
Approximate Uncertainty Propagation for
Continuous Gaussian Process Dynamical Systems

Steffen Ridderbusch∗

Department of Engineering
University of Oxford

steffen@robots.ox.ac.uk

Sina Ober-Blöbaum
Numerical Mathematics and Control

University of Paderborn

Paul Goulart
Department of Engineering

University of Oxford

Abstract

When learning continuous dynamical systems with Gaussian Processes, comput-
ing trajectories requires repeatedly mapping the distributions of uncertain states
through the distribution of learned nonlinear functions, which is generally in-
tractable. Since sampling-based approaches are computationally expensive, we
consider approximations of the output and trajectory distributions. We show that
existing methods make an incorrect implicit independence assumption and under-
estimate the model-induced uncertainty. We propose a piecewise linear approxi-
mation of the GP model yielding a class of numerical solvers for efficient uncer-
tainty estimates matching sampling-based methods.

1 Introduction

Gaussian Processes (GPs) represent a distribution over a function space, assumed to contain the true
underlying function, conditioned on available pairs of input-output data. This means, that GP models
capture epistemic uncertainty [1], as we explicitly assume that with additional data the uncertainty
about the true model decreases.

The context for this work is learning the vector field of a dynamical system using GPs [2]. Specifi-
cally, we consider an ordinary differential equation (ODE)

ẋ = f(x), (1)
where f is a GP. This is conceptually similar to using NeuralODEs, which use a Neural Network in
place of the GP [3].

We note explicitly that the resulting model is not a stochastic differential equation or random dynam-
ical system with uncertainty arising from inherent stochasticity [1]. While we assume the presence
of measurement noise in the data, the GP model aims to identify the true underlying function. The
context of this work is also different from the contributions of Schober et al. [4], who assume that the
solution of the ODE is described by a GP, and the discrete steps of the solver represent observations
affected by noise through computational error.

A more popular alternative to learning the vector-field representing the continuous dynamics is di-
rectly learning the flow map via a state-space GP [5, 6, 7, 8].

∗Corresponding author

A causal view on dynamical systems workshop at the 36th Conference on Neural Information Processing Sys-
tems (NeurIPS 2022).



These models generally have the form
xk+1 = f(xk), (2)

directly predicting the next state of the trajectory after some fixed time step. Some of these models
use Gaussian auto-regression, taking into account l past states [8, 9, 10]. While these approaches
make it easy to use collected data, which is often available as a time series, they are implicitly
learning a flow map with a fixed step size and are therefore unable to adapt to speed of the dynamics
in a particular location. In addition, for many dynamical systems the flow map is a highly complex
function that cannot be expressed analytically, even for simple vector fields.

Learning the continuous dynamics from time series data is more difficult, but also allows the inclu-
sion of additional data, such as known terms from first principle models [3], symmetries [2], and
symplectic structure [11].

In most cases, we obtain a trajectory from the continuous vector field via numerical integration
methods. The simplest such method is the explicit Euler

xn+1 = xn + hf(xn), (3)
where h is the step size, which can be varied over subsequent steps. There exists a wide range of
more complex numerical solvers, differing in their order of convergence, stability, or computational
cost. One of the key motivations for this work is applying those methods to GP-based ODEs and
including uncertainty propagation.

The challenge with uncertainty propagation is that mapping a random variable with a tractable,
parametrizable distribution, like a normal distribution, through a nonlinear function is generally
intractable.

In the context of dynamical system models, this problem is compounded. For state-space GPs, one
repeatedly maps a random variable Xn through the distribution of nonlinear functions represented
by the GP to obtain the distribution of Xn+1, Xn+2 and so forth. In the context of this work, the
vector field is non-linear, which means that we obtain a distribution of gradients f(X) for state X ,
which for numerical solvers needs to be combined with the distribution of current state Xn and, for
higher order methods, the gradients at other states.

To our knowledge, this work is the first to consider approximate uncertainty propagation through
numerical integrators for ODEs. However, there has been some work on uncertainty propagation in
state-space GPs.

