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Abstract

Insects comprise millions of species, many experiencing severe population declines1

under environmental and habitat changes. High-throughput approaches are crucial2

for accelerating our understanding of insect diversity, with DNA barcoding and3

high-resolution imaging showing strong potential for automatic taxonomic classifi-4

cation. However, most image-based approaches rely on individual specimen data,5

unlike the unsorted bulk samples collected in large-scale ecological surveys. We6

present the Mixed Arthropod Sample Segmentation and Identification (MassID45)7

dataset for training automatic classifiers of bulk insect samples. It uniquely com-8

bines molecular and imaging data at both the unsorted sample level and the full9

set of individual specimens. Human annotators, supported by an AI-assisted tool,10

performed two tasks on bulk images: creating segmentation masks around each11

individual arthropod and assigning taxonomic labels to over 17,000 specimens.12

Combining the taxonomic resolution of DNA barcodes with precise abundance13

estimates of bulk images holds great potential for rapid, large-scale characterization14

of insect communities. This dataset pushes the boundaries of tiny object detection15

and instance segmentation, fostering innovation in both ecological and machine16

learning research.17

1 Introduction and Background18

Anthropogenic climate change is contributing to rapid population declines in arthropods, the most19

diverse group of organisms on Earth [5, 46, 7]. Unfortunately, efforts to study this crisis are hampered20

by a severe lack of taxonomic expertise [49, 33]. These limitations point to the need for high-21

throughput methods of monitoring insect communities, particularly through machine learning-based22

classification. Current insect datasets, which primarily contain single-specimen images [13, 14, 43],23

do not align with the unsorted bulk samples produced by large-scale ecological studies. Thus, there is24

a need for taxonomically annotated bulk-level training images.25

While obtaining images from bulk samples is straightforward, subsequent analyses of these bulk26

images are challenging. First, bulk images contain many small, densely packed insects with limited27

morphological details, which are difficult to detect with standard computer vision approaches. Second,28

classifying these insects requires training data that accounts for their high taxonomic diversity.29

To address these challenges, we present the Mixed Arthropod Sample Segmentation and Identification30

(MassID45) dataset, collected from flight interception traps deployed in Sweden and Finland in31

2021. MassID45 features 45 bulk arthropod samples with corresponding high-resolution bulk images,32

which were then sorted into individual specimen images. For each sample, we also provide DNA33

metabarcoding data, which can be combined with the images to enable absolute, taxon-specific34

abundance estimates, while enhancing classifier performance [3, 17].35
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In this work, we leverage AI-assisted annotation workflows to provide detailed segmentation masks36

and taxonomic classification labels for over 17,000 arthropod specimens across 49 bulk images. We37

then demonstrate how MassID45 can be used to benchmark a less-explored challenge for standard38

instance segmentation models: the detection of tiny, dense, and sometimes overlapping insects. This39

dataset is poised to support a wide range of ecological applications, such as training automated40

classifiers for bulk samples, accurately counting small specimens in large collections, and enabling41

large-scale morphological analyses. Thus, MassID45 provides a valuable resource for both ecologists42

and machine learning researchers to advance automated biodiversity monitoring.43

2 Dataset44

MassID45 consists of 45 bulk arthropod samples collected from 19 sites across Sweden and Finland45

in 2021 using Townes-style Malaise traps [4]. We describe the relevant bulk imaging and annotation46

details below.47

2.1 Bulk and individual imaging protocols48

The samples were first analyzed through a bulk workflow [9] without prior sorting, including DNA49

metabarcoding and imaging. Each sample, containing hundreds to thousands of individual specimens,50

was submerged in a shallow layer of ethanol and imaged as a whole in a translucent sorting tray (see51

Appendix A.1 for details). 41 bulk samples yielded one bulk image each. For the remaining four bulk52

samples, which weighed more than 10 g, the insect specimens were divided into two sorting trays,53

yielding two bulk images each. This process yielded 49 high-resolution bulk images, each sized 819254

× 5464 pixels. Following bulk imaging, each sample was sorted into individual specimens, which55

were then imaged and barcoded (see Appendix A.2 for details).56

2.2 Annotation workflow57

Step 1: Create segmentation masks. An AI-assisted workflow was used to annotate the numerous58

arthropod specimens in each bulk image, with specimen counts ranging from 36 to 3,228 per image.59

Similar to Schneider et al. [38], the watershed algorithm was used to obtain initial coarse masks for60

all potential objects in a bulk image. Due to the large number of specimens, each bulk image was split61

into 4 × 4 equally-sized sub-images, with overlapping borders to ensure complete arthropod coverage.62

Human annotators used the Toronto Annotation Suite (TORAS) [22], a web-based tool incorporating63

the Segment Anything Model (SAM) [23], to verify and refine the initial masks. Annotators then64

classified each mask as arthropod (b for “bug”), debris (d), edge artifact (e), or unknown (u), with65

only arthropod classifications refined and retained for analysis. The annotated sub-images were66

exported in MS-COCO format [28] for training detection models.67

Step 2: Assign taxonomic labels. Using the taxonomy described in Appendix B.1, an expert68

annotator with experience in arthropod identification then assigned taxonomic labels to each insect69

mask. For each bulk image, a list of taxa present in the corresponding sample was compiled from70

the individual specimen DNA barcoding. Using these available taxa, the expert then assigned the71

lowest (i.e., most specific) taxonomic rank possible for each arthropod mask. To indicate uncertainty,72

the expert was allowed to assign several labels to each arthropod. The high-confidence (HC) label73

belonged to the highest taxonomic rank, while all lower-ranking labels were treated as low confidence74

