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Abstract

This paper introduces a conceptual framework that unifies biological and artificial
intelligence under a single principle: intelligence is a system’s capacity to reduce
environmental uncertainty through information processing. The primary value of
this framework is not as a direct measurement tool, but as a lens for analyzing AI
paradigms, identifying current limitations, and charting future research directions.
By emphasizing the strategic acquisition and effective utilization of information,
our framework offers a principled approach to developing more robust and broadly
intelligent systems. We apply this perspective to diverse AI paradigms, from expert
systems to deep learning, and use it to advocate for advancing AI through enhanced
“information awareness,” explore the human-AI co-evolutionary dynamic, and
outline strategies to amplify AI’s real-world impact.

1 Introduction

Discussions of artificial intelligence (AI) invariably involve its relationship with biological intel-
ligence. Artificial intelligence can deepen our understanding of intelligence, while insights from
biological intelligence can inspire the development of more advanced AI. This interplay underscores
a continuous quest to define intelligence and unify its understanding across these domains.

Indeed, understanding intelligence, in both its human and artificial manifestations, is an active and
multifaceted research area. For instance, refined nomenclature and a multidimensional model have
been proposed to bridge human and artificial perspectives [Gignac and Szodorai, 2024]. They high-
light the need for “AI metrics” and suggest that current AI often demonstrates “artificial achievement”
or expertise rather than general intelligence. Likewise, the similarities and differences between
human and artificial intelligence have been explored, with some advocating for enhanced “Intelli-
gence Awareness” in humans to foster effective collaboration with AI systems, and questioning the
pursuit of human-like AI as the sole benchmark [Korteling et al., 2021]. Some researchers aim to
move “Beyond AI” by developing new conceptualizations like “Brain Intelligence”, which seeks to
incorporate functions such as imagination, thereby addressing limitations of current AI’s reliance on
big data and its lack of autonomous idea generation [Lu et al., 2018].

The role of information and information processing is increasingly recognized as central to these
discussions. It has been compellingly argued that unique human intelligence arose from an expanded
information capacity, suggesting that quantitative increases in the ability to process and share
information underpin cognitive differences [Cantlon and Piantadosi, 2024]. Taking a foundational
approach, general definitions of information, intelligence, and even consciousness have been offered
from the perspective of generalized natural computing, linking these concepts to physical principles
like the least action principle and to computational frameworks such as reinforcement learning [Zhang,
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2024]. They propose that intelligence is a basic property of material systems, not merely an emergent
property of complexity.

These works offer valuable insights: for instance, one provides an information-based definition
rooted in natural computing [Zhang, 2024], while another focuses on information capacity in human
evolution [Cantlon and Piantadosi, 2024]. However, a broader, more abstract information-theoretic
framework unifying biological and diverse artificial intelligences through the common lens of
environmental uncertainty reduction remains less explicitly developed. This paper proposes such a
framework. Other works, such as the PASS model for cognitive function [Jarman and Das, 1977],
delve into specific models of human cognitive abilities but do not typically extend this to a unified,
information-centric framework encompassing AI.

We argue that conceptualizing intelligence as a system’s capacity to reduce environmental uncer-
tainty through information processing provides an essential information-theoretic unification.
This paper proposes a conceptual framework built on this principle, intended not as a direct measure-
ment tool, but as a guide for research and development. Our aim is to provide the community with a
common lens to analyze, compare, and advance diverse AI systems. Our contributions are threefold:

• We establish uncertainty reduction as a unifying principle for intelligence, formally repre-
sented by a novel information-theoretic conceptualization (Eq. 1), to bridge biological and
artificial intelligence.

• We demonstrate the framework’s utility as an analytical tool by applying it to diverse
AI paradigms, from expert systems to deep learning, revealing their shared informational
foundations.

• We use the framework as a guide for future research, arguing that advancing AI requires a
strategic focus on enhancing the capacity of AI to acquire, process, and utilize information
to increase its ability to model its environment and reduce uncertainty about it.