Girard et al. published a series of results on approximating the output distribution when mapping
a normal distribution through a GP. In [12] the authors show an approximation for the mean and
variance of the output based on Taylor series approximations of the predicted mean and variance,
using derivatives for the GP kernel function. A subsequent result [7] showed that when using the
squared exponential kernel specifically, the mean and the variance of the output distribution can be
obtained analytically. These results are called moment matching and have been used for state-space
GPs [5]. Other work has applied sampling-based approaches to estimate uncertainty in state-space
GPs [13] and for continuous GP dynamics [14].

For comparison, we use a similar option in this work: We sample a representative number of vector
field functions from the GP distribution and integrate each function over the desired time frame to
get an estimate of the state distributions.

We briefly discuss the expected outcome. We assume that the data-generating system has an un-
known, but fixed model. While the observations are noisy, the implicit parameters of the system are
constant, and the finite GP conditioned on the collected data represents a distribution over different
possible models and their likelihood. An ideal experimental setup would allow us to add additional
data and narrow down to the true underlying model for the system in the Reproducing Kernel Hilbert
Space. When considering the resulting trajectories, a fixed point of the system should become a fixed
point distribution which a numerical integrator converges to through repeated steps, assuming that
the step size is chosen from within the stability region.

Our main contributions are the following: We demonstrate how existing approaches to uncertainty
propagation based on approximating the output distribution of the exact model make an incorrect
implicit independence assumption. We further propose an alternative approach based on a piece-
wise linear model approximation that can be solved exactly, resulting in what we call the PULL
(Propagating Uncertainty through Local Linearization) class of solvers.

2



2 Review

2.1 Gaussian Processes

We first review briefly the basics of Gaussian Processes [15]. We assume we have N output obser-
vations yi = f(xi) + ϵi with Gaussian noise ϵi ∼ N (0, σ2

n) for known inputs xi to an unknown
function f : Rm → Rd. We now express f as a GP, that is as a distribution over functions.We spec-
ify a prior P(f) in the form of a mean function m(x), generally assumed to be zero, and a kernel
function k(x, x′), which uniquely determines a Reproducing Kernel Hilbert Space containing all
possible realizations of f .

For any finite subset of random variables fi corresponding to known inputs xi the GP determines a
joint Gaussian distribution, and by conditioning on the initial observations D = (xi, yi) we obtain
the posterior distribution P(f |D), which allows us to predict the output f(x̂) at a new input x̂. As
we are considering a distribution of functions, we will obtain a distribution of outputs with the mean
µf (x̂) and variance σ2

f (x̂) determined by

µf (x̂) = Kx̂,x(Kx,x + σ2
nI)

−1y (4a)

σ2
f (x̂) = Kx̂,x̂ −Kx̂,x(Kx,x + σ2

nI)
−1Kx,x̂ (4b)

where x = [x1, . . . , xN ], y = [y1, . . . , yN ], and Kx,x′ = [k(xi, x′j)]i,j is the kernel or covariance
matrix. The most commonly used Kernel is the squared exponential kernel, which we also use in the
examples shown in this work. It is defined as

k(x, x′) = exp

(
−1

2
(x− x′)TW−1(x− x′)

)
, (5)

where W = diag(w1, . . . , wM ) is the diagonal matrix of length scales.

In the context of dynamical systems the dimension of the input and the output are the same, hence
m = d While a number of vector-valued kernels exist [16], it is often assumed that each output
can be treated independently with d GPs f : Rm → R. In this work, we further restrict to one-
dimensional dynamical systems, allowing us to consider only one-dimensional GPs.