(LC). The expert was also asked to perform a quality check of the segmentation masks, correcting75

annotations where insects/insect parts were missed or debris was mistaken for insects. A breakdown76

of the taxonomic labels, as well as the completeness of the annotations are discussed in Appendix B.2.77

2.3 Machine learning dataset78

In this work, we frame MassID45 as a benchmark for single-class instance segmentation on tiny,79

densely packed objects. Specifically, we focus on the task of localizing arthropod instances, excluding80

debris and other artifacts. While we follow MS-COCO evaluation conventions [28], its object size81

definitions are ill-suited for our data, where 76.5% of arthropod masks are “small.” We therefore82

adopt the more granular area thresholds from the iSAID dataset [48], a remote sensing dataset for83

small objects: “small” (< 144 pixels), “medium” (≥ 144 but < 1024 pixels), and “large” (≥ 102484

pixels).85
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Figure 1: Distribution of insect mask areas for “small” (<144 pixels), “medium” (≥144 but <1024
pixels), and “large” (≥ 1024 pixels) insects. Counts are adjusted such that the area of a bar is
proportional to the count in that bin. The three images show the median masks for small, medium,
and large insects, all at the same magnification.

In total, the 49 fully annotated bulk images contain segmentation masks for 17,937 arthropods. Mask86

areas range between 15.1 and 83,182.4 pixels, with a mean of 1152.2 and and median 343.4 pixels87

(see Figure 1).88

2.4 Preprocessing bulk images89

We first merged the annotations from the sub-images back together to match the original bulk images,90

allowing us to divide the images into tiles as needed for model training. We then used the Shapely91

library [16] in Python to merge segmentation masks with multiple polygons and to correct invalid92

(i.e., self-intersecting) polygon masks. The insect masks were processed as concave hulls, filling in93

holes (e.g., areas between legs) in the edited segmentation masks to create single polygons. 63 of the94

17,937 insect masks (0.351%) contained unconnected polygons that could not be merged via a unary95

union. In such cases, we took the polygon with the largest area as the final mask. After cleaning the96

segmentation masks, we manually cropped the bulk images to only contain the areas in which insects97

were present. This resulted in finalized cropped bulk images of different dimensions.98

3 Experiments99

In this work, we benchmark instance segmentation performance on MassID45 using two paradigms:100

zero-shot learning and supervised learning. By comparing the performance of zero-shot and super-101

vised approaches, we can assess whether the expert annotations are valuable enough to justify the102

annotation effort, or whether existing generalist models achieve adequate detection performance103

“out-of-the-box’ on the MassID45 data. We describe implementation details for our training and104

inference pipelines below.105

3.1 Dividing bulk images into tiles106

Due to GPU memory constraints and the high resolution of the images, we could not process entire107

bulk images during training or inference. Thus, we split the bulk images into tiles, similar to previous108

work [45, 10]. While the images can also be down-scaled to produce a resolution which fits within109

GPU memory, tiling preserves the pixel density of the original images, and maximizes the visual110

features available for detecting small insects.111

Based on our analysis in Appendix C.2, we split the bulk images into 512× 512 pixel tiles, treating112

each tile as a separate image during model training and inference. To ensure “cut-off” insects along113

the boundary of one tile were shown intact in adjacent tiles, we used an overlap of 60% between tiles,114

similar to previous work on small object detection [10].115
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Table 1: Instance segmentation results on the MassID45 test set for the zero-shot and supervised
baselines. For each mask AP metric, the top result per paradigm is bolded.

Paradigm Detector AP50:5:95 AP50 AP75 APS
50:5:95 APM

50:5:95 APL
50:5:95

Zero-shot CutLER 22.7 40.0 22.1 0.80 18.1 59.0
Grounding DINO + SAM 2.1 27.1 47.6 27.0 1.30 22.6 66.3
Florence-2 + SAM 2.1 16.5 28.8 16.7 3.00 12.1 41.7
Gemini 2.0 Flash + SAM 2.1 26.2 50.0 23.8 3.30 18.3 64.2

Supervised Mask R-CNN 42.5 83.1 36.6 20.0 41.6 70.4
Mask2Former 41.4 78.7 37.4 20.5 40.0 71.1
Mask DINO 43.5 80.9 40.1 21.1 43.5 73.1

During inference, the same insect can appear in multiple overlapping tiles. Treating each tile as an in-116

dependent image would lead to duplicate detections and inaccurate performance estimates. To address117

this, we used slicing-aided hyper-inference (SAHI), to merge predictions across overlapping tiles and118

accurately reconstruct detections in the full bulk image [2]. The SAHI algorithm has previously been119

used for small object detection problems in remote sensing [31, 27, 15] and pest monitoring [11].120

