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UNLEARN IN A BLINK
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A few hours after the release of Grok-2, users created violent images to demonstrate the model’s
potential for harmful misuse (Bishop} [2024). This is not an isolated incident; the generation of
inappropriate content has emerged as a significant challenge in developing safe and trustworthy Al
systems. To mitigate this issue, Machine Unlearning (MU) methods emerge, enabling models to
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ABSTRACT

Machine Unlearning (MU), the technology of erasing undesirable content from
Artificial Intelligence (AI) models, plays an essential role in developing safe and
trustworthy Al systems. Despite notable advances, the baseline MU methods rely
on retraining from scratch without the data targeted for removal, a process that is
computationally expensive and financially prohibitive. To address this challenge,
we propose a simple yet efficient training-free MU baseline without remaining
dataset: Unlearn In a Blink (Unlink), serving as a new, fast MU baseline. Our
method eliminates the low-dimensional subspaces associated with targeted con-
cepts from the space spanned by the model’s weight vectors, thereby rendering the
model “blind” to these undesirable contents. This strategy enables MU across di-
verse visual tasks, including concept erasure for classification, image generation,
and multi-modal applications. Notably, Unlink can produce the scrubbed model
instantly with only a few samples and without additional training. Additionally,
we extend our method to handle entangled features by leveraging a generalized
Rayleigh quotient for forgetting the remaining set, enabling an efficient trade-off
between preserving remaining knowledge and suppressing forgetting-set knowl-
edge.

“forget” undesirable content.
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Scientific progress in Al field relies on the ability to experiment with and test algorithms in di-
verse scenarios. From classical nearest-neighbor and regression models to more recent methods like
transfer learning (Bozinovski & Fulgosi, |1976)), probing techniques (Alain, [2016), and feature con-
structions (Daumé III, 2007)), the goal is to provide algorithm designers with the ability to quickly
evaluate and understand baseline behavior, enabling them to design their experiments accordingly.
Just as titration, introduced by Karl Friedrich Mohr, provides a simple yet effective way to estimate
chemical concentrations before resorting to more complex analytical techniques, a fast and practical
baseline for MU is crucial for guiding research. Unfortunately, such developments in MU are still
in their infancy (Thudi et al.,|2022).

In this paper, we address this challenge by introducing a training-free and remaining-data-free
MU algorithm. Our method is capable of removing targeted content from a wide range of models,
including discriminative (e.g., Convolutional Neural Networks (CNNs) (He et al., 2016 and Vision
Transformers (ViTs) (Dosovitskiy et al.l [2021))) and generative models (e.g., Stable Diffusion (SD)
(Rombach et al., [2022)). Furthermore, our method can execute the unlearning process within sec-
onds, thereby providing a practical and efficient baseline for the development of more advanced MU
techniques.

Although our goal was to develop a fast, training-free baseline, empirical evaluations show that our
algorithm not only competes with but often outperforms more advanced MU methods. When com-
pared to state-of-the-art (SOTA) approaches, our method demonstrates highly competitive results.
For example, in image recognition tasks, it rivals SalUn (Fan et al.| 2024) while delivering a 600x
speedup in the unlearning process. Specifically, for class-wise forgetting on the Imagenette dataset
with Stable Diffusion, our approach completes unlearning in approximately 0.6 seconds, compared
to over 2 hours required by SalUn (Fan et al.l 2024)) to achieve comparable performance.

Additionally, to address entanglement between remaining and forgetting features, we introduce an
extension that novelly uses a generalized Rayleigh quotient to efficiently balance preserving remain-
ing knowledge and suppressing forgetting knowledge.

Our desiderata in this work are to introduce a fast and effective baseline for MU with the following
properties:

* It does not require access to the remaining data or any additional training during the un-
learning process,

* It can address both discriminative and generative unlearning tasks,
¢ It can be incorporated into various neural architectures, including attention mechanisms,

* It can be seamlessly integrated into the model structure, freeing designers from the need
for post-processing or pre-processing of model outputs/inputs for MU,

* It minimizes the need for hyperparameter tuning, enabling designers to achieve effective
unlearning without the complexity of fine-tuning various hyperparameters.

* Its extension efficiently balances the preservation of remaining knowledge with the sup-
pression of forgetting knowledge.

All in all, we believe our work will equip the community with a valuable tool for quickly
assessing the expectations and performance of MU algorithms in different scenarios.

2 RELATED WORK

Machine unlearning [Cao & Yang| (2015) enables us to erase the knowledge of specific classes, or
high-level data concepts from Machine Learning (ML) models as if the models never saw these data
during the training. Increasing attention to security and privacy in ML has made MU an emerging
technology (Golatkar et al., 2021} |Chourasia & Shahl 2023} [Dukler et al., 2023} Wu et al., 2020;
Kim & Woo, 2022} Huang et al.l 2024; [Nguyen et al., [2020; Bourtoule et al.l |2020). The current
gold standard for MU involves retraining models from scratch on the remaining data, excluding the
data to be forgotten. However, retraining is computationally intensive and time-consuming, making
it impractical for frequent data deletion requests.
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Approximate MU approaches. In response to such difficulties, approximate unlearning methods
aiming for “fast” unlearning have been proposed. Several key ideas have been explored for achieving
approximate unlearning in machine learning models, including gradient ascent (Graves et al., 2021}
Thudi et al., |2022), saliency weight removal (Jia et al., |2023; [Foster et al. 2023} |Golatkar et al.,
2020a; [Liu et al., 2023; Mehta et al., |2022)), adding noise to labels, weights, or inputs (Golatkar
et al.; 2020b; [Warnecke et al.| 2023} [Foster et al., [2024), mimicking the outputs of “bad teacher”
models (Chundawat et al2023)), and preventing the model from mimicking the data designated for
forgetting (Kurmanyji et al., 2023).

Existing methods show that different weights are responsible for different classes, and by removing
the weights associated with the forgetting data, the model can unlearn specific information (Jia et al.,
2023} Foster et al., 2023). To better identify these weights, influence functions (Neel et al., 2020;
Sekhari et al.| 20215 [Wu et al., [2022) and the Fisher Information Matrix (Golatkar et al., [2020a;
Foster et al., 2023} [Liu et al.| 2023; Mehta et al., [2022) are utilized.

Training-free MU approaches. Training-free approaches have recently been proposed to achieve
MU without the need for additional training, thereby significantly reducing the computational over-
head (Foster et al., [2023}; [Kodge et al., 2024). Foster et al. (Foster et al., 2023) propose a pruning-
based strategy that eliminates the weights corresponding to the forgetting set, directly removing the
influence of unwanted data. Meanwhile, Kodge ef al. (Kodge et al.l [2024) employ a singular value
decomposition (SVD) approach to separate the retain and forget spaces based on data representa-
tions, then modify the model weights to deactivate the components associated with the forget space.
The existing training-free approaches are only designed for classification. Furthermore, existing
methods are unable to retain entangled remaining knowledge, substantially limiting their utility for
a broad range of tasks.

Remaining-data-free MU approaches. The remaining-data-free approach has drawn significant
attention due to the high cost and impracticality of maintaining access to the original training dataset
(Foster et al., 2024} [Thudi et al.| |2022; (Chen et al., 2023). In this context, Gradient Ascent (GA) has
been proposed to undo the influence of the forgetting dataset by reversing its effect on the model’s
parameters (Thudi et al.l [2022). Other techniques, such as Boundary Shrink, Boundary Expanding
(Chen et al., [2023)), and JiT (Foster et al.,2024), aim to shift the decision boundary of the forgetting
class, thereby mitigating the model’s retention of undesired data.

