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Abstract

The optimization step in many machine learning problems rarely relies on vanilla
gradient descent but it is common practice to use momentum-based accelerated
methods. Despite these algorithms being widely applied to arbitrary loss functions,
their behaviour in generically non-convex, high dimensional landscapes is poorly
understood. In this work, we use dynamical mean field theory techniques to
describe analytically the average dynamics of these methods in a prototypical
non-convex model: the (spiked) matrix-tensor model. We derive a closed set
of equations that describe the behaviour of heavy-ball momentum and Nesterov
acceleration in the infinite dimensional limit. By numerical integration of these
equations, we observe that these methods speed up the dynamics but do not improve
the algorithmic threshold with respect to gradient descent in the spiked model.

1 Introduction

In many computer science applications one of the critical steps is the minimization of a cost function.
Apart from very few exceptions, the simplest way to approach the problem is by running local
algorithms that move down in the cost landscape and hopefully approach a minimum at a small cost.
The simplest algorithm of this kind is gradient descent, that has been used since the XIX century to
address optimization problems [1]. Later on, faster and more stable algorithms have been developed:
second order methods [2, 3, 4, 5, 6, 7] where information from the Hessian is used to adapt the
descent to the local geometry of the cost landscape, and first order methods based on momentum
[8, 9, 10, 11, 12] that introduce inertia in the algorithm and provably speed up convergence in a variety
of convex problems. In the era of deep-learning and large datasets, the research has pushed towards
memory efficient algorithms, in particular stochastic gradient descent that trades off computational
and statistical efficiency [13, 14], and momentum-based methods are very used in practice [15].
Which algorithm is the best in practice seems not to have a simple answer and there are instances
where a class of algorithms outperforms the other and vice-versa [16]. Most of the theoretical
literature on momentum-based methods concerns convex problems [17, 18, 19, 20, 21] and, despite
these methods have been successfully applied to a variety of problems, only recently high dimensional
non-convex settings have been considered [22, 23, 24]. Furthermore, with few exceptions [25], the
majority of these studies focus on worst-case analysis while empirically one could also be interested
in the behaviour of such algorithms on typical instances of the optimization problem, formulated in
terms of a generative model extracted from a probability distribution.

The main contribution of this paper is the analytical description of the average evolution of momentum-
based methods in two simple non-convex, high-dimensional, optimization problems. First we consider
the mixed p-spin model [26, 27], a paradigmatic random high-dimensional optimization problem.
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Furthermore we consider its spiked version, the spiked matrix-tensor [28, 29] which is a prototype
high-dimensional non-convex inference problem in which one wants to recover a signal hidden in the
landscape. The second main result of the paper is the characterization of the algorithmic threshold
for accelerated-methods in the inference setting and the finding that this seems to coincide with the
threshold for gradient descent.

The definition of the model and the algorithms used are reported in section 2. In section 3 and 4 we
use dynamical mean field theory [30, 31, 32] to derive a set of equations that describes the average
behaviour of these algorithms starting from random initialization in the high dimensional limit and in
a fully non-convex setting.

We apply our equations to the spiked matrix-tensor model [29, 33, 34], which displays a similar
phenomenology as the one described in [24, 35] for the phase retrieval problem: all algorithms have
two dynamical regimes. First, they navigate in the non-convex landscape and, second, if the signal to
noise ratio is strong enough, the dynamics eventually enters in the basin of attraction of the signal and
rapidly reaches the bottom of the cost function. We use the derived state evolution of the algorithms
to determine their algorithmic threshold for signal recovery.

Finally, in Sec. 5 we show that in the analysed models, momentum-based methods only have an
advantage in terms of speed but they do not outperform vanilla gradient descent in terms of the
algorithmic recovery threshold.

2 Model definition

We consider two paradigmatic non-convex models: the mixed p-spin model [32, 36], and the spiked
matrix-tensor model [28, 29]. Given a tensor TTT ∈ (RN )⊗p and a matrix YYY ∈ RN×N , the goal is to
find a common low-rank representation xxx that minimizes the loss

L = − 1

∆p

√
(p− 1)!