Overlapping predictions were considered duplicates and merged if their intersection over union (IoU)121

was at least 50%.122

3.2 Data partitioning123

We randomly partitioned the bulk images into training (40 images, 81.6%), validation (3 images,124

6.1%), and testing (6 images, 12.2%) sets. After dividing the bulk images into 512× 512 tiles, this125

resulted in 17,062 training tiles, 1244 validation tiles, and 1586 testing tiles. To prevent data leakage,126

all tiles from a given bulk image were assigned to the same dataset split. Including insects that were127

duplicated and/or partially cut between tiles, the tiled training set contained 110,520 insects, the tiled128

validation set 5867, and the tiled test set 6241.129

Based on prior work in remote sensing and underwater imagery [10, 12], we also applied geo-130

metric and colour-based augmentations to the bulk images to improve model generalization (see131

Appendix C.1 for details).132

3.3 Evaluation metrics133

Using the predictions merged with SAHI, we calculated evaluation metrics following the MS-COCO134

evaluation scheme [28]. We report the standard AP (average precision) metrics, including AP50:5:95,135

AP50, and AP75. We also measured AP50:5:95 for the “small”, “medium”, and “large” object categories136

(see Section 2.3), denoting them as APS
50:5:95, APM

50:5:95, and APL
50:5:95, respectively. We report the137

final evaluation metrics for each baseline on the test set of six bulk images.138

139

3.4 Benchmarking models140

Zero-Shot Detectors. We benchmark the generalization capabilities of several zero-shot detectors by141

applying them to a challenging new domain: small arthropods from the MassID45 data, applying the142

same SAHI approach for inference. These included unsupervised (CutLER [47]), open-vocabulary143

(Grounding DINO [29], Florence-2 [51]), and multi-modal models (Gemini 2.0 Flash [18]). For the144

latter three detectors, bounding box predictions were used to prompt the Segment Anything Model145

(SAM 2.1) [35] to produce instance masks. Full implementation details are in Appendix C.3.146

Supervised Detectors. We fine-tuned three instance segmentation architectures originally developed147

for standard computer vision datasets like MS-COCO [28]. These models include a popular baseline148

for instance segmentation, Mask R-CNN [20, 50], and two recent transformer-based methods,149

Mask2Former [8] and Mask DINO [24]. The latter two use transformer-based architectures, an150

approach that has driven recent advances in computer vision [40, 36, 25], to achieve state-of-the-art151

results on MS-COCO. To leverage transfer learning [6], we initialized all supervised models with152
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(c) Mask DINO(b) Mask2Former(a) Grounding DINO (d) Mask R-CNN

True positive pixels (TPp) False negative pixels (FNp) False positive pixels (FPp)

TPp: 7 874 | FNp: 1 775 | FPp: 2 432 TPp: 8 573 | FNp: 1 076 | FPp: 1 017 TPp: 8 657 | FNp: 992 | FPp: 925 TPp: 8 457 | FNp: 1 192 | FPp: 274

Figure 2: Visual instance segmentation results for one example patch from the MassID45 test set. For
each detector, we selected distinct confidence thresholds that maximized that model’s F1-score on the
validation set (see Appendix C.5 for details). Predicted masks are compared for (a) the top-performing
zero-shot model, Grounding DINO; and (b) – (d) the 3 supervised baselines: Mask2Former, Mask
DINO, and Mask R-CNN. Above each panel, we show the areas occupied by TPs, FPs, and FNs in
pixels. Best viewed on a colour display with zoom.

a ResNet-50 backbone pretrained on MS-COCO [28]. Detailed training details can be found in153

Appendix C.4.154

4 Results155

After fine-tuning on the MassID45 annotations, the supervised models significantly outperformed all156

zero-shot baselines (see Table 1). The top-performing supervised model, Mask DINO, achieved a157

mask AP50:5:95 of 43.5%, a substantial improvement over the 27.1% achieved by the top-performing158

zero-shot method, Grounding DINO.159

Using tailored confidence thresholds that we derived in Appendix C.5, we then visualized predictions160

from each model on an exemplar patch from the test set (see Figure 2). Qualitatively, Grounding161

DINO could successfully localize and segment larger arthropods, but missed most small insects. It162

also misidentified QR codes as insects (Figure 2a). In contrast, the supervised models produced163

instance masks that align well with the ground truth. However, the supervised models tended to164

confuse small, loose debris with insects and vice-versa (Figure 2b-d). For this exemplar patch, we165

also reported the number of true positive (TP), false positive (FP), and false negative (FN) pixels166

to illustrate the differences between each model’s predictions. The zero-shot Grounding DINO167

model predicted significantly more FPs and FNs than the supervised models. Conversely, the three168

supervised models predicted similar numbers of FPs and FNs, with Mask DINO predicting the fewest169

FNs, and Mask R-CNN detecting the fewest FPs. Similar trends can be seen when aggregating the TP,170

FP, and FN pixels across the six bulk images in the MassID45 test set (see Table 4 in Appendix C.5).171

