B9,
e

Lly gy

3:1%‘; FM?DS: Few-Shot Multimodal Multihop Data Synthesis

~ with Knowledge Distillation for Question Answering

Anonymous ACL submission

Abstract

Existing Datasets ] [

[ Capability] [ (e.g WebQA)

FM2DS (Ours)

Multimodal multihop question answering
(MMOQA) requires reasoning over images and
text from multiple sources, an essential task
for many real-world applications. Despite ad-
vances in visual question answering, this multi-
hop setting remains underexplored due to a lack
of quality datasets. Existing methods focus on
single-hop, single-modality, or short texts, lim-
iting real-world applications like interpreting
educational documents with long, multimodal
content. To fill this gap, we introduce FM2DS,
the first framework for creating a high-quality
dataset for MMQA. Our approach consists of
a 5-stage pipeline that involves acquiring rel-
evant multimodal documents from Wikipedia,
synthetically generating high-level questions
and answers, and validating them through rig-
orous criteria to ensure data quality. We evalu-
ate our methodology by training models on our
synthesized dataset and testing on two bench-
marks: MultimodalQA and WebQA. Our re-
sults demonstrate that, with an equal sample
size, models trained on our synthesized data
outperform those trained on human-collected
data by 1.9 in exact match (EM) score on
average. Additionally, we introduce M?QA-
Bench with 1k samples, the first benchmark for
MMOQA on long documents, generated using
FM?DS and refined by human annotators.

1 Introduction

Multimodal multihop question answering
(MMQA) involves answering complex questions
by integrating information from text, images,
and tables. In real-world applications such as
interpreting medical documents, this challenge
is amplified by the need to reason over long,
multimodal content. Current methodologies in
MMOQA typically leverage in-context learning
methods, prompting LVLMs to retrieve relevant
information from multimodal sources (Tejaswi
et al., 2024) and then perform reasoning (Yang
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Figure 1: Unlike traditional datasets that rely on human
annotators, templates, or snippets, FM2DS is fully auto-
mated, using long documents as sources and applying
validation to ensure questions are answerable, multi-
modal, and multihop.

et al., 2023). However, these models often demand
significant computational resources due to their
large parameter counts, making them costly to
deploy even during inference (Ye et al., 2024).
This limitation emphasizes the need for more
efficient frameworks that can operate effectively
with minimal annotated data. A practical solution
is to use a smaller model capable of both retrieving
the necessary information from sources and
performing reasoning. This can be achieved
by fine-tuning the model on a MMQA dataset.
Existing datasets often rely on short snippets or
repetitive templates, limiting generalizability to
complex settings with long texts and multiple
modalities (Chang et al., 2021; Talmor et al., 2021;
Jiang et al., 2024; Chen et al., 2024a). Additionally,
creating new similar datasets is challenging,
requiring extensive human annotation (Lu et al.,
2022a; Chen et al., 2023a).

In this work, we propose FM?DS, a novel



data synthesis framework designed specifically for
MMQA over long documents. Our approach syn-
thesizes MMQA data from documents that are in-
terconnected through various relationships, such
as thematic similarities or sequential events. This
framework leverages naturally occurring document
relationships and requires minimal hand-crafted
data, thereby broadening the range of reasoning
types used in question generation.

As illustrated in Figure 1, FM2DS enables the
generation of non-templated question-answer pairs
based on full documents rather than brief informa-
tion snippets. The data generated by our method
FM?DS includes query component - a step-by-
step guide for retrieving relevant information
from multiple documents - enabling smaller mod-
els trained on this synthesized data to learn how
to tackle complex questions in a manner similar to
larger models. This methodology allows users to
create a custom MMQA dataset with fewer than
ten human-annotated samples, thereby facilitating
the fine-tuning of smaller LVLMs for specific ap-
plications.

FM?DS leverages Wikipedia’s extensive knowl-
edge base and hyperlink structure to select docu-
ment pairs with shared topical relevance or hyper-
link connections and prompt LVLMs to perform
question generation, question answering, and query
generation. We incorporate validation steps to en-
hance the quality of the generated data and discard
any outputs that are factually incorrect. Through
empirical evaluation on established MMQA bench-
marks, we show that FM2DS significantly improves
model performance, achieving on average a 1.9
exact match (EM) score improvement across two
benchmarks: MultimodalQA and WebQA.

Our key contributions are: (I) introducing a new
framework for synthesizing high-quality MMQA
training data for VLMs; (II) using a robust vali-
dation pipeline to ensure data quality; (III) intro-
ducing a challenging MMQA benchmark requiring
reasoning over multiple modalities and sources;
and (IV) showing that models fine-tuned on our
synthetic data outperform those trained on human-
labeled datasets, advancing MMQA while reducing
manual effort.

2 Related Work

Within the Question Answering (QA) literature,
synthesis of training data has been predominantly
focused on unimodal (text-only) scenarios. We re-

view various similar works that have established
the foundation for our work in few-shot data syn-
thesis.

Unimodal Data Synthesis Synthetic data is in-
creasingly used for model training. He et al. (2022)
show that combining labeled and synthetic text
from language models (LMs) improves NLP per-
formance. Entire synthetic datasets have also been
created for tasks like classification (Tsui, 2024),
with Li et al. (2023) demonstrating GPT-3.5’s ef-
fectiveness in generating reliable classification data.
Similarly, Chen et al. (2024b) show that synthetic
data can significantly boost small models on multi-
hop QA with minimal human annotation.

Multimodal Data Synthesis Research on mul-
timodal data synthesis with LVLMs remains lim-
ited, with most efforts focused on generating new
data from model’s pre-trained knowledge. Zhang
et al. (2024) synthesize abstract images with rea-
soning tasks, while Mehta et al. (2024) generate
multimodal data using unimodal models for pre-
training. In MMQA, Wu et al. (2024) propose
SMMQG, which uses multimodal RAG to gen-
erate questions from short snippets, focusing on
multimodality rather than multihop reasoning. In
contrast, FM2DS uses full multimodal documents,
resulting in a more challenging dataset with diverse
multihop questions that better reflect real-world
tasks. Moreover, while SMMQG is confined to pre-
defined question types, FM?DS enables large-scale
generation and supports knowledge distillation for
smaller models through step-by-step queries that
guide complex multi-document reasoning.

3 Proposed Method: FM?DS

Our five-stage pipeline for FM2DS (Figure 2) syn-
thesizes high-quality multimodal QA pairs. It be-
gins by grouping documents via topic matching
and Wikipedia hyperlinks, followed by few-shot
sample selection, question synthesis, answer gen-
eration, and query construction, each with their
built-in validation. See Appendix I for examples.

3.1 Stage 1: Creating a Pool of Related
Documents

We collect relevant documents from Wikipedia us-
ing the WikiWeb2M dataset (Burns et al., 2023),
which includes nearly 2 million pages. Documents
are linked via two methods: hyperlinks and la-
tent topics identified through multimodal topic
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Figure 2: The FM2DS pipeline consists of five stages for generating high-quality multihop multimodal QA
samples. In Stage 1, a pool of related Wikipedia documents is retrieved by leveraging topic similarity and hyperlink
connections to ensure contextual richness. Stage 2 selects few-shot in-context examples from the MultiModalQA
dataset (Talmor et al., 2021) to guide generation. Stage 3 focuses on question generation (3.1) and validation (3.2),
ensuring questions require multihop reasoning, are answerable, and grounded in both text and images. Stage 4
generates (4.1) and validates (4.2) answers through named entity alignment, relation consistency, and hallucination
checks. Finally, Stage 5 generates (5.1) and validates (5.2) retrieval queries to collect diverse and relevant supporting
documents. The resulting samples are saved in a structured format for use in MMQA training and evaluation.

modeling with the Multimodal-Contrast model
(Gonzalez-Pizarro and Carenini, 2024). Since
Multimodal-Contrast can not handle long docu-
ments, we split each document into shorter seg-
ments containing at most one image, apply topic
modeling to each segment, then merge the results
and remove duplicates. This combination captures
both clear and subtle relationships across docu-
ments, integrating textual and visual information.

3.2 Stage 2: Creating Few-Shot Samples

We sample multihop questions from the Multi-
ModalQA dataset (Talmor et al., 2021), which re-
quires reasoning across text, images, and tables. As
our samples are based on full documents rather than
short information snippets like in MultimodalQA,
we crawled the complete Wikipedia HTML pages
using the entity links provided in MultimodalQA,
which are associated with the dataset’s examples.



We then compiled few-shot samples using these
full HTML pages—complete with images and ta-
bles—paired with their corresponding questions.
We randomly select up to three samples for ques-
tion generation in our experiments.