Np−1

N∑
i1,...,ip=1

Ti1,...,ipxi1 . . . xip −
1

∆2

1√
N

N∑
i,j=1

Yijxixj , (1)

with xxx in the N -dimensional sphere of radius
√
N . The two problems differ by the definition of the

variables TTT and YYY . Call ξξξ(p) and ξξξ(2) order p tensor and a matrix having i.i.d. Gaussian elements,
with zero mean and variances ∆p and ∆2 respectively. In the mixed p-spin model, tensor and matrix
are completely random TTT = ξξξ(p) and YYY = ξξξ(2). While in the spiked matrix-tensor model there is a
low-rank representation given by xxx∗ ∈ SN−1(

√
N) embedded in the problem as follows:

Ti1...ip =

√
(p− 1)!

Np−1 x∗i1 . . . x
∗
ip + ξ

(p)
i1...ip

, Yij =
x∗i x

∗
j√
N

+ ξ
(2)
ij . (2)

These problems have been studied both in physics, and computer science. In the physics litera-
ture, research has focused on the relationship of gradient descent and Langevin dynamics and the
corresponding topology of the complex landscape [32, 37, 38, 36, 39, 27, 40]. The state evolution
of the gradient descent dynamics for the mixed spiked matrix-tensor model has been studied only
more recently [33, 34]. All these works considered simple gradient descent dynamics and its noisy
(Langevin) dressing.

In this work we focus on accelerated methods and provide an analytical characterization of the
average performance of these algorithms for the models introduced above. In order to simplify the
analysis we relax the hard constraint on the norm of the vector xxx and consider xxx ∈ RN while adding
a penalty term to L to enforce a soft constraint µ

4N

(∑
i x

2
i −N

)2
, so that the total cost function is

H = L+ µ
4N

(∑
i x

2
i −N

)2
. Using the techniques described in detail in the next section we write

the state evolution for the following algorithms:

• Nesterov acceleration [9] starting from yyy[0] = xxx[0] ∈ SN−1
(√

N
)

xxx[t+ 1] = yyy[t]− α∇H(yyy[t]), (3)

yyy[t+ 1] = xxx[t+ 1] +
t

t+ 3
(xxx[t+ 1]− xxx[t]) . (4)

given α the learning rate of the algorithm.
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• Polyak’s or heavy ball momentum (HB) [8] starting from yyy[0] = 000 and xxx[0] ∈
SN−1

(√
N
)

, given the parameters α, β

yyy[t+ 1] = βyyy[t] +∇H(xxx[t]), (5)
xxx[t+ 1] = xxx[t]− αyyy[t+ 1]; (6)

• gradient descent (GD) starting from xxx[0] ∈ SN−1
(√

N
)

xxx[t+ 1] = xxx[t]− α∇H(xxx[t]). (7)

This case has been considered in [27, 33] with the constraint
∑
i x

2
i = N . The generalization

to the present case in which constraint is soft is a straightforward small extension of these
previous works.

We will not compare the performance of these accelerated gradient methods to algorithms of different
nature (such as for example message passing ones) in the same settings. Our goal will be the
derivation of a set of dynamical equations describing the average evolution of such algorithms in the
high dimensional limit N →∞.

3 Dynamical mean field theory
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Figure 1: Simulation and DMFT comparison in mixed p-spin model. The simulations in the
figures have parameters p = 3, ∆3 = 2/p, ∆2 = 1, ridge parameter µ = 10 and input dimension
N = 1024. In all our simulations we use the dilution technique [41, 42] to reduce the computational
cost. We consider: Nesterov acceleration in pink; heavy ball momentum in blue with α = 0.01
and β = 0.9; and gradient descent in grey. We run 100 simulations (in transparency) and draw the
average. The parameters for heavy ball are the best parameters found in our simulations, see also
Fig. 2 for a comparison. The results from the DMFT equations are drawn with dotted lines.

