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Abstract

Volumetric cell segmentation in fluorescence microscopy images is important to study a
wide variety of cellular processes. Applications range from the analysis of cancer cells to
behavioral studies of cells in the embryonic stage. Like in other computer vision fields, most
recent methods use either large convolutional neural networks (CNNs) or vision transformer
models (ViTs). Since the number of available 3D microscopy images is typically limited
in applications, we take a different approach and introduce a small CNN for volumetric
cell segmentation. Compared to previous CNN models for cell segmentation, our model
is efficient and has an asymmetric encoder-decoder structure with very few parameters in
the decoder. Training efficiency is further improved via transfer learning. In addition, we
introduce Context Aware Pseudocoloring to exploit spatial context in z-direction of 3D
images while performing volumetric cell segmentation slice-wise. We evaluated our method
using different 3D datasets from the Cell Segmentation Benchmark of the Cell Tracking
Challenge. Our segmentation method achieves top-ranking results, while our CNN model
has an up to 25x lower number of parameters than other top-ranking methods. Code and
pretrained models are available at: https://github.com/roydenwa/efficient-cell-seg

Keywords: Volumetric cell segmentation, deep learning, pseudocoloring, context aware-
ness, parameter efficiency.

1. Introduction

Cell segmentation in volumetric microscopy images is essential to study a wide variety of
cellular processes. Examples of applications are the analysis of cancer cells or behavioral
studies of cells in the embryonic state. In recent years, deep learning methods are frequently
used for cell segmentation. The majority of current deep learning architectures for cell seg-
mentation are convolutional neural networks (CNNs) (e.g., Arbelle and Raviv 2019; Scherr
et al. 2020; Pena et al. 2020), but like in other computer vision fields, vision transformer
(ViT) architectures are also used (e.g., Prangemeier et al. 2020).

Since U-Net (Ronneberger et al., 2015) was published, encoder-decoder CNNs with skip
connections have become the most used CNN architecture for cell segmentation. These
encoder-decoder CNNs typically perform semantic segmentation with three labels: One
for background, one for cells, and one for cell borders. Chen et al. 2016 combine multiple
U-Nets with a long short-term model (LSTM) to perform volumetric cell segmentation. The
U-Nets act as feature extractors, and feature maps of adjacent 2D slices are processed by
the LSTM part to extract hierarchical features from the 3D context. Khan et al. 2020 use a
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Figure 1: Parameter efficiency. Our EfficientCellSeg model achieves competitive SEG scores
compared to state-of-the-art (SOTA) models (left) despite having a much lower number of
parameters (right).

3D variant of the U-Net architecture to perform volumetric cell segmentation. Scherr et al.
2020 use a Dual U-Net (DU-Net) with two distinct decoder paths to perform volumetric
cell segmentation slice-wise. One decoder predicts a heatmap for the distance of cells to
background regions, the other decoder predicts a heatmap for the distance to neighbor cells.

A general trend is that deep learning models for cell segmentation are becoming larger,
while the amount of available training data in applications remains limited. Since training
large models with a large number of parameters requires a large amount of data, methods
have been developed to increase the size of the training data or to adapt the training
process. Recent approaches use generative adversarial networks (GANs) to extend the size
of the training data by data augmentation beyond geometric transformations (Bailo et al.,
2019; Naghizadeh et al., 2021) or use semi-supervised learning to exploit sparsely annotated
datasets (Shailja et al., 2021; Takaya et al., 2021).