3.3 Stage 3: Question Generation and
Validation

Question Generation We use GPT-4-turbo (Ope-
nAl et al., 2024) to generate multihop, multimodal
questions from few-shot samples based on Mul-
tiModalQA few-shot examples. Due to context
limitations, inputs are limited to grouped sets con-
taining 2 or 3 documents. Our prompt (Appendix
A) is designed to ensure that questions require
reasoning across all documents and at least two
modalities, avoiding unrelated combinations such
as: “How did Einstein contribute to relativity and
when was Princeton established?"—a question that
spans multiple documents, but lacks meaningful
multihop reasoning.

Question Validation Our framework includes
validation stages to ensure questions meet multi-
hop and multimodal criteria. While the model was
prompted to avoid simple concatenations, we fur-
ther evaluated this aspect.

We used LLama-3.1-8B (Abhimanyu Dubey
et al., 2024) to decompose questions and check
if parts could be answered with a single document.
If all parts of the question were answerable with a
single document, we discarded such question that
include unrelated facts (see Unrelated Facts ex-
ample in Table 1). Otherwise, we retained only
the the parts of the questions that required informa-
tion from multiple documents to ensure the revised
question met the multihop criteria. However, a po-
tential issue was that, even when the facts were re-
lated, the questions could still become open-ended,
requiring explanations or combined answers (see
example Related Facts, Open-ended in Table 1).
In order to follow the standard of question answer-
ing, and make the evaluation process easier, we
used GPT-4o0 to rephrase the question without con-
junctions while maintaining its multihop nature, re-
sulting in Concise Multihop Question (Table 1).

Another key step in validation was ensuring the
questions were truly multimodal. After verifying
that a question was multihop, we tested whether
it remained answerable when the documents were
limited to a single modality (e.g., text-only, image-
only, or table-only). Using GPT-40 (refer to Sec-

tion 3.4 for details), we checked if the question
could be answered with just one modality. If so,
we discarded it, as it failed to meet the multimodal
requirement. This step helped refine the dataset to
include only questions that genuinely required rea-
soning across multiple modalities and documents.

3.4 Stage 4: Answer Generation and
Validation

Answer Generation We used GPT-4o to gener-
ate concise answers from multiple documents, in-
cluding text and images. The model was instructed
to provide a long answer and a short answer with
only key information and no extra explanation. To
help the model focus on specific details of images
in the given documents to answer the multimodal
question, we include question-related captions for
the images. For example, if the question asks about
the geometric shapes in an image (see Figure 15),
the model generates a caption describing the shapes.
This makes it easier for the model to answer the
question accurately.

Answer Validation We validated answers using
named entity recognition (NER) and relation ex-
traction, following prior work (Rajpurkar et al.,
2018; Fabbri et al., 2022). NER ensured key enti-
ties and numbers in the answer matched the docu-
ments, while relation extraction verified that entity
relationships were consistent with the source con-
tent (via Spacy (Wu and He, 2019)). For including
image content, we used the same question-related
caption generated by GPT-4o (e.g., noting a build-
ing’s color if relevant to the question) similar to
answer generation. To reduce hallucinations, we
prompted GPT-4o five times and accepted answers
only if all outputs (5/5) agreed. To evaluate the
effectiveness of our answer validation process, we
conducted a human study to assess the quality of
the filtered questions and answers. The results of
this evaluation are presented in Section 6.

3.5 Stage 5: Query Generation and Validation

Query Generation We generate queries using
GPT-40 based on the question-answer pairs and re-
lated documents to enhance retrieval effectiveness.
These queries guide the smaller model trained on
FM2DS-generated data to retrieve specific and rel-
evant information, improving its ability to answer
questions accurately. By narrowing down the con-
tent, we can extract key details such as named en-
tities, relationships, and contextual cues aligned



Question

Type

In what year did Mike Tyson become the youngest heavyweight champion,

and who is the president of the United States?

Unrelated Facts

Question Type

In what year did Mike Tyson become the youngest heavyweight champion,

and who was the president of the United States at that time? LR ERR(0 2 ooy
Question Type

Who was the president of the United States when Mike Tyson became the

youngest heavyweight champion?

Concise Multihop Question

Table 1: Examples of factual questions with varying degrees of relevance and conciseness, demonstrating progression

from unrelated to concise multihop reasoning.

with the question. This targeted approach ensures
that the generated answers are not only concise and
accurate, but also directly grounded in evidence
from the documents.

Query Validation To validate the queries, we
used MuRAG (Chen et al., 2022), which encodes
text and images into a shared embedding space for
multimodal retrieval. For each generated query, we
retrieved the top-5 documents retrieved by MuRAG.
If more than one of the original source documents
used to generate the question appeared in the top-5,
the query was considered well-formed. This pro-
cess ensures the query effectively captures diverse,
relevant information and can help teach smaller
models how to retrieve supporting evidence for
answering questions.

4 Proposed Benchmark: M>QA-Bench

We introduce M?QA-Bench, a benchmark of 1k di-
verse Q&A pairs to evaluate LVLMs on complex
MMOQA with full documents. Unlike templated
datasets (Talmor et al., 2021), questions are var-
ied and challenging (see Appendix G for details
on complexity and diversity). Answering requires
cross-modal reasoning and information extraction
from full documents, including images and tables.
See Table 2 for key statistics (more in Appendix G)
and Appendix I for samples generated by FM?DS
for M>QA-Bench. To create this benchmark, we
used the FM?DS pipeline to generate 1,200 sam-
ples, which were verified by three annotators for
correctness, multihop reasoning, multimodality,
and answer accuracy. Each sample was scored 1
(valid) or O (invalid). This annotation required min-
imal human effort (2.2 min/question on average)
due to structured queries. Samples averaging below
0.75 were removed, leaving 1,142 (i.e removing
only 5% of the total); we then randomly selected
1,000 for the benchmark to ensure consistency in
evaluation and reduce potential sampling bias. An-

notator agreement (Fleiss’ Kappa (Fleiss, 1971))
was 0.83.

Statistic Value
Image Modality Percentage 73.6%
Table Modality Percentage 89.6%
Both Image and Table Modality Percentage | 63.6%
Average Question Length (Word) 23.77
Average Answer Length (Word) 1.95

Average Source Documents Per Question 2.29

Table 2: Key statistics of the proposed multimodal mul-
tihop question answering benchmark.

S Experiments and Results

This section compares our synthesized dataset to
human-annotated ones. All experiments used one
in-context example during synthesis (see Appendix
C for effects of varying number in-context exam-
ples). GPT-40 was used in the pipeline (Appendix
D shows results with other LVLMs). Models were
evaluated using Exact Match (EM) for accuracy
and F1 for partial match quality. Further experi-
mental details can be found in Appendix B.

5.1 Comparison with Human-Annotated
Datasets

Unlike prior methods like MultiModalQA (Talmor
et al., 2021) and WebQA (Chang et al., 2021), our
approach is fully automated with no human involve-
ment (minimal human evaluation was used in creat-
ing the M?>QA-Bench only). This section compares
the quality of our synthesized data against these
human-annotated datasets. We trained LLaVA-
1.6 (Liu et al., 2023b,a, 2024), InternVL-2 (Chen
et al., 2023b, 2024c), and Idefics-2 (Laurengon
et al., 2023, 2024b) on varying sizes of WebQA and
MultiModalQA, evaluating on their respective test
sets. We also trained the same models on FM2DS-
generated training data and evaluated them on the
same test sets to assess the effectiveness of the syn-



Model Test Dataset
MultiModalQA WebQA
EM F1 EM F1
FT (Real/Syn) Real Syn Real Syn FT (Real/Syn) Real Syn Real Syn
LLaVa-1.6-7B 5k/5k 64.61 69.68 73.13 76.52 5k/5k 69.88 75.49 78.27 87.61
LLaVa-1.6-7B 10k/10k 73.96 75.14 78.36 79.48 10k/10k 77.49 79.06 82.59 82.76
LLaVa-1.6-7B 23.8k/21k  78.79 79.41 82.35 80.65 34.2k/16k  81.36 82.48 85.79 82.83
LLaVa-1.6-13B 10k/10k 77.45 79.46 79.12 81.32 10k/10k 80.22 83.24 84.26 84.95
LLaVa-1.6-13B 23.8k/21k  82.95 83.56 83.71 84.76 34.2k/13k  83.36 85.34 86.92 87.64
InternVL-2-8B 5k/5k 69.43 73.92 79.77 84.27 5k/5k 78.19 81.27 87.64 90.21
InternVL-2-8B 10k/10k 76.42 77.25 86.42 87.06 10k/10k 83.86 85.34 91.82 94.05
InternVL-2-8B 23.8k/17k  81.36 82.95 90.2 89.24 34.2k/15k  85.67 86.58 88.05 92.23
InternVL-2-26B 10k/10k 78.79 79.23 88.91 88.44 10k/10k 85.76 86.49 92.23 93.19
InternVL-2-26B 23.8k/16k  84.6 85.29 89.76 91.24 34.2k/15k  86.36 87.74 91.82 90.21
Idefics-2-8B 5k/5k 67.19 71.48 77.42 79.32 5k/5k 75.34 78.31 84.51 86.92
Idefics-2-8B 10k/10k 75.4 76.57 85.39 83.71 10k/10k 80.11 83.86 88.18 90.07
Idefics-2-8B 23.8k/18k  81.37 81.85 89.12 89.76 34.2k/15k  87.49 87.67 91.82 92.23
LLaVa-1.6-7B None 50.85 56.34 None 56.37 65.44
LLaVa-1.6-13B None 56.83 61.17 None 61.79 68.32
InternVL-2-8B None 61.27 68.26 None 68.01 76.39
InternVL-2-26B None 68.39 74.08 None 74.59 80.61
Idefics2-8B None 60.47 66.41 None 64.79 72.38
GPT-40 None 83.56 87.91 None 86.49 90.23
Llama-3.2-90B None 77.18 80.37 None 82.22 86.9
Claude-3.5-Sonnet None 73.84 77.38 None 76.29 79.43