The relatively poor performance of the zero-shot baselines suggests fine-tuning is still needed for172

specialized tasks like detecting arthropods from the MassID45 dataset. More importantly, this finding173

underscores the importance of expert annotations for bulk image analyses, where the complexities174

of the detection task are caused by the small size of the arthropods, as well as their high similarity175

to surrounding debris. While not explored in this work, fine-tuning these zero-shot methods on176

the MassID45 dataset may prove beneficial. Thus, this analysis frames MassID45 as a challenging177

benchmark dataset for custom supervised models, vision foundation models, and other zero-shot178

detectors, as it assesses their ability to recognize tiny, ambiguous objects rather than larger common179

objects that are typically considered in the literature.180
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Appendices343

In these appendices, we provide additional details about the imaging protocols, taxonomic labeling344

and annotations, machine learning experiments, and usage of the MassID45 dataset. The appendices345

are summarized below.346

• Appendix A. Additional details about the bulk and individual specimen imaging protocols.347

• Appendix B. Additional details about the taxonomic annotations.348

• Appendix C. Additional details about the experiments for small instance segmentation.349

• Appendix D. Dataset details and usage notes.350

A Imaging Protocol — Additional Details351

Here we provide additional information about the image acquisition and DNA metabarcoding352

protocols described in Section 2.1, particularly for the bulk and individual specimen images.353

A.1 Bulk imaging details354

We sampled arthropod communities at 19 sites in Sweden and northern Finland using Townes-style355

Malaise traps [4]. We deployed the traps continuously during 2021 and emptied them once per week.356

The MassID45 dataset we present here constitutes a subset of 45 of these samples, collected between357

March 31 and October 25, 2021 (Figure 3).358

After collection, samples were shipped to the Centre for Biodiversity Genomics, Guelph, Canada,359

where they were preserved in fresh 96% ethanol and stored at –20 °C until analysis. We weighed the360

arthropods from the bulk sample after filtering out the ethanol to obtain the wet biomass. We then361

performed non-destructive lysis for DNA extraction and collected three technical replicates from362

each sample. After extraction, we amplified a short (418 bp) fragment within the standard barcoding363

region of COI, which we then sequenced on an Illumina NovaSeq 6000. After DNA extraction, we364

transferred each sample to a translucent sorting tray (44 × 39 cm) with a shallow layer of ethanol and365

carefully spread out the specimens to minimize overlap.366

After DNA extraction, we transferred each sample to a translucent sorting tray (44 × 39 cm) with a367

shallow layer of ethanol and carefully spread out the specimens to minimize overlap. We placed the368

tray on an LED panel inside a modified light cube, where the front panel was removed and a hole369

was added in the ceiling to fit a camera (Figure 4a). To further improve light conditions, we used370

two ring lights placed on opposing sides of the light cube. The bulk images were taken with a Canon371

EOS R5 camera and an RF 24–240 mm F4-6.3 IS USM zoom lens mounted on a large copy stand.372

The following camera settings were used: a focal length of 27 mm, aperture f/20, shutter speed 1/6373

seconds, and ISO 100.374

We manually edited the full-resolution RAW images (45 megapixels; 8192 × 5464) in Adobe375

Lightroom Classic to improve contrast and ensure visibility of both light and dark insect body parts,376

using the following settings: we increased exposure by 1.3 stops, set whites and highlights to −100,377

and shadows to 50. To restore image contrast and colour we also adjusted clarity and saturation to378

20 and increased the white balance from 4200K to 5050K. To reduce noise and purple fringing, we379

applied luminance noise reduction and defringe values of 20. Finally, we increased sharpening to 60380

and saved the images in JPEG format.381

A.2 Individual specimen imaging details382

After bulk imaging was completed, we placed each specimen from the bulk samples in a separate383

well in a 96-well microplate for individual analysis. Specimens smaller than 5 mm were placed384

directly in the well and imaged using a Keyence VHX-7000 Digital Microscope system [43]. For385

larger specimens (approximately >5 mm), we removed a single leg for DNA extraction and pinned386

the main body of the arthropod for imaging using an automatic Imaging Rig [42]. We amplified and387

sequenced full 658-bp DNA barcodes for each specimen using single-molecule real-time (SMRT)388

sequencing [21] on a PacBio Sequel platform. The success rate of amplification and sequencing of389

DNA barcodes from the individual specimens was 97.5%, though only 89.6% passed quality and390
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Figure 3: Geographical distribution and collection dates of samples. Each sample is uniquely named
with a six-character alphanumeric code and has associated geographic and temporal information,
including the latitude and longitude of the sampling site, as well as placement and collection dates.
Top: Locations of the 19 sampling sites across Sweden and northern Finland. SH, HT, and UA are
part of a hierarchical sampling design [19], each including 5–7 trap locations. The size of each circle
is proportional to the number of samples collected at that site, which is also indicated by an integer
below the trap name. Bottom: Temporal distribution of the MassID45 samples collected between
March 31 and October 25, 2021. Collection dates have been aggregated by week so that samples
collected during the same week are displayed in the same column, regardless of what day of the week
they were collected. Hierarchically organized sites (SH, HT, and UA) are coloured with shades of the
same main colours to emphasize their geographical proximity.

