 10 runs with random seeds. Numerical results can be found in Table 5.

Table 5: Test OOD micro-F1 scores of the baseline and ForgetNet on the multi-task setting.
Algorithm Baseline ForgetNet Algorithm Baseline ForgetNet
Activity Selector 88.14%±0.69 94.16%±0.55 Jarvis’ March 74.84%±5.34 95.79%±0.20

Articulation Points 94.70%±0.55 92.69%±0.69 Knuth-Morris-Pratt 51.93%±4.33 25.16%±0.85

Bellman-Ford 87.21%±1.56 76.41%±3.45 LCS Length 83.68%±0.57 86.85%±0.16

BFS 99.77%±0.05 99.32%±0.29 Matrix Chain Order 89.60%±0.49 97.83%±0.13

Binary Search 69.63%±2.85 89.52%±1.23 Minimum 92.73%±1.24 95.87%±0.50

Bridges 96.38%±1.02 98.00%±0.98 MST-Kruskal 89.30%±0.81 89.56%±1.68

Bubble Sort 53.24%±5.01 74.40%±3.09 MST-Prim 86.54%±0.93 90.38%±0.21

DAG Shortest Paths 91.49%±0.76 93.87%±0.36 Naı̈ve String Matcher 46.74%±3.51 31.90%±2.00

DFS 36.35%±2.99 38.51%±1.48 Optimal BST 74.23%±2.18 82.55%±0.59

Dijkstra 94.49%±0.47 94.34%±0.40 Quickselect 1.71%±0.49 9.15%±0.57

Find Max. Subarray 51.15%±1.23 35.19%±0.61 Quicksort 75.31%±4.68 88.48%±2.13

Floyd-Warshall 24.99%±1.42 20.39%±0.40 Segments Intersect 95.26%±0.25 92.71%±0.35

Graham Scan 88.08%±1.90 95.42%±0.25 SCC 48.73%±4.98 66.93%±2.95

Heapsort 55.83%±7.91 78.39%±4.92 Task Scheduling 86.61%±0.21 84.02%±0.13

Insertion Sort 87.48%±2.03 93.98%±0.92 Topological Sort 81.85%±1.21 93.88%±0.48

for each algorithm. As shown in Figure 9 and in Table 5, ForgetNet performs better than the baseline
on 20/30 algorithms and has a higher average score across all algorithms. This confirms that enforcing
the Markov property is also beneficial in the multi-task setting.

B.2 MORE TRAINING CURVES

More training curves of the baseline, ForgetNet, and G-ForgetNet methods. In Figure 10, we
illustrate the training curves, including the total loss and losses at different execution steps, of the
three methods in the Floyd-Warshall and activity selector tasks. We observe that ForgetNet does not
converge to the same total loss value, shown in plot (a) on each figure. Further, we observe that the
gap between ForgetNet and the baseline widens at later points in the hints time series, showing how
the removal of connections between consecutive layers in ForgetNet introduces training difficulties.
The inaccurate intermediate predictions cause the model to struggle to optimize losses corresponding
to later execution steps.

16



Published as a conference paper at ICLR 2024

Figure 10: Training curves for the baseline, ForgetNet, and G-ForgetNet methods in the Floyd-
Warshall and activity selector tasks, tasks (from top to bottom): (a) total loss and (b) losses at different
execution steps, i.e. the losses incurred at different points in the hints time series.

17


	Introduction
	Related Work
	Analyses on the Markov Property
	Encoder-Processor-Decoder Paradigm
	Algorithmic Necessity of Historical Embeddings

	Improved Training via Adaptive Alignment
	Limitations of Entirely Removing Historical Embeddings
	G-ForgetNet: Adaptive Use of Historical Embeddings

	Experiments
	Conclusion
	Further G-ForgetNet Analysis
	Lambda Heuristic
	Gate Analysis
	Penalty Analysis

	More Experimental Results
	Multi-task experiments
	More Training Curves