Table 3: Comparison of synthetic and human-annotated data across various models. Smaller models were evaluated
with 5k, 10k, and full training sets (23.8k for MultiModalQA, 34.2k for WebQA), while larger models used 10k and
full sets. For each model, the listed synthetic sample size is the smallest (divisible by 1k) that outperforms the same
model trained on the full human-labeled set. For real samples, we used the WebQA training set for testing on the
WebQA test set, and similarly for MultiModalQA. “None” indicates default pretrained models. For more results,

see Appendix E.

thesized data in comparison to human-annotated
datasets.

As shown in Table 3, models trained on FM2DS
data outperform those trained on original datasets,
despite using longer documents. WebQA seems
easier than MultiModalQA, with better perfor-
mance from fewer samples. On average, EM im-
proved by 1.81 for MultiModalQA and 1.96 for
WebQA using equal or fewer synthetic samples.
While EM gains often lead to higher F1, some
cases show F1 drops due to hallucinated answers
reducing string overlap. Models trained on fewer
synthetic samples from FM?DS match the perfor-
mance of those trained on full datasets, showing
faster convergence (see Section 5.2). Larger mod-
els also perform better with the same synthetic
data—e.g., LLaVA-1.6-13B vs. 7B. GPT-40 leads
among large LVLMs, likely due to its role in data
generation (Refer to Appendix J for qualitative

analysis). When comparing these human annotated
data with our synthesized data, a common question
is: "Why not paraphrase existing datasets instead
of synthesizing new ones?". The answer is para-
phrasing does not enable domain adaptation, and as
shown in Appendix K, fine-tuning on our synthetic
data outperforms training on a paraphrased version
of MultiModalQA.

5.2 Learning Efficiency Comparison

To evaluate learning efficiency, we ran experiments
with InternVL-2-8B using incremental training
sizes from 1k to 10k (in 1k steps) on both syn-
thetic and human-annotated data. For real data, we
used the same dataset for training and testing—e.g.,
when testing on WebQA, training samples were
taken from the WebQA training set.

As shown in Figure 3(a & b), our synthesized
data outperforms real data at smaller training sizes,



Comparison of Synthesized and Real Samples In Training InternVL2-8B
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Figure 3: (a) and (b): EM and F1 comparison on 1k—10k samples for InternVL-2-8B shows that FM2DS’s synthetic
data outperforms human-annotated data, with the gap narrowing as sample size increases. (¢): Similar comparison
using full Wikipedia pages from the MultimodalQA dataset to match our synthetic data format.

Test Set
Training Set MultiModalQA QOurs
EM F1 EM F1
MultiModalQA | 63.2 74.24 48.6 61.45
Ours 68.4 77.88 55.8 69.06
Table 4: Cross-Dataset Evaluation Results With

InternVL-2-8B for MultiModalQA and Our Synthesized
Benchmark.

though the gap narrows as sample size grows. Near
10k samples, learning efficiency with synthetic data
declines more than with real data—Ilikely due to its
broader knowledge coverage. While this diversity
aids early learning, it can lead to saturation, unlike
real data, which offers more focused patterns and
sustains steady learning (Hong et al., 2023; Maini
et al., 2024).

In a related experiment on MultiModalQA, we
used full Wikipedia pages via linked articles as
training data instead of information snippets. This
was not possible for WebQA, as its source links
mostly point to WikiMedia pages with limited
text. Figure 3(c) shows that models trained on
full Wikipedia pages initially achieve better im-
provement per 1k samples; however, this advantage
declines after approximately 3k samples. This sug-
gests that, while full-page real data offers some
early benefits over short snippets, it still lacks
the generality and consistency of our synthesized
dataset. In contrast, the synthesized data—with its
built-in queries and diverse content—continues to
support steady learning, likely due to its broader
coverage and higher quality.

5.3 Cross-Dataset Evaluation

To assess the generalizability of our synthesized
data, we conducted a cross-dataset evaluation using

Test Dataset
Steps Included MultiModalQA WebQA
EM F1 EM F1
- 62.78 6439 | 69.32 78.56
Question Validation | 64.61 70.12 70.28 78.44
+ Answer Validation | 67.96  73.56 | 74.59 79.67
+ Query 70.83  75.84 | 7749 81.86
+ Query Validation | 73.92  84.27 | 81.27 90.21

Table 5: Results of the FM2DS with and without key
steps like query generation and verification. All other
steps are included in all of the results. The plus sign
("+") at the start each steps means all the previous steps
were included as well.

InternVL-2-8B. We used 1k samples from M2 QA-
Bench and 1k from the MultiModalQA test set,
both with full Wikipedia pages as sources. The
model was trained separately on 5k samples from
our dataset and 5k from MultiModalQA, using the
same input format. As shown in Table 4, the model
trained on our data outperformed the one trained on
MultiModalQA across both test sets, demonstrat-
ing stronger generalization. This also reflects the
greater complexity and diversity of our benchmark,
compared to MultiModalQA’s template-based ques-
tions. See Appendix H to see the performance on
model trained on FM2DS’s data when using on a
out of domain MMQA dataset.

5.4 Key Stages in FM’DS

To assess the impact of each data filtering and val-
idation step, we evaluated InternVL-2-8B on 5k
training samples under different configurations. As
shown in Table 5, each step contributed to perfor-
mance gains. Question validation improved rele-
vance by filtering questions tailored to the complex,
multimodal, multihop requirements of the test sets,
and reduced hallucinations, boosting F1 with more
accurate answers. Answer validation removed in-
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Figure 4: Bar plot showing EM and F1 scores of multi-
modal models on M?2QA-Bench.

correct samples, while query generation distilled
knowledge from larger models, improving EM and
F1. Query validation reinforced consistency by en-
suring proper structure. Refer to Appendix L for
statistics like '"Rejection Rate'' on the validation
stages used to remove specific samples during data
synthesis.

5.5 M?QA-Bench Evaluation Results

To assess the complexity of M?QA-Bench and com-
pare model performance, we evaluated a diverse
set of models, as shown in Figure 4. GPT-40 stands
out, outperforming even larger models like LL.aMa-
3.2-90B and Claude-3.5-Sonnet by a notable mar-
gin. Interestingly, smaller models in the 4B—-8B
range, particularly those from the Phi family (Ab-
din et al., 2024a,b), also achieve competitive results
despite their scale. GPT-40’s advantage may stem
in part from its involvement in the initial data gener-
ation, but this remains an open question, as human
annotators thoroughly reviewed and corrected the
dataset to ensure fairness, reduce bias, and maintain
high quality.

6 Human Evaluation of Answer
Validation

To evaluate the accuracy and impact of our auto-
matic answer validation component, we conducted
a human evaluation study. After generating ques-
tions for 100 samples, we continued the pipeline
using two methods: FM2DS with and without an-
swer validation. These samples were divided into
four batches of 25, with each batch evaluated by
three participants to mitigate potential bias or hu-
man errors. In total, 12 participants contributed
through our evaluation platform (see Appendix F),
assessing which method produced the correct an-
SWer.

Human Evaluation of the Impact of Answer Validation Step on
Reducing Factual Errorsin Answer Generation

DRAW 64.2%

FM2DS with Answer Val
WIN 32.4%

LOSS1%)

BOTH INCORRECT 2.4%

Figure 5: Human evaluation results, more people pre-
ferred FM?DS with answer validation (green region)
than without (red region).

Participants were instructed to verify the correct-
ness of each answer by reviewing the associated
Wikipedia pages. Once they determined the accu-
racy of each answer, they were asked to select one
of four options: (1) Method 1’s answer is correct,
(2) Method 2’s answer is correct, (3) both methods
generated the correct answer, or (4) neither answer
is correct (Method 1 and Method 2 were randomly
assigned to the datasets generated with and with-
out answer validation, respectively.). The results,
shown in Figure 5, reveal a clear trend: answer
validation increases the likelihood of correct an-
swers, even though the model without validation
still produced correct answers in over 60% of cases.
The Fleiss’ Kappa was 0.91—indicating strong
agreement—though this is expected, as the task
involved factual questions with definitive answers
rather than subjective judgments.

