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Abstract
We propose CoNSAL (Combining Neural net-
works and Symbolic regression for Analytical
Lyapunov function) to construct analytical Lya-
punov functions for nonlinear dynamic systems.
This framework contains a neural Lyapunov func-
tion and a symbolic regression component, where
symbolic regression is applied to distill the neural
network to precise analytical forms. Our approach
utilizes symbolic regression not only as a tool for
translation but also as a means to uncover coun-
terexamples. This procedure terminates when no
counterexamples are found in the analytical for-
mulation. Compared with previous results, CoN-
SAL directly produces an analytical form of the
Lyapunov function with improved interpretability
in both the learning process and the final results.
We apply CoNSAL to 2-D inverted pendulum,
path following, Van Der Pol Oscillator, 3-D trig
dynamics, 4-D rotating wheel pendulum, 6-D 3-
bus power system, and demonstrate that our al-
gorithm successfully finds their valid Lyapunov
functions. Code examples are available at github.

1. Introduction
The field of deep learning has sparked significant interest
in learning and data-driven control techniques for nonlinear
systems. Yet, a major hurdle for the practical implementa-
tion of learning-based methods is their lack of guaranteed
stability or safety, alongside interoperability issues (Amodei
et al., 2016). To address this challenge, a common solu-
tion involves identifying valid certification functions for
nonlinear dynamical systems. A well-known certificate
function for stability guarantees is the Lyapunov function
(Khalil, 2002), which is an energy-based function used to
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prove the stability of the equilibrium point. The Lyapunov
functions are indispensable for control system designers,
enabling to affirm the stability of complex dynamics and
offer vital insights into system behaviors. The significance
of such functions has led to the development of various com-
putational construction methods (Giesl & Hafstein, 2015),
where (McGough et al., 2010) deploys an evolutionary al-
gorithm for symbolic computation of Lyapunov functions
and (Ahmadi & Majumdar, 2016; Dai & Permenter, 2023)
use sum-of-squares (SOS) methods. However, these meth-
ods either require pre-defined function templates or lack
flexibility due to limited candidates.

Recent advancements in learning-based methods have paved
the way for successful data-driven techniques in the discov-
ery of neural-network-based Lyapunov functions, as demon-
strated in studies such as (Edwards et al., 2024; Wang et al.,
2024; Yang et al., 2024; Wu et al., 2023; Zhou et al., 2022;
Chang et al., 2019). We refer readers to a recent review
(Dawson et al., 2023) for more information. Despite the ad-
vancements, current approaches face two major challenges:
1) Generalization and 2) Scalable Verification (Dawson et al.,
2023). The issue of generalization arises from the fact that
these learned certificates are trained on specific dynamics
within a specific region on fixed parameters. As a result,
it is not trivial to generalize the learned Lyapunov func-
tions to a greater state space or adapt to slightly different
dynamics. Furthermore, an effective solution for verify-
ing certificates in networks remains elusive, as the existing
formal verification methods including satisfiability modulo
theories (SMT) (Chang et al., 2019), mixed-integer linear
programming (MIP) (Wu et al., 2023), and α, β-CROWN
(Yang et al., 2024) can be computationally expensive, which
restricts their applicability in complex systems.

On the contrary, analytical Lyapunov functions have two
benefits: 1) It is interpretable and can potentially guaran-
tee global stability, which enhances its generalizability and
may provide further insights to scientists. Specifically, a
stability-guaranteed control policy can be designed with a
known analytical Lyapunov function (Feng et al., 2023a;b;
Cui et al., 2023b). 2) It can bypass the neural network veri-
fication. Building on the preceding discussion, our research
focuses on the following question: Can method based on
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Neural Networks directly yields analytical Lyapunov func-
tions for nonlinear dynamical systems?

To tackle this challenge, we propose CoNSAL, short for
Combining Neural networks and Symbolic regression (An-
gelis et al., 2023) for Analytical Lyapunov function, which
comprises a neural network learner and a falsifier similar
to (Chang et al., 2019). Unlike this method, which utilizes
SMT solvers for validation, we employ symbolic regression
to elucidate the neural Lyapunov function in analytical form
and verify stability conditions with its roots. Stability is as-
certained if the nonnegative Lyapunov function’s only root
in a specified region corresponds to the desired equilibrium
point (such as the origin), and its nonpositive Lie derivative
either has no roots or a single root at its equilibrium. Global
stability can be concluded when the conditions are globally
valid. If the stability condition is not met, we efficiently
generate counterexamples near the root, adding them to the
training set to update the neural Lyapunov function. The pro-
cedure terminates once a valid Lyapunov function is found.
Given that numerical root-finding algorithms do not provide
guarantees, a formal verification can be applied to the final
analytical Lyapunov function we found, which is a lot easier
compared with verifying neural networks. Following the
compositional neural certificate (Zhang et al., 2023), we
further propose a compositional neural Lyapunov function
design to scale up our approach to networked systems.

We evaluate our algorithm with various nonlinear systems in-
cluding the pendulum system, path-following problem, Van
Der Pol oscillator, rotating wheel pendulum, 3-bus power
system, and problems from nonlinear systems textbook
(Khalil, 2002). Our method demonstrated the efficiency
and robustness in discovering valid analytical Lyapunov
functions. Contributions can be summarized as follows:

• We present the first algorithm that combines neural
networks with symbolic regression to construct analyt-
ical Lyapunov functions directly, which significantly
facilitates interpretability.

