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Abstract001

Multimodal multihop question answering002
(MMQA) requires reasoning over images and003
text from multiple sources, an essential task004
for many real-world applications. Despite ad-005
vances in visual question answering, this multi-006
hop setting remains underexplored due to a lack007
of quality datasets. Existing methods focus on008
single-hop, single-modality, or short texts, lim-009
iting real-world applications like interpreting010
educational documents with long, multimodal011
content. To fill this gap, we introduce FM2DS,012
the first framework for creating a high-quality013
dataset for MMQA. Our approach consists of014
a 5-stage pipeline that involves acquiring rel-015
evant multimodal documents from Wikipedia,016
synthetically generating high-level questions017
and answers, and validating them through rig-018
orous criteria to ensure data quality. We evalu-019
ate our methodology by training models on our020
synthesized dataset and testing on two bench-021
marks: MultimodalQA and WebQA. Our re-022
sults demonstrate that, with an equal sample023
size, models trained on our synthesized data024
outperform those trained on human-collected025
data by 1.9 in exact match (EM) score on026
average. Additionally, we introduce M2QA-027
Bench with 1k samples, the first benchmark for028
MMQA on long documents, generated using029
FM2DS and refined by human annotators.030

1 Introduction031

Multimodal multihop question answering032

(MMQA) involves answering complex questions033

by integrating information from text, images,034

and tables. In real-world applications such as035

interpreting medical documents, this challenge036

is amplified by the need to reason over long,037

multimodal content. Current methodologies in038

MMQA typically leverage in-context learning039

methods, prompting LVLMs to retrieve relevant040

information from multimodal sources (Tejaswi041

et al., 2024) and then perform reasoning (Yang042

Capability Existing Datasets
(e.g WebQA) FM2DS (Ours)

Relevant
Docs

Question
Generation

Answer
Generation

Query
Generation

• Large Human Effort: Most 
documents are linked by 
human annotators

• Limited Context: Only relevant 
information snippets are 
provided

• Little Human Effort: 
Documents are automatically 
linked via hyperlinks and 
topics.

• Long Context Challenge: Full 
documents are provided

• Templated Questions: Not very 
realistic questions and are 
manually collected

• No quality check

• Free-form: Questions are 
automatically generated and 
are more reflective of the real 
world

• Quality Check: questions are 
ensured to be answerable, 
multimodal, and multihop

• Large Human Effort: Questions 
are answered manually by 
human

• Little Human Effort: Answers 
are generated automatically 
and validated for quality check

• No Queries are included to 
validate the answer and help 
models learn better

• Queries are included to 
validate the generated answers 
and help models learn better

Figure 1: Unlike traditional datasets that rely on human
annotators, templates, or snippets, FM2DS is fully auto-
mated, using long documents as sources and applying
validation to ensure questions are answerable, multi-
modal, and multihop.

et al., 2023). However, these models often demand 043

significant computational resources due to their 044

large parameter counts, making them costly to 045

deploy even during inference (Ye et al., 2024). 046

This limitation emphasizes the need for more 047

efficient frameworks that can operate effectively 048

with minimal annotated data. A practical solution 049

is to use a smaller model capable of both retrieving 050

the necessary information from sources and 051

performing reasoning. This can be achieved 052

by fine-tuning the model on a MMQA dataset. 053

Existing datasets often rely on short snippets or 054

repetitive templates, limiting generalizability to 055

complex settings with long texts and multiple 056

modalities (Chang et al., 2021; Talmor et al., 2021; 057

Jiang et al., 2024; Chen et al., 2024a). Additionally, 058

creating new similar datasets is challenging, 059

requiring extensive human annotation (Lu et al., 060

2022a; Chen et al., 2023a). 061

In this work, we propose FM2DS, a novel 062
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data synthesis framework designed specifically for063

MMQA over long documents. Our approach syn-064

thesizes MMQA data from documents that are in-065

terconnected through various relationships, such066

as thematic similarities or sequential events. This067

framework leverages naturally occurring document068

relationships and requires minimal hand-crafted069

data, thereby broadening the range of reasoning070

types used in question generation.071

As illustrated in Figure 1, FM2DS enables the072

generation of non-templated question-answer pairs073

based on full documents rather than brief informa-074

tion snippets. The data generated by our method075

FM2DS includes query component - a step-by-076

step guide for retrieving relevant information077

from multiple documents - enabling smaller mod-078

els trained on this synthesized data to learn how079

to tackle complex questions in a manner similar to080

larger models. This methodology allows users to081

create a custom MMQA dataset with fewer than082

ten human-annotated samples, thereby facilitating083

the fine-tuning of smaller LVLMs for specific ap-084

plications.085

FM2DS leverages Wikipedia’s extensive knowl-086

edge base and hyperlink structure to select docu-087

ment pairs with shared topical relevance or hyper-088

link connections and prompt LVLMs to perform089

question generation, question answering, and query090

generation. We incorporate validation steps to en-091

hance the quality of the generated data and discard092

any outputs that are factually incorrect. Through093

empirical evaluation on established MMQA bench-094

marks, we show that FM2DS significantly improves095

model performance, achieving on average a 1.9096

exact match (EM) score improvement across two097

benchmarks: MultimodalQA and WebQA.098

Our key contributions are: (I) introducing a new099

framework for synthesizing high-quality MMQA100

training data for VLMs; (II) using a robust vali-101

dation pipeline to ensure data quality; (III) intro-102

ducing a challenging MMQA benchmark requiring103

reasoning over multiple modalities and sources;104

and (IV) showing that models fine-tuned on our105

synthetic data outperform those trained on human-106

labeled datasets, advancing MMQA while reducing107

manual effort.108

2 Related Work109

Within the Question Answering (QA) literature,110

synthesis of training data has been predominantly111

focused on unimodal (text-only) scenarios. We re-112

view various similar works that have established 113

the foundation for our work in few-shot data syn- 114

thesis. 115

Unimodal Data Synthesis Synthetic data is in- 116

creasingly used for model training. He et al. (2022) 117

show that combining labeled and synthetic text 118

from language models (LMs) improves NLP per- 119

formance. Entire synthetic datasets have also been 120

created for tasks like classification (Tsui, 2024), 121

with Li et al. (2023) demonstrating GPT-3.5’s ef- 122

fectiveness in generating reliable classification data. 123

Similarly, Chen et al. (2024b) show that synthetic 124

data can significantly boost small models on multi- 125

hop QA with minimal human annotation. 126

Multimodal Data Synthesis Research on mul- 127

timodal data synthesis with LVLMs remains lim- 128

ited, with most efforts focused on generating new 129

data from model’s pre-trained knowledge. Zhang 130

et al. (2024) synthesize abstract images with rea- 131

soning tasks, while Mehta et al. (2024) generate 132

multimodal data using unimodal models for pre- 133

training. In MMQA, Wu et al. (2024) propose 134

SMMQG, which uses multimodal RAG to gen- 135

erate questions from short snippets, focusing on 136

multimodality rather than multihop reasoning. In 137

contrast, FM2DS uses full multimodal documents, 138

resulting in a more challenging dataset with diverse 139

multihop questions that better reflect real-world 140

tasks. Moreover, while SMMQG is confined to pre- 141

defined question types, FM2DS enables large-scale 142

generation and supports knowledge distillation for 143

smaller models through step-by-step queries that 144

guide complex multi-document reasoning. 145

3 Proposed Method: FM2DS 146

Our five-stage pipeline for FM2DS (Figure 2) syn- 147

thesizes high-quality multimodal QA pairs. It be- 148

gins by grouping documents via topic matching 149

and Wikipedia hyperlinks, followed by few-shot 150

sample selection, question synthesis, answer gen- 151

eration, and query construction, each with their 152

built-in validation. See Appendix I for examples. 153

3.1 Stage 1: Creating a Pool of Related 154

Documents 155

We collect relevant documents from Wikipedia us- 156

ing the WikiWeb2M dataset (Burns et al., 2023), 157

which includes nearly 2 million pages. Documents 158

are linked via two methods: hyperlinks and la- 159

tent topics identified through multimodal topic 160
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Technology Linked Docs 1

...

... ......

Selected Relevant Documents

Grouped Documents

(Topics and Hyperlinks)

Generate Question

Stage 3.1

...

Validate Question

Stage 3.2

     1. Multihop Reasoning Check

     2. Filtering Unrelated Facts

     3. Ensuring Multihop Nature

     4. Multimodal Validation

Generate Query

Stage 5.1

Selected Few Shot Examples

Question: Which B. Piazza title came earlier: 

the movie S. Stallone's son starred in or the 

movie with half of a lady's face on the poster?

Answer: Tell Me That You Love Me, Junie Moon

Based on the details wanted in the following 

question: "Which album ...", generate a 

caption for this image.

A surreal painting depicts a group of 

musicians playing instruments in a dreamlike 

setting. In the background, a man bends over 

a piano, while others play a double bass, 

guitar, and sitar. A dark, towering figure 

looms over the scene, adding an eerie, 

mystical atmosphere.

Image Captioning For 

Stage 4

Images In the Documents

Entertainment Linked Docs 2

Between the album featuring a man 

bending on a piano and the album that 

includes the song "I Don't Wanna Be a 

Soldier," which one is older?

(1) Image from Music from Big Pink 

document shows Music from Big Pink is 

the album that includes an image of a 

man bending over a piano.

(2) Text from Music from Big Pink 

document shows the album was released 

in 1968.

