
A Method for Compiling Domain-Specific Languages 1

into SYCL through Abstract Syntax Trees 2

Cao Jiawei1 3

1Xi’an Jiaotong University, Xi’an, 710000, China 4

Abstract 5

The escalating demand for computing resources, particularly in the realm of ar- 6

tificial intelligence (AI), necessitates efficient utilization of heterogeneous parallel 7

systems. This study focuses on compiling domain-specific languages, specifically 8

data-centric computation models, into SYCL for heterogeneous many-core systems. 9

SYCL, based on C++17, offers a unified programming model for various hardware 10

accelerators, promoting code reusability across different architectures. Leveraging 11

SYCL’s cross-hardware compatibility and performance optimization capabilities, 12

this project aims to enhance programming efficiency and performance on diverse 13

hardware backends. Through the translation of domain-specific languages into SYCL 14

(DPC++), developers can harness the simplicity and usability of domain-specific 15

languages while achieving high-performance parallel computing. This approach ad- 16

dresses the challenges of complex programming interfaces and poor program port- 17

ability across heterogeneous systems. By enabling domain-specific languages to run 18

in parallel on heterogeneous systems, this research contributes to advancing the de- 19

velopment of heterogeneous computing systems and providing programmers with 20

more flexible and efficient programming tools. The significance of this work lies 21

in its potential to facilitate broader application scenarios and higher execution effi- 22

ciency, ultimately promoting the widespread adoption of domain-specific languages 23

and driving innovation in parallel computing. 24

Keywords: SYCL, Domain-Specific Languages, Abstract Syntax Trees. 25

1. Introduction 26

The rapid advancement of artificial intelligence (AI) technology and the continuous growth 27

in its application demands have led to increasingly substantial requirements for computing 28

resources, alongside various existing computationally intensive disciplines. In response to 29

these demands, hardware technologies have continuously evolved, with various heterogen- 30

eous processors, notably GPUs, spearheading breakthroughs in parameters such as core 31

1



counts and floating-point computation speeds. Particularly in recent years, the AI field 32

has witnessed the emergence of a series of massive models, often comprising billions of 33

parameters. The training of these models often necessitates complex computing systems 34

involving multiple nodes and devices to provide computational power. Consequently, the 35

necessity for heterogeneous parallel systems research has escalated. 36

In these supercomputing systems, coprocessors or heterogeneous accelerators are often 37

utilized as their acceleration devices. In the latest (November 2023) TOP500 list of high- 38

performance computing systems, nine out of the top ten supercomputing systems utilize 39

coprocessors or heterogeneous accelerators as their acceleration devices, with NVIDIA’s 40

GPUs being used in seven of these supercomputers. Simultaneously, to meet the diverse 41

needs of different higher-level applications, the variety of architectures for heterogeneous 42

systems continues to expand. These systems leverage coprocessors and accelerators to 43

execute computing tasks, thereby enhancing computational efficiency and performance. 44

There are four methods for constructing such systems: single-node single-device, 45

single-node multiple-devices, multiple-node single-device, and multiple-node multiple- 46

devices. The simplest and most common among these systems is the single-node single- 47

device configuration (e.g., CPU+GPU setups in personal computers), while the more 48

complex method involves multiple-node multiple-device parallel systems (e.g., supercom- 49

puting systems). 50

The utilization of different architectural heterogeneous systems spawned by various 51

higher-level applications has revealed significant issues. The massive parallelism of het- 52

erogeneous systems and the differences between architectures have made programming 53

interfaces overly complex and inconsistent across different heterogeneous systems. Con- 54

sequently, parallel programming on heterogeneous systems not only becomes challenging 55

to learn and optimize for efficiency but also suffers from poor program portability between 56

different heterogeneous systems. This problem greatly restricts the value of parallel pro- 57

gramming. 58

Therefore, as a leading industry player, Intel introduced the vision of OneAPI dur- 59

ing the Architecture Day in 2018, swiftly realizing it in the subsequent years. OneAPI 60

comprises a set of unified application programming interfaces that can be used for vari- 61

ous computing accelerators (coprocessors), including GPUs, AI accelerators, and field- 62

programmable gate arrays (FPGAs). Its aim is to eliminate the need for developers to 63

maintain separate codebases, multiple programming languages, tools, and workflows for 64

each architecture. In fact, prior to this, the Khronos Group had publicly proposed a 65

programming model called SYCL in March 2014, for similar purposes. 66

SYCL is an advanced programming model designed to improve programming effi- 67

ciency on various hardware accelerators. The current version of SYCL 2020 is based on 68

a pure C++17 single-source embedded domain-specific language (DSL), with several im- 69

plementations available. Among these, the most comprehensive and outstanding is Intel’s 70