contamination checks. In combination with factors affecting metabarcoding success, such as primer391

bias and amplification of non-target DNA (e.g., gut contents), we therefore expect some discrepancies392

between the individual and bulk-level DNA barcoding data. We uploaded images and DNA barcodes393

to BOLD and assigned taxonomic classifications based on both image and molecular information394

using the BOLD ID engine. We retained all specimens for future morphological reference in the395

natural history collection of the Centre for Biodiversity Genomics (BIOUG).396

B Taxonomic Labeling — Additional Details397

We expand on the taxonomic labels described earlier in Section 2.2, including the sample-specific398

taxonomies provided to the expert annotator, and an analysis on annotation completeness.399

B.1 Sample-specific taxonomies400

Using individual-level DNA barcodes, we constructed sample-specific taxonomies to guide the401

annotations of the corresponding bulk images. First, we compiled a base taxonomy containing the402

ranks kingdom, phylum, subphylum, class, order, suborder, infraorder, superfamily, family, subfamily,403

genus, and species, starting with the taxonomy provided by BOLD [34]. We then supplemented the404

taxonomy with the ranks suborder, infraorder and superfamily from Dyntaxa, the Swedish taxonomy405
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a b

Figure 4: (a) Imaging setup used to capture bulk images of the MassID45 dataset, including the
positioning of the camera, light cube and ring light sources. (b) A representative image captured
using the described imaging setup, with the sides trimmed.

database (downloaded from https://artfakta.se/), which covers all arthropods recorded from406

Sweden. We subset the Dyntaxa taxonomy to Hexapoda and Arachnida and combined it with the407

BOLD taxonomy by matching genus names within phyla and classes. Any taxonomic discordances408

between the taxonomies were resolved by giving the BOLD taxonomy precedence as follows. We409

used family names as they occurred in the BOLD taxonomy, and manually checked by comparison410

with the NCBI taxonomy database [39] that the suborder, infraorder, and superfamily from Dyntaxa411

were correct for all cases where Dyntaxa used a different family name. If NCBI listed another412

suborder, infraorder, or superfamily for the BOLD family name, we changed the discordant rank413

in our taxonomy to match NCBI. However, we did not add any information from NCBI to ranks414

that were empty in our taxonomy. If there was no taxonomic information for the BOLD family, we415

kept the information from Dyntaxa for suborder, infraorder, and superfamily. Diplura, Collembola,416

and Protura occurred as classes in BOLD but as orders in Dyntaxa. We kept them as classes417

in our taxonomy and removed all sub- and infraorders, as the same taxa appeared as orders in418

BOLD. The orders Phthiraptera and Psocoptera in the Dyntaxa taxonomy were combined into order419

Psocodea in BOLD. We therefore used the latter in our taxonomy. We also added “microlepidoptera”420

as an informal taxonomic group between the ranks of infraorder and superfamily. This group421

included 14 superfamilies within the order Lepidoptera (Adeloidea, Choreutoidea, Gelechioidea,422

Gracillarioidea, Micropterigoidea, Nepticuloidea, Pterophoroidea, Pyraloidea, Schreckensteinioidea,423

Tineoidea, Tischerioidea, Tortricoidea, Urodoidea, and Yponomeutoidea). While microlepidoptera is424

not a true taxonomic group, it is a useful classification when working with insect images with low425

resolution. Finally we generated sample-specific taxonomies by using the taxonomic classifications426

obtained from DNA barcoding of individual specimens in each of the 45 samples.427

B.2 Annotation completeness428

To evaluate how accurately the bulk image annotations reflect the true number of arthropods in429

the samples, we compared the number of segmentation masks annotated as arthropods with the430

actual number of specimens isolated from each sample (Figure 5a). We found that in samples431

containing more than approximately 250 arthropods, the number of arthropods based on the bulk432

image annotations was substantially lower than the true count. Some of these discrepancies occurred433

in samples with a high abundance of springtails (Collembola), which are often small, pale, and difficult434

to separate from debris in the bulk samples. Restricting the comparison to individual specimens435

classified as Insecta or Arachnida (both of which are typically larger and darker than springtails)436
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Figure 5: (a) For each sample, a comparison was made between the number of arthropods annotated
in the bulk images and the number of individual specimens isolated from the corresponding samples,
here shown for all taxa (left) and restricted to Insecta and Arachnida (right). The green line represents
a linear regression fit with a 95% confidence interval between the two quantities, and the dashed grey
line indicates a 1:1 relationship. (b) For each sample, a comparison was made between the number of
segmentation masks tagged as arthropods and the number tagged as debris or unidentifiable across all
bulk images.

Table 2: Number of unique taxa and specimens annotated at each taxonomic rank. Values are showed
separately for high-confidence annotations (HC) and low-confidence annotations (LC).