(3) Text from Imagine document shows 

The Band album was released in 1971 

with I Don't Want to Be a Soldier. Stage 4.1

Validate Answer

Stage 4.2

     1. Named Entity Alignment

     2. Relation Consistency Check

     3. Hallucination Checking

Short Answer: Music from Big Pink

Long Answer: The album featuring a 

famous photograph of a man bending on 

a piano is "Music from Big Pink" by The 

Band, released in 1968. The album that 

includes the song "I Don't Wanna Be a 

Soldier" is "Imagine" by John Lennon, 

released in 1971. Therefore, "Music from Big 

Pink" was released first.

Generate Answer

Multimodal Wikipedia Pages

Create a Pool of

Related 

Documents

Stage 1

Select K Samples 

as

In- context 

Examples

Stage 2

Validate Query

Stage 5.2

     1. Top-5 Document Retrieval Based on Queries

     2. Source Diversity Check

MultimodalQA Dataset

Final Training Sample Saves in the following JSON 

Format:

   {

       "Question": "...",   

       "Answer": "...",

       "Documents": [...]

       "Queries": [...]

   }

Figure 2: The FM2DS pipeline consists of five stages for generating high-quality multihop multimodal QA
samples. In Stage 1, a pool of related Wikipedia documents is retrieved by leveraging topic similarity and hyperlink
connections to ensure contextual richness. Stage 2 selects few-shot in-context examples from the MultiModalQA
dataset (Talmor et al., 2021) to guide generation. Stage 3 focuses on question generation (3.1) and validation (3.2),
ensuring questions require multihop reasoning, are answerable, and grounded in both text and images. Stage 4
generates (4.1) and validates (4.2) answers through named entity alignment, relation consistency, and hallucination
checks. Finally, Stage 5 generates (5.1) and validates (5.2) retrieval queries to collect diverse and relevant supporting
documents. The resulting samples are saved in a structured format for use in MMQA training and evaluation.

modeling with the Multimodal-Contrast model161

(González-Pizarro and Carenini, 2024). Since162

Multimodal-Contrast can not handle long docu-163

ments, we split each document into shorter seg-164

ments containing at most one image, apply topic165

modeling to each segment, then merge the results166

and remove duplicates. This combination captures167

both clear and subtle relationships across docu-168

ments, integrating textual and visual information.169

3.2 Stage 2: Creating Few-Shot Samples 170

We sample multihop questions from the Multi- 171

ModalQA dataset (Talmor et al., 2021), which re- 172

quires reasoning across text, images, and tables. As 173

our samples are based on full documents rather than 174

short information snippets like in MultimodalQA, 175

we crawled the complete Wikipedia HTML pages 176

using the entity links provided in MultimodalQA, 177

which are associated with the dataset’s examples. 178
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We then compiled few-shot samples using these179

full HTML pages—complete with images and ta-180

bles—paired with their corresponding questions.181

We randomly select up to three samples for ques-182

tion generation in our experiments.183

3.3 Stage 3: Question Generation and184

Validation185

Question Generation We use GPT-4-turbo (Ope-186

nAI et al., 2024) to generate multihop, multimodal187

questions from few-shot samples based on Mul-188

tiModalQA few-shot examples. Due to context189

limitations, inputs are limited to grouped sets con-190

taining 2 or 3 documents. Our prompt (Appendix191

A) is designed to ensure that questions require192

reasoning across all documents and at least two193

modalities, avoiding unrelated combinations such194

as: “How did Einstein contribute to relativity and195

when was Princeton established?"—a question that196

spans multiple documents, but lacks meaningful197

multihop reasoning.198

Question Validation Our framework includes199

validation stages to ensure questions meet multi-200

hop and multimodal criteria. While the model was201

prompted to avoid simple concatenations, we fur-202

ther evaluated this aspect.203

We used LLama-3.1-8B (Abhimanyu Dubey204

et al., 2024) to decompose questions and check205

if parts could be answered with a single document.206

If all parts of the question were answerable with a207

single document, we discarded such question that208

include unrelated facts (see Unrelated Facts ex-209

ample in Table 1). Otherwise, we retained only210

the the parts of the questions that required informa-211

tion from multiple documents to ensure the revised212

question met the multihop criteria. However, a po-213

tential issue was that, even when the facts were re-214

lated, the questions could still become open-ended,215

requiring explanations or combined answers (see216

example Related Facts, Open-ended in Table 1).217

In order to follow the standard of question answer-218

ing, and make the evaluation process easier, we219

used GPT-4o to rephrase the question without con-220

junctions while maintaining its multihop nature, re-221

sulting in Concise Multihop Question (Table 1).222

Another key step in validation was ensuring the223

questions were truly multimodal. After verifying224

that a question was multihop, we tested whether225

it remained answerable when the documents were226

limited to a single modality (e.g., text-only, image-227

only, or table-only). Using GPT-4o (refer to Sec-228

tion 3.4 for details), we checked if the question 229

could be answered with just one modality. If so, 230

we discarded it, as it failed to meet the multimodal 231

requirement. This step helped refine the dataset to 232

include only questions that genuinely required rea- 233

soning across multiple modalities and documents. 234

3.4 Stage 4: Answer Generation and 235

Validation 236

Answer Generation We used GPT-4o to gener- 237

ate concise answers from multiple documents, in- 238

cluding text and images. The model was instructed 239

to provide a long answer and a short answer with 240

only key information and no extra explanation. To 241

help the model focus on specific details of images 242

in the given documents to answer the multimodal 243

question, we include question-related captions for 244

the images. For example, if the question asks about 245

the geometric shapes in an image (see Figure 15), 246

the model generates a caption describing the shapes. 247

This makes it easier for the model to answer the 248

question accurately. 249

Answer Validation We validated answers using 250

named entity recognition (NER) and relation ex- 251

traction, following prior work (Rajpurkar et al., 252

2018; Fabbri et al., 2022). NER ensured key enti- 253

ties and numbers in the answer matched the docu- 254

ments, while relation extraction verified that entity 255

relationships were consistent with the source con- 256

tent (via Spacy (Wu and He, 2019)). For including 257

image content, we used the same question-related 258

caption generated by GPT-4o (e.g., noting a build- 259

ing’s color if relevant to the question) similar to 260

answer generation. To reduce hallucinations, we 261

prompted GPT-4o five times and accepted answers 262

only if all outputs (5/5) agreed. To evaluate the 263

effectiveness of our answer validation process, we 264

conducted a human study to assess the quality of 265

the filtered questions and answers. The results of 266

this evaluation are presented in Section 6. 267

3.5 Stage 5: Query Generation and Validation 268

Query Generation We generate queries using 269

GPT-4o based on the question-answer pairs and re- 270

lated documents to enhance retrieval effectiveness. 271

These queries guide the smaller model trained on 272

FM2DS-generated data to retrieve specific and rel- 273

evant information, improving its ability to answer 274

questions accurately. By narrowing down the con- 275

tent, we can extract key details such as named en- 276

tities, relationships, and contextual cues aligned 277
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Question Type
In what year did Mike Tyson become the youngest heavyweight champion,
and who is the president of the United States? Unrelated Facts

Question Type
In what year did Mike Tyson become the youngest heavyweight champion,
and who was the president of the United States at that time? Related Facts, Open-ended

Question Type
Who was the president of the United States when Mike Tyson became the
youngest heavyweight champion? Concise Multihop Question

Table 1: Examples of factual questions with varying degrees of relevance and conciseness, demonstrating progression
from unrelated to concise multihop reasoning.

with the question. This targeted approach ensures278

that the generated answers are not only concise and279

accurate, but also directly grounded in evidence280

from the documents.281

Query Validation To validate the queries, we282

used MuRAG (Chen et al., 2022), which encodes283

text and images into a shared embedding space for284

multimodal retrieval. For each generated query, we285

retrieved the top-5 documents retrieved by MuRAG.286

If more than one of the original source documents287

used to generate the question appeared in the top-5,288

the query was considered well-formed. This pro-289

cess ensures the query effectively captures diverse,290

relevant information and can help teach smaller291

models how to retrieve supporting evidence for292

answering questions.293

4 Proposed Benchmark: M2QA-Bench294

We introduce M2QA-Bench, a benchmark of 1k di-295

verse Q&A pairs to evaluate LVLMs on complex296

MMQA with full documents. Unlike templated297

datasets (Talmor et al., 2021), questions are var-298

ied and challenging (see Appendix G for details299

on complexity and diversity). Answering requires300

cross-modal reasoning and information extraction301

from full documents, including images and tables.302

See Table 2 for key statistics (more in Appendix G)303

and Appendix I for samples generated by FM2DS304

for M2QA-Bench. To create this benchmark, we305

used the FM2DS pipeline to generate 1,200 sam-306

ples, which were verified by three annotators for307

correctness, multihop reasoning, multimodality,308

and answer accuracy. Each sample was scored 1309

(valid) or 0 (invalid). This annotation required min-310

imal human effort (2.2 min/question on average)311

due to structured queries. Samples averaging below312

0.75 were removed, leaving 1,142 (i.e removing313

only 5% of the total); we then randomly selected314

1,000 for the benchmark to ensure consistency in315

evaluation and reduce potential sampling bias. An-316

notator agreement (Fleiss’ Kappa (Fleiss, 1971)) 317

was 0.83. 318

Statistic Value
Image Modality Percentage 73.6%
Table Modality Percentage 89.6%
Both Image and Table Modality Percentage 63.6%
Average Question Length (Word) 23.77
Average Answer Length (Word) 1.95
Average Source Documents Per Question 2.29

Table 2: Key statistics of the proposed multimodal mul-
tihop question answering benchmark.