• We propose an efficient counterexample generation
paradigm by sampling around the roots of the symbolic
Lyapunov functions, which circumvents expensive neu-
ral network verifiers.

• We validate our algorithm across various examples
with neural networks with more than 100 neurons.

2. Related Works
2.1. Learning-based Lyapunov function construction

The area of learning-based Lyapunov function construction
is experiencing significant growth. A prominent model in
this field is the Neural Lyapunov Control (Chang et al.,

2019). This framework includes a neural-network-based
Lyapunov function and a learnable linear controller, with
stability verified by an SMT solver. This methodology was
extended by (Zhou et al., 2022), which introduced a neu-
ral network to model unknown dynamics and another for
control. For switched affine systems, (Feng et al., 2024)
introduces a joint learning scheme for a common Lyapunov
function and the controller. Additionally, (Dai et al., 2021;
Wu et al., 2023) consider discrete-time systems and neural
network controllers, verifying stability via MIP solvers. One
limitation of these methods is the need for linearization of
dynamics or other relaxations for formal verification. (Yang
et al., 2024) deploys α, β-CROWN for neural network veri-
fication due to its scalability, and extends the previous con-
trol scheme from state feedback to output feedback control.
However, these formal verification methods face challenges
with large neural networks: SMT solvers can handle up to
30 neurons, MIP solvers are limited to networks with up to
200 neurons (Dawson et al., 2023), and (Yang et al., 2024)
has 16 neurons each layer for the Lyapunov neural network.

2.2. Symbolic regression

Symbolic regression is a supervised machine-learning tech-
nique that constructs analytical models to represent datasets.
It typically addresses a multi-objective optimization prob-
lem, balancing between minimizing prediction error and
model complexity. Common practice involves employing
genetic algorithms for solution finding, a brute-force ap-
proach whose computational complexity scales up exponen-
tially with input dimension (Schmidt & Lipson, 2010). To
address this concern, (Cranmer et al., 2020) proposes to
combine neural networks with the genetic algorithm-based
symbolic regression tool eureqa (Schmidt & Lipson, 2009).
This method first learns a black-box model and then applies
symbolic regression to find the mathematical formulation
for scientific discovery. An alternative to generic algorithm-
based techniques is “SINDy” (Sparse Identification of Non-
linear Dynamics) (Brunton et al., 2016), which formulates
expressions as linear combinations from a fixed dictionary
of nonlinear functions. Additionally, (Petersen et al., 2021;
Shojaee et al., 2023) introduces deep generative models for
symbolic regression and can achieve fast inference.

Given the extensive array of available algorithms, as sum-
marized in (Cranmer, 2023), we selected the open-source
PySR (Cranmer, 2023) for symbolic regression in our algo-
rithm. This choice is driven by PySR’s user-friendly nature,
its ability to optimize unknown constants, the provision of
multiple solutions beyond mere accuracy, and the flexibility
to customize operators and handle constraints. Other pack-
ages in the community like ”SINDy” could also likely be
used and achieve similar results.
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3. Preliminary
3.1. Lyapunov Stability

We consider the problem of constructing Lyapunov func-
tions for autonomous nonlinear dynamical systems at an
equilibrium point. Without loss of generality, we assume
the equilibrium point is the origin.

Definition 3.1 (Dynamical systems). An n-dimensional
autonomous nonlinear dynamical system is defined as

dx

dt
= f(x) , x(0) = x0, (1)

where f : D → Rn is a Lipschitz-continuous vector field,
andD ⊆ Rn is an open set containing the origin that defines
the state space. Each x(t) ∈ D is a state vector.

Definition 3.2 (Asymptotic stability). The origin of system
(1) is stabilized if for any ϵ > 0, there exists δ(ϵ) > 0
such that ∥x(t)∥ < ϵ, ∀t ≥ 0 if ∥x(0)∥ < δ. The origin is
asymptotically stable if it is stable and δ can be chosen such
that ∥x(0)∥ < δ =⇒ lim

t→∞
x(t) = 0 (Khalil, 2002).

Definition 3.3 (Lie derivative). The Lie derivative of a
continuously differentiable scalar function V : D → R
along the trajectory of (1) is

LfV (x) =

n∑
i=1

∂V

∂xi

dxi
dt

=

n∑
i=1

∂V

∂xi
fi(x). (2)

Proposition 3.4 (Lyapunov functions for asymptotic stabil-
ity). Let 0 be an equilibrium point for (1) and D ⊆ Rn
be a domain containing the origin. Let V : D → R be a
continuously differentiable function such that

V (0) = 0 and V (x) > 0 in D\{0}, (3a)
LfV (x) ≤ 0 in D. (3b)

Then, x = 0 is stable. Moreover, if

LfV (x) < 0 in D\{0}, (4)

then the origin is asymptotically stable.