Rank # Taxa LabelledHC LabelledLC LabelledHC (%) LabelledLC (%)

Phylum 1 (1) 17,892 17,892 100.0% 100.0%
Class 4 (4) 17,570 17,834 98.2% 99.7%
Order 23 (25) 15,042 16,463 84.1% 92.0%
Suborder 8 (8) 11,218 12,745 62.7% 71.2%
Infraorder 5 (6) 7792 10,778 43.5% 60.2%
Superfamily 34 (47) 6261 8730 35.0% 48.8%
Family 92 (129) 4546 6358 25.4% 35.5%
Subfamily 27 (36) 993 1174 5.5% 6.6%
Genus 35 (55) 584 694 3.3% 3.9%
Species 17 (23) 63 74 0.4% 0.4%

reduced the difference between annotated counts and true specimen counts. Overall, the absolute437

discrepancy in counts tended to increase with larger samples, suggesting two possibilities. First, it is438

inherently challenging for human annotators to detect all insects in images where the total number of439

individuals is very high. These samples also often contained substantial debris, which can obscure440

smaller insects (Figure 5b). Additionally, because each insect occupies only a small proportion of441

the image, especially tiny insects may appear visually indistinct or blurry, making them difficult to442

annotate correctly. Second, annotator fatigue may set in for these large samples, leading to fewer443

corrections for arthropods missing a segmentation mask once the total count is already high.444

We were able to annotate the majority of specimens in the bulk images at rank suborder or above with445

high confidence (Table 2). Including low-confidence annotations increased the number of specimens446

annotated at lower ranks, with almost half of the specimens annotated at superfamily level, and more447

than a third at the family level (Table 2).448

C Experiments — Additional Details449

Here we describe implementation details and additional analyses for the experiments described in450

Section 3. We delve into our data augmentation pipeline, experiments to determine the optimal451

upsampling factor and tile size, the technical details of our zero-shot and supervised baselines, as452

well as our tailored confidence thresholds from Figure 2.453
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Table 3: Geometric and colour-based data augmentations used for the training data, where p denotes
the probability of applying each transformation.

Category Augmentation Parameters
Geometric Random horizontal flip p = 0.5

Random rotation {0°, 90°, 180°, 270°}, p = 0.25 each

Colour Random brightness Uniform in range [−15%,+15%]
Random contrast Uniform in range [−10%,+10%]
Random saturation Uniform in range [−15%,+15%]

C.1 Data augmentations454

To artificially increase the number of training samples and improve generalization, we applied data455

augmentations to the tiled images from the training partition, drawing on prior work focused on456

small object detection in remote sensing and underwater imagery [10, 12]. It is important to note457

that our tiling process also acted as a form of data augmentation, as the arthropods could be present458

in multiple adjacent tiles. We employed both geometric and colour-based augmentations (Table 3),459

which introduced variations to the bulk images while ensuring the insects could still be identified. For460

example, random rotations and horizontal flips mimicked the possible orientations that arthropods can461

assume when placed in the sorting trays. Random adjustments to brightness, contrast, and saturation462

were intended to make the models more robust to small differences in lighting across bulk images, as463

well as natural colouration differences among arthropods (e.g., in different life stages). We applied464

these augmentations to the tiled bulk images, then resized each augmented tile to a fixed input size of465

1024× 1024 using bilinear interpolation before presenting them to the model during training.466

C.2 Determining upsampling factor for tiles467

If an entire bulk insect sample is downsampled to fit within a model’s input size of 1024 × 1024468

pixels, each insect is rendered at a lower resolution than in the original image, leading to blurred469

contours and fewer visible details — especially problematic for detecting small insects. An alternative470

is to divide the images into tiles to preserve visual details. Using smaller tiles than the required471

input size and instead upsampling the images to target resolution can affect model performance. For472

example, presenting images to models at higher resolutions allows the model to spend more compute473

in processing the full input image, potentially improving its performance [44]. Correspondingly,474

we investigated how much the model’s performance could be increased if the original images were475

upsampled before presenting them to the model.476

To determine the optimal upsampling factor for our instance segmentation models, we performed477

training and inference while varying the dimensions of the bulk image tiles. As we decreased the size478

of our tiles, we needed to increase the upsampling rate to reach our fixed input size of 1024× 1024479

pixels. We performed this analysis on the validation set using the SAHI approach to ensure this480

hyperparameter selection was not based on the test partition. For each trial, we maintained a fixed481

input size of 1024× 1024 pixels, a common input size for pretraining instance segmentation models482

[20, 24, 8]. Tiles smaller than this input size were upsampled to 1024× 1024 pixels using bilinear483

interpolation. Thus, a tile size of 1024× 1024 pixels would require a zoom factor of one to reach our484

desired input size, 512× 512 pixels would require a zoom factor of two, and so forth until 128× 128485

pixels, which would require a zoom factor of eight.486

As the zoom factor increases, the relative size of the arthropods in each tile increases, although each487

tile includes less spatial context, and more arthropods are cut between tiles. We observed that all488

three models achieve the best mask AP when they use 512× 512 pixel tiles or a zoom factor of two489

(Figure 6), which we consequently used for all further experiments.490

While increasing the zoom factor from one to two improves instance segmentation performance,491

higher zoom factors gradually degrade performance. Very small tiles, with zoom factors of six and492

eight, showed the worst mask AP across all models, suggesting that the increase in relative size is493

offset by the lack of spatial context when small tiles are used. Such context may be important for494

distinguishing small insects from surrounding debris. For example, as the tile size decreases, more495

insects are split between tiles. These partial insects may be more difficult to distinguish from debris,496
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which includes loose insect legs and wings. This also complicates the inference stage as a) our models497

must correctly identify partial insects, and b) the SAHI algorithm must correctly merge fragmented498

insect predictions across tiles.499
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Figure 6: Validation mask AP versus tile zoom factor for our supervised baselines: Mask R-CNN,
Mask2Former, and Mask DINO. For all three models, a zoom factor of two, corresponding to a tile
size of 512× 512 pixels, which is upsampled to a 1024× 1024 pixels model input, gives the best
instance segmentation performance.