We use dynamical mean field theory (DMFT) techniques to derive a set of equation describing the
evolution of the algorithms in the high-dimensional limit. The method has its origin in statistical
physics and can be applied to the study of Langevin dynamics of disordered systems [30, 31, 43].
More recently it was proved to be rigorous in the case of the mixed p-spin model [44, 45]. The
application to the inference version of the optimization problem is in [29, 33]. The same techniques
have also been applied to study the stochastic gradient descent dynamics in single layer networks
[46] and in the analysis of recurrent neural networks [47, 48, 49].

The derivation presented in the rest of the section is heuristic and, as such, it is not fully rigorous.
Making our results rigorous would be an extension of the works [44, 45] where path-integral methods
are used to prove a large deviation principle for the infinite-dimensional limit. Our non-rigorous
results are checked against extensive numerical simulations.

The idea behind DMFT is that, if the input dimension N is sufficiently large, one can obtain a
description of the dynamics in terms of the typical evolution of a representative entry of the vector xxx
(and vector yyy when it applies). The representative element evolves according to a non-Markovian
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stochastic process whose memory term and noise source encode, in a self-consistent way, the
interaction with all the other components of vector xxx (and yyy). The memory terms as well as the
statistical properties of the noise are described by dynamical order parameters which, in the present
model, are given by the dynamical two-time correlation and response functions.

In this first step of the analysis we obtain an effective dynamics for a representative entry xi (and
yi). The next step consists in using such equations to compute self-consistently the properties of the
corresponding stochastic processes, namely the memory kernel and the statistical correlation of the
noise. In Fig. 1 we anticipate the results by comparing numerical simulations with the integration of
the DMFT equations for the different algorithms: on the left we observe the evolution of the loss, on
the right we observe the evolution of the radius of the vector xxx, defined as the L2 norm of the vector
||xxx||2. We find a good agreement between the DMFT state evolution and the numerical simulations.

We compare Nesterov acceleration with the heavy ball momentum in the mixed p-spin model Fig. 1,
and in the spiked model Fig. 3. Nesterov acceleration allows for a fast convergence to the asymptotic
energy without need of parameter tuning. In Fig. 2 we compare the numerical simulations for the HB
algorithm and the DMFT description of the corresponding massive momentum version for several
control parameters.

DMFT equations

In the following we describe the resulting DMFT equations for the correlation and response
functions. The details of their derivation for the case of the Nesterov acceleration are provided
in the following section, while we leave the other cases to the supplementary material (SM).
The dynamical order parameters appearing in the DMFT equations are one-time or two-time
correlations, e.g. Cxy[t, t′] =

∑
i xi[t]yi[t

′]/N , and response to instantaneous perturbation of the
dynamics, e.g. Rx[t, t′] =

(∑
i δxi[t]/δHi[t

′]
)
/N by a local fieldHHH[t′] ∈ RN where the symbol δ

denotes the functional derivative. In this section we show only the equations for the mixed p-spin
model and we discuss the difference and the derivation of the equations for the spiked tensor in the SM.

From the order parameters we can evaluate useful quantities that describe the evolution of
the algorithms. In particular in Figs. 1,2,3 we show the loss, the radius, and the overlap with the
solution in the spiked case (Fig. 3):

• Average loss

L[t] = − α

∆pCx[t, t]
p
2

t∑
t′′=0

Rx[t, t′]Cx[t, t′]p−1 − α

∆2Cx[t, t]

t∑
t′′=0

Rx[t, t′]Cx[t, t′]; (8)

• Radius
√
Cx[t, t];

• Define mx[t] = 1
N

∑
i xi[t]x

∗
i an additional order parameter for the spiked matrix-tensor

model (more details are given in the SM), the overlap with ground truth is

xxx[t] · xxx∗

||xxx||
=

mx[t]√
Cx[t, t]