5 Experiments and Results 319

This section compares our synthesized dataset to 320

human-annotated ones. All experiments used one 321

in-context example during synthesis (see Appendix 322

C for effects of varying number in-context exam- 323

ples). GPT-4o was used in the pipeline (Appendix 324

D shows results with other LVLMs). Models were 325

evaluated using Exact Match (EM) for accuracy 326

and F1 for partial match quality. Further experi- 327

mental details can be found in Appendix B. 328

5.1 Comparison with Human-Annotated 329

Datasets 330

Unlike prior methods like MultiModalQA (Talmor 331

et al., 2021) and WebQA (Chang et al., 2021), our 332

approach is fully automated with no human involve- 333

ment (minimal human evaluation was used in creat- 334

ing the M2QA-Bench only). This section compares 335

the quality of our synthesized data against these 336

human-annotated datasets. We trained LLaVA- 337

1.6 (Liu et al., 2023b,a, 2024), InternVL-2 (Chen 338

et al., 2023b, 2024c), and Idefics-2 (Laurençon 339

et al., 2023, 2024b) on varying sizes of WebQA and 340

MultiModalQA, evaluating on their respective test 341

sets. We also trained the same models on FM2DS- 342

generated training data and evaluated them on the 343

same test sets to assess the effectiveness of the syn- 344

5



Model Test Dataset

MultiModalQA WebQA
EM F1 EM F1

FT (Real/Syn) Real Syn Real Syn FT (Real/Syn) Real Syn Real Syn
LLaVa-1.6-7B 5k/5k 64.61 69.68 73.13 76.52 5k/5k 69.88 75.49 78.27 87.61
LLaVa-1.6-7B 10k/10k 73.96 75.14 78.36 79.48 10k/10k 77.49 79.06 82.59 82.76
LLaVa-1.6-7B 23.8k/21k 78.79 79.41 82.35 80.65 34.2k/16k 81.36 82.48 85.79 82.83
LLaVa-1.6-13B 10k/10k 77.45 79.46 79.12 81.32 10k/10k 80.22 83.24 84.26 84.95
LLaVa-1.6-13B 23.8k/21k 82.95 83.56 83.71 84.76 34.2k/13k 83.36 85.34 86.92 87.64
InternVL-2-8B 5k/5k 69.43 73.92 79.77 84.27 5k/5k 78.19 81.27 87.64 90.21
InternVL-2-8B 10k/10k 76.42 77.25 86.42 87.06 10k/10k 83.86 85.34 91.82 94.05
InternVL-2-8B 23.8k/17k 81.36 82.95 90.2 89.24 34.2k/15k 85.67 86.58 88.05 92.23
InternVL-2-26B 10k/10k 78.79 79.23 88.91 88.44 10k/10k 85.76 86.49 92.23 93.19
InternVL-2-26B 23.8k/16k 84.6 85.29 89.76 91.24 34.2k/15k 86.36 87.74 91.82 90.21
Idefics-2-8B 5k/5k 67.19 71.48 77.42 79.32 5k/5k 75.34 78.31 84.51 86.92
Idefics-2-8B 10k/10k 75.4 76.57 85.39 83.71 10k/10k 80.11 83.86 88.18 90.07
Idefics-2-8B 23.8k/18k 81.37 81.85 89.12 89.76 34.2k/15k 87.49 87.67 91.82 92.23

LLaVa-1.6-7B None 50.85 56.34 None 56.37 65.44
LLaVa-1.6-13B None 56.83 61.17 None 61.79 68.32
InternVL-2-8B None 61.27 68.26 None 68.01 76.39
InternVL-2-26B None 68.39 74.08 None 74.59 80.61
Idefics2-8B None 60.47 66.41 None 64.79 72.38

GPT-4o None 83.56 87.91 None 86.49 90.23
Llama-3.2-90B None 77.18 80.37 None 82.22 86.9
Claude-3.5-Sonnet None 73.84 77.38 None 76.29 79.43

Table 3: Comparison of synthetic and human-annotated data across various models. Smaller models were evaluated
with 5k, 10k, and full training sets (23.8k for MultiModalQA, 34.2k for WebQA), while larger models used 10k and
full sets. For each model, the listed synthetic sample size is the smallest (divisible by 1k) that outperforms the same
model trained on the full human-labeled set. For real samples, we used the WebQA training set for testing on the
WebQA test set, and similarly for MultiModalQA. “None” indicates default pretrained models. For more results,
see Appendix E.

thesized data in comparison to human-annotated345

datasets.346

As shown in Table 3, models trained on FM2DS347

data outperform those trained on original datasets,348

despite using longer documents. WebQA seems349

easier than MultiModalQA, with better perfor-350

mance from fewer samples. On average, EM im-351

proved by 1.81 for MultiModalQA and 1.96 for352

WebQA using equal or fewer synthetic samples.353

While EM gains often lead to higher F1, some354

cases show F1 drops due to hallucinated answers355

reducing string overlap. Models trained on fewer356

synthetic samples from FM2DS match the perfor-357

mance of those trained on full datasets, showing358

faster convergence (see Section 5.2). Larger mod-359

els also perform better with the same synthetic360

data—e.g., LLaVA-1.6-13B vs. 7B. GPT-4o leads361

among large LVLMs, likely due to its role in data362

generation (Refer to Appendix J for qualitative363

analysis). When comparing these human annotated 364

data with our synthesized data, a common question 365

is: "Why not paraphrase existing datasets instead 366

of synthesizing new ones?". The answer is para- 367

phrasing does not enable domain adaptation, and as 368

shown in Appendix K, fine-tuning on our synthetic 369

data outperforms training on a paraphrased version 370

of MultiModalQA. 371

5.2 Learning Efficiency Comparison 372

To evaluate learning efficiency, we ran experiments 373

with InternVL-2-8B using incremental training 374

sizes from 1k to 10k (in 1k steps) on both syn- 375

thetic and human-annotated data. For real data, we 376

used the same dataset for training and testing—e.g., 377

when testing on WebQA, training samples were 378

taken from the WebQA training set. 379

As shown in Figure 3(a & b), our synthesized 380

data outperforms real data at smaller training sizes, 381
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(c) Full-Page MultiModalQA
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Comparison of Synthesized and Real Samples In Training InternVL2-8B

Figure 3: (a) and (b): EM and F1 comparison on 1k–10k samples for InternVL-2-8B shows that FM2DS’s synthetic
data outperforms human-annotated data, with the gap narrowing as sample size increases. (c): Similar comparison
using full Wikipedia pages from the MultimodalQA dataset to match our synthetic data format.

Training Set
Test Set

MultiModalQA Ours
EM F1 EM F1

MultiModalQA 63.2 74.24 48.6 61.45
Ours 68.4 77.88 55.8 69.06

Table 4: Cross-Dataset Evaluation Results With
InternVL-2-8B for MultiModalQA and Our Synthesized
Benchmark.

though the gap narrows as sample size grows. Near382

10k samples, learning efficiency with synthetic data383

declines more than with real data—likely due to its384

broader knowledge coverage. While this diversity385

aids early learning, it can lead to saturation, unlike386

real data, which offers more focused patterns and387

sustains steady learning (Hong et al., 2023; Maini388

et al., 2024).389

In a related experiment on MultiModalQA, we390

used full Wikipedia pages via linked articles as391

training data instead of information snippets. This392

was not possible for WebQA, as its source links393

mostly point to WikiMedia pages with limited394

text. Figure 3(c) shows that models trained on395

full Wikipedia pages initially achieve better im-396

provement per 1k samples; however, this advantage397

declines after approximately 3k samples. This sug-398

gests that, while full-page real data offers some399

early benefits over short snippets, it still lacks400

the generality and consistency of our synthesized401

dataset. In contrast, the synthesized data—with its402

built-in queries and diverse content—continues to403

support steady learning, likely due to its broader404

coverage and higher quality.405

5.3 Cross-Dataset Evaluation406

To assess the generalizability of our synthesized407

data, we conducted a cross-dataset evaluation using408

Steps Included
Test Dataset

MultiModalQA WebQA
EM F1 EM F1

- 62.78 64.39 69.32 78.56
Question Validation 64.61 70.12 70.28 78.44
+ Answer Validation 67.96 73.56 74.59 79.67
+ Query 70.83 75.84 77.49 81.86
+ Query Validation 73.92 84.27 81.27 90.21

Table 5: Results of the FM2DS with and without key
steps like query generation and verification. All other
steps are included in all of the results. The plus sign
("+") at the start each steps means all the previous steps
were included as well.