3.2. Neural Lyapunov Network

Following (Kolter & Manek, 2019), a neural network param-
eterization for Lyapunov function is provided as follows,

Vϕ(x) = σ(g(F (x))− g(F (0))) + ϵ∥x∥22, (5)

where F : Rn → Rn is a continuously differentiable in-
vertible function, g(x) is an input-convex neural network
(ICNN) (Amos et al., 2017), ϵ is a small positive constant,
σ(·) is a smoothed ReLU function defined by

σ(x) =


0 if x ≤ 0,
x2

2d if 0 < x < d,
x− d

2 otherwise

Following Proposition 3.4, the Lyapunov function needs to
be positive semi-definite and have no local optima except
the origin (due to the negative Lie derivative condition (4)).
Convexity of the neural network can prevent the existence
of local optima. To enlarge the search space to potential
non-convex candidates, function F is deployed as an input
to ICNN g(·). The final Lyapunov function is shifted to
guarantee positive semi-definiteness.

The neural Lyapunov function can be updated by minimiz-
ing the Lyapunov risk (Chang et al., 2019) defined as

L(ϕ) =
1

N

N∑
i=1

(max(0, LfVϕ(xi))) , (6)

where xi ∈ D ,∀i ∈ [1, 2, 3, ..., N ] are counterexamples
that violate the stability condition (4). By design of the
neural Lyapunov function, max(0,−Vϕ(x)) = V 2

ϕ (0) = 0,
thus we only need to enforce the Lie derivative condition.

3.3. Symbolic Regression

We use the symbolic regression package PySR for deriving
neural network’s analytical expressions, which employs
a genetic algorithm to stochastically assemble algebraic
operators to fit a mathematical model to the given dataset.

With a predefined set of operators, PySR proposes a closed-
form analytical expression at each complexity level, max-
imizing the probability of finding the most appropriate
expression. For example, complexity 1 might yield x2,
complexity 2 results in 2x2, and complexity 3 produces
2x2 + y, continuing up to the maximum depth. To align
with the characteristics of the Lyapunov function, the oper-
ators used in our study include +,−, ∗, /, square, sin, cos,
and 1− cos, where 1− cos is deployed as the non-negative
counterparts of cos. Our approach allows for the nesting
of these operators and the optimization of constants. Ex-
pressions given by PySR may look like sin(sin(x− y)) or
0.64 ∗ (sin(x))2 ∗ (1 − cos(y)) + 0.57z, where 0.64 and
0.57 are examples of the constants optimized by PySR.

4. Proposed Method
In this section, we detail our proposed framework which can
directly construct an analytical Lyapunov function, and thus
can be rigorously verified locally and potentially generalized
globally. We summarize the training paradigm in Algorithm
1 and present the framework in Figure 1.

4.1. Framework Overview

We start by introducing the outlook for our framework. As
demonstrated in Figure 1, our framework contains two loops.
The inner loop is the learner, which optimizes the neural net-
work defined by (5) through minimizing the Lyapunov risk
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Figure 1: Diagram illustrating the proposed framework applied to an inverted pendulum. The analytical form (invalid intermediate result)
enables root identification for both the candidate Lyapunov function and the Lie derivative. Counterexamples are sought around the roots.
The process concludes when no counterexamples are detectable.

(6). The outer loop is the falsifier, which deploys symbolic
regression to retrieve an analytical formulation for the neu-
ral network, and then generates counterexamples for further
optimization. The outer loop is triggered every Nin updates
of the inner loop to avoid redundant regressions. This pro-
cess, including theNin updates and the symbolic regression,
is referred to as one epoch. For networked systems with
high-dimensional states, we adopt the compositional neu-
ral Lyapunov function design in (Zhang et al., 2023) for
scalability. In the remaining part, we detail the symbolic-
regression-based falsifier and the compositional design.

4.2. Symbolic Regression and Falsification

To facilitate the training of the neural Lyapunov network,
we use the symbolic regression package PySR to derive
the neural network’s analytical expressions. The process
begins by uniformly sampling Np points within the state
space, which are input into the neural network to generate
corresponding outputs. These input-output pairs are then
fed into PySR, which provides n symbolic formulations at
different complexity levels modeling the neural network.
Notably, those Np pairs are solely for fitting the symbolic
regression model, not for neural network training.

With the expressions proposed by PySR, we evaluate the
candidate Lyapunov functions with the Symbolic Python
(SymPy) (Meurer et al., 2017) for direct computation of
the closed-loop form derivative. Specifically, given Ṽ (x)

provided by PySR, we directly calculate dṼ (x)
dx . This allows

us to get the Lie derivative following (2) with the known
dynamics f(x). Subsequently, we employ root-finding tools
to identify roots for both the Lyapunov function and the
Lie derivative. For root identification of both Ṽ (x) and
Lf Ṽ (x), we apply SciPy’s fsolve function (Virtanen et al.,

2020) in its default setting. If nonzero roots are detected, the
Lyapunov function is invalidated. Otherwise, we sample a
random nonzero state x ∈ D to verify that Ṽ (x) > 0, which
rules out the condition that the whole Lyapunov function
Ṽ (x) is negative without roots in the considered region.
A similar operation can validate Lf Ṽ (x) < 0. With a
successful pass of the two simple verifications, Ṽ (x) is a
numerically valid Lyapunov function for dynamics f(x) in
the interested domain. Notably, although our neural network
design inherently ensures positive semi-definiteness, we do
not restrict PySR to only produce PSD formulations. Non-
PSD formulations can be valuable, sometimes requiring just
constant optimization to get the valid Lyapunov function.