7 Conclusion & Future Works

We present FM?DS, a novel methodology for syn-
thesizing high-quality data for multimodal mul-
tihop question answering. Unlike existing ap-
proaches that are limited to single-hop and single-
modality settings, FM2DSgenerates complex QA
pairs that require reasoning over multiple modal-
ities and sources, with minimal human interven-
tion. Our framework enables the creation of a
large-scale dataset that significantly boosts model
performance, surpassing models trained on human-
curated data in terms of test accuracy. These re-
sults demonstrate the effectiveness of synthetic
data for advancing the state of the art in multi-
modal multihop QA. Additionally, FM?DSoffers
a scalable and efficient solution for training data-
hungry language models. For future work, we plan
to synthesize MMQA samples using sources be-
yond Wikipedia, including multilingual content,
code snippets, videos, and other diverse informa-
tion type.



Limitations

While FM2DS offers a robust pipeline for synthe-
sizing high-quality multimodal multihop QA data,
several limitations remain.

First, although the framework incorporates
strong validation steps—including factual consis-
tency checks, named entity alignment, and halluci-
nation detection—it is not immune to errors. Sub-
tle factual inaccuracies and hallucinations may still
persist, especially in answers grounded in complex
visual content. Despite using multiple generations
and automated agreement checks, there is still a
risk that some incorrect samples pass through un-
detected.

Second, our reliance on large-scale genera-
tive models such as GPT-4o0 throughout multi-
ple stages—including question generation, answer
synthesis, captioning, and validation—makes the
pipeline computationally expensive. This cost is
further amplified by the need to regenerate failed
samples that do not pass intermediate validation
steps. In some settings, particularly when generat-
ing large-scale datasets, the repeated use of high-
capacity models may pose practical limitations in
terms of both time and resources.

Third, while our method improves factual ac-
curacy and reduces hallucination, the validation
pipeline is primarily designed for fact-based QA.
This makes it less suitable for tasks involving sub-
jective reasoning, commonsense inference, or open-
ended discussion questions. Extending the pipeline
to handle such cases would require fundamentally
different validation strategies that go beyond fac-
tual grounding.

Finally, since the student models are trained on
data generated by large models (used in both syn-
thesis and supervision), there is a risk of knowl-
edge leakage or model bias propagation. The syn-
thetic data may overrepresent patterns and linguis-
tic preferences from the teacher models, potentially
limiting the generalizability of the student models
trained on it.

Ethics Statement

Potential Risks The primary risk associated with
this work lies in the possibility of propagating fac-
tual inaccuracies or biases through automatically
synthesized data. While our validation pipeline
aims to minimize hallucinations and ensure factual
correctness, it may not catch all subtle errors. Addi-
tionally, overreliance on large language models for

data generation could inadvertently reinforce biases
encoded in those models. Our approach does not
involve any sensitive personal data or downstream
applications that could directly harm individuals.

Annotator Recruitment To verify and refine
the samples in our M?QA-Bench dataset, we re-
cruited three human annotators with prior experi-
ence in NLP and data annotation (two men and one
woman). These annotators were compensated fairly
at a rate of $25 per hour to reflect their expertise
and time investment. All annotators were provided
with detailed task descriptions and underwent an in-
formed consent process prior to participation. The
annotation process was conducted in accordance
with ethical research guidelines and ensured volun-
tary participation and data confidentiality.

Evaluator Recruitment For the human evalua-
tion component of our study, we recruited twelve
evaluators to compare answers generated with and
without our validation pipeline. Evaluators were
compensated at a rate of $10 per hour and partic-
ipated voluntarily after giving informed consent.
They were clearly informed about the nature and
purpose of the task. We ensured the task was low-
risk, did not involve sensitive content, and that par-
ticipation remained anonymous and non-intrusive.

Consent and Data Privacy All participants in
both annotation and evaluation roles were briefed
on the nature of the task and explicitly consented
to take part in the study. No personally identifiable
information was collected or stored during any part
of the research process. All data generated and
reviewed by annotators and evaluators remained
anonymous and was used strictly for academic re-
search purposes.

Use of AI Assistants We used Al assistants such
as GitHub Copilot and ChatGPT to support coding,
text editing, and formatting tasks during the devel-
opment of this paper and the implementation of our
framework. These tools were employed to acceler-
ate workflow and refine writing, but all conceptual,
experimental, and analytical decisions were made
by the authors. We ensured that no sensitive data
was provided to these tools during usage.
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A Prompts

In our data generation pipeline, FM2DS, which in-
corporates LVLMs, we carefully designed prompts
to guide the model through tasks involving cross-
modal reasoning and data synthesis. Each prompt
was carefully designed with specific elements to en-
sure precision, clarity, and completeness in achiev-
ing the task’s objectives, while also minimizing
the need for error correction during the evaluation
process. In the following sections, we outline the
rationale behind the structure and components of
these prompts.

A.1 Question Generation

Prompt 1 show the prompt used for question gen-
eration. Using this prompt, we ask the model to
create multi-hop questions that require informa-
tion from all provided documents and modalities
(e.g., text and images) to answer. The key aim is
to design questions that are unanswerable if any
one document or one modality is given, promot-
ing the need for multi-document and multimodal
reasoning. It ensures the model generates ques-
tions that require synthesizing information from
diverse sources to form a comprehensive under-
standing. To avoid duplicate data generation, if
the generated question was already present in the
dataset, we reused the same prompt but included
the previously generated questions from the same
set of documents. The model was then instructed
to generate a new, unique question.

A.2 Answer Generation

The prompt for answer generation directs the model
to analyze multiple documents, encompassing both
text and images, to address the given question. It
emphasizes integrating and synthesizing informa-
tion from all sources to deliver the most accurate
and comprehensive response. The prompt ensures
that the model considers all modalities and docu-
ments without relying solely on a single source or
the model’s pre-trained knowledge, focusing exclu-
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Generate a multi-hop question
based on the provided information.
A multi-hop question requires the
model to utilize information from all
available documents in combination
to reach the ~correct answer.
Specifically, the question should
be designed to be unanswerable
if any one of the documents is
missing. Furthermore, focus on
creating questions that compel the
model to extract and synthesize
relevant information across multiple
modalities—such as images and text.

This means that answering the
question correctly will demand
integrating insights from each
source and modality, making it

impossible to arrive at an accurate
answer using any single document or
modality alone.

Here are the documents:
[Documents]

Here are examples:
[Example(s)]

Prompt 1: The prompt for question generation defines
what constitutes a multi-hop question and instructs the
model to create a multimodal and multihop question
based on the provided documents. It emphasizes that
the question should require information from multi-
ple modalities and multiple given documents to be an-
swered, similar to the given example(s).

sively on the provided materials. Refer to Prompt
2 for the answer-generation prompt.

A.3 Query Generation

As illustrated in Prompt 3, in query generation, the
model is tasked with explaining the step-by-step
process used to extract relevant information from
the documents and determine the answer based on
the extracted snippets. This task emphasizes trans-
parency by requiring the model to identify the rele-
vant sections of each document and describe how
information from multiple sources is retrieved and
combined to arrive at the correct answer, promoting
explainability in the model’s reasoning process.



You are provided with multiple
documents, including both textual
content and images, along with a
question. Your task is to carefully
review each document, analyze the
images, and derive an answer based
on the information contained across
all sources. Aim to combine
insights from both documents and
across modalities to deliver the most
accurate and comprehensive response
possible.

Question:
[Question]

Here are the documents:
[Documents]

Here are examples:
[Example(s)]

You are provided with multiple
documents, a question, and the
answer. Your task is to explain
the step-by-step process you would
use to extract and verify the answer
using information from the documents
and various modalities. Clearly
identify each document title and
relevant sections, and describe how
you locate, interpret, and integrate
information across both documents to
derive the correct answer.

Question:
[Question]

Answer:
[Answer]

Here are the documents:
[Documents]

Prompt 2: The answer generation prompt instructs the
model to answer the question solely based on the pro-
vided documents, utilizing all available modalities, with-
out relying on its pre-trained knowledge.

B Experimental Settings

In this work, we conducted experiments on a clus-
ter of 8§ NVIDIA H100 80GB GPUs. The dis-
tributed setup allowed us to efficiently scale our
fine-tuning process across multiple devices. The
fine-tuning process was carried out using low-rank
adaptation (LoRA) (Hu et al., 2022), a technique
for efficient adaptation of pretrained models with
low-rank matrices, reducing the number of train-
able parameters. The key hyperparameters used in
the fine-tuning procedure include a learning rate
of le-4, a batch size of 8 per device (totaling 64
across 8 devices), LoRA rank set to 8, LoRA alpha
set to 32, a weight decay of 0.01, and the number
of epochs was 5. Additionally, AdamW optimizer
was used with 51 = 0.9, B3 = 0.98, and ¢ = le—8.
The models were fine-tuned using mixed-precision
training to take full advantage of the 80GB mem-
ory on each H100 GPU. For inference time, we
set the temperature to 0.7, which strikes a balance
between randomness and coherence in the model’s
responses, producing more varied outputs without
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Prompt 3: The query generation prompt instructs the
model to provide a step-by-step plan for extracting rele-
vant information needed to answer the question.

sacrificing too much quality. This setup ensured
efficient usage of computational resources while
maintaining high model performance.