OneAPI DPC++ compiler. DPC++ is built on top of the Khronos Group’s SYCL spe- 71

2



cification and aims to enable developers to reuse code across hardware targets (CPUs and 72

accelerators such as GPUs and FPGAs), as well as to customize optimizations for spe- 73

cific accelerators. DPC++ includes C++17 and SYCL language features and integrates 74

open-source community extensions to make SYCL easier to use. 75

Domain-specific languages are languages tailored to specific application domains.(1) 76

Compared to general-purpose programming languages used in their application domains, 77

they offer significant benefits in terms of expressiveness and usability. DSLs come in 78

various forms, from widely used languages in common domains, such as HTML for web 79

development, to languages used by only one or a few pieces of software. 80

Given the broad concept of domain-specific languages, this project primarily focuses on 81

domain-specific languages related to parallel computing, such as domain-specific languages 82

in data-intensive disciplines. 83

Therefore, the significance of this project emerges: SYCL (DPC++) can provide re- 84

usable code for different hardware, while domain-specific languages can offer simple and 85

easy-to-use programming interfaces for domain-specific programmers. Thus, designing 86

a compiler from a domain-specific language to SYCL enables domain-specific languages 87

to run in parallel on different hardware backends (heterogeneous systems), thereby im- 88

proving programming efficiency and performance. The development of such a compiler 89

allows developers to leverage the simplicity and usability of domain-specific languages 90

while achieving high-performance parallel computing on different hardware platforms. By 91

translating domain-specific languages into SYCL (DPC++) code, we can utilize SYCL’s 92

cross-hardware compatibility and performance optimization capabilities, thereby enabling 93

broader application scenarios and higher execution efficiency. The development of such 94

a compiler not only promotes the widespread use of domain-specific languages but also 95

drives the development of heterogeneous computing systems, providing programmers from 96

different domains with more flexible and efficient programming tools. 97

2. Background 98

Introduction to Existing Research Backgrounds from Two Perspectives: Domain-Specific 99

Languages and SYCL Compilation 100

2.1 Domain-Specific Languages 101

Domain-specific languages (DSLs) are closely tailored to specific domains, offering a 102

higher-level, convenient programming interface for that domain. Consequently, DSLs 103

related to parallel computing can serve as excellent higher-level interfaces for heterogen- 104

eous parallel programming. The design of such DSLs allows programmers to focus more 105

on solving specific domain problems without needing to concern themselves with low-level 106

hardware details. Particularly in heterogeneous computing environments, such high-level 107

3



interfaces effectively conceal the complexity of underlying hardware, simplifying the pro- 108

gramming process and enhancing development efficiency. 109

In the domain of image processing, several outstanding DSLs exist. ImageCL, for ex- 110

ample, abstracts performance optimization details, allowing the compiler to handle specific 111

performance optimizations, thus enabling programmers to focus primarily on algorithm 112

design.(2) Halide achieves significant improvements in image processing efficiency com- 113

pared to CUDA through methods such as separating computation and scheduling and loop 114

optimizations.(3) Moreover, Halide supports deployment on various hardware backends 115

and optimizes for different hardware, achieving good efficiency across many hardware plat- 116

forms. Inspired by Halide’s approach, subsequent research by Mullapudi et al. automated 117

the generation of high-level scheduling strategies previously required by the Halide com- 118

piler, achieving efficiency close to manual implementation.(4) Building upon this, Adams 119

et al. trained a large dataset to model runtime costs, achieving over twice the efficiency 120

of automatic tuning.(5) 121

Beyond the realm of image processing, domain-specific languages have emerged in 122

other data-intensive or compute-intensive domains. Hu Yuanming’s development of the 123