2.2 Sampling GPs

GPs are distributions over, generally infinite dimensional, function spaces and therefore inherently
difficult to sample numerically. To obtain some approximate function realizations f∗ from the pos-
terior distribution at input locations x∗, the standard option [17] is to generate normally distributed
random variables ζ ∼ N (0, I), and transform them according to the GP posterior

f∗|y,x = m∗ +K
1/2
∗,∗ ζ. (6)

Here, (·)1/2 indicates a matrix square root like the Cholesky factor, m∗ is the GP mean µf (x
∗) from

(4a) and K∗,∗ is the covariance matrix for the sample input x∗ via (4b). In essence, this is a grid-
based approach, and while it is numerically exact, it is computationally costly due to cubic scaling
with the number of function values sampled. To evaluate the function at arbitrary locations between
grid points, one can use standard interpolation methods.

To mitigate the cubic scaling, a number of alternate algorithms have been developed. Wilson et al.
[17] propose a combination of decoupled bases, specifically Fourier basis functions [18], and kernel
bases via a sparse GP approach. This has also been used in other recent work [11, 14] in the context
of vector field models.

An approach of this kind was also mentioned in [13], along with a memory based approach, which
generates samples subsequently while conditioning each sample on previous ones. It has also been
used in a similar context as in this work [2].

For this work, we will use samples via (6) as a source of ground truth for comparison, as it is the
most accurate option to compare against.

3



−0.2 −0.1 0.0 0.1 0.2

−0.50

−0.25

0.00

0.25

0.50

x

f(x
)

b=-0.25
b=-0.125

b=0.0
b=0.125
b=0.25

N (−ax, β)

0.0 0.5 1.0 1.5 2.0

−0.1

0.0

0.1

0.2

0.3

0.4

time t

x

N (µ0,Σ0)

N (0, β/a2)

0.0 0.5 1.0 1.5 2.0
0.000

0.001

0.002

0.003

time t

m
ea

n
er

ro
r

0.0 0.5 1.0 1.5 2.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

time t

st
an

da
rd

de
vi

at
io

n

y1
h/2
h
2h

0.0 0.5 1.0 1.5 2.0
0.000

0.005

0.010

0.015

time t

va
ria

nc
e

total
transient

asymptotic
restart

0.0 0.5 1.0 1.5 2.0

0.005

0.010

0.015

0.020

time t

va
ria

nc
e

analytic
sampling

Flow steps
euler

euler, h/2
euler, h/4

0.0 0.5 1.0 1.5 2.0
0.00

0.02

0.04

0.06

0.08

er
ro

r

Figure 1: Linear Model: Left: The distribution is represented by a family of parallel lines. Solving linear
ODEs for samples b of B for a distribution of initial values shows trajectories converge to the model
parameter-dependent fixed point. Middle: Decreasing the Euler step size decreases the mean error, but
also incorrectly decreases the variance as a result of (17b). The reason becomes apparent in the bottom
plot, where the black line represents sampling, while regularly restarting and independently sampling
from the final distribution of each segment. It matches the sum of the analytic transient and asymptotic
terms. Right: Iterating the flow and taking Euler steps with the correct covariance, we obtain results that
match the analytic solution and sampling. Decreasing the step size reduces the error compared to the
analytic solution.

3 Linear Approximations

Using a linear approximation is attractive in many applications, as it avoids many of the complex
behaviours that appear in nonlinear functions. However, the question is what part of the problem
requires, or is best suited for, linearization.

3.1 Approximating the Output Distribution

Even though the distribution of each subsequent state random variable Xn is generally not normally
distributed, we can compute its mean and variance and instead of the unknown general distribution
use a normal distribution with the same moments.

Applying the approach of Girard et al. [7] in the context of the explicit Euler method (3), an initial
idea might use to apply it to the GP f and then treat the sum of Xn and f(Xn) as independent.
However, this leads to an inaccurate growth in the uncertainty, as they are clearly not independent.

Instead, we can define a new function g(x) = x+ hf(x) and derive the equivalent expressions. Let
the input Xn be distributed as

Xn ∼ N (νn,Σn), (7)

and the output of the GP for a particular sample x∗ of Xn is distributed as

f(x∗) ∼ N (µ(x∗), σ2(x∗)). (8)

The distribution of Xn+1 = g(Xn) will generally not be normal, but we can compute its mean
νn+1 = E[xn+1] and variance Σn+1 = var(xn+1).