MU approaches across domains. Most existing MU methods have primarily been developed for
classification tasks (Guo et al., 2020). Recent studies, such as (Fan et al., [2024; |Gandikota et al.,
2023), demonstrate that classification-based unlearning methods may be inefficient for handling
generation tasks, which are crucial for protecting copyrights and preventing inappropriate content
generation. In SalUn (Fan et al., 2024), Fan et al. propose using weight saliency as a mechanism to
identify which parts of a network can be modified to preserve model utility while erasing forgotten
concepts, developing the algorithm for both classification and generation tasks (Fan et al., 2024).

Despite the effectiveness of existing training-free or remaining-data-free methods in classification
tasks, there is still a lack of a unified approach that satisfies both characteristics across the full range
of visual tasks, including image recognition and image generation.

In this paper, we address these challenges by proposing a unique training-free and remaining-
data-free MU algorithm as a new baseline approach. Our method produces unlearned models in-
stantly, requiring only a few unlabeled samples from the forgetting dataset without the need for
labels, making it a practical and efficient baseline for advancing MU techniques. Experimental re-
sults demonstrate that the proposed method closely approximates the gold-standard baseline across
both classification and generation tasks, significantly accelerating MU evaluation. Additionally, our
method differs from the work of Kodge et al. (Kodge et al.| 2024), which requires access to the
retained dataset and employs an ad-hoc spectral correction on both the forgetting and retaining sets.
Their approach (Kodge et al., 2024)) further introduces two hyperparameters that necessitate grid-
search tuning, resulting in multiple weight updates. Moreover, the method proposed by Kodge et al.
is limited to classification tasks, whereas our approach seamlessly extends to a broad range of vision
applications.

For entangled features, our extension employs a unique generalized Rayleigh quotient that explicitly
balances unlearning against preservation of remaining knowledge, overcoming a key limitation of
training-free methods.
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3 PROPOSED METHOD

Let D = {(;,y;)}]~, be a dataset of m samples, with Dy C D denoting a subset that is to
be unlearned. The remaining data, after excluding Dy, is denoted by D, = D\Dy. A learning
algorithm A : D — G is a mapping from D to a model ¢ € G. Given a trained model g =
A(D), the objective of MU is to modify the model to eliminate the influence of Dy while preserving
its predictive performance on D,.. That is, the goal is to design an unlearning function A:Gx
D — G such that p(A(A(D), D), x) ~ p(A(D,),x). Here, the output of the unlearning algorithm
A(A(D), D) approximates the model obtained solely on the remaining data D,.. Please see (Guo
et al.| 2020) for a formal definition based on the concept of differential privacy.

Scenario. MU algorithms typically rely on access to the remaining dataset D,., or a portion of
it, to maintain model utility during unlearning. We consider a more challenging setting, where the
unlearning agent cannot access D, and can only leverage a small number of samples from Dy,
since access to D, may be restricted due to privacy concerns, data loss, or scalability challenges.
We further show that our method can be extended to use D,., which reduces the influence on the
entangled knowledge.

3.1 METHODOLOGY

The premise of our approach is that removing the forgetting subspace from the model’s weights can
effectively suppress activations related to the forgetting set Dy while preserving those associated
with the retained set D,.. To illustrate the idea, let « ; and x,. be the input features to a fully connected
layer with parameters W for samples belonging to the forgetting and remaining sets, respectively.
Several studies indicate that samples from the same class or concept form a low dimensional and
compact cluster in the latent space (Papyan et al.|[2020; |Parker et al., 2023; Rangamani et al., 2023;
Masarczyk et al. [2023). The cluster can be well modeled with a low-dimensional subspace, which
we define using an orthonormal basis Uy € R4%ds where d is the dimension of the latent feature
space and d is the dimension of the forgetting subspace. Consequently, the feature representation
of a forgetting sample can be decomposed as:

Ty =2zr+e€5, (D)

where z; is the projection of x; onto the forgetting subspace, and €; = xy — zy represents the
residual component orthogonal to this subspace (i.e., UfT €s = 0). For a well-trained and expressive

model, we can safely assume that the residual component has a small magnitude ||| < J. The
output of the layer is then given by:

Wzxy=Wzp+ Wey. 2)

To unlearn the forgetting samples, we modify the weight matrix using a transformation inspired by
the Gram—Schmidt process (Kenneth, 2012), eliminating the forgetting subspace:

W*=W —-WU,;U; . 3)
Applying this modification, the new output becomes:
Wrz; = (W - WU, U; "z 4)
=Wz; - WU;U; " zp + Wey — WU U; ' ;.
Since WUfoTzf = Wzyand UfTef = 0, we conclude:
Wiz =Wep = |[Way| < |lell[|[W] < 5[W]], (5)

making it negligibly small. This ensures effective unlearning of the forgetting samples. For a re-
maining sample x,., we similarly assume the existence of a low-dimensional subspace U,. € R**dr
that effectively captures its structure. Thus, we decompose:

x, =z, +€., Wwherez, = UTU::BT, lle-|| < o. (6)

It is widely believed, and supported by several studies, that in rich and well-trained neural networks,
features corresponding to different classes or concepts tend to become disentangled (e.g., Neural
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Collapse (Papyan et al. 2020; |Parker et al. 2023 |Rangamani et al., |2023) and the Tunnel Ef-
fect (Masarczyk et al.,2023)). This suggests that the subspaces corresponding to different concepts
exhibit minimal overlap, i.e., U," Uy ~ 0. As aresult, the output of the layer is:

Wz, = W*(z, + €,)
=Wz, — WUU; 'z, + We, - WU,U; e,
=Wz, - WU;U; ' U, U2, +We, - WU;U; e,
0
=Wz, - WU;U; e, (7)

Taking norms on both sides and for a small enough §, we obtain:
Wz, || ~ [Wa.|, (8)

which shows that the unlearned model will have a minimal effect on the remaining data, provided
that its concept subspace is sufficiently dissimilar to that of the forgetting concept.

In the following parts, we will discuss how the proposed method is formulated for popular neu-
ral modules, including Fully Connected (FC) layers and Multi-Head Self-Attention (MHSA). We
extend our method to Convolutional layers in the appendix.

Erasure in FC. Denote W € R%u*? a5 the weight matrix of a fully connected layer, where
dout is the output dimension. The input feature vectors of n; forgetting samples X € R4*"/ is
transformed to an output vector:

O;=WX;, )

where Oy € R%«*"7 To unlearn the features associated with X ¢, the weight matrix is then updated
by:

W*=W - WU,;U; ', (10)

where Uy is obtained from the SVD X; = UX V' T by taking the top-k left singular vectors Uy =
U. ... Here, we subtract the projection of W onto the subspace spanned by U, thus removing the
influence of this subspace from the weight matrix. Erasure in convolutional layers is shown in the
appendix.

Erasure in MHSA. Inthe MHSA block, we extend our method to the weight matrices associated
with the query, key, and value vectors. These vectors are generated by multiplying the input features
by a fully connected layer, which has the weight matrix W € R3¢X4_ Let the input feature matrix
be X € R4*P_ where d is the dimension of each token, and p is the number of tokens. The query,
key, and value vectors are computed as follows:

Q=WyuX, K=W;uX, V=Wys3X. (11)

To perform unlearning, we first collect the features from B samples in the forgetting dataset, repre-
sented as X € R**(Pxns) We then update the weight matrix W by applying the proposed method,
as described in Equation (I0), to ensure that the model forgets the influence of these features while
maintaining performance on other tasks.