Nesterov acceleration. It has been shown that this algorithm has a quadratic convergence rate
to the minimum in convex optimization problems under Lipschitz loss functions [9, 50], thus it
outperforms standard gradient descent whose convergence is linear in the number of iterations. The
analysis of the algorithm is described by the flow of the following dynamical correlation functions

Cx[t, t′] =
1

N

∑
i

xi[t]xi[t
′], (9)

Cy[t, t′] =
1

N

∑
i

yi[t]yi[t
′], (10)

Cxy[t, t′] =
1

N

∑
i

xi[t]yi[t
′], (11)
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Rx[t, t′] =
1

N

∑
i

δxi[t]

δHi[t′]
, (12)

Ry[t, t′] =
1

N

∑
i

δyi[t]

δHi[t′]
. (13)

The dynamical equations are obtained following the procedure detailed in section 4. Call Q(x) =
x2/(2∆2) + xp/(p∆p),

Cx[t+ 1, t′] = Cxy[t, t′]− αµ (Cy[t, t]− 1)Cy[t, t′] + α2
t′∑

t′′=0

Rx[t′, t′′]Q′ (Cy[t, t′′]) +

+ α2
t∑

t′′=0

Ry[t, t′′]Q′′ (Cy[t, t′′])Cxy[t′, t′′];

(14)

Cxy[t+ 1, t′] = Cy[t, t′]− αµ (Cy[t, t]− 1)Cxy[t, t′] + α2
t′∑

t′′=0

Ry[t′, t′′]Q′ (Cy[t, t′′]) +

+ α2
t∑

t′′=0

Ry[t, t′′]Q′′ (Cy[t, t′′])Cy[t′, t′′];

(15)

Cxy[t′, t+ 1] =
2t+ 3

t+ 3
Cx[t+ 1, t′]− t

t+ 3
Cx[t, t′]; (16)

Cy[t′, t+ 1] =
2t+ 3

t+ 3
Cxy[t+ 1, t′]− t

t+ 3
Cxy[t, t′]; (17)

Rx[t+ 1, t′] = Ry[t, t′] + δt,t′ − αµ (Cy[t, t]− 1)Ry[t, t′]

+ α2
t∑

t′′=t′

Ry[t, t′′]Ry[t′′, t′]Q′′ (Cy[t, t′′]) ;
(18)

Ry[t′, t+ 1] =
2t+ 3

t+ 3
Rx[t+ 1, t′]− t

t+ 3
Rx[t, t′]. (19)

The initial conditions are: Cx[0, 0] = 1, Cy[0, 0] = 1, Cxy[0, 0] = 1, Rx[t+ 1, t] = 1, Ry[t+ 1, t] =
2t+3
t+3 .

The equations show a discretized version of the typical structure of DMFT equations. We can
observe: terms immediately ascribable to the dynamical equations (3,4) and summations whose
interpretation is less trivial without looking into the derivation. They represent memory kernels that
take into account linear response theory for small perturbations to the dynamics (e.g. the last term of
Eq. (14)) and a noise whose statistical properties encode the effect of all the degrees of freedom on a
representative one (e.g. the second last term of Eq. (14)).

Heavy ball momentum. The DMFT equations are obtained analogously to previous ones,

Cy[t+ 1, t′] = βCy[t, t′] + µ (Cx[t, t]− 1)Cxy[t, t′] + α

t′∑
t′′=0

Ry[t′, t′′]Q′ (Cx[t, t′′])

+ α

t∑
t′′=0

Rx[t, t′′]Q′′ (Cx[t, t′′])Cxy[t′′, t′];

(20)

Cxy[t′, t+ 1] = βCxy[t′, t] + µ (Cx[t, t]− 1)Cx[t, t′] + α

t′∑
t′′=0

Rx[t′, t′′]Q′ (Cx[t, t′′])

+ α

t∑
t′′=0

Rx[t, t′′]Q′′ (Cx[t, t′′])Cx[t′, t′′];

(21)

Cxy[t+ 1, t′] = Cxy[t, t′]− αCy[t+ 1, t′]; (22)