From the law of iterated expectations follows that the mean of the output distribution of one Euler
step is given by

νn+1(νn,Σn) = E [xn + hf(xn)] = νn + hE[µ(xn)] (9)

The corresponding variance is given by

Σn+1(νn,Σn) = var
(
xn + hf(xn)

)
= var(xn) + h2var

(
f(xn)

)
+ 2h cov

(
xn, f(xn)

)
, (10)

and from the law of total variance follows

var(f(xn)) = E
[
σ2(xn)

]
+ E

[
µ(xn)

2
]
− E [µ(xn)]

2 (11)

4



This leaves the covariance between Xn and f(Xn). In [7], the authors include a linearized expres-
sion in the footnote. In [8], the authors suggest

cov = (xn, f(xn)) = E [xnµ(xn)]− νnE [µ(xn)] , (12)

which results in

Σn+1(νn,Σn) =Σn + h2
(
E[σ2(xn)] + E[µ(xn)

2]− E[µ(xn)]
2
)

+ 2h
(
E[xnµ(xn)]− νnE[µ(xn)]

) (13)

To compute values for the mean m(νn+1,Σn+1) and the variance v(νn+1,Σn+1), we need expres-
sions for the expected values E[µ(xn)], E[σ2(xn)], E[µ(xn)

2] and E[xnµ(xn)]. For the first three
terms, we can find analytical expressions [12] for the squared exponential kernel, and approximate
expressions using linearization for all other kernels in [7]. In [8] we also find the previously listed
expressions for the squared exponential kernel and in addition an expression for the term E[µ(xn)]
for the covariance.

However, we will demonstrate in the next section that this approach makes an incorrect implicit
assumption about the independence of the states Xn and the model f .

3.2 A linear model

Consider a very simple model, a distribution of stable linear functions of the form

f(x) = −ax+B, with a ∈ R+, B ∼ N (0, β), (14)

as shown in Fig. 1, which means that

µ(x) = −ax and σ2(x) = β. (15)

The integrals from the previous sections resolve to

EXn
[µ(xn)] = −aνn (16a)

EXn [σ
2(xn)] = β (16b)

EXn
[µ(xn)

2] = a2(Σn + ν2n) (16c)

EXn
[xnµ(xn)] = −a(Σn + ν2n), (16d)

which results in the iterations

νn+1 = (1− ah)νn (17a)

Σn+1 = Σn + h2β + h2a2Σn − 2haΣn. (17b)

In addition, the analytical flow for (14) is

φtX0 = e−at X0 +
B

a
(1− e−at), (18)

which has the time-dependent mean and variance

νt = E[φtX0] = e−at µ0 (19a)

Σt = var(φtX0) = e−2at Σ0 +
β

a2
(1− e−at)2. (19b)

Here, we assume that the initial value and the model parameter B are independent, so cov(X0, B) =
0.

Note that the variance from the Euler step (17b) and the exact solution (19b) do not have the same
fixed points:

Σ̂exact =
β

a2
, (20)

Σ̂euler =
β

a2

(
ah

2− ah

)
(21)

5



The result for Σ̂exact matches the variance of the fixed point distribution of the model (14).

The Euler steps converge to a fixed point that depends on the step size h, as we demonstrate in Fig.
1. This is problematic, as the dynamics should not depend on solver parameters. Remarkably, we
obtain a similar behaviour if we consider (19b) as an iterable function of Xi and step size h, which
has the fixed point

Σ̂iter. flow =
β

a2
tanh

(
ah

2

)
(22)

This is surprising, as the flow map should have the semi-group property, such that φt ◦ φsX0 =
φt+sX0. Therefore, there should be no difference between applying the flow over multiple smaller
intervals compared to one large interval.