3.2 HIGHLY-ENTANGLED FEATURE

We relax the orthogonality assumption and allow overlap between the remaining and forgetting
subspaces. Let the feature matrices be X, € R¥"" and X; € R*"/

where n, and ny are the number of remaining samples and forgetting samples. We want to find a
subspace U, € R¥** whose basis vectors preserve energy on the forgetting features and suppress
energy on the remaining features:

max [U7 X3 and  win U] X, [,
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which we realize via a generalized Rayleigh quotient. For a direction w # 0 define

uTCffu

1
ng

ul Crru’ Ny

C,. is a gram matrix, and hence symmetric and positive semidefinite (if needed with regularization).
As such, using the Cholesky decomposition to C,., = LLT, we can rewrite the Rayleigh quotient
as

u (D) 'Crp(LT) 'y u'Au

e . A= L7'Cs (L) (13)

The maximum is achieved by the largest eigenvalue of A. Decompose A = QAQ " with eigenval-
ues in descending order. The shared subspace spanned by the vectors

Us = [uy,....oup] = (L)' Qi (14)
with the corresponding top k eigenvalues.

To further preserve the remaining features, we allocate different weights to the basis of the shared

subspace. Let n = [n1, . .., nx], where n; = min(1, R(w;)). For a parameter matrix W, define
W* =W — WU, diag(n)U,, (15)
which removes the component of W in the subspace spanned by [w1, . . . , ug]. This realizes a trade-

off between unlearning the forgetting features and preserving the remaining features. For entangled
features (e.g., subclass unlearning and instance-wise unlearning), we use Equation (I3)) to substitute
the remaining-data-free solution in Equation (I0) to erase different types of layers accordingly.

Overview. We propose a training-free MU algorithm that only requires a few samples from the
forgetting data Dy. Our key idea is to render the model “blind” to subspace associated with Dy.
To achieve this, we first we first collect the features w.r.t. the forgetting data Dy and decompose the
feature matrix using Singular Value Decomposition (SVD) to obtain the subspace w.r.t. Dy. Then
project the model parameters onto the forgetting subspace, and remove the projection from weight
to make parameters orthogonal to the subspace associated with Dy.

For entangled features, we extend our method by incorporating the remaining features to identify
a subspace whose basis maximizes a generalized Rayleigh quotient, thereby suppressing forgetting
features while preserving remaining features.

4 EXPERIMENTS

Experimental Setup. (i) Classification. We evaluate MU methods on datasets including CIFAR-
10 (Krizhevsky et al.,|2009), CIFAR-100 (Krizhevsky et al.,|2009) and SVHN (Netzer et al., [2011)
across ResNet18 (He et al., [2016)), ResNet50 (He et al., 2016), VGG16 (Simonyan & Zisserman,
2014)) and Swin-T (Liu et al., 2021). Following the setup in SalUn (Fan et al.| 2024), we forget one
class in the class-wise forgetting setting. (ii) Text-to-image generation. We consider SD v1.4 (Rom-
bach et al., [2021) as the pre-trained model, conduct concept-wise forgetting to avoid inappropriate
generations (guided by I2P prompts (Schramowski et al.,|2023)), and class-wise forgetting to erase
information about the specific classes in Imagenette (Howard & Gugger, 2020). (iii) Multimodal
models. CLIP (Radford et al.,[2021a) is considered in this experiment as it is a popular large-scale
vision-and-language model. We use the modified transformer described in (Radford et al.,|2019)) as
the text encoder and ViT-B/32 (Dosovitskiy}, 2020) as the visual encoder. We randomly select classes
(classes 2, 3, and 29 in the end) from Oxford Pets (Parkhi et al.,|2012)) (37 categories in total) to be
forgotten, the forgetting data is around 10% of the whole training data. Results are provided in the
Appendix.

Baselines. We compare with existing methods such as fine-tune (FT) (Warnecke et al., [2023),
random labeling (RL) (Golatkar et al.l |2020a), gradient ascent (GA) (Thudi et al. |2022), influence
unlearning (IU) (Jia et al.l 2023)), boundary expanding (BE) (Chen et al., [2023), boundary shrink
(BS) (Chen et al.,|2023), sparsity-aware unlearning (¢1-sparse) (Jia et al.,2023)), saliency unlearning
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Table 2: Results of class-wise forgetting on ResNet18 on CIFAR-100.

Methods UAT RAT TA?T MIAT Avg.Gap| RTE (min.)| Train-Free D,-Free
Retrain 100.00+0.00  99.96+000 74.75+023  100.00+0.00 - 41.45 X X
FT 90.82+12.19  97.48+107 70.72+144  98.71+2.96 4.27 2.51 X X
GA 99.03+096  94.15+200 69.09+1.72  99.61+044 3.23 0.04 X v
U 94.35+1121  84.30+11.16  62.11+736  98.82+2.99 8.80 0.39 X X
BE 92.8243.84  91.96+4.12  66.64+324  98.28+228 6.27 0.05 X v
BS 92914367  91.95+416 66.66+328  98.35+2.14 6.22 0.07 X v
li-sparse  96.77+6.08  93.85+1.03  68.69+1.07  99.20+2.53 4.07 2.53 X X
SCRUB 93.88+571  96.27+044  71.64+063  99.50+0.05 3.36 2.22 X X
SalUn 90.53+21.14  99.44+0.11  73.55+050 100.00+0.00 2.82 2.56 X X
JiT 35.554+2924  70.64+2763 53.00+921  36.00+25.13 44.5 0.03 X v
SSD 98.67+005  97.45+002  75.48+0.15 100.00+0.00 1.12 0.18 v X
GF 94.894273 94524264  69.10+305  99.35+0.28 421 0.39 v X
Unlink 99.24+002  97.42+071  75.20+0.14  100.00+0.00 0.91 0.004 v v

(SalUn) (Fan et al., [2024), JiT (Foster et al., [2024), scalable remembering and unlearning unbound
(SCRUB) (Kurmanji et al.l 2023), Selective Synaptic Dampening (SSD) (Foster et al., 2023) and
Gradient-Free (GF) (Kodge et al., |2024) for classification and multimodal experiments, compare
with baselines such as erased stable diffusion (ESD) (Gandikota et al.| [2023)), forget-me-not (FMN)
(Zhang et al.| [2023)) and SalUn (Fan et al.,|2024) for generation experiments. We utilized an A5500
GPU for both the classification and multimodal tasks, while an A100 GPU was employed for the
generation tasks. Details can be found in the Appendix.

Metrics. Evaluation of MU for classification includes unlearning accuracy (UA), remaining ac-
curacy (RA), testing accuracy (TA), membership inference attack (MIA) (Carlini et al., [2022) and
run-time efficiency (RTE). MIA is used to determine whether the specific samples have been used
to train the target model (Graves et al |[2021; [Baumhauer et al.| [2022). UA is 1 - accuracy of the
unlearned model on the forgetting data. RA is the accuracy of the unlearned model on the remaining
data. TA is the accuracy of the unlearned model on the test data. RTE is the time needed for applying
the unlearning method. The averaging (avg.) gap (Fan et al.| [2024) is also introduced to show the
average gap of UA, RA, TA, and MIA between different methods with the retrained model which
combines all metrics. The metrics for MU for generation usually include UA and FID (Heusel et al.,
2017). FID is used to measure the quality of generated images.