C.3 Implementation details for zero-shot methods500

First, we assessed the Cut and Learn (CutLER) model [47], an unsupervised instance segmentation501

method trained on a dataset without human annotations. CutLER leverages a self-training process502

where the model is iteratively trained on its own predictions to refine the quality of subsequent instance503

masks. For all CutLER experiments, we used a self-trained Cascade Mask R-CNN checkpoint504

(cutler_cascade_final) [47].505

We then evaluated Grounding DINO [37, 29] and Florence-2 [51], which can localize objects of506

interest through text prompts. These text prompts can denote simple category names or referring507

expressions. For all Grounding DINO experiments, we provided the Grounding DINO-B model508

(groundingdino_swinb_cogcoor) [29] with the prompt “insect.”, where “.” is used as a delim-509

iter for different object classes. We then used the default box and text thresholds of 0.35 and 0.25,510

respectively.511

For our Florence-2 evaluations, we used the publicly available Florence-2-large-ft checkpoint512

[51]. In addition to a text prompt, Florence-2 requires a task prompt denoting whether to perform513

captioning, detection, or other vision-language tasks.514

Thus, we provided the following prompt to Florence-2: “<OPEN_VOCABULARY_DETECTION> small515

brown-yellow insects”. To suppress large bounding box predictions, we filtered out bounding516

boxes that occupy more than 40% of the area of a given 512× 512 pixel tile (for comparison, the517

largest specimen in the dataset had a ground truth mask equal to 32% of a tile).518

Lastly, we leveraged Gemini 2.0 Flash’s spatial understanding capabilities to perform object detection519

[18]. With a temperature of 0.5, we provided the following system instructions: “Return bounding520

boxes as a JSON array with labels.Never return masks or code fencing.Limit to 50521

objects.Never repeat or duplicate bounding boxes.If an object is present multiple522

times, return the same label for each instance.”523

When performing detection, we used the following text prompt: “Detect the 2d bounding524

boxes of the small brown insects, ants, flies, and/or gnats.Exclude loose wings,525

legs, and debris.” As with Florence-2, bounding boxes occupying more than 40% of a tile526
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were filtered out before being used as prompts for SAM 2.1. We performed inference with the527

sam2.1_hiera_large checkpoint without any fine-tuning on the MassID45 training set [35].528

C.4 Training details for supervised models529

We trained all supervised models for 15,000 iterations with a batch size of 8 (2 images per GPU530

with 4 GPUs), using the AdamW [30] optimizer with a peak learning rate of 5× 10−5 and weight531

decay of 0.05. All training runs used a one-cycle cosine annealed learning rate schedule [41] with a532

warm-up period of 4500 iterations. Training was performed using four NVIDIA RTX6000 GPUs.533

For inference, we applied the SAHI approach as described in Section 3.1, dividing the bulk images534

from the test partition into 512× 512 pixel tiles with 60% overlap, and merging duplicate predictions535

with an IoU > 50%.536

C.5 Model evaluation with tailored confidence thresholds537

To determine appropriate confidence thresholds for each model, we plotted precision-recall (PR)538

curves using their predictions on the MassID45 validation set (see Figure 7). We fixed the IoU539

threshold to 50%, indicating that we consider predicted masks as correct if they overlap by more than540

50% in area with the ground truth. Each point corresponds to the precision and recall at a particular541

confidence threshold. Thus, for each model we selected the confidence threshold with the highest542

F1-score — the harmonic mean between precision and recall. This optimal confidence threshold is543

generally the point closest to the top-right corner of the PR curve, which represents perfect precision544

and perfect recall. These confidence thresholds can be interpreted as suggested operating points for545

each model when used on bulk images in a real-world setting.546

Using these tuned confidence thresholds, we performed inference on the MassID45 test set, then547

filtered out any predictions below each model’s confidence threshold. We then measured the number548

of TP, FP, and FN pixels predicted by each model on the test set (see Table 4). Consistent with our549

exemplar patch in Figure 2, Mask DINO predicts the highest number of TP pixels and lowest number550

of FN pixels, while Grounding DINO has the highest proportions of FPs and FNs. Mask R-CNN551

predicts the fewest FPs, while Mask2Former generally achieves a balance between Mask DINO and552

Mask R-CNN.553

Table 4: Proportion of true positive (TP), false positive (FP), and false negative (FN) pixels for each
model on the MassID45 test set after tuning confidence thresholds.