2 An Information-Theoretic Framework for Intelligence

Our framework is built on the principle that intelligence is a measure of a system’s ability to reduce
environmental uncertainty. While directly measuring the total entropy of a complex, open-ended
environment (H(E)) is acknowledged to be impractical, we can formalize this principle to guide our
thinking. We propose the following information-theoretic conceptualization:

I ∝ H(E)
H(E|I)

(1)

Here, H(E) is the initial entropy (uncertainty) of the environment, and H(E|I) is the entropy
of the environment conditioned on the intelligent system I. The ratio thus represents the rel-
ative reduction in uncertainty achieved by I. A system that can more effectively model, pre-
dict, or act within its environment will yield a smaller H(E|I), thereby demonstrating higher
intelligence according to this formulation. This core concept is visually depicted in Figure 1,

 

   

Figure 1: An information-theoretic conceptualization of intel-
ligence. An intelligent system I processes information from
the environment E , thereby reducing its initial uncertainty
(entropy H(E)) to a lower residual uncertainty (H(E|I)).
The greater the relative reduction, the higher the intelligence.

which illustrates how an intelligent
system I processes information from
an initially high-entropy (complex or
unpredictable) environment E , lead-
ing to a state of reduced uncertainty.

This process of uncertainty reduction
relies on a fundamental flow of infor-
mation, as illustrated in Figure 2. The
cycle begins with the Environment,
which serves as the primary source of
information and inherent uncertainty.
Intelligent systems then engage in In-
formation Acquisition. For biologi-
cal entities, this involves sensory or-
gans like eyes and ears, while artificial
systems utilize sensors such as cameras and microphones. The acquired raw data or stimuli then un-
dergo Information Processing. In biological systems, this complex stage involves neurophysiological
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mechanisms, including synaptic activity and neural plasticity [Sweatt, 2016]. In artificial intelligence,
processing is achieved through computational algorithms (e.g., backpropagation [Rumelhart et al.,
1986] for training neural networks) executed on specialized hardware like Graphics Processing Units
(GPUs). Finally, this processed information leads to an Intelligent Output. This output can manifest
as physical actions (e.g., human movement), data generation (e.g., text from a language model), or
other forms of communication that interact with and potentially influence the environment. Such
influence often feeds back into the system, initiating a new cycle of information acquisition and
potentially further reducing environmental uncertainty.

ℰ (Environment)
Source of informa�on/

uncertainty

Informa�on
Acquisi�on

Biological (e.g., eyes, ears),
Ar�ficial (e.g., cameras, censors)

Informa�on Processing
Biological (e.g., synapses, neural plas�city),

Ar�ficial (e.g., backpropaga�on, GPU)

Intelligent Output
Influence the environment

e.g. movement, data output

Figure 2: A generalized model of information flow for intelligent
systems, from environmental input to intelligent output.

The dynamics of intelli-
gence over time can be mod-
eled as:

dI
dt

= f(E , I) (2)

where f is a function repre-
senting the rate of change
of intelligence based on in-
teractions between the intel-
ligence system I and the
environment E . This re-
flects the ongoing process
of learning, adaptation, and
model refinement. Conse-
quently, the intelligence of
a system at a given time t

can be seen as an accumulation of these interactions:

I(t) = I(0) +
∫ t

0

f(E(τ), I(τ))dτ (3)

where I(0) represents the initial state of intelligence. This initial state could be endowed by design
(e.g., algorithms, hardware architecture in AI) or by genetics (in biological systems).

3 Information in Biological Intelligence

We begin by exploring the informational basis of biological intelligence.

3.1 Gene, Evolution and Development

Genes, evolution, and development are intricately linked processes that shape biological intelligence.

Genes represent a highly compressed form of information, IG, that provides a blueprint for potential
intelligence. This information is a historical record of environmental interactions that were crucial
for ancestral survival. While IG itself is not ‘active’ intelligence (i.e., it does not directly reduce
environmental uncertainty in real-time, unlike an active intelligent system as defined by Eq. 1), it
provides the foundational blueprint for an organism’s potential intelligence.

IG = Compress(Iancestral_experience) (4)

where Iancestral_experience represents the information about the environment successfully acquired and
utilized by ancestral populations, contributing to their survival and reproduction.

Evolution, at the species level, describes changes in species-wide intelligence traits driven by
environmental interactions and natural selection. If Ispecies denotes the overall intelligence of a
species, its change over evolutionary time tevol can be modeled as:

dIspecies

dtevol
= fevol(E , Ispecies) (5)

This evolutionary process shapes the initial state of intelligence, Iindiv(0), for individual organisms.
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Development describes how an individual organism’s intelligence Iindiv changes over its lifetime tlife,
starting from its genetic endowment and shaped by its unique environmental interactions:

dIindiv

dtlife
= fdev(E , Iindiv) (6)

The initial intelligence at birth can be seen as an unfolding of the genetic information: Iindiv(0) =
Decode(IG).
This framework also re-frames fundamental biological drives. Proliferation, for instance, can be
viewed as an ultimate long-term strategy for uncertainty reduction. While an individual organism’s
lifespan is finite, its genetic lineage can continue to acquire information from the environment across
generations. Proliferation is thus the mechanism that ensures the persistence of the information-
gathering process, aiming to minimize uncertainty for the species over an evolutionary timescale,
even as the uncertainty for any single individual inevitably returns to maximum upon its death.