C The Effect of the Number of
In-Context Examples

MultiModalQA WebQA
Number of Shots EM F1 EM F1
zero-shot 66.42 75.1 71.05 793
one-shot 73.92 84.27 81.27 90.21
two-shot 74.3 83.71 81.5 91.37
three-shot 7445  85.39 81.6 91.21

Table 6: Effect of the number of in-context documents
on the performance of Intervl-2-8B on MultiModalQA
and WebQA datasets.

Table 6 presents the results of evaluating the
Intervl-2-8B model with varying numbers of in-
context examples on the MultiModalQA and We-
bQA datasets. In the zero-shot setting, FM?DS
exhibits limited understanding of multimodal multi-
hop question answering, and occasionally circum-
vents the validation step by simply generating a



question that is not multihop. For example, "Look-
ing at the image of the Eiffel Tower, what engi-
neering innovation allowed it to surpass previous
structures in height?" prompts the model to use
the image, but the answer is available in the page’s
text on tall structures. As we move from zero-
shot to one-shot, there is a significant boost in EM
and F1 scores, reflecting improved performance
with minimal context. The improvement from one-
shot to two-shot is marginal, suggesting diminish-
ing returns. With three in-context samples, the
gains become minimal, indicating that additional
samples beyond two provide little benefit. This
diminishing return may stem from the model’s lim-
ited context window, which restricts its ability to
fully utilize large in-context samples (Kaplan et al.,
2020; Bertsch et al., 2024).

D Comparing Methods For Data
Synthesis

To evaluate the effectiveness of different methods
for synthetic data generation, we compared three
prominent language models: GPT-40, Claude 3.5
Sonnet, and Llama-3.2-90B, as shown in Table
7. Using Intervl-2-8B with 5K fine-tuning sam-
ples as our baseline model, we tested the quality
of generated data on two distinct datasets: Mul-
tiModalQA and WebQA. The results, measured
using EM and F1 scores, demonstrate that GPT-40
consistently outperforms other models across both
datasets. We also see that Llama-3.2-90B shows
competitive performance as an open-source model
with less number of parameters, particularly in We-
bQA tasks. Claude 3.5 Sonnet generally yields
lower scores across both datasets. As shown in
Figure 4, Claude-3.5-Sonnet outperforms Llama-
3.2-90B, which may be attributed to differences in
the tasks that were included during their respective
training phases. This observation can be further
investigated.

MultiModalQA WebQA
Model EM Fl EM  FI
GPT-40 7392  84.27 | 81.27 90.21
Claude-3.5-Sonnet | 68.35 76.01 76.98 83.86
Llama-3.2-90B 70.64 76.32 | 79.81 86.75

Table 7: Performance comparison of different models
for data generation on test datasets.
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E Investigating FM>DS on Other Models

In addition to the models discussed in Section 5, we
explored other model families, including Idefics3
(Laurengon et al., 2024a), mPLUG-DocOwl-1.5
(Hu et al., 2024), and Phi-3.5-Vision-Instruct (Ab-
din et al., 2024a), as well as larger versions within
the explored families presented in Table 3. The
results in Table 8 demonstrate the reliability of
our data synthesis approach, which consistently en-
hances model performance across all models and
sizes compared to an equivalent number of real
samples.

As Table 8 shows, within the same model ar-
chitecture, as the number of parameters increases
and the model complexity grows (e.g., InternVL-
2), the performance generally improves, including
the pre-trained version. These models also exhibit
more effective learning, especially when provided
with synthesized data generated by FM2DS, which
makes the learning process more efficient. More-
over, Idefics-3 shows notable improvement over its
predecessor, Idefics-2, indicating that the newer ver-
sion has a better visual reasoning. When comparing
mPLUG-DocOwl-1.5 with models like InternVL-
2, Idefics-2, and Idefics-3, it demonstrates rela-
tively lower performance. This could be attributed
to the training objective of mPLUG-DocOwI-1.5,
which focuses on multi-grained text recognition
and parsing, potentially resulting in weaker perfor-
mance when visual reasoning is required. Never-
theless, this model still outperforms LLaVA-1.6-7B
overall, which might be due to the simpler struc-
ture of the LLaVA-1.6 family. Finally, Phi-3.5-
Vision-Instruct, despite having fewer parameters
compared to other models, performs competitively
with other models and surpasses LLaVA-1.6-7B in
performance.

F Human Evaluation Details

To facilitate a rigorous human evaluation of our
answer validation component, we created a Google
Form to recruit participants willing to contribute
to our evaluation. We shared this form widely and
will acknowledge the contributions of participating
individuals in the acknowledgment section of the
paper’s camera-ready version.

After registration, participants were divided into
four batches (three participants per batch, each as-
signed 25 samples, 100 in total) and given access
to a custom evaluation app, shown in Figure 6, to
review the samples in their assigned batch. This



Model Test Dataset
MultiModalQA WebQA
EM F1 EM F1
FT (Real/Syn) Real Syn Real Syn FT (Real/Syn) Real Syn Real Syn
LLaVa-1.6-34B 10k/10k 79.41 80.92 82.55 83.71 10k/10k 84.41 84.94 85.58 85.79
LLaVa-1.6-34B 23.8k/16k  84.83 85.29 85.51 86.42 34.2k/13k  86.48 87.49 88.18 88.18
InternVL-2-40B 10k/10k 82.18 83.56 89.24 90.2 10k/10k 87.67 89.77 92.76 93.82
InternVL-2-40B 23.8k/15k  86.63 87.27 91.73 91.44 34.2k/14k  89.77 90.32 93.19 93.19
InternVL-2-76B 10k/10k 83.95 86.15 89.76 90.72 10k/10k 88.12 90.32 93.19 94.77
InternVL-2-76B 23.8k/14k  90.82 91.34 92.79 93.81 34.2k/14k  93.14 93.65 94.06 93.82
Idefics-3-8B 10k/10k 76.42 77.56 86.74 88.23 10k/10k 82.48 84.62 89.12 90.09
Idefics-3-8B 23.8k/19k  82.18 83.56 90.27 91.81 34.2k/15k  86.49 87.77 92.55 93.31
Phi-3.5-Vision-Instruct-4.2B 10k/10k 69.43 70.25 75.35 77.57 10k/10k 78.31 80.22 84.5 85.18
Phi-3.5-Vision-Instruct-4.2B ~ 23.8k/22k  77.85 78.79 82.59 84.61 34.2k/19k  80.11 81.27 85.34 87.48
mPLUG-DocOwl-1.5-8B 10k/10k 7224 74.82 78.82 79.49 10k/10k 81.27 83.86 87.52 88.75
mPLUG-DocOwl-1.5-8B 23.8k/20k  79.41 80.12 84.69 87.07 34.2k/17k  82.48 84.42 87.93 89.21
LLaVa-1.6-34B None 60.11 64.06 None 64.33 70.82
InternVL-2-40B None 72.93 77.42 None 76.98 82.33
InternVL-2-76B None 75.32 79.32 None 78.31 85.41
Idefics-3-8B None 61.27 69.74 None 69.88 76.39
Phi-3.5-Vision-Instruct-4.2B None 55.78 62.16 None 63.68 69.74
mPLUG-DocOwl-1.5-8B None 58.46 64.02 None 66.38 71.26

Table 8: Comparison of model performance across various architectures, sizes, and sample sources (real vs.
synthesized by FM?DS). The models were evaluated on 10k samples and the full dataset (23.8k samples for
MultiModalQA and 34.2k samples for WebQA). When comparing models tuned on synthesized data with those
trained on the full training set, the smallest number of synthetic samples (divisible by 1k) that outperforms models
trained on the full datasets is reported. For real sample evaluations, the WebQA training set is used for testing on
the WebQA test set, and the same applies to MultiModalQA. Models trained with synthesized samples consistently
outperform those trained with equivalent numbers of real samples.

application was designed to streamline the evalua-
tion process and ensure consistency across partici-
pants. For each question, participants could review
the question text, the associated Wikipedia pages,
and the generated answers from two methods—one
method utilizing the answer validation component
and the other without it. To minimize user bias, the
application randomly alternated the positioning of
the methods’ answers (labeling them as “Answer
A” and “Answer B”) so that users could not de-
velop a tendency to select one model over the other
based on position alone. After examining the ques-
tion and relevant Wikipedia content, users were
asked to select one of four options to indicate their
assessment of answer accuracy: (1) Answer A is
correct, (2) Answer B is correct, (3) both answers
are correct, or (4) neither answer is correct.