4.1 EMPIRICAL RESULTS

Class-wise forgetting. Table [2] presents the class-wise forgetting results for ResNet18 trained on
CIFAR-100. Our method achieves a UA of 99.24% and an RA of 97.426%, with an average gap
of 0.91 compared with the gold standard of MU. In comparison, other methods like SalUn and ¢; -
sparse show similar performance but require much more time than our method (our method only
requires less than 1/100 of the time needed by SalUn). Note that, the proposed method is training-
free and only uses a few images from the forgetting data D . Under this situation, our method even
delivers competitive performance while maintaining an exceptionally low execution time, achieving
an unlearning process that is both fast and highly effective. We apply our method to the last layer of
model.

Highly-entangled feature forgetting. In Table|3| we report subclass accuracy on CIFAR-20. No-
tably, classes 0 and 83 belong to the same superclass and are highly aligned; nevertheless, our
extension preserves the entangled remaining knowledge and outperforms other training-free meth-
ods.

Additional experiments, including multi-class forgetting, instance-wise forgetting, and an ablation
study are provided in the Appendix. our method across multiple model architectures (see Appendix).

Concept-wise forgetting in SD. Nudity concept erasure is a crucial benchmark for evaluating MU
with SD. To showcase the effectiveness of our proposed method, we conduct experiments specifi-
cally targeting this setting. We used the nudity-related prompts including { ‘nude’, ‘naked’, ‘sexual’,
‘shirtless’, ‘breast’, ‘attractive female goddess’ et al. } as the nudity texts to erase the influence of
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Table 3: Accuracy of subclasses on CIFAR-20 when unlearning class 0. Classes 0 and 83 are in the
same superclass. Unlink' is an extension for handling entangled features, with images of class 83
employed to preserve the corresponding knowledge.

Class bea(l)ver dolll)hm otéer s%al wl;ale shgrgw Train-free D, -free
GA 2.00 4244 4933 64.00 2156 7.56 X v
SSD 0.00 99.77 9777 92.00 9488  0.00 v X
GF 0.89 72.67 6422 9733 9333 0.67 v X
Unlink 0.44 98.22 98.89 9755 9444 0.00 v v
Unlink® 0.66 98.22 99.11 95.78 9422 11.33 v X

Table 4: Results of class-wise forgetting on Imagenette with Stable Diffusion. We use the
SalUn 2024) repository and borrow their results. The unlearning process takes ~0.6
seconds for our method, while it takes >2 hours for other methods.

Forget. Class FMN ESD SalUn Unlink
UA1T FID| | UAT FID)] | UAT FID| | UA1T FID|]
Tench 4240 1.63 99.40 1.22 | 100.00 2.53 99.90 0.64
EnglishSpringer | 27.20  1.75 100.00 1.02 | 100.00 0.79 | 100.00 0.68
CassettePlayer 93.80 0.80 | 100.00 1.84 99.80 0.91 100.00 0.83
ChainSaw 4840 0.94 96.80 1.48 | 100.00 1.58 100.00 0.73
Church 23.80 1.32 98.60 1.91 99.60 0.90 83.60 2.01
FrenchHorn 45.00 0.99 99.80 1.08 100.00 0.94 | 100.00 0.30
GarbageTruck 4140 0.92 | 100.00 2.71 100.00 0.91 100.00 0.73
GasPump 53.60 1.30 | 100.00 1.99 | 100.00 1.05 100.00 1.31
GolfBall 1540 1.05 99.60 0.80 98.80 1.45 100.00  0.60
Parachute 3440 2.33 99.80 091 100.00 1.16 97.50 1.96
Average 42.54  1.30 99.40 1.49 99.82 1.22 98.09 0.98

nudity-related concepts. More details are in Appendix. As shown in Figure[2] images generated by
the unlearned models conditioned on I2P prompts contain no nudity concept (Schramowski et al.,
[2023). The proposed training-free method effectively removes information related to nudity from
Stable Diffusion (SD). Notably, SalUn compromises the diversity of generated content by using im-
ages prompted with “a photo of a person wearing clothes” as substitutes for the forgetting prompt
“a photo of a nude person.” In contrast, the greater diversity preserved in our method underscores its
advantage over SalUn in maintaining generative richness while achieving unlearning.

To evaluate the effectiveness of our unlearning approach in reducing inappropriate content, we mea-
sured the quantity of nudity content detected using the NudeNet model 2019). Figure 3]
presents the quantitative evaluation. We use NudeNet to detect the nudity in images generated by
prompts specifically designed to produce nudity and by 4,703 unsafe prompts. To assess the per-

12P Prompts

Method

SD v1.4

SalUn

Unlink

Figure 2: Visulalization of generated images by SD w/o or w/ MU. The descriptions of prompts
(P;,7 € [1,10]) are provided in the appendix.
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2P Prompts (4703) Table 5: Comparison of MU methods on
Male genitalia | ResNet18 when forgetting different classes
Belly | (F-Cls) from CIFAR-100. Using the same
hyperparameter settings for each class.
Armpits yperp g
Feet Method F-Cls UAT RAT TAT MIAT
Male breast 97.56 | 89.43 6536 98.67
Female genitalia 9844 9520 69.94 99.56
GA 99.78 95.04 70.54 100.00
Female breast + SD V2.1 100.00 9536 70.65 100.00
Salun 99.56 9480 69.67 99.78
Buttocks 2 mm-ours
; I I I 97.33  99.50 73.78 100.00
0 20 40 60 80 100 31.33 99.53 7426 100.00
% change compared to SD V1.4 SalUn 99.56 99.28 72.92 100.00

91.33 9941 73.65 100.00
91.11  99.50 73.76  100.00

98.45 9743 75.15 100.00
99.78 9741 75.14 100.00
98.23 9743 73.96 100.00
100.00 97.41 73.74 100.00
99.78 9745 74.14 100.00

Figure 3: The quantity of nudity content assessed
by NudeNet, measured as a percentage decrease
compared to SD V1.4. The unlearning process
~0.7 seconds for our method, 10,000 x faster than {1k
SalUn (>2 hours), making it a strong baseline for
quickly assessing future tasks.

PO, O|PRPLVWND~R,O|RLVWNOD—O

formance of Stable Diffusion v2.1 (SD v2.1), SalUn, and our proposed method, we measure the
percentage decrease in nudity-containing images relative to Stable Diffusion v1.4 (SD v1.4). No-
tably, our method achieves performance comparable to SalUn while requiring only 0.7 seconds, in
contrast to SalUn needs more than 2 hours for unlearning.

Class-wise forgetting in SD. Table[]presents the results when forgetting specific classes from Im-
agenette with SD. The text prompts follow the template "Image of [class]”. We follow the setting of
SalUn|Lake et al.| (2011), the FID is calculated on the images generated from both the retaining and
forgetting classes. The proposed method shows competitive performance in unlearning compared to
the SOTA method SalUn. It is noted that, while SalUn requires more than 2 hours for training, our
method completes the process in just 0.6 seconds. This highlights our method’s effectiveness and
efficiency in class-wise forgetting for SD. See Appendix for visualization.

4.2 HYPER-PARAMETER SENSITIVITY

Additionally, the proposed method demonstrates strong robustness to hyperparameters. Existing
methods are sensitive to hyperparameter settings and require tuning for different classes even within
the same dataset. Table[3]presents the performance of various MU methods across different classes
using a fixed set of hyperparameters. The results show that the proposed method consistently
achieves effective unlearning across classes without the need for hyperparameter adjustment.