3.2 Human Knowledge

From this information-centric perspective, human knowledge—such as mathematical formulas,
physical laws, and chemical principles—can be viewed as the result of human intelligence’s efforts to
express information derived from the environment.

Human knowledge itself is not intelligence per se; rather, it is a product derived from human
intelligence. Analogous to genetic information (IG), it can be considered a compressed representation
of accumulated human understanding and experience.

Let IK denote this human knowledge:

IK = Compress(Ihuman) (7)

where Ihuman represents the collective body of information processed, validated, and accumulated by
humans through experience, inquiry, and cultural transmission. An individual’s intelligence Iindiv can
be enhanced through the acquisition of human knowledge IK . This learning process, influenced by
the environment E and the individual’s current state Iindiv, effectively updates Iindiv as described by:

Iindiv = Facquire_knowledge(E , Iindiv, IK) (8)

3.3 Human Intelligence Compared to Other Biological Intelligences

Human intelligence is generally considered greater than that of other biological species, arguably
because human interaction with the world is more extensive and complex, involving symbolic
language, tool use, and cultural transmission. This allows humans to acquire, process, and share more
information from and about the environment, effectively leading to a smaller H(E|Ihuman) for a given
environmental complexity H(E).
Tools, in this context, can be viewed as externalized and compressed forms of human knowledge.
Tool use allows individuals to temporarily enhance their effective intelligence, achieving a greater
reduction in environmental uncertainty for specific tasks (effectively lowering H(E|I) during tool
use). This functional enhancement, however, is distinct from a permanent increase in an individual’s
baseline or inherent intelligence (Iindiv), which is rooted in their internal information processing
capabilities.

4 Information for Artificial Intelligence

For artificial intelligence (IAI ), intelligence is also conceptualized through its capacity to reduce
uncertainty about an environment E by processing information from it, consistent with Eq. 1. The
internal models AI systems build can be seen as compressions of this processed information.

IAI ∝ H(E)
H(E|IAI)

(9)
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4.1 Expert Systems

Expert systems represent an early AI paradigm where intelligence is derived from explicitly encoded
human knowledge. Often, recurrent patterns of information observed in the environment are sum-
marized by humans into rules, forming the basis of this knowledge (IK). An AI based on an expert
system thus acquires information originating from human intelligence (i.e., expert knowledge, IK),
which itself is derived from environmental interactions. The intelligence of an expert system, IES , is
thus derived from this transferred knowledge:

IES = Encode(IK) (10)

The performance of such systems is inherently limited by the completeness and accuracy of IK and
its applicability to novel situations within E . Consequently, expert systems often exhibit brittleness
when IK is incomplete or the environment changes. Moreover, the processes of acquiring and
encoding comprehensive IK present significant challenges. This embedded knowledge (IK ) can also
become outdated as the environment E(t) evolves, necessitating frequent updates.

It is worth noting that while knowledge itself is not intelligence, a system that effectively utilizes
knowledge can be considered to possess or exhibit intelligence.

IES ∝ H(E)
H(E|IES)

(11)

4.2 Probably Approximately Correct

Artificial intelligence approaches based on statistical learning, such as those in the Probably Approxi-
mately Correct (PAC) framework [Valiant, 1984], derive intelligence from the information contained
in data D, where D is sampled from E . Let IPAC represent the intelligence embodied by the model
learned under the PAC framework. The learning process aims to extract and model information from
D, thereby developing the system’s intelligence IPAC :

IPAC = Learn(D) (12)

The intelligence IPAC of such a system is then:

IPAC ∝ H(E)
H(E|IPAC)

(13)

PAC guarantees provide bounds on how well the learned model (embodying IPAC) generalizes,
reflecting how much information about E has been successfully extracted from D.

4.3 Causal Reasoning

Causal reasoning aims to enable artificial intelligence to reason about cause and effect, which
represents a deeper level of information about E . An AI possessing causal intelligence Icausal, derived
from learned or inferred causal structures, can make predictions under interventions (often denoted
by Pearl’s do(·) operator [Pearl, 2022]). The acquisition or refinement of this causal information
through interventional experience can be modeled as:

dIcausal

dtdo(·)
= fdo(·)(E , Icausal) (14)

Icausal ∝
H(E)

H(E|Icausal)
(15)

From the unified information-theoretic perspective, both biological and artificial intelligence develop
their capabilities by processing information (including expert knowledge and causality) about the
environment. Intelligence, whether biological or artificial, can summarize (or learn) cause-and-effect
relationships from this information.