In addition to these selections, participants had
the option to provide a brief rationale for their
choices. Although they have not been investigated
for this research, these optional feedbacks were en-
couraged, as they offer valuable insights for quali-
tative analysis and potential future improvements

in answer validation accuracy. The combination of
structured and open-ended responses enhances the
robustness of our evaluation and offers a more com-
prehensive view of user judgments, which we may
explore in future iterations of our data synthesis
methodology.

The evaluators had diverse academic and pro-
fessional backgrounds, including graduate students
in computer science, data science researchers, and
software engineers with experience in NLP and
machine learning. All evaluators were proficient in
English and had prior familiarity with Wikipedia-
style content and fact-based question answering
tasks. This diversity contributed to reliable judg-
ment across a wide range of topics and ensured
that participants had the necessary background to
assess factual correctness and relevance accurately.
In total, twelve individuals participated in the eval-
uation: seven men and five women.
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Human Evaluation Platform
Which Output is Better?

Task: "Multimodal

Question: MultiHop Question Question:
) ) e ) Answering" ) ) e )
"Are both the National Museum of the American Indian in Washington, D.C. "Are both the National Museum of the American Indian in Washington, D.C.
and the Xanadu House in Kissimmee, Florida the same color?" “Evaluate based on which model and the Xanadu House in Kissimmee, Florida the same color?"
has a better Answer. Use the
Answer: Wikipedia links to look up the ETER
N answer °
No Yes
Wiki-URLS: [ Rl ‘ { Bl J Wiki-URLS:
- National Museum of the American Indian: ( ) B B - National Museum of the American Indian:
https://en.wikipedia.org/wiki/National_Museum_of_the_American_Indian L Neither ‘ L Both J https://en.wikipedia.org/wiki/National_Museum_of _the_American_Indian
- Xanadu Houses: https://en.wikipedia.org/wiki/Xanadu_Houses - Xanadu Houses: https:/en.wikipedia.org/wiki/Xanadu_Houses
Reason for your choice
(optional)

Figure 6: The custom evaluation application was used for human evaluation. The application presents each
participant with a randomly selected question, relevant Wikipedia pages, and two model-generated answers labelled
as Answer A and Answer B. One answer is generated by the pipeline with validation, while the other comes from the
pipeline without it. Participants are asked to choose the correct answer and optionally provide feedback on their
choice. To minimize bias, the application randomizes the position of each model’s answer.
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Figure 7: Distribution of domains in M2QA-Bench.

G Additional Statistics & Information on  Figure 8 presents the distribution of named entities
M?QA-Bench found in the answers.

As illustrated in Figure 7, M?QA-Bench encom- To further examine the diversity of ques-
passes a diverse range of domains. Additionally, tions in our benchmark—which also reflects the
the answers span various types of named entities,  overall characteristics of the data generated by
including people, products, works of art, and more. ~ FM2DS—we conducted a 2D t-SNE analysis of
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Named Entity Types in Answer of M?2QA Bench
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Figure 8: Distribution of named entities in answers in M2QA-Bench.

question embeddings using ModernBERT (Warner
et al., 2024). We sampled 500 questions each from
M?QA-Bench, MMQA, WebQA, and ScienceQA
(Lu et al., 2022b). ScienceQA serves as a fully
human-authored dataset, while MMQA and We-
bQA primarily use templated questions. As shown
in Figure 9, MMQA and WebQA display the least
diversity. In contrast, M? QA-Bench, which in-
cludes questions generated from FM2DS, demon-
strates greater similarity to human-generated data,
reflecting a reduced domain gap and improved di-
versity compared to MMQA and WebQA.

H FM’DS Generalizability to Other
Domains

FM?DS can generate domain-specific synthetic
data using just a single in-context example and user-
provided documents, enabling even small LVLMs
to handle domain-specific multimodal multihop
QA. As shown in Figure 7, FM?DS’s data (includ-
ing M?QA-Bench) spans various domains. To fur-
ther assess its generalizability, we trained InternVL-
2-8B on 5k synthesized samples and evaluated it on
the health-related dataset PMC-VQA (Zhang et al.,
2023) using 50k test samples. We then compared
its performance to the pretrained InternVL-2-8B
on the same test set. Training improved accuracy
from 52.82 to 65.72, demonstrating the benefits of
our synthetic data.
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I M?QA-Bench Examples

FM?DS uses LVLMs to generate multimodal and
multihop questions based on the given documents
and evaluate their answers. These samples aim
to emulate few-shot examples typically provided
to guide the model’s behavior in a structured and
relevant manner.

In some cases, the questions focus on under-
standing facts from different modalities—such as
images, text, and tables—within the grouped doc-
uments and finding the answer from one of them.
For example, in the case of the question shown in
Figure 10:

How many people died in the event
shown in the photograph “Raising the
Flag on Iwo Jima” from the country
shown in the picture?

LVLM is tasked with combining information from
two documents: Raising the Flag on Iwo Jima and
Battle of Iwo Jima. Here, the hyperlink between
the two documents served as the connection be-
tween two docments. The model identifies that
the photograph depicts American soldiers (based
on the USA flag) and cross-references the table
from the Battle of Iwo Jima document to determine
that 539 people from the USA were killed. This
demonstrates how the model synthesizes informa-
tion across modalities to form an accurate response.
Afterward, the model generates queries, serving
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Figure 9: 2D t-sne visualization of ModernBERT embeddings of questions between M?QA-Bench, WebQA,
MultimodalQA, and ScienceQA.

Raising the Flag on Two Jima

Battle of Iwo Jima

How many people died in the event shown in
the photograph "Raising the Flag on Iwo Jima”
from the country showed in the picture?

Based on the photograph of "Raising the Flag
on Iwo Jima", the soldiers hold the USA flag so
we want to know the number of people killed

Image From "Raising the Flag on
Iwo Jima" Document

Information Pieces Used by LLM For
Question Generation and Answering

from USA not Japan. From the Table from

The Battle of Iwo Jima (19 February — 26
March 1945) was a major battle in which the
United States Marine Corps (USMC) and
United States Navy (USN) landed on and
eventually captured the island of Iwo Jima
from the Imperial Japanese Army (IJA) during
World War Il. The American invasion,
designated Operation Detachment, had the
goal of capturing the island with its two
airfields: South Field and Central Field.

Text From "Battle of Iwo Jima™
Document

"Battle of Iwo Jima" document, the answer is
539.

Ve N
Query: |
(1) Image From Raising the Flag on Iwo Jima
document shows USA is country wanted in the
question.

(2) Table From Battle of lwo Jima document
shows the number of people killed from USA side
was 539. |

A 4

Table From "Battle of Iwo Jima™
Document

Figure 10: Multimodal and multihop reasoning example from M?QA-Bench where the model answers a question
about the photograph "Raising the Flag on Iwo Jima" by synthesizing information from linked documents through a
hyperlink, leveraging both visual and tabular data to determine the number of casualties from the USA.

as a step-by-step guide to extract relevant infor-
mation from the documents. Using the extracted
snippets, it then answers the question. For instance,

the model would need to locate the image Rais-
ing the Flag on Iwo Jima to determine the country
mentioned in the question, which is the USA. Next,
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Music from Big Pink Imagine (John Lennon album)

Background (s

Between the album featuring a man bending on a
piano and the album that includes the song "I
Don't Wanna Be a Soldier," which one is older?

The album featuring a famous photograph of a
man bending on a piano is "Music from Big Pink"
by The Band, released in 1968. The album that
includes the song "I Don't Wanna Be a Soldier" is
"Imagine" by John Lennon, released in 1971.

Therefore, "Music from Big Pink" was released

Information Pieces Used by LLM For
Question Generation and Answering

Recording for the album started on 24 May at
Ascot Sound Studios. The first songs
recorded were "lts So Hard" and "I Don't
Want to Be a Soldier" in February 1971 at
Ascot Sound Studios, during sessions for
Lennon's single "Power to the People". A
cover of the Olympics' 1958 song "Well (Baby
Please Don't Go)", later released on John
Lennon Anthology, was recorded on 16
February. Lennon chose to remake "I Don't
Want to Be a Soldier" on 24 May 1971, the
opening day of the main album sessions.

Image From "Music from Big
Ping"

Text From "Imagine” Document

Recording for the album started on 24 May at
Ascot Sound Studios. The first songs
recorded were "It's So Hard" and "I Don't
Want to Be a Soldier" in February 1971 at
Ascot Sound Studios, during sessions for
Lennon's single "Power to the People”. A
cover of the Olympics' 1958 song "Well (Baby
Please Don't Go)", later released on John
Lennon Anthology, was recorded on 16
February. Lennon chose to remake "I Don't
Want to Be a Soldier" on 24 May 1971, the
opening day of the main album sessions.

first.