Taishi language provides a high-level, data-structure-agnostic interface for storing and 124

applying sparse data structures, resulting in an average performance improvement of 4.55 125

times.(6) Xu Kai et al. converted dynamic core components from the Weather Research 126

and Forecasting (WRF) model domain into a new domain-specific language called SWSLL, 127

deployed on the Sunway TaihuLight supercomputing system, achieving a 4.7-fold speedup 128

in widely used benchmark tests with a horizontal resolution of 2.5 kilometers.(7) 129

2.2 SYCL Compilation Related 130

According to the SYCL official website, there is a mature tool called SYCLomatic that 131

can migrate CUDA code to SYCL. However, there are relatively few automatic com- 132

pilers that directly compile existing code into SYCL, but some efforts involve manual 133

migration of existing code to SYCL. In Sobol’s research, the trajectory reconstruction al- 134

gorithm for particle physics experiments was compiled to SYCL for execution.(8) Angus’s 135

research deployed Open Neural Network Exchange (ONNX) using SYCL as the backend 136

on edge computing platforms.(9) Naiouf’s research compared the performance of Python 137

with SYCL and introduced the dpctl Python library under development, enabling writing 138

extensions in Python and supporting asynchronous SYCL kernel execution.(10) An note- 139

worthy achievement with a similar approach to SYCL is TVM, which addresses the deploy- 140

ment of various neural network frameworks on heterogeneous backends, providing support 141

for different hardware and optimizing at the intermediate representation stage.(11) 142

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt 143

ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea 144

dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum 145

wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat 146

4



quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet 147

nisl. Vivamus quis tortor vitae risus porta vehicula. 148

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt 149

ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea 150

dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum 151

wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat 152

quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet 153

nisl. Vivamus quis tortor vitae risus porta vehicula. 154

3. Compiler Construction 155

In this section, we will discuss the process of compiling domain-specific languages to SYCL. 156

Firstly, speaking holistically, the process of compiling from domain-specific languages 157

to SYCL involves first compiling them into abstract syntax trees, and then compiling 158

them into the SYCL language through these abstract syntax trees. Therefore, we can 159

consider these two parts as two components of the compiler, namely the frontend and the 160

backend. The frontend of the compiler is responsible for lexical analysis, syntax analysis, 161

and ultimately generating abstract syntax trees. 162

3.1 Compiler Frontend 163

In this section, we need to build the frontend of the compiler. As discussed earlier, the 164

main tasks of the compiler frontend are lexical analysis, syntax analysis, and generating 165

abstract syntax trees. These tasks can be accomplished using tools such as lex and yacc, 166

although their more common modern versions are flex and bison. By utilizing flex and 167

bison together, this task can be relatively easily completed. 168

After outlining the approach to completing this task, we also need to determine the 169

source language of our compiler, i.e., which domain-specific language we need to compile 170

into SYCL. Here, we have chosen a data associated computation(DAC) model as our 171

domain-specific language.(12) We won’t delve into detailed introduction of this language 172

here; instead, we’ll introduce its basic characteristics through a code snippet.1 173

Through this illustration, we can observe the distinctive characteristics of Data Associ- 174

ated Computation (DAC). Firstly, the model features relaxed data declarations, allowing 175

for shape modifications post-declaration. Following this is an explanation of DACrw, a 176

function executing parallel reads and writes. The "|" symbol indicates variables on the 177

left are subject to read-only operations, while those on the right involve value modifica- 178

tions. Lastly, the model’s most notable aspects are highlighted: DACcalc establishes the 179

computation pattern, DACshell forms the associative structure, and their combination 180

generates the associated computation expression. 181

5



Figure 1: The features of DAC model.

3.2 Compiler Backend 182

In this section, we need to complete the backend of the compiler, which involves generating 183

code from the abstract syntax tree. In this part, we refer to the generation method of 184

LLVM. In the backend stage of the compiler, LLVM traverses the syntax tree and generates 185

corresponding intermediate or target code based on the type of each node. This traversal 186

method allows LLVM to effectively transform the syntax structure of high-level languages 187

into low-level instruction sequences. Therefore, by traversing the abstract syntax tree 188

nodes in a preorder manner, we generate code for each type of abstract syntax tree node, 189

thus obtaining the final code. 190

During this translation process, the correspondence between the SYCL language and 191

the data parallel language can be observed. The unified shared memory in SYCL corres- 192

ponds to the variables in the data-associated model. The lambda expressions in SYCL 193

queues correspond to the associative structures in the model. The code generation for 194

reading and writing in the example is shown below in SYCL code.2 195

6



Figure 2: The code generated.