5



4.4 Deep Learning

Deep Learning [LeCun et al., 2015] dominates current AI research due to its powerful capabilities in
representation learning. Prior machine learning approaches typically used hand-designed features or
simpler feature extraction models, whereas deep learning employs powerful deep neural networks to
learn more effective representations from complex data.

The learning process, often driven by algorithms like backpropagation (BP ), can be seen as transfer-
ring information from data to the model.

dIDL

dt
= fBP (D, IDL) (16)

The intelligence IDL of such a system is then:

IDL ∝ H(E)
H(E|IDL)

(17)

Although the conceptual formula for intelligence acquisition (Eq. 16) is analogous to that for PAC
learning, deep learning’s success stems from its significantly enhanced learning capacity. This
capacity arises from sophisticated algorithms combined with substantial learning infrastructure
(including computing power), which together enable the extraction of complex information and the
formation of powerful representations.

Current scaling laws for LLMs [Kaplan et al., 2020] can be interpreted within this framework: an
increase in information volume (data) combined with improved information utilization (via algorithms
and hardware) leads to enhanced intelligence, reflecting a substantial integration of the learning
process described by Eq. 16 over extensive datasets D. While this approach has yielded LLMs with
remarkable reasoning abilities [OpenAI et al., 2024, DeepSeek-AI et al., 2025], we contend that their
reasoning predominantly draws from a fixed, pre-compiled intelligence (IDL). This contrasts with the
dynamic update of IDL (Eq. 16) through ongoing interaction, potentially limiting adaptation to novel
information beyond the training corpus D.

Methods employed to augment reasoning at inference time, such as expanded context windows [Liu
et al., 2025] or tool use [Qin et al., 2023], operate differently in how they leverage information. An
expanded context window may allow for a more comprehensive “invocation” of the model’s existing
internal intelligence IDL by providing more immediate situational data. Tool use, on the other hand,
often involves temporarily incorporating “external”, pre-compressed human knowledge or specialized
processing capabilities (e.g., a calculator or search engine). In both cases, these serve as situational
enhancements that improve task performance but do not fundamentally update or expand the core
learned intelligence IDL in the same way as ongoing learning (Eq. 16) from new, diverse experiences.
A promising research direction is the integration of external tool knowledge directly into the model
itself, allowing it to internalize these capabilities and thereby enhance its core intelligence (IDL).

4.5 Reinforcement Learning

A key characteristic of successful reinforcement learning (RL) [Sutton and Barto, 2018] is the direct
interaction between the AI agent and its environment E . The agent learns a policy π by processing
sequences of states, actions, and rewards. The information gained from this experience updates the
agent’s policy π [Lillicrap et al., 2019] (and/or value functions [Watkins and Dayan, 1992]), thereby
enhancing its internal intelligence IRL. The change in intelligence of an RL agent can be modeled
similarly to biological development:

dIRL

dtinteraction
= fRL(E , IRL) (18)

Each interaction provides new information, reducing H(E|IRL) over time.

IRL ∝ H(E)
H(E|IRL)

(19)
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4.6 Developmental and Evolutionary Perspectives for Artificial Intelligence

The progression of a single artificial intelligence system, as it acquires knowledge and enhances its
capabilities through various learning mechanisms, can be conceptualized as a developmental process,
analogous to an individual organism’s development.

Extending this, an evolutionary perspective can be applied to AI by considering the dynamics of
multiple AI systems (or populations of systems) interacting with each other and the environment.
Such co-evolutionary dynamics, where multiple intelligences I1, I2, . . . , In influence each other’s
development, can be modeled by Equation 20:

d(I1, I2, . . . , In)
dt

= f(E , I1, I2, . . . , In) (20)

In this formulation, f represents the complex function governing how the set of intelligences evolves
collectively due to their interdependencies and shared environmental pressures. This could model
phenomena like competitive selection, collaborative learning among AI agents, or the emergence of
specialized roles within an AI ecosystem.

5 Future Directions

Our information-theoretic framework is not merely a conceptual lens but a useful tool for charting
a concrete research agenda. It allows us to move beyond high-level goals and formulate specific
principles for designing more capable AI systems and structuring their interaction with human
intelligence.