When nonzero roots are located, counterexamples can be
generated from these roots. For instance, if a nonzero
root r satisfies Lf Ṽ (r) = 0, it is typically feasible to find
Lf Ṽ (r + ϵ) > 0 with some small enough ϵ. Counterex-
amples are then created by progressively increasing ϵ until
Lf Ṽ (r+ϵ) < 0. While both (3a) and (4) are checked for the
candidate Lyapunov functions, we only gather counterex-
amples violating (4) for network learning. Additionally,
we randomly sample points in the state space to identify
other potential counterexamples. Recall that PySR proposes
multiple different candidate functions, we generate coun-
terexamples for each and combine them for the subsequent
neural network training. The algorithm terminates once a nu-
merically valid analytical Lyapunov function is found. We
present a pseudocode of the proposed learning framework
for Lyapunov function construction in Algorithm 1.

Remark 4.1. Without a perfect root finder, our method accel-
erates counterexample generation, leading to an analytical
Lyapunov function. In experiments, we apply SMT to the
found Lyapunov functions for final validation.
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Algorithm 1 CoNSAL (Combining Neural networks and
Symbolic regression for Analytical Lyapunov function)

1: Input: Dynamics f(x), Training steps Nin, Maximum
complexity n.

2: Initialize the neural Lyapunov function Vϕ(x),
3: Randomly sample input points x ∈ D,
4: repeat
5: for i = 1 to Nin do
6: LfVϕ =

∑n
i=1

∂Vϕ

∂xi
fi(x), {Forward Pass}

7: Compute Lyapunov risk L(ϕ),
8: ϕ← ϕ− η∇ϕL(ϕ), {Back propagation}
9: end for

10: {Ṽ1, · · · Ṽn} ← PySR(Vϕ), {Symbolic Regression}
11: for j = 1 to n do
12: Find roots for Ṽj , {Falsification}
13: if Lyapunov conditions (3a) and (4) hold, then
14: Lyapunov function Ṽj is valid, return.
15: end if
16: Generate counterexamples,
17: end for
18: Concatenate x with counterexamples generated by

Ṽj for all j ∈ [1, 2, 3...n],
19: until Lyapunov function is valid.

4.3. Compositional Neural Lyapunov Function

Although this proposed algorithm can efficiently find the
Lyapunov functions for relatively small systems, it’s still an
open challenge for neural Lyapunov functions to scale up to
high-dimensional systems, e.g. large-scale network systems.
In this paper, we consider networked systems involving
m subsystems S = [1, 2, ...,m] following (Zhang et al.,
2023), and the dynamics of each subsystems can be written
as dxi

dt = fi(xi, xi1 , xi2 , ..., ui) = fi(xi, xNi , ui), where
Ni means the neighbor of subsystem i including i1, i2, ...
that are connected to subsystem i. With slight violation of
notations, we use xi ∈ Rdi as the states of subsystem i and
ui as the corresponding actions.

To address this issue, an intuitive way is to find composi-
tional Lyapunov functions for the high-dimensional system
instead of a single Lyapunov function, i.e. finding one Lya-
punov function Vi(xi) for each subsystem i. Moreover, if
the networked system has a similar symmetric structure
for different subsystems, the local Lyapunov functions can
share the same structure across different subsystems. Fol-
lowing (Zhang et al., 2023), when the individual Lyapunov
functions Vi(xi) satisfy an Input-to-State Stability (ISS)-
style condition, they will certify the stability of the entire
dynamical system.

Inspired by these results, we propose generalizing the
compositional neural Lyapunov function design to cer-
tify stability. This approach ensures stability by consid-

ering the interrelationships between subsystems in addi-
tion to the individual Lyapunov functions for each sub-
system. Instead of using one shared neural network to
learn Vi(xi), we propose to include a supplementary neu-
ral network that models the interactions between different
subsystems, i.e. Vij(xi, xj). Vij(xi, xj) can be regarded
as the energy of the edge that connects subsystems i, j.
For simplicity, we assume that each edge only connects
two subsystems, each subsystem has the same state di-
mensions and shares symmetric structures, and the Lya-
punov function for the whole system can be represented
by V (x) =

∑
i∈S ciVi(xi) +

∑
i∈S

∑
j∈Ni

cijVij(xi, xj),
where ci, cij are some constants. These assumptions are
satisfied by the power system dynamics (Cui et al., 2023b)
and the Platoon system (Zhang et al., 2023). In this case, we
achieve a significant reduction of input dimensions, which
simplifies the training of neural networks and the following
symbolic regression. Specifically, we model Vθ(xi) with
parameter θ for all Vi(xi) and Vψ(xi, xj) with parameter
ψ for Vij(xi, xj), ci, cij are also set as learnable parame-
ters. To reduce the number of neural networks, parameters
of neural network that models Vi(·) are shared across m
subsystems and so do those modeling Vij(·, ·). The neural
network structure is presented in Figure 2

Figure 2: Diagram illustrating the proposed compositional struc-
ture for a three-node network. Each subsystem’s states are fed to
the neural network Vθ(·), and the connected subsystems’ states are
fed to Vψ(·, ·). These neural networks are shared across edges and
subsystems, and the joint Lyapunov function for the entire system
is obtained by summation.