Taking a closer look at (18), we note that it is made up of two terms. For stable systems, the first term
captures the transient effect of the initial value, whereas the second term represents the asymptotic
behaviour determined by the model parameter B. If we apply the flow to some state Xn instead of
the initial value X0, the state has already been affected by the model and some decay of the initial
value has occurred. Thus, the iterative schemes mentioned above are equivalent to starting over with
an independent initial value after each time step. This can be seen in more detail in Fig. 1.

The repeated transient explains the additional factor in Σ̂iter. flow. As ah → ∞, we see either in-
creasingly large steps or increasingly fast dynamics, which means that the transient behaviour fully
concludes in each step. The additional factor in Σ̂euler also depends on ah. However, the expression
breaks down as ah → 2, which matches the stability region of the explicit Euler method.

Therefore, the issue lies in the covariance between the states and the model parameter. While it is
valid to assume that cov(X0, B) = 0, all subsequent states Xi depend on the model, specifically
this case on the random model parameter B, which means that they are not independent. Instead, we
find

cov(Xn, B) = cov
(
e−anh X0 +

B

a
(1− e−anh), B

)
=

β

a
(1− e−ahn) (23)

Appending this to (19b) yields the correct result, as demonstrated on the right side of Fig. 1.

If Xn is the result of subsequent Euler steps,

Xn+1 = Xn + h(−aXn +B) = (1− ah)Xn + hB (24)

we find a telescope sum, such that

cov(Xn, B) = cov ((1− ah)Xn−1 + hB, B)

= (1− ah)cov(Xn−1, B) + h cov(B,B) = . . .

=(1− ah)n cov(X0, B)︸ ︷︷ ︸
0

+h

n−1∑
i=0

(1− ah)n−1−i cov(B,B)︸ ︷︷ ︸
β

. (25)

which results in

Σn+1 = s(1− ah)2Σn + h2β + 2h2(1− ah) cov(Xn, B) (26)

Using this expression, we find that the variance from the iterative solutions matches the analytic
solution and the variance of the sampled solutions (see Fig. 1).

This result is noteworthy beyond the continuous dynamics discussed in this work. Applying the flow
map iteratively without the additional covariance term for some fixed step size h is equivalent to
repeatedly applying the learned flow map in the state-space GP context. As this phenomenon is thus
far unaddressed in previous work using moment matching for multiple step ahead predictions, the
uncertainty has likely been underestimated. However, as the effect depends on the implicit step size
h in each step of the flow and might be affected by the inclusion of multiple previous points in the
auto-regression context, further study is needed to understand the scope.

6



−4 −2 0 2 4

−3

−2

−1

0

1

2

3

x

f(x
)

GP
Samples

data

0.0 2.5 5.0 7.5 10.0

0.6

0.9

1.2

1.5

time t

tr
aj

ec
to

ry
x(

t)

density
sample mean

sample standard deviation
approx. mean

approx. standard deviation

1.0 1.2 1.4 1.6 1.8

0

1

2

3

4

state x(2.5)

pr
ob

ab
ili

ty

Figure 2: Nonlinear example function: Left: The example function, including the noisy data points, the
mean and the variance of the GP and a few samples from the GP distribution. Right: The distribution of
the trajectories resulting from the GP samples, as well as their mean and standard deviation. We compare
with the results from the approximate local linearization-based solver.

4 Local Linearization

We demonstrated in the previous section that we have to take the history of each state into account
to take another iteration step. However, doing so for a general nonlinear GP model is substantially
more complicated.

To address this, instead of approximating the output distribution of the exact GP, we propose a piece-
wise linear approximation of the GP by defining a series of linear ODEs. Therefore, approximate
the model as a whole with a model for which we can compute the exact state distributions.

We define

fi(x) = aix+Bi, X(0) = Xi, t ∈ [ti, ti + h), (27)

where

ai = µf (νi), and Bi = f(νi)− aiXi, (28)

which match (14) as we have

Bi ∼ N
(
µf (νi)− aiνi, σ

2
f (νi)

)
. (29)

While it would be more accurate to have ai as a random variable, similar to Nghiem’s linGP [10],
this would introduce the product of two random variables and additional covariances.