Instead of using a large CNN, we take a different approach and introduce a small encoder-
decoder CNN. We propose EfficientCellSeg, a neural network model that has a much lower
number of parameters than existing models for volumetric cell segmentation and thus can
be trained with less training data. Our method analyzes 3D fluorescence microscopy im-
ages slice-wise using stacks of 2D slices. In previous work, 3D images are often analyzed by
independently considering 2D slices, which leads to a loss of information about the spatial
context in z-direction. Related methods use multiple feature extractor CNNs to process
adjacent 2D slices in parallel and combine the extracted feature maps at a later stage of
the methods (Kitrungrotsakul et al., 2019; Chen et al., 2016). In this way, spatial con-
text in z-direction is used for slice-wise segmentation, but the complexity of the models is
also increased significantly. For our method, we introduce Context Aware Pseudocoloring
as pre-processing method to exploit spatial context of 3D images in z-direction while per-
forming volumetric cell segmentation slice-wise. Cell segmentation results from adjacent
slices are employed for pseudocoloring to provide relevant spatial context for volumetric cell
segmentation. The contributions of our paper are twofold:

• We use recent advances in neural architecture search to design a CNN with an asym-
metric encoder-decoder structure and only 6.7 million parameters.
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• We introduce Context Aware Pseudocoloring to exploit spatial context while perform-
ing volumetric cell segmentation slice-wise.

2. Method

2.1. Model Architecture

Recent advances in neural architecture search focus on optimizing the efficiency of CNN
models. Tan and Le 2019 use a compound coefficient that scales network hyperparam-
eters such as depth, width, and resolution to obtain a new set of efficient CNNs called
EfficientNets. These models achieve a higher accuracy on the ImageNet dataset while
containing much less parameters than previous models. We build upon these achieve-
ments and use parts of an EfficientNet-B5 model as encoder in our EfficientCellSeg model.
The main building block of EfficientNets are mobile inverted bottleneck (MBConv) blocks.
EfficientNet models consist of seven high-level blocks with an increasing number of MBConv
blocks per high-level block. We employ five of these high-level blocks plus the initial con-
volutional layer of the sixth block as encoder. EfficientNets are typically optimized for
fixed input sizes. We use a fixed input size of 384 × 384 × 3 voxels for images with three
channels. In the encoder, the input images are downsampled to a feature tensor with a
shape of 24× 24× 1056 voxels. In the decoder, the feature tensor is upsampled with four
upsampling blocks. Each of these blocks contains two convolutional layers, two batch nor-
malization layers, and one bilinear upsampling layer. Width and height are doubled at each
upsampling block, the number of output filters per convolutional layer is decreased at each
block from 64 to 16, and the encoder and decoder are additionally connected with four
skip connections. Our EfficientCellSeg model has an asymmetric architecture compared to
existing encoder-decoder CNNs for cell segmentation (e.g., Ronneberger et al. 2015; Khan
et al. 2020; Scherr et al. 2020) where encoder and decoder have a very similar structure and
shape. Figure 2 shows the overall architecture of the proposed EfficientCellSeg network.
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Figure 2: EfficientCellSeg architecture
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Model Parameters overall Parameters encoder Parameters decoder Output filters decoder

U-Net (2015) 31.4M 18.9M 12.5M [512, 256, 128, 64]
DU-Net (2020) 46.4M 22.2M 24.2M [512, 256, 128, 64]
EfficientCellSeg 6.7M 5.6M 1.1M [64, 48, 32, 16]

Table 1: Model sizes. We count the parameters in the bottleneck parts of all models as part
of the encoder. The column ”Output filters decoder” gives the number of output filters in
the convolutional layers per block in the decoder part.

Table 1 provides a comparison of the model sizes of a standard U-Net (Ronneberger
et al., 2015), a more recent Dual U-Net (DU-Net) model (Scherr et al., 2020), and our
EfficientCellSeg model. We considered publicly available implementations of the U-Net1

and DU-Net2 models as reference. Since both the U-Net and DU-Net are fully convolu-
tional models with a fixed number of output filters per convolutional layer, the number of
parameters is invariant to different input shapes. In Table 1 it can be seen that for our
EfficientCellSeg model, the number of overall parameters and the number of parameters in
the decoder are much lower compared to the other models. EfficientCellSeg has roughly
five times the number of parameters in the encoder compared to the decoder, whereas
other encoder-decoder CNNs such as U-Net or DU-Net have roughly the same number of
parameters in their encoder and decoder parts.