We train and validate the compositional Lyapunov function
with a similar scheme as the low-dimensional systems. Dur-
ing training, we optimize the Lyapunov risk (6) with the
joint Lyapunov function V (x) to jointly update the neu-
ral Lyapunov functions and the coefficients ci, cij . After
several updating steps, symbolic regression is triggered to
reveal the analytical formulation of Vi(xi) and Vij(xi, xj),
which are then combined with the coefficients to get V (x).
The joint Lyapunov function is then validated by the same
process. If it is not valid, we generate counterexamples
around the roots and continue the iterative training.
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Figure 3: Lie Derivative of the Neural Lyapunov Function under linear path following dynamics, updated with the proposed algorithm.
Showing the result of the first two epochs.

5. Experiment
In this section, we validate the proposed algorithm with vari-
ous nonlinear dynamics by finding their Lyapunov functions,
where the autonomous systems (without additional control)
are stable at the origin. We test the proposed algorithm using
the neural Lyapunov network (5) on 2-D path following, in-
verted pendulum, Van Der Pol oscillator, 3-D trig dynamics,
4-D rotating wheel pendulum, and 6-D nonlinear dynamics.
The compositional neural Lyapunov function is applied to a
3-bus power system. To ease the requirement for symbolic
regression to find the exact constants in the Lyapunov func-
tions and accommodate the error of numerical root-finding
tools, we allow a violation of the stability conditions less
than 10−4 in value and the Lyapunov function is only veri-
fied at a given local region numerically. CoNSAL aims to
find an analytically correct Lyapunov function with tolera-
ble errors. Global stability can be assessed through further
inspection. In this work, multiple initial guesses are applied
to the root finder to facilitate root finding.

We first demonstrate the evolution of the Neural Lyapunov
function, and compare how the proposed framework opti-
mizes the neural Lyapunov function with the SMT-based
scheme (Chang et al., 2019) in the 2D path following en-
vironment, where our approach can achieve better perfor-
mance with respect to the SMT solver. The runtime infor-
mation and the found analytical Lyapunov functions are
summarized in Table 2. Details about dynamics are avail-
able in Appendix B. Neural network configurations and base
operator selection are available in Appendix C.

5.1. Evolution of Neural Lyapunov Function

Linear path following is a classic nonlinear control task,
which controls a wheeled robot to follow a linear path with
dynamics (7) given by (Samson, 1992):

ẋ1 = v · sin(x2), (7a)

ẋ2 = −x2 − c · v ·
sin(x2)

x2
· x1, (7b)

where x1, x2 are the distance and the and angel difference
between the robot and the reference line, v ∈ R+ is a
constant velocity and c ∈ R+ is a positive real constant.
Specifically, we set c = 2, v = 6ms−1. We consider state
space D = {(x1, x2) ∈ R2 | |x1| ≤ 2, |x2| ≤ π}. This
system is stable to the origin and has a known Lyapunov
function V (x1, x2) = x21 +

x2
2

c , which can guarantee global
asymptotic stability. With this system, we illustrate the
evolution of the neural Lyapunov function in Figure 3. As
shown in the figure, the landscape of the Lie derivative
evolves rapidly to satisfy the stability condition, and the
violation of the negative Lie derivative decreases efficiently,
demonstrating the effectiveness of our proposed framework.

We further compare our framework with the SMT-based
neural Lyapunov function (Chang et al., 2019), where the
SMT solver is deployed to generate counterexamples for
the neural network and validate the stability conditions. We
use the same two-layer neural networks with 128 hidden
units for both methods. Given the relatively large neural
network, the SMT-based approach can only achieve 30%
successful rate for converging, while ours achieved 80 %
successful rate for finding the valid symbolic Lyapunov
function. Following Table 1, due to the complexity of the
neural network, the SMT solver consumes much more time
compared with symbolic-regression-based verification.

The counterexamples generated by both algorithms are pre-
sented in Figure 4. Following this result, the SMT solver can
identify a small region such that samples from the region
will violate the stability constraint. Thus counterexamples
are generated by randomly sampling in this region. How-
ever, this method provides counterexamples focusing on this
small region and can potentially lead to overfitting. With
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Figure 4: SMT Counter Examples, Roots, and Root finding Counter Examples Visualization using the same checkpoint at epoch 1 for Lie
derivative of the neural Lyapunov functions under linear path-following dynamics. The same number of counterexamples are generated.
The zoomed-in region shows the counterexamples from SMT solvers.

PySR, multiple symbolic expressions are generated at dif-
ferent complexity levels. The roots of these formulations
can be efficiently found numerically, which are illustrated
in the middle plot of Figure 4. With acceptable approximat-
ing errors, the roots outline the region of violation and the
counterexamples can be efficiently generated near the roots.
In this case, our approach finds counterexamples covering
most of the violation areas in the state space and facilitates
the successful discovery of a valid Lyapunov function.

Table 1: Runtime and Performance Comparison

Verification Methods Comparison

Metric
Method

Ours SMT Solver

Verification Time 5.81s 92.08s
Convergence Time 1401s 5051s
Convergence Epoch 45 58
Success Rate 80% 30%

Note: Verification time measures the average time consumption for each single-step verification.
Only success trials’ convergence time and convergence epoch are included in this table. The
success rate is calculated out of 10 different trials. An experiment that found a valid Lyapunov
function within 100 epochs is considered a successful trial.