InternVL-2-8B. We used 1k samples from M2QA- 409

Bench and 1k from the MultiModalQA test set, 410

both with full Wikipedia pages as sources. The 411

model was trained separately on 5k samples from 412

our dataset and 5k from MultiModalQA, using the 413

same input format. As shown in Table 4, the model 414

trained on our data outperformed the one trained on 415

MultiModalQA across both test sets, demonstrat- 416

ing stronger generalization. This also reflects the 417

greater complexity and diversity of our benchmark, 418

compared to MultiModalQA’s template-based ques- 419

tions. See Appendix H to see the performance on 420

model trained on FM2DS’s data when using on a 421

out of domain MMQA dataset. 422

5.4 Key Stages in FM2DS 423

To assess the impact of each data filtering and val- 424

idation step, we evaluated InternVL-2-8B on 5k 425

training samples under different configurations. As 426

shown in Table 5, each step contributed to perfor- 427

mance gains. Question validation improved rele- 428

vance by filtering questions tailored to the complex, 429

multimodal, multihop requirements of the test sets, 430

and reduced hallucinations, boosting F1 with more 431

accurate answers. Answer validation removed in- 432
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Figure 4: Bar plot showing EM and F1 scores of multi-
modal models on M2QA-Bench.

correct samples, while query generation distilled433

knowledge from larger models, improving EM and434

F1. Query validation reinforced consistency by en-435

suring proper structure. Refer to Appendix L for436

statistics like "Rejection Rate" on the validation437

stages used to remove specific samples during data438

synthesis.439

5.5 M2QA-Bench Evaluation Results440

To assess the complexity of M2QA-Bench and com-441

pare model performance, we evaluated a diverse442

set of models, as shown in Figure 4. GPT-4o stands443

out, outperforming even larger models like LLaMa-444

3.2-90B and Claude-3.5-Sonnet by a notable mar-445

gin. Interestingly, smaller models in the 4B–8B446

range, particularly those from the Phi family (Ab-447

din et al., 2024a,b), also achieve competitive results448

despite their scale. GPT-4o’s advantage may stem449

in part from its involvement in the initial data gener-450

ation, but this remains an open question, as human451

annotators thoroughly reviewed and corrected the452

dataset to ensure fairness, reduce bias, and maintain453

high quality.454

6 Human Evaluation of Answer455

Validation456

To evaluate the accuracy and impact of our auto-457

matic answer validation component, we conducted458

a human evaluation study. After generating ques-459

tions for 100 samples, we continued the pipeline460

using two methods: FM2DS with and without an-461

swer validation. These samples were divided into462

four batches of 25, with each batch evaluated by463

three participants to mitigate potential bias or hu-464

man errors. In total, 12 participants contributed465

through our evaluation platform (see Appendix F),466

assessing which method produced the correct an-467

swer.468

FM2DS with Answer Val
WIN 32.4% LO

SS
 1

 %

DRAW 64.2%

BOTH INCORRECT 2.4%

Human Evaluation of the Impact of Answer Validation Step on
 �Reducing Factual Errors in Answer Generation

Figure 5: Human evaluation results, more people pre-
ferred FM2DS with answer validation (green region)
than without (red region).

Participants were instructed to verify the correct- 469

ness of each answer by reviewing the associated 470

Wikipedia pages. Once they determined the accu- 471

racy of each answer, they were asked to select one 472

of four options: (1) Method 1’s answer is correct, 473

(2) Method 2’s answer is correct, (3) both methods 474

generated the correct answer, or (4) neither answer 475

is correct (Method 1 and Method 2 were randomly 476

assigned to the datasets generated with and with- 477

out answer validation, respectively.). The results, 478

shown in Figure 5, reveal a clear trend: answer 479

validation increases the likelihood of correct an- 480

swers, even though the model without validation 481

still produced correct answers in over 60% of cases. 482

The Fleiss’ Kappa was 0.91—indicating strong 483

agreement—though this is expected, as the task 484

involved factual questions with definitive answers 485

rather than subjective judgments. 486

7 Conclusion & Future Works 487

We present FM2DS, a novel methodology for syn- 488

thesizing high-quality data for multimodal mul- 489

tihop question answering. Unlike existing ap- 490

proaches that are limited to single-hop and single- 491

modality settings, FM2DSgenerates complex QA 492

pairs that require reasoning over multiple modal- 493

ities and sources, with minimal human interven- 494

tion. Our framework enables the creation of a 495

large-scale dataset that significantly boosts model 496

performance, surpassing models trained on human- 497

curated data in terms of test accuracy. These re- 498

sults demonstrate the effectiveness of synthetic 499

data for advancing the state of the art in multi- 500

modal multihop QA. Additionally, FM2DSoffers 501

a scalable and efficient solution for training data- 502

hungry language models. For future work, we plan 503

to synthesize MMQA samples using sources be- 504

yond Wikipedia, including multilingual content, 505

code snippets, videos, and other diverse informa- 506

tion type. 507
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Limitations508

While FM2DS offers a robust pipeline for synthe-509

sizing high-quality multimodal multihop QA data,510

several limitations remain.511

First, although the framework incorporates512

strong validation steps—including factual consis-513

tency checks, named entity alignment, and halluci-514

nation detection—it is not immune to errors. Sub-515

tle factual inaccuracies and hallucinations may still516

persist, especially in answers grounded in complex517

visual content. Despite using multiple generations518

and automated agreement checks, there is still a519

risk that some incorrect samples pass through un-520

detected.521

Second, our reliance on large-scale genera-522

tive models such as GPT-4o throughout multi-523

ple stages—including question generation, answer524

synthesis, captioning, and validation—makes the525

pipeline computationally expensive. This cost is526

further amplified by the need to regenerate failed527

samples that do not pass intermediate validation528

steps. In some settings, particularly when generat-529

ing large-scale datasets, the repeated use of high-530

capacity models may pose practical limitations in531

terms of both time and resources.532

Third, while our method improves factual ac-533

curacy and reduces hallucination, the validation534

pipeline is primarily designed for fact-based QA.535

This makes it less suitable for tasks involving sub-536

jective reasoning, commonsense inference, or open-537

ended discussion questions. Extending the pipeline538

to handle such cases would require fundamentally539

different validation strategies that go beyond fac-540

tual grounding.541

Finally, since the student models are trained on542

data generated by large models (used in both syn-543

thesis and supervision), there is a risk of knowl-544

edge leakage or model bias propagation. The syn-545

thetic data may overrepresent patterns and linguis-546

tic preferences from the teacher models, potentially547

limiting the generalizability of the student models548

trained on it.549

Ethics Statement550

Potential Risks The primary risk associated with551

this work lies in the possibility of propagating fac-552

tual inaccuracies or biases through automatically553

synthesized data. While our validation pipeline554

aims to minimize hallucinations and ensure factual555

correctness, it may not catch all subtle errors. Addi-556

tionally, overreliance on large language models for557

data generation could inadvertently reinforce biases 558

encoded in those models. Our approach does not 559

involve any sensitive personal data or downstream 560

applications that could directly harm individuals. 561

Annotator Recruitment To verify and refine 562

the samples in our M2QA-Bench dataset, we re- 563

cruited three human annotators with prior experi- 564

ence in NLP and data annotation (two men and one 565

woman). These annotators were compensated fairly 566

at a rate of $25 per hour to reflect their expertise 567

and time investment. All annotators were provided 568

with detailed task descriptions and underwent an in- 569

formed consent process prior to participation. The 570

annotation process was conducted in accordance 571

with ethical research guidelines and ensured volun- 572

tary participation and data confidentiality. 573

Evaluator Recruitment For the human evalua- 574

tion component of our study, we recruited twelve 575

evaluators to compare answers generated with and 576

without our validation pipeline. Evaluators were 577

compensated at a rate of $10 per hour and partic- 578

ipated voluntarily after giving informed consent. 579

They were clearly informed about the nature and 580

purpose of the task. We ensured the task was low- 581

risk, did not involve sensitive content, and that par- 582

ticipation remained anonymous and non-intrusive. 583

Consent and Data Privacy All participants in 584

both annotation and evaluation roles were briefed 585

on the nature of the task and explicitly consented 586

to take part in the study. No personally identifiable 587

information was collected or stored during any part 588

of the research process. All data generated and 589

reviewed by annotators and evaluators remained 590

anonymous and was used strictly for academic re- 591

search purposes. 592

Use of AI Assistants We used AI assistants such 593

as GitHub Copilot and ChatGPT to support coding, 594

text editing, and formatting tasks during the devel- 595

opment of this paper and the implementation of our 596

framework. These tools were employed to acceler- 597

ate workflow and refine writing, but all conceptual, 598

experimental, and analytical decisions were made 599

by the authors. We ensured that no sensitive data 600

was provided to these tools during usage. 601
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A Prompts836

In our data generation pipeline, FM2DS, which in-837

corporates LVLMs, we carefully designed prompts838

to guide the model through tasks involving cross-839

modal reasoning and data synthesis. Each prompt840

was carefully designed with specific elements to en-841

sure precision, clarity, and completeness in achiev-842

ing the task’s objectives, while also minimizing843

the need for error correction during the evaluation844

process. In the following sections, we outline the845

rationale behind the structure and components of846

these prompts.847

A.1 Question Generation848

Prompt 1 show the prompt used for question gen-849

eration. Using this prompt, we ask the model to850

create multi-hop questions that require informa-851

tion from all provided documents and modalities852

(e.g., text and images) to answer. The key aim is853

to design questions that are unanswerable if any854

one document or one modality is given, promot-855

ing the need for multi-document and multimodal856

reasoning. It ensures the model generates ques-857

tions that require synthesizing information from858

diverse sources to form a comprehensive under-859

standing. To avoid duplicate data generation, if860

the generated question was already present in the861

dataset, we reused the same prompt but included862

the previously generated questions from the same863

set of documents. The model was then instructed864

to generate a new, unique question.865

A.2 Answer Generation866

The prompt for answer generation directs the model867

to analyze multiple documents, encompassing both868

text and images, to address the given question. It869

emphasizes integrating and synthesizing informa-870

tion from all sources to deliver the most accurate871

and comprehensive response. The prompt ensures872

that the model considers all modalities and docu-873

ments without relying solely on a single source or874

the model’s pre-trained knowledge, focusing exclu-875

 Question Generation Prompt

Generate a multi-hop question
based on the provided information.
A multi-hop question requires the
model to utilize information from all
available documents in combination
to reach the correct answer.
Specifically, the question should
be designed to be unanswerable
if any one of the documents is
missing. Furthermore, focus on
creating questions that compel the
model to extract and synthesize
relevant information across multiple
modalities—such as images and text.
This means that answering the
question correctly will demand
integrating insights from each
source and modality, making it
impossible to arrive at an accurate
answer using any single document or
modality alone.