The underlying idea for reducing the number of parameters in the decoder of our model
is as follows. The encoder acts as feature extractor that determines visual features with
an increasing complexity through its layers. The decoder maps these features to interme-
diate representations and ultimately to pixels in the input image to perform pixels-wise
predictions. Compared to other recent methods (Scherr et al., 2020; Pena et al., 2020),
we simplify the classification task by only distinguishing between two classes, background
and cells, instead of three or more classes. We assume that a smaller number of mapping
combinations of the extracted features is sufficient to solve the classification task which
reduces the number of parameters in the decoder part of our model.

2.2. Context Aware Pseudocoloring
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Figure 3: Decreasing visibility of
cells in adjacent 2D slices.

The proposed cell segmentation method analyzes 3D
images slice-wise using stacks of 2D slices. The spa-
tial context of a 2D slice are the adjacent 2D slices.
Many cell types have an ellipsoidal shape, thus the
visibility decreases in z-direction towards the cell
borders (see Figure 3). For theses slices with low-
contrast cell parts, information from adjacent slices
can be exploited to improve the segmentation result
in the current slice.

In our method, we use Context Aware Pseudo-
coloring to exploit information from adjacent slices
(the previous slice z − 1 and the next slice z + 1) for

1. https://github.com/zhixuhao/unet
2. https://git.scc.kit.edu/KIT-Sch-GE/2021 segmentation
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the current slice. We generate three pseudocolor channels. First, the two adjacent slices
are processed with contrast limited adaptive histogram equalisation (CLAHE) filters (Pizer
et al., 1987). Then, regions of interest (ROIs) are determined in the two adjacent slices via
thresholding. The intermediate result is a rough segmentation, in most cases there is an
oversegmentation. Afterwards, we perform a multiply-accumulate step, where the binary
values in the segmentation mask are multiplied with the intensity values of the current
slice and the result of this multiplication is added to the intensity values of the current
slice (which makes the result less prone to errors in determining the ROIs). This highlights
regions in the current slice where cells are located in adjacent slices. To generate the red
pseuodocolor channel, we perform this procedure for the previous slice z − 1. The blue
pseuodocolor channel is generated analogously using the next slice z + 1. For the green
pseudocolor channel the intensity values of the current slice z are used. All three pseudo-
color channels are combined to a pseudocolor image. Finally, the intensity values of the
pseudocolor image are normalized between zero and one. Figure 4 shows the whole process.

z

CLAHE
Thresh

CLAHE
Thresh

Multiply 
Accumulate 

Multiply 
Accumulate 

z + 1

z -- 1

z

ROIs

ROIs

Result of Pseudocoloring

R

G

B

Figure 4: Context Aware Pseudocoloring

An advantage of using a pseudocolor image with three channels as input for our
EfficientCellSeg model is that it simplifies the use of transfer learning. Accordingly, we
can initialize the EfficientNet model in the encoder with ImageNet (Deng et al., 2009)
weights (obtained from training with natural color images) without further adjustments.

3. Experiments

3.1. Datasets

We evaluated our method using three different 3D fluorescence microscopy datasets from
the Cell Segmentation Benchmark of the Cell Tracking Challenge (Ulman et al., 2017). The
Fluo-C3DL-MDA231 (MDA231) dataset consists of 3D images of human breast carcinoma
cells with a size of 512× 512× 30 voxels. The Fluo-N3DL-TRIC (TRIC) datset comprises
3D images of a developing Drosophila Melanogaster embryo with a size of 1745× 2440× 13
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voxels. The Fluo-C3DH-A549-SIM (A549-SIM) dataset consists of 3D images of lung cancer
cells with a size of 350× 300× 29 voxels or 400× 300× 37 voxels. We originally developed
the Context Aware Pseudocoloring method for the MDA231 dataset. In this dataset, many
cases of cells with strongly decreasing visibility in adjacent slices exist, as in Figure 3. The
A549-SIM dataset contains only one cell per 3D image, but also there the visibility decreases
at cell borders. The same applies to the large number of cells in the TRIC dataset.