With this approximation we can take Euler steps on the linear system, resulting in the iterative
scheme

νn+1 =νx + hµf (νn) (30a)

Σn+1 =(1 + anh)
2Σn + h2σ2

f (νn) + 2h(1 + anh) cov(Xn, Bn). (30b)

Our approximation allows us to find an expression for the covariance in (30b) using a similar tele-
scope sum as in (25). This results in

cov(Xn, Bn) = h

n−1∑
i=0

n−1∏
j=i+1

(1 + ajh) cov(νi, νn) (31)

This expression requires storing all previous ai, but since the trajectory states Xi already need to
be stored, the solver still has only linearly scaling storage requirements. The bigger computational
challenge is computing the covariances cov(νi, νn) between the current state and all previous ones.
This is done via (4b) which causes quadratic scaling with the number of steps already taken.

Fortunately, there are two possible justifications to truncate the series in (31). Firstly, in practice, we
often operate within the basin of attraction of a fixed point. Then it will generally be the case that

7



ai < 0 and
∏n−1

j=i+1(1 + ajh) → 0 for n → ∞. Secondly, when using a stationary kernel for the
GP, the covariance is determined by the distance of the two points and a length scale, where distant
points are assumed to be nearly uncorrelated. Hence, we will generally find cov(νi, νn) ≈ 0 for
i ≪ n.

Both terms have complementary behaviour. Under stable dynamics, successive xn will be close and
therefore correlated, but since we have ai < 0 we can truncate based on the first term. Under unstable
dynamics, we will have ai > 0, but successive points will be further apart and the covariance term
decreases faster.

As the terms of the series are simple to compute, it is possible to implement adaptive truncation
based on the smallest term in the sum. We also note that we have made no assumption about the
underlying kernel beyond stationarity.

5 Numerical Experiments

To demonstrate the effectiveness of the local linearization, we consider the ODE

ẋ = g(x) = x cos(x), (32)

and sample 10 data points in the interval [−4, 4] and condition a GP with zero mean and the squared
exponential kernel (5). Via (6), we generate 3000 samples (as seen on the left in Fig. 2) and integrate
each one with initial values from 150 samples of the input distribution N (0.6, 0.005), resulting in
the distribution of trajectories shown on the right of Fig. 2.

We then apply the local-linearization Euler’s method to the same GP, starting from the same initial
distribution, and see that the results agree very well.

However, using the full history of past states makes this method very expensive. Therefore, we
consider using only a truncated version of the sum in (31) with only a limited buffer of past slopes
ai, as discussed in the previous section, and also highlight the effect of different step sizes. The
results in Fig. 2 show that the behaviour of the mean is as expected for Euler’s method, the error
decreases with a smaller step size.

We also see that if the buffer is insufficient, the variance is again step size dependent, but increasing
the buffer results in convergence towards the correct value. While a smaller step size does decrease
the error in both the mean and the variance, the quadratic scaling of the computational cost for each
step with the buffer size, as a result of (4b), provides an incentive to maximize the step size.

Our solver returns accurate results as the estimated trajectory distribution converges towards a deter-
ministic, model-dependent fixed point distribution. While the results can still be affected by solver
parameters, their effect is understood and can be mitigated by adjusting the parameters.

Our slightly underestimates variance compared to the ground truth sampling, likely due to lineariza-
tion error. One option to improve the piecewise linear approximation might be incorporating the
work of Girard et al. [7] in a way that correctly incorporates the correlation of subsequent states. In
this context, we note that using (13) is conceptually equivalent to using our solver with zero buffer.

5.1 Limitations

The linearization-based approach detailed in this work has substantially lower computational cost
than a sampling-based approach, but has a fundamental limitation. While linear models only have a
single fixed point, nonlinear models introduce a wide array of additional behaviours, like additional
fixed points and complex basins of attraction.