5.1 Advancing AI Through Information Awareness

Advancing AI critically depends on acquiring more comprehensive information and utilizing this
information more effectively.

Acquiring more information includes sourcing more data, integrating more modalities, and incorporat-
ing more human knowledge. To acquire more data, AI systems can not only collect more existing data
but also leverage interactions between different AI models to generate new data, as distinct models
may capture or represent different facets of information. For example, the Sora system [OpenAI,
2024] uses a captioner model to generate highly descriptive captions for its visual training data.

Utilizing information more effectively involves developing better algorithms to extract information
and improved methods to integrate human knowledge into AI systems. Furthermore, improved
hardware design can enhance the efficiency of AI’s information processing.

Finally, rather than directly injecting knowledge as in traditional expert systems, we propose using
human knowledge to synthesize data. AI models can then learn from this synthesized data, thereby
indirectly incorporating the intended knowledge. Constitutional AI [Bai et al., 2022] provides an
example: it uses a “constitution” (a set of principles) to guide data generation, and this generated data
is then used to fine-tune a model, aiming for safer behavior. Note that some research [Shumailov
et al., 2024] indicates that using purely AI-generated data for training can lead to model collapse.
However, introducing additional human knowledge, for instance through a “constitution” or other
explicit principles, might mitigate this issue.

Our framework also provides a more fundamental, information-theoretic perspective on this chal-
lenge, yielding a clear design principle for collective AI systems: to maximize the intelligence of a
multi-agent collective, one must maximize the diversity of useful information within that collective.
A system of heterogeneous agents, each possessing different skills or accessing different data streams,
can reduce a larger portion of the total environmental uncertainty than a group of homogeneous
agents. This principle offers a theoretical lens to understand model collapse as a failure of informa-
tional diversity and guides us toward building more robust multi-agent systems by enforcing varied
information-gathering capabilities.
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5.2 The Co-evolution of Human and Artificial Intelligence

Current artificial intelligence systems cannot yet acquire information as comprehensively as humans
in many areas. Humans obtain information from multiple sensory modalities (e.g., vision, hearing,
touch, smell [Thesen et al., 2004], and taste [Toko, 2000]). While artificial intelligence may now
perform well, or even better than humans, in vision or hearing, modalities like touch, taste, and smell
remain challenging for AI.

Conversely, artificial intelligence excels at accessing information beyond human perceptual limits.
AI systems excel at detecting and analyzing signals imperceptible to humans, such as high-frequency
waves and microscopic patterns, as well as identifying massive-scale data correlations that lie
beyond human cognitive or perceptual limits. This creates a powerful synergy: human perception
provides contextual, embodied knowledge, while AI reveals hidden dimensions of information. This
combination allows for a more complete understanding of reality and deeper insights than either
could achieve alone.

The co-evolutionary interplay between human intelligence (IHuman) and artificial intelligence (IAI)
can be conceptualized similarly to Equation 20:

d(IHuman, IAI)

dt
= f(E , IHuman, IAI) (21)

Ideally, artificial intelligence and human intelligence should cultivate a mutually beneficial and
symbiotic relationship, where each enhances the capabilities of the other. This dynamic can be
observed in a practical human-chatbot co-evolutionary loop. Initially, a chatbot‘s pre-training reduces
its uncertainty about general language. Fine-tuning on human preferences then reduces its uncertainty
about specific human values and goals. This alignment allows the chatbot to better assist a human user,
effectively enhancing the user’s intelligence by reducing their uncertainty about a given task. The
user, in turn, provides higher-quality feedback, further reducing the chatbot’s uncertainty and creating
a virtuous cycle of mutual intelligence enhancement that operationalizes the dynamic in Eq. 21.
However, from this information perspective, the fact that both human and artificial intelligence derive
information from, and increasingly act within, the same environment underscores the importance of
AI safety [Amodei et al., 2016]. Given that AI systems learn from and can be influenced by complex
environmental information, ensuring their robust alignment [Gabriel, 2020] with human values and
preventing unintended harmful outcomes (key components of comprehensive AI safety) presents a
significant challenge.

5.3 Grounding Intelligence: The Next Frontier of Information Acquisition

For AI to have a greater real-world impact, it must bridge the information gap between the digital and
physical worlds. While current AI excels at processing information beyond human perceptual limits
(e.g., massive-scale data correlations), it lags in acquiring the rich, multi-sensory information humans
do [Thesen et al., 2004, Toko, 2000].