=

P
[ Query:
(1) Image from Music from Big Pink document
shows Music from Big Pink is the album that
includes an image of a man bending over a
piano.
(2) Text from Music from Big Pink document
shows the album was released in 1968.
(3) Text from Imagine document shows The Band
album was released in 1971 with | Don't Want to
[\Be a Soldier.

Text From "Music From Ping"
Document

Figure 11: Multimodal multihop reasoning example from M?QA-Bench where the model compares the release dates
of two albums, "Music from Big Pink" and "Imagine," using textual and visual cues. The documents are connected
through their shared topic, "music," and the answer is determined as the title of the earlier-released album.

by referencing the table in the Battle of Iwo Jima
document, it provides the final answer.

In other cases, the questions involve comparing
elements between objects in two different docu-
ments, where the answer is typically the title of
one of the documents provided. For example, the
question shown in Figure 11:

Which album was released first: the one
featuring a famous photograph of a man
bending on a piano or the album that
includes the song “I Don’t Wanna Be a
Soldier”?

requires the model to compare temporal informa-
tion across two documents: Music from Big Pink
and Imagine. The model identifies that Music from
Big Pink, featuring a photograph of a man bending
on a piano, was released in 1968, while Imagine,
containing the song “I Don’t Wanna Be a Soldier,”
was released in 1971. Therefore, the answer is
Music from Big Pink. In this case, the documents
were connected through their shared topic, music.
The query generation in this example is similar to
the first but differs slightly, as three information
snippets are key to answering the question, making
the query three steps long.

J Qualitative Analysis

In the qualitative analysis, we compared three crit-
ical factors influencing model responses: model

architecture, fine-tuning (FT) dataset (real samples
or synthesized samples), and model size. To ex-
amine the effects of model architecture and FT
dataset, we used InternVL-2-8B, LLaVA-1.6-7B,
and Idefics-2-8B, fine-tuning them on both real and
synthetic data generated by FM2DS. For analyzing
the impact of model size, all versions of InternVL-
2 were trained on the synthetic data. All of the
mentioned models were fine-tuned on Sk samples.

This analysis was conducted for 100 samples
from each of the following benchmarks: (1) M?QA-
Bench, (2) MultiModalQA, and (3) WebQA. The
results are presented in Tables 9, 10, and 11. The
responses generated by different models were ana-
lyzed across these datasets, focusing on the follow-
ing metrics:

1. Model accuracy using the exact match (EM)
metric.

2. Hallucination rate, corresponding to instances
where the model generated wrong answer
based on its pre-trained knowledge instead
of the provided document.

3. Model accuracy with EM metric for samples
including image modality (may include other
modalities).

4. Model accuracy with EM metric for samples
including table modality (may include other
modalities).



5. Model accuracy with EM metric for samples
including both image and table modalities.

For WebQA, which only incorporates text and
image modalities, the last three metrics were not
applicable. Additionally, the distribution of modali-
ties across samples for MultiModalQA and M?QA-
Bench was as follows:

* M?QA-Bench: 66 samples included image
modality, 62 samples included table modality,
and 28 samples included both image and table
modalities.

MultiModalQA: 61 samples included image
modality, 54 samples included table modality,
and 15 samples included both image and table
modalities.

Opverall, in all benchmarks, model hallucination
rates decreased as model complexity and param-
eter count increased, resulting in more accurate
answers across all modalities (e.g., see Figure 15
for an example output of these models). Larger
models consistently outperformed smaller models
on both modalities. Regarding synthetic data, fine-
tuning on data generated by FM?2DS significantly
reduced hallucination and improved performance
across all modalities. While the hallucination rates
among different model families are relatively simi-
lar, all models occasionally generate answers based
on their pre-trained knowledge rather than the pro-
vided document. Fine-tuning on data generated by
FM?DS effectively alleviates this issue. Among
the models, as shown in Table 3, LLaVA-1.6 exhib-
ited the poorest performance and the highest likeli-
hood of hallucination, followed by Idefics-2, with
InternVL-2 demonstrating the best performance.

Regarding the effect of modalities, results from
Tables 9 and 10 suggest that the modalities them-
selves are not the most critical factor. Instead,
the complexity of how the question integrates the
modalities plays a more significant role. For M?QA-
Bench, models performed better when visual un-
derstanding was not required, with tables and text
being the primary contributors to the results. In
contrast, for MultiModalQA, models tended to per-
form better on image-based questions, highlighting
the importance of how the question leverages the
modalities. For questions involving both modali-
ties, smaller models struggled more to produce cor-
rect answers, while larger models performed better
in terms of EM. It is important to note, however,
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that due to the substantial difference in the number
of samples containing both image and table modal-
ities compared to those with only one modality, the
reported results are not directly comparable. Refer
to Figures 13 and 14 for the outputs of different
model families fine-tuned on either real or synthe-
sized data. Moreover, Figure 15 shows outputs
from different model sizes within the same family,
fine-tuned on either real or synthesized data.

K Synthesizing Data vs. Paraphrasing
Exisiting Human Annotated Datasets

Paraphrasing questions from existing datasets in-
troduces surface-level linguistic changes but pre-
serves the original semantic intent and reasoning
pathways, offering only marginal improvements in
model training. In contrast, the data synthesized by
FM?DSis intentionally crafted to introduce diverse
question structures, span multiple domains, and
require varied types of reasoning, pushing mod-
els toward more comprehensive multimodal under-
standing. To compare these approaches, we trained
InternVL-2-8B using 1k samples from three set-
tings: (I) the original MultimodalQA dataset, (I) a
paraphrased version of MultimodalQA where ques-
tions were reworded using GPT-40 with the prompt
"Please paraphrase the following question: [Ques-
tion]" and (III) synthesized samples generated by
FM?DS. For all conditions, we used full Wikipedia
documents as sources. Figure 12 presents the re-
sults, showing that while paraphrasing provides a
slight improvement, synthesizing new, high-quality
samples with FM2DS leads to a substantial perfor-
mance gain.

L Statistics on Usages of Each Validation
Stage of FM?DS

As described in Section 3 and illustrated in Figure
2, FM?DS incorporates multiple validation stages
to enhance data quality. It is essential to analyze
how frequently each stage rejects the initially gen-
erated outputs. Table 12 presents statistics based on
generating 1,000 examples using GPT-40. Among
the stages, question validation has the highest re-
jection rate, suggesting that this step is the most
challenging. This may be because generating a
question requires the model to synthesize all rele-
vant knowledge and fully grasp the context. In con-
trast, answer validation benefits from the guidance
provided by the question, making the task relatively
easier. Query validation appears to be even more



Model Trained On | EM 1 Hallucination | EM (Table) EM (Image) EM (Image&Table)
InternVL-2-8B Real 0.43 0.67 0.56 0.51 0.46
InternVL-2-8B Synth 0.57 0.51 0.77 0.68 0.64
Idefics-2-8B Real 0.39 0.72 0.54 0.44 0.43
Idefics-2-8B Synth 0.55 0.68 0.71 0.62 0.53
LLaVA-1.6-7B Real 0.35 0.71 0.43 0.39 0.32
LLaVA-1.6-7B Synth 0.47 0.51 0.61 0.46 0.39
InternVL-2-26B Synth 0.61 0.54 0.87 0.74 0.75
InternVL-2-40B Synth 0.64 0.5 0.89 0.8 0.78
InternVL-2-76B Synth 0.72 0.28 0.98 0.95 0.92

Table 9: Performance comparison of different model families fine-tuned on real and synthesized data on M?QA-
Bench. The ratios for EM scores and hallucination were calculated from filtered data (e.g., hallucination as the
proportion of hallucinated responses to incorrect answers). In the table, 1" indicates that larger values are better (all
EM values), while |. indicates that smaller values are better (hallucination rate). The scores for EM (Table) and EM
(Image) may include samples that also contain other modalities. Larger models and those fine-tuned on synthesized
data generally show improved performance with reduced hallucination rates. In M2QA-Bench, models demonstrate
higher performance on questions involving table modality compared to those involving images.