5 CONCLUSION AND LIMITATION

In this paper, we proposed a training-free and remaining-data-free machine unlearning method
that effectively removes the knowledge of forgetting data in trained models with only a few unla-
belled samples from the forgetting data. The proposed method does not require additional training
and access to the remaining data which significantly accelerates the unlearning process. Our method
addresses the limitations of existing approaches that often require extensive retraining or access to
the entire remaining dataset or the use of generators to mimic it. With only a few unlabelled samples
from the forgetting data and updating the weights directly, we significantly accelerate the unlearning
process. To handle highly entangled remaining and forgetting subspaces, we introduce a generalized
Rayleigh-quotient objective that balances preservation of remaining knowledge against suppression
of forgetting. Our approach achieves forgetting across various vision tasks, including generative
models and vision-language models, within seconds. This efficiency makes our method highly prac-
tical for real-world applications where rapid unlearning is essential. We hope our method could be
an inspiration for the development of more advanced MU techniques.
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A  ACKNOWLEDGMENT OF LLM USAGE

We used a large language model (ChatGPT) to polish this paper. Its use was limited to grammar
checking, fixing typos, rephrasing sentences for clarity, and improving word choice. All conceptual
contributions, methodological designs, experiments, and analyses were carried out entirely by the
authors. The use of an LLM does not affect the reproducibility or scientific validity of our work.

B PSEUDO CODE

Algorithm [T shows the pseudo code for the proposed method.

C PROOF

For the n left-singular vectors {ug, w1, ..., u,},u € R% and weight matrix W € R%uXdn The
proposed method modified the weight matrix to ensure the each row of new weight matrix is or-
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Algorithm 1 Pseudo code of our proposed method.

Require: A trained model g(x; 8, 7) output the inputs feature of i-th layer, Forgetting dataset Dy =
{(zi,yi) i, {i1,i2,...,i,} selected z layers for updating the weight, The first n left-singular
vectors used to update the weight.
for i € {iy,i9,...,i,} do

X, < g(x;0,i),x € Dy > Collect features from forgetting dataset. The features are the
input for the layer will be updated.

W; « 0, > Collect the weight from the selected layer

U,S, VT + SVD(X;), X; € R¥Xms > Calculate the left-singular vectors by SVD
decomposition or by Equation (T3]

Wiunleammg . Wi _ WiU:,:kUIk

9, «— W meamine > Update the weight of layer
end for

thonogal to the left-singular vectors. For u,

Wuo T
. o
Uy U
N——

projection

=W — Wugu (16)

Wgnlearning - W —

as ulug = 1. For the new weight matrix W ™™ it updated by the u; by W&“feaming =

learni Jearni .
Wmeaming _ pymemiiE g . As uyg is orthonogal to the w1,

unlearning __ unlearning unlearning T
w - W, -W uyu]

leamn

= Wyt (W — Wuoug )uiu]
leamni

= WM (Wuy — Wugudur)u|

— W(;mlearning . Wulu‘ll'

=W — Wuoug — WuluI a7

Therefore, for n left-singular vectors {wg,u1,...,u,}, the weight matrix is updated by
W unleaming — g7 K7 Wuu] =W — WU:,:nUIn.

C.1 GRAM-SCHMIDT PROCESS

The Gram—Schmidt process, named after Jgrgen Pedersen Gram and Erhard Schmidt, is a method
used to compute an orthonormal basis from a set of vectors in an inner product space [Kenneth
(2012). Given a non-orthogonal set of vectors {vy, v, ..., Uy }, Where each v; € R and m < d,
the purpose of the Gram—Schmidt process is to generate an orthonormal set {wq,us,..., U}
that spans the same m-dimensional subspace of R? as the original set: Span{u;,..., u,} =
Span{wv;,...,v,,}. where Span denotes the space spanned by the corresponding vectors. The
Gram-Schmidt process is defined by the following:

o — 32500 (vp, uj)uy
uy = — , where (k=2,3,...). (18)
ok = 32521 (v, wj) |

The first vector u; = v1/||v1]|. (v, u;) denotes the inner product between vectors v, and w;, and
|| - || represents the Frobenius norm.

D CASE STUDIES

In this subsection, we present how the proposed method will be applied in different cases.
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Case study: Vision transformer. Transformer block consists of a Multi-Layer Perceptron (MLP)
and a Multi-Head Self-Attention (MHSA) mechanism. For the MLP layers, we can directly ap-
ply the proposed unlearning method, as described in Equation (I0) or Equation (I3), to adjust the
weights and erase the influence of the forgetting dataset. For the MHSA layers, we use the method
in Equation (TT), to adjust the weights and erase the influence of the forgetting dataset.

Case study: Stable diffusion. In text-guided diffusion models, a text encoder processes the input
text and outputs text embeddings, which guide the diffusion process (Rombach et al., 2022). For
instance, Stable Diffusion (SD) (Rombach et al.,|2022) uses MHSA blocks in the U-Net architecture
to merge textual and visual information. Let X, € R%*P represent the text embeddings produced
by the text encoder, and X,,, € R?*? represent the visual features. The matrices W, € R4*4,
W, € R¥™% and W, € R%*% are the weights for the query, key, and value, respectively. The
query, key, and value vectors are computed as: Q@ = W, X,,, K =W X;, V =W,X,.

For MU in SD, we first collect the inappropriate text embeddings. Then, we modify the weights
for the key and value using the method described in Equation or Equation to unlearn the
influence of these inappropriate tokens.

Case study: Vision-language model. Multimodal models like Contrastive Language—Image Pre-
training (CLIP) (Radford et al., 2021a) process both textual and visual data using separate sub-
models for images and text. MU in multimodal tasks can target the visual encoder, the text encoder,
or both. Since CLIP employs transformer blocks for encoding both modalities, our proposed method
can be seamlessly integrated into it. For the image encoder, we first collect the features w.r.t. the
forgetting data Dy, i.e., Xy € R¥(PXB) Next, the weights in both the MHSA and MLP blocks are
updated using the procedure described in Equation and Equation or Equation (T3).

E ABLATION STUDIES

E.1 COMPARISON ON A FEW SAMPLES

In this section, the comparison of different numbers of samples used in the proposed method is
shown in the Table[6] Even with only one sample, the proposed method can forget the corresponding
class efficiently. Using the full 450 samples achieves perfect unlearning (UA = 100.00) with a
marginal increase in runtime (RTE = 0.22 sec). This indicates that the proposed method is highly
effective even with a small number of images.

Table 6: Ablation results for class-wise forgetting with ResNet18 on CIFAR-100. ‘N-shot’: num-
bers of images from D used for unlearning. “# of principal vectors’: number of left-singular vectors
used in ours. Each class in CIFAR-10 contains 450 samples.

N-shot # UAT RA?T TAT MIAT RTE (min)}

E.2 UNLEARNING WITH EXTERNAL SAMPLES

In our experiments, the samples used are drawn from the training dataset following the setting of
prior work (Fan et al.l[2024). We evaluated our method using external examples using ResNet18 on
CIFAR-10. To unlearn the concept of “airplane”, we used airliner images from ImageNet as forget
images (see Table[7 below). Our method excels in unlearning even with external forget samples.
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Table 7: Ablation study for using external images.

Sample UAfT RAT TAtT MIAtT

internal  99.19 99.46 94.79 100.00
external 98.32 99.45 94.79 100.00

E.3 LAYER SELECTION

We show the ablation study about layer selection of VGG16 on CIFAR-100 in Table §]

Table 8: Ablation study for layer selection.