Here are the documents:
[Documents]

Here are examples:
[Example(s)]

Prompt 1: The prompt for question generation defines
what constitutes a multi-hop question and instructs the
model to create a multimodal and multihop question
based on the provided documents. It emphasizes that
the question should require information from multi-
ple modalities and multiple given documents to be an-
swered, similar to the given example(s).

sively on the provided materials. Refer to Prompt 876

2 for the answer-generation prompt. 877

A.3 Query Generation 878

As illustrated in Prompt 3, in query generation, the 879

model is tasked with explaining the step-by-step 880

process used to extract relevant information from 881

the documents and determine the answer based on 882

the extracted snippets. This task emphasizes trans- 883

parency by requiring the model to identify the rele- 884

vant sections of each document and describe how 885

information from multiple sources is retrieved and 886

combined to arrive at the correct answer, promoting 887

explainability in the model’s reasoning process. 888
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 Answer Generation Prompt

You are provided with multiple
documents, including both textual
content and images, along with a
question. Your task is to carefully
review each document, analyze the
images, and derive an answer based
on the information contained across
all sources. Aim to combine
insights from both documents and
across modalities to deliver the most
accurate and comprehensive response
possible.

Question:
[Question]

Here are the documents:
[Documents]

Here are examples:
[Example(s)]

Prompt 2: The answer generation prompt instructs the
model to answer the question solely based on the pro-
vided documents, utilizing all available modalities, with-
out relying on its pre-trained knowledge.

B Experimental Settings889

In this work, we conducted experiments on a clus-890

ter of 8 NVIDIA H100 80GB GPUs. The dis-891

tributed setup allowed us to efficiently scale our892

fine-tuning process across multiple devices. The893

fine-tuning process was carried out using low-rank894

adaptation (LoRA) (Hu et al., 2022), a technique895

for efficient adaptation of pretrained models with896

low-rank matrices, reducing the number of train-897

able parameters. The key hyperparameters used in898

the fine-tuning procedure include a learning rate899

of 1e-4, a batch size of 8 per device (totaling 64900

across 8 devices), LoRA rank set to 8, LoRA alpha901

set to 32, a weight decay of 0.01, and the number902

of epochs was 5. Additionally, AdamW optimizer903

was used with β1 = 0.9, β2 = 0.98, and ϵ = 1e−8.904

The models were fine-tuned using mixed-precision905

training to take full advantage of the 80GB mem-906

ory on each H100 GPU. For inference time, we907

set the temperature to 0.7, which strikes a balance908

between randomness and coherence in the model’s909

responses, producing more varied outputs without910

 Query Generation Prompt

You are provided with multiple
documents, a question, and the
answer. Your task is to explain
the step-by-step process you would
use to extract and verify the answer
using information from the documents
and various modalities. Clearly
identify each document title and
relevant sections, and describe how
you locate, interpret, and integrate
information across both documents to
derive the correct answer.

Question:
[Question]

Answer:
[Answer]

Here are the documents:
[Documents]

Prompt 3: The query generation prompt instructs the
model to provide a step-by-step plan for extracting rele-
vant information needed to answer the question.

sacrificing too much quality. This setup ensured 911

efficient usage of computational resources while 912

maintaining high model performance. 913

C The Effect of the Number of 914

In-Context Examples 915

Number of Shots MultiModalQA WebQA
EM F1 EM F1

zero-shot 66.42 75.1 71.05 79.3
one-shot 73.92 84.27 81.27 90.21
two-shot 74.3 83.71 81.5 91.37

three-shot 74.45 85.39 81.6 91.21

Table 6: Effect of the number of in-context documents
on the performance of Intervl-2-8B on MultiModalQA
and WebQA datasets.

Table 6 presents the results of evaluating the 916

Intervl-2-8B model with varying numbers of in- 917

context examples on the MultiModalQA and We- 918

bQA datasets. In the zero-shot setting, FM2DS 919

exhibits limited understanding of multimodal multi- 920

hop question answering, and occasionally circum- 921

vents the validation step by simply generating a 922
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question that is not multihop. For example, "Look-923

ing at the image of the Eiffel Tower, what engi-924

neering innovation allowed it to surpass previous925

structures in height?" prompts the model to use926

the image, but the answer is available in the page’s927

text on tall structures. As we move from zero-928

shot to one-shot, there is a significant boost in EM929

and F1 scores, reflecting improved performance930

with minimal context. The improvement from one-931

shot to two-shot is marginal, suggesting diminish-932

ing returns. With three in-context samples, the933

gains become minimal, indicating that additional934

samples beyond two provide little benefit. This935

diminishing return may stem from the model’s lim-936

ited context window, which restricts its ability to937

fully utilize large in-context samples (Kaplan et al.,938

2020; Bertsch et al., 2024).939

D Comparing Methods For Data940

Synthesis941

To evaluate the effectiveness of different methods942

for synthetic data generation, we compared three943

prominent language models: GPT-4o, Claude 3.5944

Sonnet, and Llama-3.2-90B, as shown in Table945

7. Using Intervl-2-8B with 5K fine-tuning sam-946

ples as our baseline model, we tested the quality947

of generated data on two distinct datasets: Mul-948

tiModalQA and WebQA. The results, measured949

using EM and F1 scores, demonstrate that GPT-4o950

consistently outperforms other models across both951

datasets. We also see that Llama-3.2-90B shows952

competitive performance as an open-source model953

with less number of parameters, particularly in We-954

bQA tasks. Claude 3.5 Sonnet generally yields955

lower scores across both datasets. As shown in956

Figure 4, Claude-3.5-Sonnet outperforms Llama-957

3.2-90B, which may be attributed to differences in958

the tasks that were included during their respective959

training phases. This observation can be further960

investigated.961

Model MultiModalQA WebQA
EM F1 EM F1

GPT-4o 73.92 84.27 81.27 90.21
Claude-3.5-Sonnet 68.35 76.01 76.98 83.86

Llama-3.2-90B 70.64 76.32 79.81 86.75

Table 7: Performance comparison of different models
for data generation on test datasets.

E Investigating FM2DS on Other Models 962

In addition to the models discussed in Section 5, we 963

explored other model families, including Idefics3 964

(Laurençon et al., 2024a), mPLUG-DocOwl-1.5 965

(Hu et al., 2024), and Phi-3.5-Vision-Instruct (Ab- 966

din et al., 2024a), as well as larger versions within 967

the explored families presented in Table 3. The 968

results in Table 8 demonstrate the reliability of 969

our data synthesis approach, which consistently en- 970

hances model performance across all models and 971

sizes compared to an equivalent number of real 972

samples. 973

As Table 8 shows, within the same model ar- 974

chitecture, as the number of parameters increases 975

and the model complexity grows (e.g., InternVL- 976

2), the performance generally improves, including 977

the pre-trained version. These models also exhibit 978

more effective learning, especially when provided 979

with synthesized data generated by FM2DS, which 980

makes the learning process more efficient. More- 981

over, Idefics-3 shows notable improvement over its 982

predecessor, Idefics-2, indicating that the newer ver- 983

sion has a better visual reasoning. When comparing 984

mPLUG-DocOwl-1.5 with models like InternVL- 985

2, Idefics-2, and Idefics-3, it demonstrates rela- 986

tively lower performance. This could be attributed 987

to the training objective of mPLUG-DocOwl-1.5, 988

which focuses on multi-grained text recognition 989

and parsing, potentially resulting in weaker perfor- 990

mance when visual reasoning is required. Never- 991

theless, this model still outperforms LLaVA-1.6-7B 992

overall, which might be due to the simpler struc- 993

ture of the LLaVA-1.6 family. Finally, Phi-3.5- 994

Vision-Instruct, despite having fewer parameters 995

compared to other models, performs competitively 996

with other models and surpasses LLaVA-1.6-7B in 997

performance. 998

F Human Evaluation Details 999

To facilitate a rigorous human evaluation of our 1000

answer validation component, we created a Google 1001

Form to recruit participants willing to contribute 1002

to our evaluation. We shared this form widely and 1003

will acknowledge the contributions of participating 1004

individuals in the acknowledgment section of the 1005

paper’s camera-ready version. 1006

After registration, participants were divided into 1007

four batches (three participants per batch, each as- 1008

signed 25 samples, 100 in total) and given access 1009

to a custom evaluation app, shown in Figure 6, to 1010

review the samples in their assigned batch. This 1011
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Model Test Dataset

MultiModalQA WebQA
EM F1 EM F1

FT (Real/Syn) Real Syn Real Syn FT (Real/Syn) Real Syn Real Syn
LLaVa-1.6-34B 10k/10k 79.41 80.92 82.55 83.71 10k/10k 84.41 84.94 85.58 85.79
LLaVa-1.6-34B 23.8k/16k 84.83 85.29 85.51 86.42 34.2k/13k 86.48 87.49 88.18 88.18
InternVL-2-40B 10k/10k 82.18 83.56 89.24 90.2 10k/10k 87.67 89.77 92.76 93.82
InternVL-2-40B 23.8k/15k 86.63 87.27 91.73 91.44 34.2k/14k 89.77 90.32 93.19 93.19
InternVL-2-76B 10k/10k 83.95 86.15 89.76 90.72 10k/10k 88.12 90.32 93.19 94.77
InternVL-2-76B 23.8k/14k 90.82 91.34 92.79 93.81 34.2k/14k 93.14 93.65 94.06 93.82
Idefics-3-8B 10k/10k 76.42 77.56 86.74 88.23 10k/10k 82.48 84.62 89.12 90.09
Idefics-3-8B 23.8k/19k 82.18 83.56 90.27 91.81 34.2k/15k 86.49 87.77 92.55 93.31
Phi-3.5-Vision-Instruct-4.2B 10k/10k 69.43 70.25 75.35 77.57 10k/10k 78.31 80.22 84.5 85.18
Phi-3.5-Vision-Instruct-4.2B 23.8k/22k 77.85 78.79 82.59 84.61 34.2k/19k 80.11 81.27 85.34 87.48
mPLUG-DocOwl-1.5-8B 10k/10k 72.24 74.82 78.82 79.49 10k/10k 81.27 83.86 87.52 88.75
mPLUG-DocOwl-1.5-8B 23.8k/20k 79.41 80.12 84.69 87.07 34.2k/17k 82.48 84.42 87.93 89.21