We conclude this comparison with the loss curve in Figure
5. Given that our approach covers a larger violation space
than the SMT-based method, our algorithm can induce a
greater loss calculated by (6) and a larger variance. However,
our method can still achieve comparable loss convergence
compared with the SMT-based approach. Empirically we
also find that, if the SMT-based neural Lyapunov function
fails to converge, PySR cannot find the analytical Lyapunov
function from the SMT-trained neural network even if it has
a low Lyapunov risk.
5.2. Runtime and Found Analytical Lyapunov Functions

We summarize the runtime and the found Lyapunov func-
tions in table 2. In general, the proposed framework can
achieve more than 60% success rate for all the tested dy-
namics and find at least a local Lyapunov function within 50
symbolic regression calls, where a local Lyapunov function
means the Lyapunov function is valid in the tested local

Figure 5: Log-scaled Loss Convergence Comparison using loss
(6). Only success trials are considered.

region. Global stability is further extended by human ex-
perts. Notably, our algorithm demonstrates fast convergence
for the tested 4-D and 6-D systems. We also find that our
method can occasionally discover new Lyapunov functions
valid locally (detailed in B.2). Here, ‘new’ means that the
Lyapunov function is not included in the existing literature.

However, it gets the lowest success rate with the 2-D in-
verted pendulum system and the 6-D 3-bus power system.
The challenge comes from optimizing the constants in the
Lyapunov function based on given physical constants in
the dynamics. Considering the inverted pendulum sys-
tem, its local Lyapunov function can be represented as
V (x1, x2) = (1 − cos(x1)) +

l
2gx

2
2, where x1 is the an-

gular position from the inverted position, x2 is the angular
velocity, and g,m, l, b are acceleration of gravity, mass of
inverted object, the length of string, and the coefficient
of friction respectively. Setting l = 5m, g = 9.81m/s2,
it is challenging for the symbolic regression to find the
correct coefficients. In failed cases, our framework often
finds the correct structure but incorrect coefficients, e.g.
V = 1− cos(x1) + 0.26x22, which is not valid.

In cases where prior dynamics knowledge is available, we in-
corporate this knowledge into the Lyapunov function design

7
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Dynamics Time Epoch Found Lyapunov Functionsa Stability‡ Succ % ‡

2-D Path Following (Linear) 1401s 45 V = x21 +
x2
2

c g.a.s. 80%
2-D Inverted Pendulum 1356s 37 V = 1− cos(x1) + 0.254x22 l.a.s. 60%
2-D Van Der Pol Oscillator 230s 7 V = x21 + x22 l.a.s. 100%
3-D Trig Dynamics 1216s 41 V = 2sin(x1)

2 + x22 + 2sin(x3)
2 l.a.s. 100%

4-D Rotating Wheel Pendulum 1556s 34 V = E2 + x23 + x24
∗ g.a.s. 80%

6-D Nonlinear Dynamics 916s 13 V = 4x21 − 1.24x22 +

(
5∑
i=1

xi

)2

+2.996

(
0.578

6∑
i=2

x2i + 1

)2

l.a.s. 100%

6-D 3-bus Power System 271s 3 V = 0.516

(
3∑
i=1

ω2
i

)
−

0.5
3∑
i=1

3∑
j=1
i̸=j

(cos(δi − δj)− 1)

l.a.s. 60%

a. All Found Lyapunov functions passed SMT solver’s verification for Lyapunov conditions, with tolerable error ϵ = 10−4 .

∗. E is the energy function of the corresponding dynamics, which is defined at B.4.

‡. In this column, ‘g.a.s’ represents globally asymptotically stable, and ‘l.a.s.’ represents locally asymptotically stable.

‡. ’Succ %’ denotes the successful rate of finding a valid Lyapunov function out of 5 random seeds.

Only success trials’ convergence time and convergence epoch are included in this table.

Table 2: Training time and the found analytical Lyapunov functions for the proposed algorithm with different dynamics.

to ease this task. Specifically, for the 4-D rotating wheel
pendulum, we use the energy function E as part of the input
to the neural Lyapunov function, along with all state vari-
ables. As a result, a Lyapunov based on the energy function
is revealed by our method. Details of all tested dynamics
and considered local regions are provided in Appendix B.

6. Conclusion
In this paper, we propose CoNSAL, a framework to con-
struct analytical Lyapunov functions for stable nonlinear
dynamics. Our approach integrates a neural network learner
with a symbolic regression solver, which extracts an ana-
lytical formula from the neural Lyapunov function. This
symbolic Lyapunov function is further validated with numer-
ical root-finding approaches. When the Lyapunov function
is invalid, we efficiently sample counterexamples around
the roots to facilitate the training process. The resulting
valid Lyapunov function can potentially demonstrate global
stability or aid experts in designing controllers. Compared
to existing work, CoNSAL provides an analytical Lyapunov
function instead of neural ones, which significantly im-
proves the interpretability and generalizability of the final
results. Moreover, it bypasses the need for neural network
verification, enabling the use of larger neural networks and
allowing for scalability to more complex systems. The effi-
ciency of the proposed framework is validated in multiple
nonlinear dynamical systems by successfully finding a valid
local Lyapunov function for these test cases.