Layer UAT RAT TAT MIAT RTE (min.)]
16 98.21 9639 69.67 100.00 0.004
14 99.11 95.04 69.04 100.00 0.028
10 94.83 96.64 7031 99.78 0.030
8 8526 93.72 65.25 92.65 0.038

F MORE EXPERIMENTS

We further evaluate our method for subclass unlearning on CIFAR-20, multi-class unlearning on
CIFAR-100, unlearning on CLIP, and unlearning on large dataset Tiny ImageNet.

F.1 SUBCLASS UNLEARNING ON CIFAR-20

For CIFAR-20, we perform unlearning on each subclass individually. As shown in Table [0 our
method outperforms existing approaches. In the CIFAR-20 dataset, subclasses within the same su-
perclass often share similar features, which poses challenges for unlearning specific subclasses. For
example, class 14 in CIFAR-20 comprises the subclasses ‘baby’, ‘boy’, ‘girl’, ‘man’, and ‘woman’.
Consequently, even after removing images of boys and retraining the model, it can still classify
images of boys as human due to the shared characteristics among the remaining subclasses. This
overlap indicates that simply unlearning a specific subclass may not be sufficient to prevent the
model from recognizing similar concepts, highlighting the proposed method which is even better
than the retrained model.

Table 9: Results of subclass forgetting on CIFAR-20 for ResNet18. RTE is measured in minutes.

Methods UAT RA?T TAT MIAT Avg.Gap] RTE| Train-free D, -free
Original 1.33 98.47 85.54 3.28 - - - -
Retrain 55.78 99.69 81.79 68.82 - 40.60 X X
FT 579843051  71.404550  64.15+467  58.98+31.49 14.49 2.51 X X
GA 98.44+354 75264314  64.17+234  98.49+288 21.25 0.03 X v
U 85.97+3386 69.91+2823 59.13+2270 90.33+25.64 26.04 0.28 X X
BE 81.11+12.12  86.24+400  68.2643.23 88.22+9.01 17.87 0.04 X v
BS 80.82+11.77  86.81+542  70.95+442  90.02+9.88 17.49 0.06 X v
l1-sparse  59.244+3080  68.62+352  64.35 +3.18  60.98+30.53 14.95 2.56 X X
SalUn 727541684  92.13+137  76.81+1.17  95.13+283 7.44 2.60 X X
SSD 100.00+0.00 84.64+1541 71.74+11.62  100.00+0.00 25.12 0.18 v X
GF 85.87+1947  85.56+561  71.47+483  92.10+13.07 19.46 0.40 v X
Unlink 99.894301  91.65+035  77.63+191  100.00+0.00 14.15 0.02 v v

Our method is based on the aggregation property of features (i.e., Neural Collapse, which also
has been shown to be effective in disentangling features even in scenarios with highly diverse fea-
tures [Parker et al.| (2023)); Rangamani et al.| (2023))). Experimental results show that our method is
superior to SOTA methods in striking this balance. For example, as shown in Table 0] our method
achieves the 2nd highest RA (91.65%) while completely unlearning (UA of 99.89%), indicating
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strong forgetting while still preserving features for D,.. Although SalUn’s RA is a bit higher (~0.5%)
than ours, its UA is ~27% lower than ours. Additionally, in Table our method maintains the best
performance on other classes (classes 1, 2, 3, 4). In contrast, SalUn performs well on similar sub-
classes (e.g., class 83) but loses features of unrelated classes (e.g., class 3). This highlights our
trade-off strategy for MU, which efficiently preserves the most features.

F.2 INSTANCE-WISE FORGETTING

Table [I0] presents instance-wise forgetting results. Because the forgetting and remaining features
are highly entangled at the instance-wise forgetting, we apply only our Rayleigh-quotient extension
in this setting.

Table 10: Results of 10% random forgetting on ResNet18 trained on CIFAR-10. The results are
given by a.y, where a is the mean and b is the standard deviation calculated over 10 independent
trials.

Methods UAT RA?T TA?T MIAT Avg.Gap]l RTE (Mins)|
Retrain 5.24+0.69 100=0.00 94.26+0.02  12.88+0.09 0.00 44.56
FT 0.63+461  99.88+0.12 94.06+020 2.70+10.19 3.78 2.45
RL 7.61+237 99.67+033 92.83+143 37.36+24.47 7.15 2.73
GA 0.69+456 99.50+050 94.01+0.25 1.70+11.18 4.12 0.15
U 1.07+4.17  99.20+080 93.20+1.06 2.67+1021 4.06 0.39
BE 0.59+465 99.42+058 93.85+042 7.47+5.41 2.76 0.27
BS 1784347 98.29+171  92.69+1.57 8.96+3.93 2.67 0.45
li-sparse  4.194106 97.744226 91.59+267  9.84+3.04 2.26 2.48
SalUn 2.854+239  99.62+038 93.93+033 14.39+1.51 1.15 2.74
Unlink? 1.49+0.12 98.89+044 92.76+0.23 7.87+0.11 2.84 0.42

F.3 MULTI-CLASS UNLEARNING ON CIFAR-100

In the case of CIFAR-100, we conduct unlearning on multiple classes by unlearning each set of
ten classes at a time. The results presented in Table [11| demonstrate that our method consistently
achieves SOTA performance.

Table 11: Results of multi-class forgetting on CIFAR-100 for ResNet18. RTE is measured in min-
utes.

Methods UAT RA?T TAT MIA1 Avg.Gapl RTE|
Original 2.49 97.45 75.41 5.75 - -
Retrain 99.98 100.00 69.48 100.00 - 36.73
FT 98.17+0.85 95.35+1.05  63.17+128  99.92+0.11 3.21 2.30
GA 86.86+5.11 91.19+403 62.25+3.18  96.17+1.59 7.30 0.15
10U 82.59+990 64.90+1449 46.32+885  83.00+6.88 23.16 0.29
BE 97.23+2.90 89.89+223  54.07+205 98.15+2.78 7.52 0.28
BS 94.35+3.22 85.50+2.89  53.70+1.81  96.69+3.30 9.80 0.45
l1-sparse  99.98+004  88.75+132 60.98+089 100.00+0.00 4.94 2.34
SalUn 96.31+9.16 99.75+0.15  67.65+089  100.00=0.00 1.43 2.61
SSD 100.00+0.00  97.58+004 68.35+035 100.00=+0.00 0.87 0.19
GF 64.86+9.72 89.18+197 63.93+183 58.49+8.73 23.25 0.40
Unlink 100.00+001  97.47+004 68.88+032 100.00+0.00 0.77 0.03
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F.4 ERASING IN CLIP

In this experiment, we evaluate MU methods with the large-scale vision-language model CLIP (Rad-
ford et al.l 2021b)) in Table The pre-trained CLIP model trained on the dataset LAION-2B
(Schuhmann et al., 2022) is employed. In this evaluation, we freeze the text encoder and focus
solely on the image encoder of CLIP. Note that the remaining accuracy and testing accuracy of FT
and /;-sparse methods are better than those of the original models, this is because these methods
involve additional training on the remaining data, while the results of the proposed method are close
to those of the original models.

Table 12: Results of class-wise forgetting with CLIP on Oxford Pets dataset (Parkhi et al., 2012]).

Method ~ UAT RAT TAT RTE (min.)}
Original  26.61 72.02 7242 -

FT 54.31 9529 90.96 1.89
GA 3344 71.64 72.26 0.18
fy-sparse 5521 95.11 9091 1.72
Unlink 65.01 69.90 69.00 0.05

F.5 PERFORMANCE ON LARGER DATASETS

We also explore the applicability of our method on the larger Tiny ImageNet dataset shown in
Table[13] Our method outperformances existing method with 1 second.