LLaVa-1.6-34B None 60.11 64.06 None 64.33 70.82
InternVL-2-40B None 72.93 77.42 None 76.98 82.33
InternVL-2-76B None 75.32 79.32 None 78.31 85.41
Idefics-3-8B None 61.27 69.74 None 69.88 76.39
Phi-3.5-Vision-Instruct-4.2B None 55.78 62.16 None 63.68 69.74
mPLUG-DocOwl-1.5-8B None 58.46 64.02 None 66.38 71.26

Table 8: Comparison of model performance across various architectures, sizes, and sample sources (real vs.
synthesized by FM2DS). The models were evaluated on 10k samples and the full dataset (23.8k samples for
MultiModalQA and 34.2k samples for WebQA). When comparing models tuned on synthesized data with those
trained on the full training set, the smallest number of synthetic samples (divisible by 1k) that outperforms models
trained on the full datasets is reported. For real sample evaluations, the WebQA training set is used for testing on
the WebQA test set, and the same applies to MultiModalQA. Models trained with synthesized samples consistently
outperform those trained with equivalent numbers of real samples.

application was designed to streamline the evalua-1012

tion process and ensure consistency across partici-1013

pants. For each question, participants could review1014

the question text, the associated Wikipedia pages,1015

and the generated answers from two methods—one1016

method utilizing the answer validation component1017

and the other without it. To minimize user bias, the1018

application randomly alternated the positioning of1019

the methods’ answers (labeling them as “Answer1020

A” and “Answer B”) so that users could not de-1021

velop a tendency to select one model over the other1022

based on position alone. After examining the ques-1023

tion and relevant Wikipedia content, users were1024

asked to select one of four options to indicate their1025

assessment of answer accuracy: (1) Answer A is1026

correct, (2) Answer B is correct, (3) both answers1027

are correct, or (4) neither answer is correct.1028

In addition to these selections, participants had1029

the option to provide a brief rationale for their1030

choices. Although they have not been investigated1031

for this research, these optional feedbacks were en-1032

couraged, as they offer valuable insights for quali-1033

tative analysis and potential future improvements1034

in answer validation accuracy. The combination of 1035

structured and open-ended responses enhances the 1036

robustness of our evaluation and offers a more com- 1037

prehensive view of user judgments, which we may 1038

explore in future iterations of our data synthesis 1039

methodology. 1040

The evaluators had diverse academic and pro- 1041

fessional backgrounds, including graduate students 1042

in computer science, data science researchers, and 1043

software engineers with experience in NLP and 1044

machine learning. All evaluators were proficient in 1045

English and had prior familiarity with Wikipedia- 1046

style content and fact-based question answering 1047

tasks. This diversity contributed to reliable judg- 1048

ment across a wide range of topics and ensured 1049

that participants had the necessary background to 1050

assess factual correctness and relevance accurately. 1051

In total, twelve individuals participated in the eval- 1052

uation: seven men and five women. 1053
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Figure 6: The custom evaluation application was used for human evaluation. The application presents each
participant with a randomly selected question, relevant Wikipedia pages, and two model-generated answers labelled
as Answer A and Answer B. One answer is generated by the pipeline with validation, while the other comes from the
pipeline without it. Participants are asked to choose the correct answer and optionally provide feedback on their
choice. To minimize bias, the application randomizes the position of each model’s answer.
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G Additional Statistics & Information on1054

M2QA-Bench1055

As illustrated in Figure 7, M2QA-Bench encom-1056

passes a diverse range of domains. Additionally,1057

the answers span various types of named entities,1058

including people, products, works of art, and more.1059

Figure 8 presents the distribution of named entities 1060

found in the answers. 1061

To further examine the diversity of ques- 1062

tions in our benchmark—which also reflects the 1063

overall characteristics of the data generated by 1064

FM2DS—we conducted a 2D t-SNE analysis of 1065
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question embeddings using ModernBERT (Warner1066

et al., 2024). We sampled 500 questions each from1067

M2QA-Bench, MMQA, WebQA, and ScienceQA1068

(Lu et al., 2022b). ScienceQA serves as a fully1069

human-authored dataset, while MMQA and We-1070

bQA primarily use templated questions. As shown1071

in Figure 9, MMQA and WebQA display the least1072

diversity. In contrast, M2QA-Bench, which in-1073

cludes questions generated from FM2DS, demon-1074

strates greater similarity to human-generated data,1075

reflecting a reduced domain gap and improved di-1076

versity compared to MMQA and WebQA.1077

H FM2DS Generalizability to Other1078

Domains1079

FM2DS can generate domain-specific synthetic1080

data using just a single in-context example and user-1081

provided documents, enabling even small LVLMs1082

to handle domain-specific multimodal multihop1083

QA. As shown in Figure 7, FM2DS’s data (includ-1084

ing M2QA-Bench) spans various domains. To fur-1085

ther assess its generalizability, we trained InternVL-1086

2-8B on 5k synthesized samples and evaluated it on1087

the health-related dataset PMC-VQA (Zhang et al.,1088

2023) using 50k test samples. We then compared1089

its performance to the pretrained InternVL-2-8B1090

on the same test set. Training improved accuracy1091

from 52.82 to 65.72, demonstrating the benefits of1092

our synthetic data.1093

I M2QA-Bench Examples 1094

FM2DS uses LVLMs to generate multimodal and 1095

multihop questions based on the given documents 1096

and evaluate their answers. These samples aim 1097

to emulate few-shot examples typically provided 1098

to guide the model’s behavior in a structured and 1099

relevant manner. 1100

In some cases, the questions focus on under- 1101

standing facts from different modalities—such as 1102

images, text, and tables—within the grouped doc- 1103

uments and finding the answer from one of them. 1104

For example, in the case of the question shown in 1105

Figure 10: 1106

How many people died in the event 1107

shown in the photograph “Raising the 1108

Flag on Iwo Jima” from the country 1109

shown in the picture? 1110

LVLM is tasked with combining information from 1111

two documents: Raising the Flag on Iwo Jima and 1112

Battle of Iwo Jima. Here, the hyperlink between 1113

the two documents served as the connection be- 1114

tween two docments. The model identifies that 1115

the photograph depicts American soldiers (based 1116

on the USA flag) and cross-references the table 1117

from the Battle of Iwo Jima document to determine 1118

that 539 people from the USA were killed. This 1119

demonstrates how the model synthesizes informa- 1120

tion across modalities to form an accurate response. 1121

Afterward, the model generates queries, serving 1122
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Information Pieces Used by LLM For
Question Generation and Answering

Image From "Raising the Flag on
Iwo Jima" Document

Text From "Battle of Iwo Jima"
Document

Table From "Battle of Iwo Jima"
Document

How many people died in the event shown in
the photograph "Raising the Flag on Iwo Jima”
from the country showed in the picture?

Based on the photograph of "Raising the Flag
on Iwo Jima", the soldiers hold the USA flag so
we want to know the number of people killed
from USA not Japan. From the Table from
"Battle of Iwo Jima" document, the answer is 
539.

Query:
(1) Image From Raising the Flag on Iwo Jima
document shows USA is country wanted in the
question.
(2) Table From Battle of Iwo Jima document
shows the number of people killed from USA side
was 539. 

The Battle of Iwo Jima (19 February – 26
March 1945) was a major battle in which the
United States Marine Corps (USMC) and
United States Navy (USN) landed on and
eventually captured the island of Iwo Jima
from the Imperial Japanese Army (IJA) during
World War II. The American invasion,
designated Operation Detachment, had the
goal of capturing the island with its two
airfields: South Field and Central Field.

Figure 10: Multimodal and multihop reasoning example from M2QA-Bench where the model answers a question
about the photograph "Raising the Flag on Iwo Jima" by synthesizing information from linked documents through a
hyperlink, leveraging both visual and tabular data to determine the number of casualties from the USA.

as a step-by-step guide to extract relevant infor-1123

mation from the documents. Using the extracted1124

snippets, it then answers the question. For instance,1125

the model would need to locate the image Rais- 1126

ing the Flag on Iwo Jima to determine the country 1127

mentioned in the question, which is the USA. Next, 1128
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Information Pieces Used by LLM For
Question Generation and Answering

Image From "Music from Big
Ping" Text From "Imagine" Document Text From "Music From Ping"

Document

Between the album featuring a man bending on a 
piano and the album that includes the song "I 
Don't Wanna Be a Soldier," which one is older?

The album featuring a famous photograph of a 
man bending on a piano is "Music from Big Pink" 
by The Band, released in 1968. The album that 
includes the song "I Don't Wanna Be a Soldier" is 
"Imagine" by John Lennon, released in 1971. 
Therefore, "Music from Big Pink" was released 
first.

Query:
(1) Image from Music from Big Pink document 
shows Music from Big Pink is the album that 
includes an image of a man bending over a 
piano.
(2) Text from Music from Big Pink document 
shows the album was released in 1968.
(3) Text from Imagine document shows The Band 
album was released in 1971 with I Don't Want to 
Be a Soldier.