In the context of this section’s model (32), we note that there is an unstable fixed point in 0, and
trajectories starting to the right of it will converge towards π/4, as shown in Fig. 3. However, trajec-
tories starting on the left of 0 will converge towards −π/4. This means that starting with a distribu-
tion of initial values near 0, the distribution of trajectories will be bi-modal, as shown in Fig. 4. This
behaviour fundamentally cannot be captured by a linear approximation that assumes a uni-modal
distribution for all states.

However, Fig. 4 highlights the usefulness of a cheap approximate solver. Only solving the ODE
defined by the GP mean would completely miss the presence and effects of an added fixed point.

8



0.0 2.5 5.0 7.5 10.0

−18

−15

−12

−9

−6

time t

lo
g

m
ea

n
er

ro
r

0.0 2.5 5.0 7.5 10.0
0.05

0.06

0.07

0.08

0.09

0.10

0.11

time t

st
an

da
rd

de
vi

at
io

n
σ

buffer = 200

sampling
h = 0.02
h = 0.01
h = 0.005
h = 0.0025
buffer full

0.0 2.5 5.0 7.5 10.0
0.05

0.06

0.07

0.08

0.09

0.10

0.11

time t

st
an

da
rd

de
vi

at
io

n
σ

h = 0.005

sampling
buffer = 200
buffer = 400
buffer = 600
buffer = 800

buffer full

Figure 3: Local Linearization Solver: Left: The logarithmic error of the solver compared to the solution
of the ODE defined by the GP mean. Decreasing the step size also decreases the mean error. Middle:
The results from the Local Linearization solver. With an insufficient buffer size the standard deviation
shows step size dependence. We note that the standard deviation begins to diverge once the buffer fills
up. Right: With increasing buffer size for a given step size the standard deviation converges towards the
result from sampling.

Figure 4: Nonlinear behaviours: Starting at X0 ∼ N (0.05, 0.01), some combinations of initial value
and function samples converge to a different fixed point, creating a bi-modal distribution.

Our solver converges to the sensible fixed point, as the initial value distribution has its mean to the
right of 0, but the variance indicates increased initial uncertainty compared to the previous result
from Fig. 3.

6 Conclusion

Accurately evolving dynamical systems expressed by GPs, either by numerically integrating a con-
tinuous vector field or subsequently applying a learned flow map, introduces a correlation between
the distribution of functions expressed by the GP and subsequent states. We show that current ap-
proaches incorrectly assume independence between the distribution of the states and the GP distri-
bution, resulting in an incorrect step size dependence of the trajectory variance.

We derive and demonstrate the correct correlation for a simple linear model, and leverage those
findings to combine local linearization and the explicit Euler method, resulting in a computationally
efficient and accurate solver.

A possible application for this solver lies in creating a likelihood-based cost function for training
GP-based models, as an alternative to multiple shooting methods [14]. Another option is using it to
make ahead of time predictions for model predictive control and take the prediction uncertainty into
account.

Our results highlight a fundamental consideration for solving dynamical system and creates scope
for several extensions. This includes improving the linear approximation, combining local lineariza-

9



tion with higher order methods than the explicit Euler, and studying the effect of incorporating the
correct correlation in the state-space GP context.

References
[1] H. T. Banks and S. Hu. Uncertainty Propagation and Quantification in a Continuous Time Dynamical

System. 2012.

[2] S. Ridderbusch, C. Offen, S. Ober-Blöbaum, and P. Goulart. “Learning ODE Models with Qualitative
Structure Using Gaussian Processes”. 2021 60th IEEE Conference on Decision and Control (CDC).
2021 60th IEEE Conference on Decision and Control (CDC). Dec. 2021.

[3] C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D. Skinner, and A. Ramadhan.
“Universal Differential Equations for Scientific Machine Learning”. Jan. 13, 2020. arXiv: 2001.04385.