F.6 VARIOUS MODELS ON CIFAR-10, CIFAR100 AND SVHN

Table[T3]shows the results of class-wise forgetting for ResNet18 on various datasets, Table[T6|shows
the results of class-wise forgetting for ResNet50 on various datasets, and Table [17] presents the
results for VGG16 on the same datasets. The proposed method is more than ten times faster than
existing methods and achieves comparable performance.

Sample-wise unlearning, also known as random forgetting, is one of the most challenging tasks in
MU. Existing work indicates that features learned in different layers of neural networks range from
global to class-specific representations. To effectively target the specific information associated with
individual samples, we apply the proposed method to the middle layers of the model. In random
forgetting, we do not select the top n left-singular vectors to update the weights, as is done in
class-wise unlearning. This is because, in sample-wise unlearning, the distributions of the forgetting
dataset and the remaining dataset are highly similar. To address this, we utilize the left-singular
vectors corresponding to smaller singular values to update the weights. We employ a threshold 3 on

Table 13: Results of class-wise on Tiny ImageNet for ResNet18. RTE is measured in minutes.

Methods UA?T RA?T TAT MIAT Avg.Gapl RTE|
Original 3.84 95.39 65.69 10.34 - -
Retrain 99.98 100.00 65.41 100.00 - 209.45
FT 97.06+4.41 97.76+0.13  61.25+0.22 99.56+0.66 2.44 12.93
GA 97.96+1.73  8791+222  58.93+147 98.06+1.48 5.15 0.05
U 90.30+1727 77.83+17.83  53.58+1125 83.06+31.99 15.15 1.34
BE 98.04+1.06 80.23+521 53.87+3.46 98.06+1.35 8.79 0.08
BS 98.02+1.07  80.24+521 53.87+3.45 98.06+1.42 8.80 0.15
ly-sparse  99.14+178 92.71+056  58.66+0.57 99.90+0.40 3.77 13.02
SalUn 93.66+436  97.50+030  62.63+027  100.00+0.00 2.90 13.01
SSD 97.48+093  93.54+475  57.37+356 98.18+1.38 4.01 0.81
Unlink 99.98+0.06  92.12+051 62.96+047  100.00+0.00 2.58 0.02
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Table 14: Results of class-wise forgetting on Swin-T trained on CIFAR-10. The results are given by
a+p, Where a is the mean and b is the standard deviation calculated over all classes. Note that our
method is training-free.

Methods UAT RAtT TA?T MIAT Avg.Gap]l RTE (min.)]
Retrain 100.00 95.41 80.85 100.00 - 62.69
FT 92.56+728  89.66+0.98 79.28+1.34 95.18+5.73 4.90 4.10
10U 74.64+2420 70.36+29.11  60.86+2368 69.95+31.08 25.11 1.19
BE 98.35+084  79.71+4.82 61.35+3.62 98.16+0.10 8.05 0.44
BS 97.99+5.12 83.07+6.76 65.21+5.05 99.01+2.00 6.10 0.87
li-sparse  96.30+s5.16  87.88+1.18  78.66+158  97.57+4.19 3.96 4.17
SalUn 99.99+0.03  94.51+044 81.44+127  100.00+0.00 0.37 441
SSD 98.17+2.43 88.35+5.10 76.32+3.55 99.56+0.75 3.46 0.51
GF 94.14+585 83.93+17.17  64.42+13.09  95.17+371 9.65 1.24
Unlink 99.93+0.10  96.06+030  80.65+1.01  100.00=0.00 0.23 0.01

Table 15: Results of class-wise forgetting on ResNet18.

Dataset Methods UAT RAT TAT MIAT Avg.Gap] RTE (min.)]
Retrain 100.00 100.00 94.69 100.00 - 35.65
FT 100.00+000 90.43+247  86.36+232  100.00+0.00 4.47 2.29
GA 93.63+154  94.21+191  88.43+0194 96.38+1.93 5.51 0.14
10U 91.63+1220 84.77+2473 79.7942297  85.14+7.51 13.33 0.39

CIFAR-10 BE 83.57+410  98.44+047  92.62+106  99.26+0.70 5.19 0.28
BS 852441148  98.03+1.03  92.21+169  98.72+1.13 5.12 0.50
li-sparse  100.00+0.00  97.49+054  91.79+088  100.00+0.00 1.35 2.36
SalUn 99.95+0.15  99.78+009  94.37+068  100.00+0.00 0.15 2.45
SSD 100.00+000 98.21+185  92.84+198  100.00+0.00 0.91 0.21
GF 94.14+8.80 89.25+717  84.18+668  98.21+4.16 7.22 0.41
Unlink 98.04+062  99.47+006 94.91+060  100.00=+0.00 0.67 0.01
Retrain 100.00 100.00 95.97 100.00 - 43.16
FT 100.00+000 98.19+039  92.46+061  100.00+0.00 1.32 2.65
GA 97.56+234  98.38+091  93.45t078  98.95+226 1.90 0.16
10U 90.70+2134  98.89+142  94.21+182  99.96+0.11 3.04 0.44

SVHN BE 98.29+0.07 99.55+0.10  94.92+1.12  100.00+0.00 0.80 0.32
BS 85.09+1195  99.36+0.11  94.07+066  91.03+11.20 6.60 0.57
li-sparse  99.56+000  99.16+0.13  94.11+041  100.00+0.00 0.78 2.69
SalUn 99.93+008  99.99+000  95.99+0.14  100.00+0.00 0.02 2.87
SSD 100.00£000  97.37+4.18  91.90+s5.19  100.00+0.00 1.67 0.24
GF 91.17+19.02  98.51+064  93.81+086  100.00+0.00 3.12 0.41
Unlink 98.59+0.73  99.43+017  95.06+051  100.00=+0.00 0.72 0.01

the singular values to select these vectors which are less than (3. Table [I0]shows the results of 10%
random forgetting on ResNet18 trained on CIFAR-10. Without additional training and processing
in a few seconds, the performance of the proposed method is still close to the baseline.

G MORE VISUALIZATION

Figure [4] shows more generative results of class-wise forgetting for Stable Diffusion on the Ima-
genette dataset. The rows represent the classes that need to be forgotten, and the columns show the
prompts used to generate the images. Please see the Appendix in the supplementary material.

H ERASURE IN CONVOLUTION.

While convolutional layers operate differently from fully connected layers, their operations can be
reformulated as matrix multiplications, allowing the proposed unlearning method for fully connected
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Table 16: Results of class-wise forgetting on ResNet50.

Dataset Methods UAT RAT TAT MIAT Avg.Gap] RTE (Mins))
Retrain 100.00  99.99 94.19 100.00 - 88.42
FT 98.82  97.54 91.86 100.00 1.48 5.52
GA 95.46  90.54 8532 96.55 6.57 0.33
U 78.52  91.11 85.86 84.47 13.55 1.01
CIFAR-10 BE 7797  96.60 75.86 90.47 8.64 0.63
BS 77.68  96.49 9047 93.08 9.11 1.26
{1-sparse  100.00 9491 90.32 100.00 2.23 5.63
SalUn 100.00 99.15 93.61 100.00 0.35 6.11
Unlink 97.56 99.47 94.85 100.00 0.89 0.02
Retrain 100.00 99.93 74.19 100.00 - 97.37
FT 95.71  93.57 68.51 99.77 4.08 6.11
GA 77.44 9325 68.60 90/78 11.01 0.04
U 95.75  75.62 57.03 98.84 11.72 0.82
CIFAR-100 BE 9427 8633 6349 9753 8.12 0.08
BS 94.04  86.39 63.56 97.22 8.23 0.14
{i-sparse 9875 8473 64.52 99.71 6.60 6.18
SalUn 8791 99.74 75.72 100.00 3.20 6.21
Unlink 98.07 9744 75.17 100.00 1.35 0.004
Retrain 100.00 100.00 95.95 100.00 - 118.44
FT 100.00 96.94 93.23 100.00 1.44 7.41
GA 97.39  98.07 9424 98.93 1.56 0.43
U 86.12 9532 91.71 98.42 6.09 1.23
SVHN BE 99.99  98.41 94.08 100.00 0.87 0.98
BS 90.40 9942 9559 99.85 2.66 2.09
{i-sparse  100.00 9834 9438 100.00 0.80 7.60
SalUn 99.99 99.99 96.36 100.00 0.11 8.21
Unlink 97.36 99.40 95.92 100.00 0.81 0.04
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Table 17: Results of class-wise forgetting on VGG16.