Cx[t+ 1, t′] = Cx[t, t′]− αCxy[t′, t+ 1]; (23)

5



Ry[t+ 1, t′] = βRy[t, t′] +
1

α
δt,t′ + µ (Cx[t, t]− 1)Rx[t, t′]

+ α

t∑
t′′=0

Rx[t, t′′]Rx[t′′, t′]Q′′ (Cx[t, t′′]) ;
(24)

Rx[t+ 1, t′] = Rx[t, t′]− αRy[t+ 1, t′]. (25)

with initial conditions: Cx[0, 0] = 1, Cy[0, 0] = 0, Cxy[0, 0] = 0, Ry[t+ 1, t] = 1/α, Rx[t+ 1, t] =
−1. Fig. 2 shows the consistency of theory and simulations.

Mappings between discrete update equation and continuous flow for both heavy ball momentum
and Nesterov acceleration have been proposed in the literature. In the SM we considered the work
[51] that maps HB to second order ODEs in some regimes of α and β. This mapping establishes
the equivalence of the algorithm to the physics problem of a massive particle moving under the
action of a potential. This problem has been studied in [52] but the result is limited to the fully
under-damped regime where there is no first order derivative term, corresponding therefore to a
dynamics that is fully inertial and which never stops due to energy conservation. In the SM we obtain
the dynamical equations for arbitrary damping regimes, and we recover the equivalence established
in [51] comparing the results from the two DMFTs formulations.

Gradient descent. A simple way to obtain the gradient descent DMFT is by taking the limitm→ 0
in the DMFT of the massive momentum description of HB. We get

Cx[t+ 1, t′] = Cx[t, t′]− αµ (Cx[t, t]− 1)Cx[t, t′] + α2
t′∑

t′′=0

Rx[t′, t′′]Q′ (Cx[t, t′′])

+ α2
t∑

t′′=0

Rx[t, t′′]Q′′ (Cx[t, t′′])Cx[t′, t′′];

(26)

Rx[t+ 1, t′] = Rx[t, t′] + δt,t′ + α2
t∑

t′′=0

Rx[t, t′′]Rx[t′′, t′]Q′′ (Cx[t, t′′])

− αµ (Cx[t, t]− 1)Rx[t, t′].

(27)

with initial conditions: Cx[0, 0] = 1, and Rx[t+ 1, t] = 1. Apart from the µ-dependent term, these
equations are a particular case of the ones that appear in [36, 37] and we point to these previous
references for details.
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Figure 2: DMFT for HB. Simulations of HB momentum in the mixed p-spin model with p = 3,
∆3 = 2/p, ∆2 = 1, ridge parameter µ = 10 and input dimension N = 1024. The parameters are
α = 0.01 for all the simulations and β ∈ {0.5, 0.7, 0.9}. We use solid lines to represent the result
from the simulation, the dotted lines for the DMFT of HB.

6



100 101 102 103 104

iteration

2.0

1.5

1.0

0.5

0.0

lo
ss

GD
HB =0.9
Nesterov

100 101 102 103 104

iteration

1.00

1.05

1.10

1.15

1.20

1.25

ra
di

us

100 101 102 103 104

iteration

0.0

0.2

0.4

0.6

0.8

1.0

ov
er

la
p 

wi
th

 so
lu

tio
n

Figure 3: DMFT in the spiked matrix-tensor model. Performance of heavy ball and Nesterov in
the spiked matrix-tensor model with p = 3, 1/∆2 = 2.7, ∆3 = 1.0, and µ = 10. The parameters
in the simulations are: α = 0.01 and β = 0.9 for HB. The different solid lines correspond to
simulations with input dimension N = 8192, while the dotted lines are obtained from the DMFT
that, by definition, is in the infinite dimension limit. In the spiked version of the model the finite size
effects are stronger and larger simulation sizes are needed.