Model TP Area FP Area FN Area
Grounded SAM 2.1 712,478 (63.9%) 253,701 (22.8 %) 148,456 (13.3 %)
Mask2Former 783,319 (80.7%) 110,204 (11.4 %) 77,615 ( 7.99%)
Mask DINO 787,067 (80.7%) 114,215 (11.7 %) 73,867 ( 7.57%)
Mask R-CNN 777,120 (81.4%) 93,473 ( 9.79%) 83,814 ( 8.78%)

D Dataset availability and notes554

We provide guidance for accessing and using the MassID45 dataset, detailing the included data555

types, the location of model checkpoints and code, as well as information for practioners using the556

MassID45 in their own research.557

D.1 Data records558

The MassID45 dataset is organized into two resolution levels (Table 5): bulk samples containing559

bulk images, metabarcoding data, and taxonomic image annotations and individual specimens560

containing individual images and DNA barcoding data. Sample metadata, bulk sample images,561

bulk image annotations, and models described here are all available from Zenodo [32]. Sample562

metadata is provided in a CSV file with one row per sample, uniquely identified by a six-character563

alphanumeric code. The same sample code is used as the file name of the corresponding bulk image,564

followed by suffix _{image}, where image is 1 or 2, in cases where there is more than one image565

per sample. We provide each image raw in CR3 format and edited in JPEG format. Bulk image566
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Figure 7: Precision-recall (PR) curves for the strongest zero-shot model (Grounded SAM 2.1) and the
three supervised models (Mask R-CNN, Mask DINO, Mask2Former). We selected the confidence
threshold for each model by finding the point on the PR curve with the highest F1-score.

annotations are available from step 1 and 2 in both COCO and TORAS format. The trained models567

are provided as PyTorch checkpoints and can be used for model inference with the code provided at568

https://github.com/uoguelph-mlrg/MassID45.569

Raw sequencing reads for bulk samples are available from ENA [1] under project accession num-570

ber PRJEB86111. The sequences for each sequencing replicate are represented by two gzipped571

FASTQ files, containing the R1 and R2 paired-end reads. Thus, for each physical sample there572

are a total of six files, with names of the form {sample}_Rep{i}.R{read}.fastq.gz, where573

{sample} is the six-character alphanumeric code uniquely identifying the sample, {i} is an integer574

between 1 and 3 indicating the replicate number, and {read} is 1 or 2. Accession numbers for575

individual samples and read files, along with a script to download all relevant files, are provided in576

MassID45_ENA_accnos.tsv, and download_MassID45_ENA.sh, respectively, both available at577

the above GitHub repository. Individual arthropod images and DNA barcode sequences are available578

as project ID DS-LPEPA22 on BOLD [26]. On BOLD, the field ID variable corresponds to the579

sample code used in the sample metadata and bulk image names, while the sample ID is an identifier580

unique to each individual specimen.581

D.2 Usage Notes582

Our annotation workflow consisted of two separate steps, where only a subset of the annotations from583

step 1 (those categorized as arthropods, b) were annotated in step 2. In step 2, the main task of the584

annotator was to provide a taxonomic label for each specimen. However, if the second annotator585

disagreed with the first categorization, they could change it to one of the three other categories (d,586

e, or u). For the full set of annotations with both broad categories and taxonomic annotations, the587

output from step 1 and 2 must therefore be merged. For the taxonomic annotations, we used multiple588

labels as a way to express annotator uncertainty. If a single label is required, we therefore recommend589

careful selection of which taxon name to use.590

While efforts were made to ensure the bulk images were fully annotated, some insects that were591

at the boundaries of the 4 × 4 annotator patches may have been missed. As mentioned above in592

Appendix B.2, insects may appear blurry in the images. This limitation to image quality can be593
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Table 5: Overview of data types included in the MassID45 dataset.

Resolution Data type Quantity Description

Bulk samples
N = 45

Bulk images 49 images
(of 45 samples)

Images depicting unsorted insect samples,
with 1–2 images per sample (41 samples 1:1, 4 samples 1:2).

Metabarcoding data 45 samples COI sequences from metabarcoding of unsorted insect
samples. Each sample has three technical replicates.

Taxonomic image annotations 17,940 annotations Segmentation masks and expert taxonomic assignments
for individual arthropods in the bulk images.

Individual specimens
N = 35,586 Individual images 35,586 images Images of each arthropod specimen from

the 45 bulk samples.

Barcoding data 35,586 sequences COI sequences from DNA barcoding of
individual insect specimens.

addressed by techniques like super-resolution, which reconstructs plausible high-quality details from594

low-resolution images. We leave this for future work.595

While effective on the bulk images from the MassID45 data, the fine-tuned instance segmentation596

models provided in this work may not generalize to bulk images taken under different imaging597

protocols. Such a distributional shift would necessitate transfer learning on the user’s own set of598

bulk images. Nevertheless, pre-trained weights from our instance segmentation models may prove599

beneficial for other detection tasks involving small objects. We encourage further experimentation on600

the MassID45 dataset, particularly with existing instance segmentation models and vision foundation601

models.602
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