[4] M. Schober, S. Särkkä, and P. Hennig. “A Probabilistic Model for the Numerical Solution of Initial
Value Problems”. Statistics and Computing (Jan. 1, 2019).

[5] S. Kamthe and M. P. Deisenroth. “Data-Efficient Reinforcement Learning with Probabilistic Model Pre-
dictive Control”. June 20, 2017. arXiv: 1706.06491.

[6] M. Buisson-Fenet, F. Solowjow, and S. Trimpe. “Actively Learning Gaussian Process Dynamics”. Pro-
ceedings of the 2nd Conference on Learning for Dynamics and Control. Proceedings of Machine Learn-
ing Research. The Cloud: PMLR, June 10–11, 2020.

[7] A. Girard, C. E. Rasmussen, and R. Murray-Smith. “Multiple-Step Ahead Prediction for Non Linear
Dynamic Systems – A Gaussian Process Treatment with Propagation of the Uncertainty”. Advances in
Neural Information Processing Systems (2003).

[8] P. Groot, P. Lucas, and P. Bosch. “Multiple-Step Time Series Forecasting with Sparse Gaussian Pro-
cesses”. http://allserv.kahosl.be/bnaic2011/ (2011).

[9] J. Kocijan. Modelling and Control of Dynamic Systems Using Gaussian Process Models. Advances in
Industrial Control. Springer International Publishing, 2015.

[10] T. X. Nghiem. “Linearized Gaussian Processes for Fast Data-driven Model Predictive Control”. Oct. 1,
2019. arXiv: 1812.10579 [cs].

[11] K. Ensinger, F. Solowjow, S. Ziesche, M. Tiemann, and S. Trimpe. “Structure-Preserving Gaussian
Process Dynamics”. Jan. 9, 2022. arXiv: 2102.01606 [cs].

[12] A. Girard, C. Rasmussen, J. Q. Candela, and R. Murray-Smith. “Gaussian Process Priors with Uncertain
Inputs Application to Multiple-Step Ahead Time Series Forecasting”. Advances in Neural Information
Processing Systems (2002).

[13] L. Hewing, E. Arcari, L. P. Fröhlich, and M. N. Zeilinger. “On Simulation and Trajectory Prediction
with Gaussian Process Dynamics”. Proceedings of the 2nd Conference on Learning for Dynamics and
Control. Proceedings of Machine Learning Research. The Cloud: PMLR, June 10–11, 2020.

[14] P. Hegde, Ç. Yildiz, H. Lähdesmäki, S. Kaski, and M. Heinonen. Variational Multiple Shooting for
Bayesian ODEs with Gaussian Processes. Jan. 26, 2022. arXiv: 2106.10905 [cs, stat].

[15] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. Adaptive Computa-
tion and Machine Learning. Cambridge, Mass: MIT Press, 2006. 248 pp.

[16] M. A. Alvarez, L. Rosasco, and N. D. Lawrence. “Kernels for Vector-Valued Functions: A Review”.
Apr. 16, 2012. arXiv: 1106.6251 [cs, math, stat].

[17] J. T. Wilson, V. Borovitskiy, A. Terenin, P. Mostowsky, and M. P. Deisenroth. Efficiently Sampling
Functions from Gaussian Process Posteriors. Aug. 16, 2020. arXiv: 2002.09309 [cs, stat].

[18] A. Rahimi and B. Recht. “Random Features for Large-Scale Kernel Machines”. Advances in Neural
Information Processing Systems. Curran Associates, Inc., 2007.

10

https://arxiv.org/abs/2001.04385
https://arxiv.org/abs/1706.06491
https://arxiv.org/abs/1812.10579
https://arxiv.org/abs/2102.01606
https://arxiv.org/abs/2106.10905
https://arxiv.org/abs/1106.6251
https://arxiv.org/abs/2002.09309

	Introduction
	Review
	Gaussian Processes
	Sampling GPs

	Linear Approximations
	Approximating the Output Distribution
	A linear model

	Local Linearization
	Numerical Experiments
	Limitations

	Conclusion