4 Derivation of DMFT for Nesterov acceleration

The approach for the DMFT proposed in this section is based on the dynamical cavity method [43].
Consider the problem having dimension N + 1 and denote the additional entry of the vectors xxx and
yyy with the subscript 0, x0 and y0. The idea behind cavity method is to evaluate how this additional
dimension changes the dynamics of all degrees of freedom. If the dimension is sufficiently large
the dynamics is only slightly modified by the additional dimension, and the effect of the additional
degree of freedom can be tracked in perturbation theory.

The framework described in this section might be extended to more other momentum-based algorithms
(such as PID [11] and quasi-hyperbolic momentum [12]) with some minor adaptations. The steps to
follow [43] can be summarised in:

• Writing the equation of motion isolating the contributions of an additional degree of freedom,
leading to Eqs. (28-30;

• Treating the effect of the terms containing the new degree of freedom in perturbation theory,
Eqs. (32-34);

• Identifying the order dynamical order parameters, namely dynamical correlation and re-
sponse functions, Eqs. (37,38).

Consider the Nesterov update algorithm and isolate the effect of the additional degree of freedom

xi[t+ 1] = yi[t] + α
∑
j 6=0

Jijyj [t] + α
∑

(i,i2,...,ip)

Ji,i2,...,ipyi2 [t] . . . yip [t]− αµ

∑
j 6=0

y2j [t]

N
− 1

 yi[t]

(28)

+ α
∑

(i,0,i3,...,ip)

Ji,0,i3,...,ipy0[t]yi3 [t] . . . yip [t] + αJi0y0[t] +
µ

N
y20 [t]yi[t], (29)

yi[t+ 1] = xi[t+ 1] +
t

t+ 3
(xi[t+ 1]− xi[t]) . (30)

We identify the term in line (29) as a perturbation, denoted by Hi[t]. We will assume that the
perturbation is sufficiently small and the effective dynamics is well approximated by a first order
expansion around the original updates, so-called linear response regime. Therefore, the perturbed
entries can be written as

xi[t] ≈ x0i + α

t∑
t′′=0

δxi[t]

δHi[t′′]
Hi[t

′′], yi[t] ≈ y0i + α

t∑
t′′=0

δyi[t]

δHi[t′′]
Hi[t

′′]. (31)
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The dynamics of the 0th degree of freedom to the leading order in the perturbation is

x0[t+ 1] = y0[t]− αµ
( 1

N

∑
j

y2j [t]− 1
)
y0[t] + Ξ[t] + α2

∑
j

J0j

t∑
t′′=0

δyj [t]

δHj [t′′]
Hj [t

′′] (32)

+ α2
∑

(0,i2,...,ip)

J0,i2,...,ip

( t∑
t′′=0

δyi2 [t]

δHi2 [t′′]
Hi2 [t′′]yi3 [t] . . . yip [t] + perm.

)
+O

( 1

N

)
, (33)

yi[t+ 1] = xi[t+ 1] +
t

t+ 3
(xi[t+ 1]− xi[t]) , (34)

with Ξ = α
∑
j J0jyj [t] + α

∑
(0,i2,...,ip)

J0,i2,...,ipyi2 [t] . . . yip [t] a Gaussian noise with moments:

E[Ξ[t]] = 0,

E[Ξ[t]Ξ[t′]] =
1

∆2
Cy[t, t′] +

1

∆p
Cp−1y [t, t′] = Q′ (Cy[t, t′]) =̇K[t, t′].

The terms in Eqs. (32,33) can be simplified. Consider the last term in Eq. (32): after substituting the
Hi, J0jJ0j and J0jJ(j,0,...,ip) can be approximated by their expected values with a difference that is
subleading in 1/N

α2
∑
j

J0j

t∑
t′′=0

δyj [t]

δHj [t′′]
J0jy0[t′′] ≈ α2

∆2N

t∑
t′′=0

δyj [t]

δHj [t′′]
y0[t′′] =

α2

∆2

t∑
t′′=0

Ry[t, t′′]y0[t′′], (35)

where the last equality follows from the definition of response function in y.
The same approximation is applied to Eq. (33), taking carefully into account the permutations,
obtaining