Recording for the album started on 24 May at
Ascot Sound Studios. The first songs
recorded were "It's So Hard" and "I Don't
Want to Be a Soldier" in February 1971 at
Ascot Sound Studios, during sessions for
Lennon's single "Power to the People". A
cover of the Olympics' 1958 song "Well (Baby
Please Don't Go)", later released on John
Lennon Anthology, was recorded on 16
February. Lennon chose to remake "I Don't
Want to Be a Soldier" on 24 May 1971, the
opening day of the main album sessions.

Recording for the album started on 24 May at
Ascot Sound Studios. The first songs
recorded were "It's So Hard" and "I Don't
Want to Be a Soldier" in February 1971 at
Ascot Sound Studios, during sessions for
Lennon's single "Power to the People". A
cover of the Olympics' 1958 song "Well (Baby
Please Don't Go)", later released on John
Lennon Anthology, was recorded on 16
February. Lennon chose to remake "I Don't
Want to Be a Soldier" on 24 May 1971, the
opening day of the main album sessions.

Figure 11: Multimodal multihop reasoning example from M2QA-Bench where the model compares the release dates
of two albums, "Music from Big Pink" and "Imagine," using textual and visual cues. The documents are connected
through their shared topic, "music," and the answer is determined as the title of the earlier-released album.

by referencing the table in the Battle of Iwo Jima1129

document, it provides the final answer.1130

In other cases, the questions involve comparing1131

elements between objects in two different docu-1132

ments, where the answer is typically the title of1133

one of the documents provided. For example, the1134

question shown in Figure 11:1135

Which album was released first: the one1136

featuring a famous photograph of a man1137

bending on a piano or the album that1138

includes the song “I Don’t Wanna Be a1139

Soldier”?1140

requires the model to compare temporal informa-1141

tion across two documents: Music from Big Pink1142

and Imagine. The model identifies that Music from1143

Big Pink, featuring a photograph of a man bending1144

on a piano, was released in 1968, while Imagine,1145

containing the song “I Don’t Wanna Be a Soldier,”1146

was released in 1971. Therefore, the answer is1147

Music from Big Pink. In this case, the documents1148

were connected through their shared topic, music.1149

The query generation in this example is similar to1150

the first but differs slightly, as three information1151

snippets are key to answering the question, making1152

the query three steps long.1153

J Qualitative Analysis1154

In the qualitative analysis, we compared three crit-1155

ical factors influencing model responses: model1156

architecture, fine-tuning (FT) dataset (real samples 1157

or synthesized samples), and model size. To ex- 1158

amine the effects of model architecture and FT 1159

dataset, we used InternVL-2-8B, LLaVA-1.6-7B, 1160

and Idefics-2-8B, fine-tuning them on both real and 1161

synthetic data generated by FM2DS. For analyzing 1162

the impact of model size, all versions of InternVL- 1163

2 were trained on the synthetic data. All of the 1164

mentioned models were fine-tuned on 5k samples. 1165

This analysis was conducted for 100 samples 1166

from each of the following benchmarks: (1) M2QA- 1167

Bench, (2) MultiModalQA, and (3) WebQA. The 1168

results are presented in Tables 9, 10, and 11. The 1169

responses generated by different models were ana- 1170

lyzed across these datasets, focusing on the follow- 1171

ing metrics: 1172

1. Model accuracy using the exact match (EM) 1173

metric. 1174

2. Hallucination rate, corresponding to instances 1175

where the model generated wrong answer 1176

based on its pre-trained knowledge instead 1177

of the provided document. 1178

3. Model accuracy with EM metric for samples 1179

including image modality (may include other 1180

modalities). 1181

4. Model accuracy with EM metric for samples 1182

including table modality (may include other 1183

modalities). 1184
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5. Model accuracy with EM metric for samples1185

including both image and table modalities.1186

For WebQA, which only incorporates text and1187

image modalities, the last three metrics were not1188

applicable. Additionally, the distribution of modali-1189

ties across samples for MultiModalQA and M2QA-1190

Bench was as follows:1191

• M2QA-Bench: 66 samples included image1192

modality, 62 samples included table modality,1193

and 28 samples included both image and table1194

modalities.1195

• MultiModalQA: 61 samples included image1196

modality, 54 samples included table modality,1197

and 15 samples included both image and table1198

modalities.1199

Overall, in all benchmarks, model hallucination1200

rates decreased as model complexity and param-1201

eter count increased, resulting in more accurate1202

answers across all modalities (e.g., see Figure 151203

for an example output of these models). Larger1204

models consistently outperformed smaller models1205

on both modalities. Regarding synthetic data, fine-1206

tuning on data generated by FM2DS significantly1207

reduced hallucination and improved performance1208

across all modalities. While the hallucination rates1209

among different model families are relatively simi-1210

lar, all models occasionally generate answers based1211

on their pre-trained knowledge rather than the pro-1212

vided document. Fine-tuning on data generated by1213

FM2DS effectively alleviates this issue. Among1214

the models, as shown in Table 3, LLaVA-1.6 exhib-1215

ited the poorest performance and the highest likeli-1216

hood of hallucination, followed by Idefics-2, with1217

InternVL-2 demonstrating the best performance.1218

Regarding the effect of modalities, results from1219

Tables 9 and 10 suggest that the modalities them-1220

selves are not the most critical factor. Instead,1221

the complexity of how the question integrates the1222

modalities plays a more significant role. For M2QA-1223

Bench, models performed better when visual un-1224

derstanding was not required, with tables and text1225

being the primary contributors to the results. In1226

contrast, for MultiModalQA, models tended to per-1227

form better on image-based questions, highlighting1228

the importance of how the question leverages the1229

modalities. For questions involving both modali-1230

ties, smaller models struggled more to produce cor-1231

rect answers, while larger models performed better1232

in terms of EM. It is important to note, however,1233

that due to the substantial difference in the number 1234

of samples containing both image and table modal- 1235

ities compared to those with only one modality, the 1236

reported results are not directly comparable. Refer 1237

to Figures 13 and 14 for the outputs of different 1238

model families fine-tuned on either real or synthe- 1239

sized data. Moreover, Figure 15 shows outputs 1240

from different model sizes within the same family, 1241

fine-tuned on either real or synthesized data. 1242

K Synthesizing Data vs. Paraphrasing 1243

Exisiting Human Annotated Datasets 1244

Paraphrasing questions from existing datasets in- 1245

troduces surface-level linguistic changes but pre- 1246

serves the original semantic intent and reasoning 1247

pathways, offering only marginal improvements in 1248

model training. In contrast, the data synthesized by 1249

FM2DSis intentionally crafted to introduce diverse 1250

question structures, span multiple domains, and 1251

require varied types of reasoning, pushing mod- 1252

els toward more comprehensive multimodal under- 1253

standing. To compare these approaches, we trained 1254

InternVL-2-8B using 1k samples from three set- 1255

tings: (I) the original MultimodalQA dataset, (II) a 1256

paraphrased version of MultimodalQA where ques- 1257

tions were reworded using GPT-4o with the prompt 1258

"Please paraphrase the following question: [Ques- 1259

tion]" and (III) synthesized samples generated by 1260

FM2DS. For all conditions, we used full Wikipedia 1261

documents as sources. Figure 12 presents the re- 1262

sults, showing that while paraphrasing provides a 1263

slight improvement, synthesizing new, high-quality 1264

samples with FM2DS leads to a substantial perfor- 1265

mance gain. 1266

L Statistics on Usages of Each Validation 1267

Stage of FM2DS 1268

As described in Section 3 and illustrated in Figure 1269

2, FM2DS incorporates multiple validation stages 1270

to enhance data quality. It is essential to analyze 1271

how frequently each stage rejects the initially gen- 1272

erated outputs. Table 12 presents statistics based on 1273

generating 1,000 examples using GPT-4o. Among 1274

the stages, question validation has the highest re- 1275

jection rate, suggesting that this step is the most 1276

challenging. This may be because generating a 1277

question requires the model to synthesize all rele- 1278

vant knowledge and fully grasp the context. In con- 1279

trast, answer validation benefits from the guidance 1280

provided by the question, making the task relatively 1281

easier. Query validation appears to be even more 1282
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Model Trained On EM ↑ Hallucination ↓ EM (Table) EM (Image) EM (Image&Table)
InternVL-2-8B Real 0.43 0.67 0.56 0.51 0.46
InternVL-2-8B Synth 0.57 0.51 0.77 0.68 0.64
Idefics-2-8B Real 0.39 0.72 0.54 0.44 0.43
Idefics-2-8B Synth 0.55 0.68 0.71 0.62 0.53
LLaVA-1.6-7B Real 0.35 0.71 0.43 0.39 0.32
LLaVA-1.6-7B Synth 0.47 0.51 0.61 0.46 0.39
InternVL-2-26B Synth 0.61 0.54 0.87 0.74 0.75
InternVL-2-40B Synth 0.64 0.5 0.89 0.8 0.78
InternVL-2-76B Synth 0.72 0.28 0.98 0.95 0.92

Table 9: Performance comparison of different model families fine-tuned on real and synthesized data on M2QA-
Bench. The ratios for EM scores and hallucination were calculated from filtered data (e.g., hallucination as the
proportion of hallucinated responses to incorrect answers). In the table, ↑ indicates that larger values are better (all
EM values), while ↓ indicates that smaller values are better (hallucination rate). The scores for EM (Table) and EM
(Image) may include samples that also contain other modalities. Larger models and those fine-tuned on synthesized
data generally show improved performance with reduced hallucination rates. In M2QA-Bench, models demonstrate
higher performance on questions involving table modality compared to those involving images.