Our results open up several exciting future directions: (1)
Efficiently incorporating known constants from the dynam-
ics into symbolic regression to reveal analytical formula-
tions without scaling up the input size; (2) Exploring neural
network-based symbolic regression methods for fast infer-
ence and end-to-end training in Lyapunov function discov-
ery without the requirement for base operators; (3) Investi-
gating formal verification for analytical formulations beyond
numerical root-finding; (4) Scaling up to larger dynamical
systems with more than 10 dimensions; (5) Integrating a
nonlinear controller in our framework and optimizing it
alongside the Lyapunov function in an end-to-end manner,
ensuring stability guarantees; (6) Maximizing the region of
attraction. These directions can enhance the efficiency and
generalizability of CoNSAL, making it applicable to the
vast cases where analytical Lyapunov functions are valuable
for validation, analysis, or controller design.
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A. Code Availability
The code for our proposed algorithm CoNSAL is available at https://github.com/HaohanZou/CoNSAL.

B. Dynamics of the Tested Systems
B.1. Inverted Pendulum

The inverted pendulum is a well-known classical nonlinear system that contains two state variables. The dynamics are
formulated as follows,

ẋ1 = x2,

ẋ2 = −g
l
sin(x1)−

b

m
x2,

where x1 is the angular position from the inverted position, x2 is the angular velocity, and parameters g,m, l, b are
acceleration of gravity, the mass of the inverted object, the length of string, and the coefficient of friction respectively. In
experiment, setting g = 9.81, m = 2kg, l = 5m, and b = 0.1, our proposed method finds the valid Lyapunov function
V = 1 − cos(x1) + 0.254x22 over the state space: D = {(x1, x2) ∈ R2 | |x1| ≤ π and |x2| ≤ 6}. This found Lyapunov
function has the same analytical structure as the energy function of the inverted pendulum.

B.2. Van Der Pol Oscillator

Van Der Pol Oscillator is a nonconservative, oscillating system with nonlinear damping (Zhou et al., 2022). The dynamics
of the Van Der Pol Oscillator have two state variables and are formulated as follows,

ẋ1 = x2,

ẋ2 = −x1 − µ(1− x21) · x2,

where x1 and x2 represent the object’s position in the Cartesian coordinate, parameter µ ∈ R+ indicates the strength of
the damping. Under the state space D = {(x1, x2) ∈ R2 | |xi| ≤ 1} and setting µ = 1, our proposed method found valid
local Lyapunov function V (x1, x2) = x21 + x22. Other forms of Lyapunov functions for Van Der Pol Oscillator, for example,
V (x1, x2) = (x1 · (x1 + x2) + x22)/(2.8− x1 − x2), are also recovered during the experiments.

B.3. 3-D Trig Dynamics

3-D trig dynamics comes from exercise problems from textbook (Khalil, 2002), the dynamics are written as follows,

ẋ1 = x2,

ẋ2 = −2h(x1)− x2 − 2h(x3),

ẋ3 = x2 − x3,

where h(x) = sin(x)cos(x). When the state space is D = {(x1, x2, x3) ∈ R3 | |xi| ≤ 1.5,∀i ∈ {1, 2, 3}}, the valid
Lyapunov function found by our proposed method is V (x1, x2, x3) = 2sin(x1) + x22 + 2sin(x3)

2, which is consistent to
the textbook solution of Lyapunov function for this particular dynamics.

B.4. Rotating Wheel Pendulum

The rotating wheel pendulum is structured as a pendulum with an additional rotating wheel at the end string, which freely
spins along an axis parallel to the axis of the pendulum (Fantoni & Lozano, 2002). The dynamics of the system have four
state variables and are formulated as follows,

11
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ẋ1 = x2,

ẋ2 =
d22

det(D)
m̄g · x1 +

−d12
det(D)

· τ,

ẋ3 = x4,

ẋ4 =
d21

det(D)
m̄g · x1 +

d11
det(D)

· τ,

τ =
−x4 − x3 + k1sin(x1)

E + k2
,

where x1 is the angular position from the inverted position of the pendulum, x2 is the angular velocity of the pendulum,
x3 is the angular position of the wheel, x4 is the angular velocity of the wheel, τ is the torque applied to disk from the
motor, m1 is the mass of the pendulum, m2 is the mass of the wheel, l1 is the length of the pendulum, l2 is the distance to
the center of mass of the pendulum, I1 is the moment of inertia of the pendulum, I2 is the moment of inertia of the wheel,

m̄ = m1l2 +m2l1, k1 = d21m̄g
det(D) , and k2 = d11

det(D) . E = 1
2

[
x2 x4

]
D

[
x2
x4

]
+ m̄g(cos(x1)− 1) is the energy function of

the dynamics, where D is the inertia matrix formulated as

D =

[
m1l

2
2 +m2l

2
1 + I1 + I2 I2
I2 I2

]
.

We consider the state space as D = {(x1, x2, x3, x4) ∈ R4 | |x1| ≤ π
2 , |x3| ≤

π
2 , |x2| ≤ 2, and |x4| ≤ 2}.