α2(p− 1)

∆p

t∑
t′′=0

Ry[t, t′′] (Cy[t, t′′])
p−2

y0[t′′]. (36)

Finally, collecting all terms, the effective dynamics of the additional dimension is given by

x0[t+ 1] = y0[t] + αΞ[t]− αµ (Cy[t, t]− 1) y0[t] + α2
t∑

t′′=0

Ry[t, t′′]Q′′ (Cy[t, t′′]) y0[t′′]; (37)

y0[t+ 1] = x0[t+ 1] +
t

t+ 3
(x0[t+ 1]− x0[t]) . (38)

In order to derive the updates of the order parameters, we need the expected values of 〈Ξ[t]x0[t′]〉
and 〈Ξ[t]y0[t′]〉 with respect to the stochastic process. These are obtained using Girsanov theorem

〈Ξ[t]x0[t′]〉 = α
∑
t′′

Rx[t′, t′′]Q′ (Cy[t, t′′]) , 〈Ξ[t]y0[t′]〉 = α
∑
t′′

Ry[t′, t′′]Q′ (Cy[t, t′′]) .

The final step consists in substituting the Eqs. (37,38) into the equations of the order parameters
Eqs. (14-19). Then we identify the order parameters in the equations and use the results of Girsanov
theorem to obtain the dynamical equations reported in section 3.

5 Algorithmic threshold

Finally we investigate the performance of accelerated methods in recovering a signal in a complex
non-convex landscape. The dynamics of the gradient descent has been studied in the spiked matrix-
tensor model in [33]. Using DMFT it was possible to compute the phase diagram for signal recovery
in terms of the noise levels ∆2 and ∆p. This phase diagram was later confirmed theoretically [34].

Given the DMFT equations derived in the previous sections we can apply the analysis used in [33]
to accelerated gradient methods. Given order of the tensor p and ∆p, increasing ∆2 the problem
becomes harder and moves from the easy phase - where the signal can be partially recovered - to an
algorithmically impossible phase - where the algorithm remains stuck at vanishingly small overlap
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Figure 4: Phase diagram of the spiked matrix-tensor model. The horizontal and vertical axis
represent the parameters of the model ∆p and 1/∆2. We identify two regions in the diagram: where
Nesterov, heavy ball and gradient descent algorithms lead to the hidden solution (upper region), and
where they fail (lower region). The grey square connected by a solid line represents the threshold of
gradient descent estimated numerically as detailed in the text. We use points to indicate the threshold
extrapolated from the DMFT: pink circles for Nesterov acceleration and blue diamonds for heavy
ball momentum with β = 0.9 and α = 0.01.

with the signal. The goal of the analysis is to characterize the algorithmic threshold that separates the
two phases. Using the DMFT we estimate the relaxation time – the time the accelerated methods
need to find the signal. Since this time diverges approaching the algorithmic threshold, the fit of the
divergence point gives an estimation of the threshold.

More precisely, for each value of ∆p as the noise to signal ratio (∆2) increases the simulation time
required to arrive close to the signal1 increases like a power law ∼ a |∆2 − ∆al.

2 (∆p)|−θ. The
algorithmic threshold ∆al.

2 (∆p) is obtained by fitting the parameters of the power law (a, θ,∆al.
2 ).

In the SM we show an example of the extrapolation of a single point where many initial conditions
mx(0) are considered in order to correctly characterize the limits N →∞ and mx(0)→ 0+. Finally
the fits obtained for the three algorithms and for several ∆p are shown in the phase diagram of Fig. 4
for p = 3. We observe that all the algorithms give very close thresholds. DMFT allows to obtain
a good estimation of the threshold, free from finite size effects and stochastic fluctuations that are
present in the direct estimation from the simulations.