References 196

[1] Mernik, M., Heering, J., & Sloane, A.M. (2005). When and how to de- 197

velop domain-specific languages. ACM Computing Surveys, 37(4), 316–344. DOI: 198

10.1145/1118890.1118892. 199

[2] Falch, T.L., & Elster, A.C. (2016). ImageCL: An Image Processing Language for Per- 200

formance Portability on Heterogeneous Systems. In W.W. Smari (Ed.), Proceedings 201

of the 2016 International Conference on High Performance Computing & Simulation 202

(HPCS 2016), 562–569. 203

[3] Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., & Amarasinghe, 204

S. (2013). Halide: A language and compiler for optimizing parallelism, locality, and 205

recomputation in image processing pipelines. ACM SIGPLAN Notices, 48(6), 519– 206

530. DOI: 10.1145/2499370.2462176. 207

[4] Mullapudi, R.T., Adams, A., Sharlet, D., Ragan-Kelley, J., & Fatahalian, K. (2016). 208

Automatically scheduling Halide image processing pipelines. ACM Transactions on 209

Graphics (TOG), 35(4), 83. DOI: 10.1145/2897824.2925952. 210

[5] Adams, A., Ma, K., Anderson, L., Baghdad, R., Li, T.M., Gharbi, M., Steiner, B., 211

Johnson, S., Fatahalian, K., & Durand, F. (2019). Learning to optimize Halide with 212

tree search and random programs. ACM Transactions on Graphics (TOG), 38(4), 213

121. DOI: 10.1145/3306346.3322967. 214

[6] Hu, Y.M., Li, T.M., Anderson, L., Ragan-Kelley, J., & Durand, F. (2019). Taichi: 215

A language for high-performance computation on spatially sparse data structures. 216

ACM Transactions on Graphics (TOG), 38(6), 201. DOI: 10.1145/3355089.3356506. 217

[7] Xu, K., Song, Z.Y., Chan, Y.D., Wang, S.D., Meng, X.X., Liu, W.G., & Xue, W. 218

(2019). Refactoring and optimizing WRF model on Sunway TaihuLight. In Proceed- 219

7



ings of the 48th International Conference on Parallel Processing (ICPP 2019), DOI: 220

10.1145/3337821.3337923. 221

[8] Sobol, B., & Korcyl, G. (2023). Particle track reconstruction on heterogeneous 222

platforms with SYCL. In Proceedings of IWOCL ’23: International Workshop on 223

OpenCL, 3. DOI: 10.1145/3585341.3585344. 224

[9] Angus, D., Georgiev, S., Arroyo Gonzalez, H., Riordan, J., Keir, P., & Goli, 225

M. (2023). Porting SYCL accelerated neural network frameworks to edge devices. 226

In Proceedings of IWOCL ’23: International Workshop on OpenCL, 4. DOI: 227

10.1145/3585341.3585346. 228

[10] Faqir-Rhazoui, Y., & Garcia, C. (2023). Exploring Heterogeneous Computing Envir- 229

onments: A Preliminary Analysis of Python and SYCL Performance. In M. Naiouf, 230

E. Rucci, F. Chichizola, & L. De Giusti (Eds.), Cloud Computing, Big Data & Emer- 231

ging Topics: 11th Conference, JCC-BD&ET 2023, Proceedings (Vol. 1828, pp. 3-16). 232

DOI: 10.1007/978-3-031-40942-4_1. 233

[11] Chen, T.Q., Moreau, T., Jiang, Z.H., Zheng, L.M., Yan, E., Cowan, M., Shen, H., 234

Wang, L., Hu, Y., & Ceze, L. (2018). TVM: An Automated End-to-End Optimizing 235

Compiler for Deep Learning. In Proceedings of the 13th USENIX Symposium on 236

Operating Systems Design and Implementation (OSDI), 579-594. 237

[12] Wu, S. (2021). Research on High-level Unified Parallel Programming Architecture for 238

Heterogeneous Many-core Systems. Doctoral dissertation, Xi’an Jiaotong University. 239

8


	Introduction
	Background
	Domain-Specific Languages
	SYCL Compilation Related

	Compiler Construction
	Compiler Frontend
	Compiler Backend