3.2. Impact of Transfer Learning, Context Aware Pseudocoloring, and
Decoder Size

To investigate the impact of transfer learning and Context Aware Pseudocoloring of our
method, we trained three EfficientCellSeg models with different configurations using the
A549-SIM training dataset. For all three models, we used Adam (Kingma and Ba, 2015)
as optimizer, a Dice loss function (Milletari et al., 2016), 1488 training samples, 372 test
samples, and trained for 100 epochs. In all cases, the decoder was initialized with random
weights. The encoder of Model 1 was initialized with random weights and we generated 2D
training samples with three channels by stacking three identical copies of each 2D slice. The
encoder of Model 2 was initialized with ImageNet weights and we generated 2D training
samples as for Model 1. The encoder of Model 3 was initialized with ImageNet weights and
the model was trained with pseudocolored 2D slices. Figure 5 shows the training curves.
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Figure 5: Impact of transfer learn-
ing, Context Aware Pseudocoloring,
and decoder size.

The performance is quantified by the mean inter-
section over union (MeanIoU), which measures the
similarity of the segmentation result and the refer-
ence annotations:

MeanIoU =
1

C

∑
C

TPC

TPC + FPC + FNC

For the two class labels (C), background and cells,
the true positive (TP), false positive (FP), and false
negative (FN) pixels are determined.

Models 2 and 3 (initialized with ImageNet
weights) reach a higher MeanIoU value than Model 1.
Furthermore, a significant improvement is achieved
by using Context Aware Pseudocoloring (Model 3
compared to Model 2). This shows that exploit-
ing spatial context in adjacent slices in this way im-
proves the result and works well in combination with
ImageNet weights.

We also investigated the impact of the number of parameters in the decoder using the
A549-SIM training dataset. We trained two more models with the same setup as Model 3
but with an increased number of parameters in the decoder (4.8M and 12.5M vs. 1.1M).
Figure 5 shows that Models 4 and 5 converge faster than Model 3 in this experiment and
yield somewhat higher MeanIoU scores for the training samples. However, for the test sam-
ples, the MeanIoU scores of Models 3, 4, and 5 are very similar (see Table 2). Therefore,
it can be concluded that more parameters in the decoder do not improve the segmentation
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performance in this experiment. Corresponding to the lower number of parameters, Model
3 requires less time for training than Models 4 and 5 for one epoch (TEpoch) on a Nvidia®

Tesla® P100 GPU, and the inference times per sample are faster on the used GPU (TIGPU )
and an Intel® Xeon® CPU (TICPU ).

Model Output filters decoder Parameters decoder ⇓ Test MeanIoU ⇑ TEpoch ⇓ TIGPU ⇓ TICPU ⇓
3 ( ) [64, 48, 32, 16] 1.1M 0.9007 111ms 79.5ms 334ms
4 ( ) [112, 80, 48, 16] 4.8M 0.9003 127ms 80.3ms 652ms
5 ( ) [512, 256, 128, 64] 12.5M 0.9042 170ms 92.0ms 1.47 s

Table 2: Impact of decoder size.

3.3. Cell Segmentation Benchmark

To evaluate the performance of our method, we trained the EfficientCellSeg models with the
available training datasets for each of the three used datasets from the Cell Segmentation
Benchmark of the Cell Tracking Challenge and participated in the challenge3.

Fluo-N3DL-TRIC

Fluo-C3DL-MDA231

Fluo-C3DH-A549-SIM

Figure 6: Example 2D slices of 3D images from the datasets of the Cell Segmentation
Benchmark and corresponding segmentation results of EfficientCellSeg.