Conclusions and broader impact

In this work we analysed momentum-accelerated methods in two paradigmatic high-dimensional
non-convex problems: the mixed p-spin model and the spiked matrix-tensor model. Our analysis is
based on dynamical mean field theory and provides a set of equations that characterize the average
evolution of the dynamics. We have focused on Polyak’s heavy ball and Nesterov acceleration, but
the same techniques may be applied to more recent methods such as quasi-hyperbolic momentum
[12] and proportional integral-derivative control algorithm [11].

Momentum-based methods are techniques commonly used in practice but poorly understood at the
theoretical level. This work analysed the dynamics of momentum-based algorithms in a very con-
trolled setting of a high-dimensional non-convex inference problem which allowed us to establish that
accelerated methods have a recovery threshold which is – within the limits of numerical integration –
the same of vanilla gradient descent.

Our analysis can be easily extended to 1-layer neural networks – combining our technical results with
the techniques of [46] – and to simple inference problem seen from the learning point of view, such as
the phase retrieval problem [53]. The same questions can also be analysed in the context of recurrent
networks [48, 49] where DMFT approaches have already been applied to gradient-based methods.

1Since the best possible overlap for maximum a posteriori estimator mMAP can be computed explicitly,
”close” means the time that the algorithms takes to arrive at 0.9mMAP

9



Our study is theoretical in nature and we do not foresee any societal impact.
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F. d Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32, pages 9633–9643. Curran Associates, Inc., 2019.

[20] Tao Sun, Penghang Yin, Dongsheng Li, Chun Huang, Lei Guan, and Hao Jiang. Non-ergodic
convergence analysis of heavy-ball algorithms. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 5033–5040, 2019.
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Urbani, and Lenka Zdeborová. Complex dynamics in simple neural networks: Understanding
gradient flow in phase retrieval. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
3265–3274. Curran Associates, Inc., 2020.

[36] Leticia F Cugliandolo and Jorge Kurchan. Analytical solution of the off-equilibrium dynamics
of a long-range spin-glass model. Physical Review Letters, 71(1):173, 1993.

[37] Andrea Crisanti, Heinz Horner, and H-J Sommers. The sphericalp-spin interaction spin-glass
model. Zeitschrift für Physik B Condensed Matter, 92(2):257–271, 1993.

[38] Andrea Crisanti and Luca Leuzzi. Spherical 2+ p spin-glass model: An analytically solvable
model with a glass-to-glass transition. Physical Review B, 73(1):014412, 2006.

[39] Antonio Auffinger, Gérard Ben Arous, and Jiřı́ Černỳ. Random matrices and complexity of spin
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mean-field theory for stochastic gradient descent in gaussian mixture classification. In 2020
Conference on Neural Information Processing Systems-NeurIPS 2020, 2020.

[47] Haim Sompolinsky, Andrea Crisanti, and Hans-Jurgen Sommers. Chaos in random neural
networks. Physical review letters, 61(3):259, 1988.

[48] Francesca Mastrogiuseppe and Srdjan Ostojic. Intrinsically-generated fluctuating activity in
excitatory-inhibitory networks. PLoS computational biology, 13(4):e1005498, 2017.

[49] Tankut Can, Kamesh Krishnamurthy, and David J Schwab. Gating creates slow modes and
controls phase-space complexity in grus and lstms. In Mathematical and Scientific Machine
Learning, pages 476–511. PMLR, 2020.

[50] Weijie Su, Stephen Boyd, and Emmanuel Candes. A differential equation for modeling nes-
terov’s accelerated gradient method: Theory and insights. Advances in neural information
processing systems, 27:2510–2518, 2014.

[51] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks,
12(1):145–151, 1999.

12



[52] Leticia F Cugliandolo, Gustavo S Lozano, and Emilio N Nessi. Non equilibrium dynamics
of isolated disordered systems: the classical hamiltonian p-spin model. Journal of Statistical
Mechanics: Theory and Experiment, 2017(8):083301, 2017.

[53] Francesca Mignacco, Pierfrancesco Urbani, and Lenka Zdeborová. Stochasticity helps to
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