With control law τ = −x4−x3+k1sin(x1)
E+k2

, the system is stable. For this system, directly learning a Lyapunov function is
difficult. Thus, we investigate the benefit of using prior knowledge of the system for constructing the Lyapunov function.
Specifically, we use the energy function E as the additional information on the dynamics and use it as an additional variable
to the neural Lyapunov function during training.

We set m1 = ( 0.1
9.81 )kg, m2 = ( 0.4

9.81 )kg, l1 = l2 = 1m, I1 = (1− 0.5
9.81 )kg ·m

2, and I2 = 1kg ·m2, the proposed method
found a valid Lyapunov function V (x1, x2, x3, x4, E) = E2 + x23 + x24.

B.5. 6-D Nonlinear Dynamics

This high-dimensional dynamics consists of three two-dimensional asymptotically stable linear subsystems that are coupled
by three nonlinearities with small gains adopted from (Grüne, 2019). The dynamics are written as

ẋ1 = −x1 + 0.5x2 − 0.1x25,

ẋ2 = −0.5x1 − x2,
ẋ3 = −x3 + 0.5x4 − 0.1x21,

ẋ4 = −0.5x3 − x4,
ẋ5 = −x5 + 0.5x6,

ẋ6 = −0.5x5 − x6 + 0.1x22.

Our proposed method is able to find a valid Lyapunov function V (x) = 4x21 − 1.24x42 + (x1 + x2 + x3 + x4 + x5)
2 +

2.996 · (0.578x22+0.578x23+0.578x25+0.578x26+1)2 over the regionD = {(x1, x2, x3, x4, x5, x6) ∈ R6 | |xi| ≤ 1,∀i ∈
{1, 2, .., 6}}, which is a valid Lyapunov function for the given dynamics.

B.6. Power System

We test the compositional neural Lyapunov function design with a 3-bus power system (Cui et al., 2023a) to examine its
ability on high-dimensional dynamics. Consider θi, ωi as the phase angle and the frequency of bus i, respectively, the
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dynamics for each bus are formulated as follows,

θ̇i = ωi,

miω̇ = pi − diωi − ui(ωi)−
3∑
j=1

Bijsin(θi − θj),

where mi is the generator inertia constant, di is the combined frequency response coefficient from synchronous generators
and frequency sensitive load, and pi is the net power injection, for each bus i = 1, 2, 3. B ∈ R3×3 is the susceptance matrix
with Bij = 0 for every pair {i, j} such that bus i and bus j are not connected, and ui(ωi) is the controller at bus i that
adjusts the power injection to stabilize the frequency.

Since the frequency dynamics of the system depends only on the phase angle differences, so we change the coordinates:

δi = θi −
1

3

3∑
i=1

θi

where δi can be understood as the center-of-inertia coordinates of each bus. In our experiment, for simplicity, we
set pi = 0, mi = 1, di = 1, ui(ωi) = ωi, and Bij = 1 ∀ i ̸= j, Bii = 0. In this case, the equilibrium point
for our system is at the origin, i.e., δ∗i = ω∗

i = 0, i = 1, 2, 3. The state space for our experiment is defined as:
D = {(δ1, δ2, δ3, ω1, ω2, ω3) ∈ R6 | |δi| ≤ π

4 and |ωi| ≤ 2 for i = 1, 2, 3}.

For the training procedures, we composed and jointly trained two neural networks for these dynamics. First, for each distinct
bus i, (δi, ωi) ∈ R2 are fed into an Input Convex Neural Network (ICNN). Then, for each pair of connected buses {i, j},
we input their frequency differences δi − δj into another feed-forward Neural Network. In the end, symbolic regression is
applied to each distinct neural network, and found Lyapunov function is the composition of regression formulas from two
neural networks.

Through our method, we retrieved a valid Lyapunov function V (δ1, δ2, δ3, ω1, ω2, ω3) = 0.516

(
3∑
i=1

ω2
i

)
−

0.5
3∑
i=1

3∑
j=1
i ̸=j

(cos(δi − δj)− 1) from the joint training of two neural networks.

C. Neural Network Structure and Symbolic Regression Setting
We now detail the neural network structures and the base operators used for symbolic regression in the following table. For
simplicity, we set F (·) defined in (5) as F (x) = x.

Dynamics Neural Lyapounov Function Symbolic Regression Unary
Operator

2-D Path Following (Linear) (2, 128, 128, 1) [sin, cos, 1− cos, x2]
2-D Inverted Pendulum (2, 128, 128, 1) [sin, cos, 1− cos, x2]
2-D Van Der Pol Oscillator (2, 128, 128, 1) [sin, cos, 1− cos, x2]
3-D Trig Dynamics (3, 128, 128, 1) [sin, cos, 1− cos, x2]
4-D Rotating Wheel Pendulum (4, 128, 128, 1) [sin, cos, 1− cos, x2]
6-D Nonlinear Dynamics (6, 128, 128, 1) [x2]
6-D 3-bus Power System (2, 128, 128, 1) & (1, 32, 32, 1) [x2] & [x2, cos, 1− cos]

Table 3: Network size and regression model set up for each task. The tuple denotes the number of neurons in each layer of Neural
Network. The set denotes the pre-defined operators for Symbolic Regression model. For all experiments, we set binary operators as
[+,−,×,÷].
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