For the MDA231 and A549-SIM datasets, we resized the 2D slices to 384× 384 pixels.
Since the TRIC dataset has much larger image sizes, we applied a sliding window scheme
with six square patches and resized these patches to 384 × 384 pixels. We used Context
Aware Pseudocoloring for all datasets and initialized all models with ImageNet weights.
During training, we used Adam as optimizer and reduced the learning rate at plateaus. We
trained separate models for the three considered datasets. The MDA231 dataset contains
many irregularly shaped cells that are difficult to distinguish. Hence, we additionally trained
a second model to predict heatmaps for the cell centers (similar as in, e.g., Schmidt et al.
2018). The segmentation model was trained using a Dice loss and the cell center heatmap
model was trained using a focal loss (Lin et al., 2018). In a post-processing step, the
predicted cell centers were used as markers for a watershed algorithm (Beucher and Meyer,

3. http://celltrackingchallenge.net/participants/HD-Wag-GE
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1993) to label individual cells. Since all images in the A549-SIM dataset contain only one
cell, we used only the segmentation model. The TRIC dataset contains many cells with
an ellipsoidal shape. Therefore, we used the segmentation model, and as post-processing a
distance-based watershed algorithm. Figure 6 shows example 2D slices of 3D images from
the challenge datasets and the corresponding segmentation results of our method.

As performance metric, we used the SEG score (Maška et al., 2014), which is an object-
based Jaccard index that measures how well the segmented regions (S) match ground truth
annotations (R). The metric is defined as:

SEG(R,S) =

{ |R∩S|
|R∪S| , if |R ∩ S| > 0.5 · |R|,
0 else

We additionally introduce the parameter efficiency with respect to the SEG score (PESEG)
as metric, which relates the achieved SEG score to the number of model parameters N:

PESEG(SEG,N) =
SEG

N
· 106

Table 3 shows the obtained results as well as results of state-of-the-art methods. For each
dataset, we selected the best method of the challenge. Our EfficientCellSeg model achieves
competitive SEG scores as the best methods despite having much less parameters. The
best method for the A549-SIM dataset uses an ensemble of four 3D U-Nets with a total
of 176 million parameters (DKFZ-GE)(Isensee et al., 2021). In contrast, we use only one
EfficientCellSeg model, which has 25 times fewer parameters. The best method for the
MDA231 and the TRIC datasets uses DU-Net models (KIT-Sch-GE)(Scherr et al., 2020).
For the TRIC dataset, we use only one EfficientCellSeg model, which has a factor of 6
less parameters. For the MDA231 dataset, we have a factor of 3 less parameters, although
we use an additional EfficientCellSeg to determine cell centers. Accordingly, our method
achieves much higher PESEG scores for all three datasets.

Dataset Method CNN model Parameters overall ⇓ SEG ⇑ Ranking PESEG ⇑
A549-SIM DKFZ-GE 4 x 3D U-Net 176.0M 0.955 1/12 0.005

Ours EfficientCellSeg 6.7M 0.951 2/12 0.142

TRIC KIT-Sch-GE DU-Net 46.4M 0.821 1/8 0.018
Ours EfficientCellSeg 6.7M 0.782 3/8 0.117

MDA231 KIT-Sch-GE DU-Net 46.4M 0.710 1/19 0.015
Ours 2 x EfficientCellSeg 13.4M 0.646 2/19 0.048

Table 3: Results for different 3D datasets of the Cell Segmentation Benchmark.

4. Conclusion

We have presented a novel method for volumetric cell segmentation that achieves com-
petitive results to state-of-the-art methods despite having much less parameters. Our
EfficientCellSeg model comprises an efficient feature extractor as encoder and a decoder
with a reduced number of output filters in the convolutional layers. Furthermore, we have
introduced Context Aware Pseudocoloring to exploit spatial context of 3D images while
performing volumetric cell segmentation slice-wise.
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