Model Trained On | EM T Hallucination | EM (Table){ EM (Image) EM (Image & Table)t
InternVL-2-8B Real 0.66 0.62 0.7 0.72 0.53
InternVL-2-8B Synth 0.68 041 0.75 0.78 0.67
Idefics-2-8B Real 0.61 0.64 0.61 0.63 0.33
Idefics-2-8B Synth 0.64 0.53 0.67 0.69 0.47
LLaVA-1.6-7B Real 0.59 0.66 0.57 0.56 0.2
LLaVA-1.6-7B Synth 0.62 0.39 0.64 0.61 0.33
InternVL-2-26B Synth 0.7 0.37 0.79 0.85 0.8
InternVL-2-40B Synth 0.74 0.35 0.85 0.89 0.87
InternVL-2-76B Synth 0.8 0.15 0.93 0.94 0.93

Table 10: Performance comparison of different model families fine-tuned on real and synthesized data on Mul-
timodalQA. The ratios for EM scores and hallucination were calculated from filtered data (EM(Table) refers to
the EM score calculated on samples that include the table modality). In the table, 1 indicates that larger values
are better (all EM values), while | indicates that smaller values are better (hallucination rate). The scores for EM
(Table) and EM (Image) may include samples that also contain other modalities. Larger models and those fine-tuned
on synthesized data generally exhibit improved performance with reduced hallucination rates. In MultiModalQA,
models demonstrate higher performance on questions involving the image modality compared to those involving
tables.

straightforward, as it primarily involves formatting
the reasoning steps—something the model has ef-
fectively done during answer generation. Addition-
ally, the use of question-specific image captions
during answer generation likely contributes to a
lower error rate by helping the model locate the
correct information only text modality.
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Model Train On | EM 1 Hallucination |
InternVL-2-8B Real 0.76 0.41
InternVL-2-8B Synth 0.78 0.32
Idefics-2-8B Real 0.72 0.48
Idefics-2-8B Synth 0.75 0.36
LLaVA-1.6-7B Real 0.70 0.53
LLaVA-1.6-7B Synth 0.74 0.34
InternVL-2-26B Synth 0.81 0.21
InternVL-2-40B Synth 0.82 0.11
InternVL-2-76B Synth 0.85 0

Table 11: Overall performance of different model families fine-tuned on real and synthesized data on WebQA.
Hallucination is the proportion of hallucinated responses to incorrect answers. In this table, 1 indicates that larger
values are better, while | indicates that smaller values are better. Fine-tuning on synthesized data consistently
reduces hallucination rates and improves EM scores across all models, with larger models achieving the best
performance. Unlike M?QA-Bench and MultModalQA, WebQA only includes image and text modality, as a result

no EM(Image) and EM(Table) are reported.

Synthesized Data vs. Paraphrasing Human Annotated Data

MultimodalQA

Paraphrased MultimodalQA

FM2DS Synthesized

Figure 12: Performance comparison of InternVL-2-8B trained on 1k samples from three settings: original Multi-
modalQA, paraphrased MultimodalQA (reworded using GPT-40), and fully synthesized data from FM2DS. While
paraphrasing existing questions yields only modest gains, our synthesized samples lead to significantly higher
performance, highlighting the value of generating diverse and structurally novel multihop multimodal questions.

Average Rejection Rate

Stage Average Rejection Rate
Question Validation 131
Answer Validation 76
Query Validation 58

11.58%
7.06%
5.48%

Table 12: Key statistics of the proposed multimodal multihop question answering benchmark.
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ROLLING STONES LET IT BLEED

e b ey
Information
Snippets From
Documents

"Roger the Engineer"

Released by1 ;%%Yardb”ds in the Rolling Stones in 1969

"Let it Bleed" Released by

Which artist released an album in December 1969 featuring a record on its cover?

Model Answer: The Yardbirds

A Note: The model selects the wrong answer due to an error in the projection layer,
which associates a record with "Roger the Engineer" cover while also failing to
account for the release date as overlooked by the LLM.

LLaVA-1.6-7B

( Model Answer: The Beatles
Note: The model is hallucinating by selecting an option that is not present in the
\ Cel

document, despite the prompt explicitly instructing it to rely on the provided ® 6
sources to answer the question.
Idefics-2-8B

Model Answer: The Rolling Stones ~
Note: Although the model made an error in tokenizing the image and assumed that vﬁi
both albums featured a record on their covers, it ultimately selected the correct
answer by factoring in the release date.

InternVL-2-8B

= === ===========- FinetunedONFM?DSData = = = = = = = = = = = = = = = -

Model Answer: The Yardbirds

# Note: The model selects the wrong answer due to an error in the projection layer,
which associates a record with "Roger the Engineer" cover although it considers
the release date, it select the wrong answer.

LLaVA-1.6-7B

Model Answer: The Rolling Stones

™~
Note: The model selects the correct answer, accurately interpreting both images %’;ﬂ’
(recognizing that only "Let It Bleed" features a record on its cover) and factoring in

¢ the release dates.
Idefics-2-8B

Model Answer: The Rolling Stones

™~

Note: The model selects the correct answer, accurately interpreting both images \fi

(recognizing that only "Let It Bleed" features a record on its cover) and factoring in
the release dates.

InternVL-2-8B

Figure 13: Analysis of model responses to the question: "Which artist released an album in December 1969 featuring
a record on its cover?" from MultimodalQA dataset reveals that fine-tuning on FM?DS eliminates hallucination
(marked by the confused robot sign) seen in model fine-tuned on real data. This example highlights how fine-tuning
improves reasoning by aligning the model’s answers with both visual and textual evidence.
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Information
Snippets From
Documents

Little Champlain Street, Quebec City Rue St-Louis
Quebec City, QC, 1916 2010

Which street was paved with boards; Little Champlain Street, Quebec City, 1916 or
Quebec City Rue Saint-Louis winter 20107

Model Answer: Quebec City Rue St-Louis 2010

Note: The model generated the wrong answer because the vision encoder is

unable to extract the specific information needed to answer the question e
accurately. Based on the colors and textures in the image, the model mistakenly

interprets the surface as wooden boards, leading to the incorrect response.

LLaVA-1.6-7B
f‘ Model Answer: Not Enough Information to Answer
k,\ Note: The model's vision encoder failed to provide information about the material
\q £ used to pave the road, leaving the model without sufficient data to answer the
question.

Ideﬂcs-2-éB

Model Answer: Little Champlain Street, Quebec City, QC, 1916 (JV
Note: The model generated the correct answer in this case; however, it did not

rely on the information from the images. Instead, it used the age of the images and e 6
the dates provided in the sources and question to arrive at the correct answer.

InternVL-2-8B

= === == ======-=-- - FinetunedOnFM?DSData = = = = = = = = = = = = = = — -

Model Answer: Little Champlain Street, Quebec City, QC, 1916
# Note: The model correctly recognizes that the answer should be derived from the Q‘
ground rather than focusing on irrelevant details in the image. It also understands )

that no wood is present in the Quebec City Rue St-Louis 2010 image.

LLaVA-1.6-7B
t ~ \ Model Answer: Little Champlain Street, Quebec City, QC, 1916
" Note: The model accurately identifies that the answer should be based on the Qﬁ
i‘ $2) ground rather than irrelevant details in the image and correctly concludes that no )
wood is present in the Quebec City Rue St-Louis 2010 image.

Idefics-2-8B

irrelevant details in the image, and accurately determines that no wood is present
in the Quebec City Rue St-Louis 2010 image.

Model Answer: Little Champlain Street, Quebec City, QC, 1916
Note: The model correctly focuses on the ground to find the answer, avoiding (Q‘

InternVL-2-8B

Figure 14: Analysis of model responses to the question: "Which street was paved with boards; Little Champlain
Street, Quebec City, 1916 or Quebec City Rue Saint-Louis winter 2010?" from the WebQA dataset demonstrates
that fine-tuning with FM2DS data effectively eliminates hallucination (indicated by the confused robot sign). This
example underscores fine-tuning with FM2DS-generated data improves the model’s focus on fine-grained visual
details relevant to the question. Here, InternVL-2-8B fine-tuned on real data hallucinated but reached the correct
answer using its pre-trained knowledge.
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Information
Snippets From
Documents

The most important work of
Qin Shi Huang is the Great
Wall of China.

Inside of a watchtower in the
Great Wall of China.

In the most important project of Qin Shi Huang, what geometric shape was used in the
watchtowers, when looking from inside?

= = === === ======= Finetuned OnFM?DS Data* = = = = = = = = = = = = = = =

Model Answer: Square

Note: The model's response stated that watchtower windows can have various
shapes, with squares being the most common. Consequently, the model relied on
this knowledge and provided an incorrect answer because of not using the
documents and hallucinating.

X

InternVL-2-8B

Model Answer: Rectangle

Note: The model indicated that watchtower windows come in various shapes, with
rectangular windows being the most typical. Based on this understanding, the
model generated an incorrect answer because of not using the documents
and hallucinating.

X

InternVL-2-26B

Model Answer: Circle

Note: The model suggested that, based on images of the interiors of watchtowers
on the Great Wall of China, the windows are circular due to their curved shape. As
a result, the model produced an incorrect answer.

X

InternVL-2-40B

Model Answer: Arch

Note: The model provided a detailed description of the shape, stating that based
on the visible features in the image of the watchtower, the window has an arched
shape.

X

InternVL-2-76B

Figure 15: Responses from InternVL-2 models of various sizes (8B, 26B, 40B, and 76B) to the question: "In
the most important project of Qin Shi Huang, what geometric shape was used in the watchtowers when viewed
from inside?" from M?QA-Bench illustrate that in examples like this, which requires detailed visual understanding,
smaller models often hallucinate, providing inconsistent answers (e.g., square, rectangle) without grounding in the
provided document. Larger models, however, perform better on this task and have less hallucination.
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