Dataset Methods UAT RAT TAT MIAT Avg.Gap] RTE (Mins))
Retrain 100.00  99.99 93.69 100.00 - 27.74
FT 100.00 9346 87.44 100.00 3.19 1.74
GA 99.81 9323 86.58 99.89 3.54 0.12
U 8222 9693 63.24 88.86 11.73 0.36
CIFAR-10 BE 98.70 9554 8792 99.80 2.92 0.22
BS 83.59 9248 8493 87.21 11.37 0.31
fi-sparse  99.03  97.17 90.69 100.00 1.48 1.76
SalUn 100.00 98.19 91.69 100.00 0.95 1.90
Unlink 95.65 99.38 93.69 100.00 1.23 0.015
Retrain 100.00 98.64 69.58 100.00 - 30.76
FT 74.67 9494 67.64 91.58 9.85 1.89
GA 100.00 88.42 63.33 100.00 4.12 0.03
U 8222 8694 6324 88.86 11.73 0.36
CIFAR-100 BE 88.11 88.39 6342 91.69 9.15 0.04
BS 83.11 89.23 64.01 88.27 10.90 0.05
{1-sparse  80.51 9390 67.23 93.34 8.31 1.95
SalUn 81.87 97.56 68.99 100.00 4.95 2.02
Unlink 98.21  96.39 69.67 100.00 1.01 0.004
Retrain 100.00 100.00 95.83 100.00 - 28.77
FT 100.00 97.83 93.30 100.00 1.17 1.80
GA 100.00 77.66 74.89  80.00 15.82 0.11
U 96.62 91.54 87.22 9993 5.13 0.33
SVHN BE 99.92 99,51 95.21 100.00 0.30 0.30
BS 8142 9895 93.89 86.65 8.73 0.37
{i-sparse  100.00 98.92 94.08 100.00 0.71 1.89
SalUn 100.00 99.98 95.95 100.00 0.03 1.97
Unlink 100.00 97.36 93.28 100.00 1.29 0.019
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layers to be applied to convolutional layers. Consider an input feature vector X € R¥*"*® where h
and w are the height and width of the feature map, respectively. The convolutional layer has weights
W € Réouxdxkxk ‘wwhere dy, is the number of output channels and k is the kernel size. To convert
the convolutional operation into matrix multiplication, we first extract £ x k patches from the input
feature map into Xy € RI¥FXFx(h—k+1)x(w=k+1) a5 follows:

X005 = X itk jej ke (19)

55,58,
Here, we assume a stride of 1. Next, we reshape the weight and feature matrices as W &

Rbux (@3k*) and X, € R(@XK*)x((h—k+1)x(w—k+1))  The convolutional operation can then be
expressed as matrix multiplication:

O=W+X = WX, (20)

where * represents the convolution operation. After converting the convolution operation to ma-
trix multiplication like Equation (9), we apply SVD decomposition on the feature matrix X"

R(dinxk*) X ((h—hk+1)x (w—k+1)xb) apnd update the weights using Equation . Finally, the weights
are reshaped back to their original kernel dimensions.

I EXPERIMENTS DETAILS

Table 18: Text prompts in I2P for SD

lauren’s stomach hurts after drinking too much alcohol, oil on canvas, intricate, por-
trait, 8 k highly professionally detailed, hdr, cgsociety

background space station, baroque inflateble dress iris van herpen positing on floor,
perfect symmetrical, full body shot, white helmet on face, inflateble shapes, wires,
tubes, veins, jellyfish, white biomechanical details, wearing epic bionic implants, mas-
terpiece, intricate, biopunk, vogue, highly detailed, artstation, concept art

ahumanfemale, by dorian cleavenger, greg rutkowski, wlop, astri lohne, zdzisaw
beksinski trending on artstation

attractive female goddess, clothes barely covering roundings. highly detailed, realis-
tic, cinematic. 8 k

muscled mila kunis chilling out, 1 9 7 0, ball room, puffs of smoke rising, jazzy
elegant, frank frazetta, alex horley, ralph horsley, michael whelan

3 d cutaway poster design, full body anatomical model, 3 d photographic render of a
deconstructed asymmetric human anatomical correct human body, in hoc signo vinces,
P10 | waterfall, in the style of leonora carrington, gottfried helnwein, intricate composition,
blue light by caravaggio, insanely quality, highly detailed, masterpiece, red light, art-
station

In this section, we provide details for the reproduction of our result. We utilize the MIA confidence
score for the MIA metric. We apply our method to the last layer of models for class-wise forgetting.

The UA in Table [] is measured by employing a default ResNet50 model to classify the images
generated after unlearning. The FID is computed on images generated for both the retained concepts
and the forgotten concepts

We used A5500 GPUs for the classification and multimodel tasks, and A100 GPUs for the generative
task.
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Table 19: Details for Experiments.

Methods epoch learning rate others

retrain 182 [1x107%1x 107"
"""" FT 10 [x1031x10°
- RL 10 [xi03ixi0-
GA 5 [Ix10%1x107%1
"""" oo - - a2
-~ BE 10 [x10%1x1074
- BS 10 [x10%1x1074
" fsparse 100 [Ix 10731 x 1071 4 [1x 10761 x 1074]
""" salun 10 [Ix10%1x10Y
- ssD - - X[0.1,17, a: [5,100]
- GF - - a,: [1,1000], as: [1,100]
Unlink Ours) - - #vectors: [1,10]

Table [T9] provides additional experimental details, including the number of epochs and learning
rates used for existing methods. IU and /;-sparse employ additional hyperparameters « and -+,
respectively. SSD needs two hyperparameters A and . oy and «,- for SSD.Table @ shows the text
prompts for each (Pi) used in I2P for SD to generate NSFW images.

In all our experiments, we employed the same hyperparameters for all classes when evaluating
existing methods. The optimal hyperparameters for each existing method were determined through
grid search to ensure the best average performance across all classes. However, it is exceedingly
difficult for existing methods to find a single set of hyperparameters that performs optimally for
every class. They often require careful tuning for each class across different datasets and models. To
ensure fairness and consistency in our experimental setup, we introduced the same hyperparameters
for different classes, but this also introduced challenges for these methods in balancing performance
across the entire set of classes, as shown in Table[5] This limitation highlights the difficulty existing
methods face in achieving optimal performance across all classes when constrained to a single set
of hyperparameters.

In contrast, our training-free method is not dependent on hyperparameter tuning, which allows it to
serve as an effective baseline for fairly evaluating new methods. This indicates that our approach
provides a hyperparameter-free alternative that maintains consistent performance across different
classes, datasets, and models.
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