Model Trained On EM ↑ Hallucination ↓ EM (Table)↑ EM (Image)↑ EM (Image & Table)↑
InternVL-2-8B Real 0.66 0.62 0.7 0.72 0.53
InternVL-2-8B Synth 0.68 0.41 0.75 0.78 0.67
Idefics-2-8B Real 0.61 0.64 0.61 0.63 0.33
Idefics-2-8B Synth 0.64 0.53 0.67 0.69 0.47
LLaVA-1.6-7B Real 0.59 0.66 0.57 0.56 0.2
LLaVA-1.6-7B Synth 0.62 0.39 0.64 0.61 0.33
InternVL-2-26B Synth 0.7 0.37 0.79 0.85 0.8
InternVL-2-40B Synth 0.74 0.35 0.85 0.89 0.87
InternVL-2-76B Synth 0.8 0.15 0.93 0.94 0.93

Table 10: Performance comparison of different model families fine-tuned on real and synthesized data on Mul-
timodalQA. The ratios for EM scores and hallucination were calculated from filtered data (EM(Table) refers to
the EM score calculated on samples that include the table modality). In the table, ↑ indicates that larger values
are better (all EM values), while ↓ indicates that smaller values are better (hallucination rate). The scores for EM
(Table) and EM (Image) may include samples that also contain other modalities. Larger models and those fine-tuned
on synthesized data generally exhibit improved performance with reduced hallucination rates. In MultiModalQA,
models demonstrate higher performance on questions involving the image modality compared to those involving
tables.

straightforward, as it primarily involves formatting1283

the reasoning steps—something the model has ef-1284

fectively done during answer generation. Addition-1285

ally, the use of question-specific image captions1286

during answer generation likely contributes to a1287

lower error rate by helping the model locate the1288

correct information only text modality.1289
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Model Train On EM ↑ Hallucination ↓
InternVL-2-8B Real 0.76 0.41
InternVL-2-8B Synth 0.78 0.32
Idefics-2-8B Real 0.72 0.48
Idefics-2-8B Synth 0.75 0.36
LLaVA-1.6-7B Real 0.70 0.53
LLaVA-1.6-7B Synth 0.74 0.34
InternVL-2-26B Synth 0.81 0.21
InternVL-2-40B Synth 0.82 0.11
InternVL-2-76B Synth 0.85 0

Table 11: Overall performance of different model families fine-tuned on real and synthesized data on WebQA.
Hallucination is the proportion of hallucinated responses to incorrect answers. In this table, ↑ indicates that larger
values are better, while ↓ indicates that smaller values are better. Fine-tuning on synthesized data consistently
reduces hallucination rates and improves EM scores across all models, with larger models achieving the best
performance. Unlike M2QA-Bench and MultModalQA, WebQA only includes image and text modality, as a result
no EM(Image) and EM(Table) are reported.

MultimodalQA Paraphrased MultimodalQA FM2DS Synthesized0
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Figure 12: Performance comparison of InternVL-2-8B trained on 1k samples from three settings: original Multi-
modalQA, paraphrased MultimodalQA (reworded using GPT-4o), and fully synthesized data from FM2DS. While
paraphrasing existing questions yields only modest gains, our synthesized samples lead to significantly higher
performance, highlighting the value of generating diverse and structurally novel multihop multimodal questions.

Stage Average Rejection Rate Average Rejection Rate
Question Validation 131 11.58%
Answer Validation 76 7.06%
Query Validation 58 5.48%

Table 12: Key statistics of the proposed multimodal multihop question answering benchmark.
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Information
Snippets From

Documents

"Roger the Engineer"
Released by the Yardbirds in

1966

"Let it Bleed" Released by
the Rolling Stones in 1969

LLaVA-1.6-7B

Idefics-2-8B

InternVL-2-8B

Which artist released an album in December 1969 featuring a record on its cover?

Model Answer: The Yardbirds
Note: The model selects the wrong answer due to an error in the projection layer,
which associates a record with "Roger the Engineer" cover while also failing to
account for the release date as overlooked by the LLM.

Model Answer: The Beatles
Note: The model is hallucinating by selecting an option that is not present in the
document, despite the prompt explicitly instructing it to rely on the provided
sources to answer the question.

Model Answer: The Rolling Stones
Note: Although the model made an error in tokenizing the image and assumed that
both albums featured a record on their covers, it ultimately selected the correct
answer by factoring in the release date.

Fine-tuned On Real Data

LLaVA-1.6-7B

Idefics-2-8B

Model Answer: The Yardbirds
Note: The model selects the wrong answer due to an error in the projection layer,
which associates a record with "Roger the Engineer" cover although it considers
the release date, it select the wrong answer.

Model Answer: The Rolling Stones
Note: The model selects the correct answer, accurately interpreting both images
(recognizing that only "Let It Bleed" features a record on its cover) and factoring in
the release dates.

Fine-tuned On FM2DS Data

InternVL-2-8B

Model Answer: The Rolling Stones
Note: The model selects the correct answer, accurately interpreting both images
(recognizing that only "Let It Bleed" features a record on its cover) and factoring in
the release dates.

Figure 13: Analysis of model responses to the question: "Which artist released an album in December 1969 featuring
a record on its cover?" from MultimodalQA dataset reveals that fine-tuning on FM2DS eliminates hallucination
(marked by the confused robot sign) seen in model fine-tuned on real data. This example highlights how fine-tuning
improves reasoning by aligning the model’s answers with both visual and textual evidence.
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Information
Snippets From

Documents

Little Champlain Street,
Quebec City, QC, 1916

Quebec City Rue St-Louis
2010

LLaVA-1.6-7B

Idefics-2-8B

InternVL-2-8B

Which street was paved with boards; Little Champlain Street, Quebec City, 1916 or
Quebec City Rue Saint-Louis winter 2010?

Model Answer: Quebec City Rue St-Louis 2010
Note: The model generated the wrong answer because the vision encoder is
unable to extract the specific information needed to answer the question
accurately. Based on the colors and textures in the image, the model mistakenly
interprets the surface as wooden boards, leading to the incorrect response.

Model Answer: Not Enough Information to Answer
Note: The model's vision encoder failed to provide information about the material
used to pave the road, leaving the model without sufficient data to answer the
question.

Model Answer: Little Champlain Street, Quebec City, QC, 1916
Note: The model generated the correct answer in this case; however, it did not
rely on the information from the images. Instead, it used the age of the images and
the dates provided in the sources and question to arrive at the correct answer.

Fine-tuned On Real Data

LLaVA-1.6-7B

Idefics-2-8B

Model Answer: Little Champlain Street, Quebec City, QC, 1916
Note: The model correctly recognizes that the answer should be derived from the
ground rather than focusing on irrelevant details in the image. It also understands
that no wood is present in the Quebec City Rue St-Louis 2010 image.

Model Answer: Little Champlain Street, Quebec City, QC, 1916
Note: The model accurately identifies that the answer should be based on the
ground rather than irrelevant details in the image and correctly concludes that no
wood is present in the Quebec City Rue St-Louis 2010 image.

Fine-tuned On FM2DS Data

InternVL-2-8B

Model Answer: Little Champlain Street, Quebec City, QC, 1916
Note: The model correctly focuses on the ground to find the answer, avoiding
irrelevant details in the image, and accurately determines that no wood is present
in the Quebec City Rue St-Louis 2010 image.

Figure 14: Analysis of model responses to the question: "Which street was paved with boards; Little Champlain
Street, Quebec City, 1916 or Quebec City Rue Saint-Louis winter 2010?" from the WebQA dataset demonstrates
that fine-tuning with FM2DS data effectively eliminates hallucination (indicated by the confused robot sign). This
example underscores fine-tuning with FM2DS-generated data improves the model’s focus on fine-grained visual
details relevant to the question. Here, InternVL-2-8B fine-tuned on real data hallucinated but reached the correct
answer using its pre-trained knowledge.
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Information
Snippets From

Documents

The most important work of
Qin Shi Huang is the Great

Wall of China.

Inside of a watchtower in the
Great Wall of China.

InternVL-2-8B

In the most important project of Qin Shi Huang, what geometric shape was used in the
watchtowers, when looking from inside?

Model Answer: Square
Note: The model's response stated that watchtower windows can have various
shapes, with squares being the most common. Consequently, the model relied on
this knowledge and provided an incorrect answer because of not using the
documents and hallucinating.

Fine-tuned On FM2DS Data

InternVL-2-26B

Model Answer: Rectangle
Note:  The model indicated that watchtower windows come in various shapes, with
rectangular windows being the most typical. Based on this understanding, the
model generated an incorrect answer because of not using the documents
and hallucinating.

InternVL-2-40B

Model Answer: Circle
Note: The model suggested that, based on images of the interiors of watchtowers
on the Great Wall of China, the windows are circular due to their curved shape. As
a result, the model produced an incorrect answer.

InternVL-2-76B

Model Answer: Arch
Note: The model provided a detailed description of the shape, stating that based
on the visible features in the image of the watchtower, the window has an arched
shape.

Figure 15: Responses from InternVL-2 models of various sizes (8B, 26B, 40B, and 76B) to the question: "In
the most important project of Qin Shi Huang, what geometric shape was used in the watchtowers when viewed
from inside?" from M2QA-Bench illustrate that in examples like this, which requires detailed visual understanding,
smaller models often hallucinate, providing inconsistent answers (e.g., square, rectangle) without grounding in the
provided document. Larger models, however, perform better on this task and have less hallucination.
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