This points to a clear research imperative: developing AI embodied in platforms capable of rich
physical interaction. Visual-Language-Action models [Zitkovich et al., 2023, Team et al., 2025] and
dexterous robotic hands [Unitree, 2025] represent critical steps. The goal, from our perspective, is
not merely to add modalities but to enable AI to actively reduce its uncertainty about the physical
environment through interaction. Techniques like Simulation-to-real (Sim2Real) transfer [Höfer et al.,
2021, Kadian et al., 2020] are valuable for this, as they represent a method of compressing human
knowledge about physics into a form AI can learn from, before it closes the final "reality gap" with
direct environmental information.

6 Alternative Views

The “data-centric AI” [Zha et al., 2025] paradigm primarily concentrates on using data to improve
AI. While this is valuable, we encourage the AI community to adopt a broader “information-centric”
view. This expanded perspective includes not only acquiring more data but also effectively integrating
human knowledge and developing more advanced (or efficient) algorithms and hardware. This
information-centric view focuses on the comprehensive acquisition and utilization of all relevant
information, rather than exclusively emphasizing raw data.
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Our framework should also be distinguished from other theoretical conceptualizations of intelligence
and consciousness, notably the Predictive Processing (PP) [Keller and Mrsic-Flogel, 2018] framework
and Integrated Information Theory (IIT) [Tononi et al., 2016]. The PP framework provides a
compelling theory of mechanism, positing that the brain functions by minimizing prediction error
between its internal models and sensory input. Our framework, in contrast, offers a theory of
definition, establishing what intelligence is at a fundamental level, irrespective of its implementation.
A key distinction is the role of environmental complexity. A system that perfectly predicts a simple
environment may achieve minimal prediction error but is less intelligent under our formulation than a
system that imperfectly predicts a highly complex world. By explicitly including the environment’s
initial entropy (H(E)), our framework accounts for the scale of the problem being solved, a factor
not central to local prediction error minimization.

Furthermore, our framework is distinct from Integrated Information Theory, which is a theory of
consciousness rather than functional intelligence. IIT aims to quantify a system’s intrinsic cause-effect
power (Φ) independent of any external environment. Our definition of intelligence is functional and
extrinsic, measured by a system’s ability to reduce uncertainty about its environment. This focus
also highlights an important practical distinction: while IIT emphasizes deep causal structure, our
framework acknowledges that much of effective intelligence relies on powerful correlational models
that reduce uncertainty for prediction and control. Consequently, our framework applies to any
system, including non-conscious AIs, that effectively models its world, whereas IIT is concerned
with the substrate-specific properties that give rise to subjective experience.

7 Conclusion

In this paper, we have put forward an information-theoretic conceptualization of intelligence as
the reduction of environmental uncertainty. We used this principle to build a unified framework,
demonstrating its utility by analyzing key AI paradigms, from expert systems to reinforcement
learning, through a common lens that reveals their shared foundation in information processing. Our
work suggests that this perspective provides a valuable tool for thought, encouraging a focus on the
fundamental dynamics of information acquisition and utilization. We believe this focus is a promising
avenue for guiding the development of more capable and robust artificial intelligence systems.

8 Limitations

While our framework is conceptual, it provides a principled approach to the challenge of measuring
intelligence by defining a research agenda for its operationalization. The intractability of measuring
environmental entropy, H(E), is not a barrier to the framework’s utility but rather a formalization of
the problem AI evaluation must solve.

In the near term, the framework is readily applicable in domain-specific proxy environments where
E is fixed. For example, when comparing two large language models, one trained with additional
compressed human knowledge (e.g., mathematical axioms), our framework predicts it will achieve a
greater reduction in uncertainty. This is directly measurable via standard metrics like lower cross-
entropy loss or higher accuracy on a held-out test set, which serve as practical proxies for a lower
H(E|I).
However, the framework’s more profound implication is that it specifies the requirements for a true,
cross-domain measure of general intelligence. It makes clear that comparing disparate systems, such
as a robot and a language model, demands what is currently missing: a universal proxy metric. This
would take the form of a rich, unified evaluation environment that can assess an agent’s ability to
reduce uncertainty across a wide range of modalities and interactions. Articulating the need for such
an environment is a key contribution of this work.

This agenda is further refined by acknowledging our simplifying assumption of a relatively static
environment. A truly robust metric would need to model the dynamic feedback loop where an agent’s
actions alter the environment’s entropy. Thus, future work must tackle both the development of
universal proxy environments and the modeling of this dynamic agent-environment interaction.
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