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Abstract

Recent work studies the cognitive capabilities of
language models through psychological tests de-
signed for humans. While these studies are help-
ful for understanding the general capabilities of
these models, there is no guarantee that a model
possessing sufficient capabilities to pass those
tests would actually use those capabilities in per-
forming real-life tasks. In this work, we formu-
late task-oriented cognitive capabilities, which are
human-like cognitive capabilities that language
models leverage to perform tasks. These capabil-
ities are (i) the ability to quickly generate good
candidate utterances (the search capability) (ii) the
ability to predict how a listener interprets those
utterances and choose the most appropriate one
(the pragmatic capability). We design an evalua-
tion scheme for comparing these capabilities of a
language model with those of a human. Applying
this scheme to examine various models in a nav-
igation instruction generation problem, we find
that their pragmatic capability is severely lacking.
This insight leads us to augment them with bet-
ter models of the listener and obtain a significant
boost of 11% in success rate in guiding real hu-
mans. Our work advocates for having a principled
procedure for aligning language models with hu-
mans that involves (i) formulating task-oriented
capabilities, (ii) devising a method to quantify
their deficiency, and (iii) iteratively improving
them.
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1. Introduction
To communicate successfully with humans, language mod-
els must possess cognitive capabilities similar to those that
facilitate human communication. Examining the cognitive
capabilities of language models is notoriously challenging
because the operations of these models are largely unintel-
ligible to humans. Psychologists faced similar challenges
when investigating human cognition, and have devised
various behavioral tests to diagnose human cognitive ca-
pabilities (Premack & Woodruff, 1978; Wimmer & Perner,
1983; Baron-Cohen et al., 1985; Gopnik & Astington, 1988).
Recent work (Sap et al., 2022; Kosinski, 2023; Ullman,
2023) applies these tests to evaluate large language models
by inputting the tests to these models as prompts and
verifying whether they behave like a normal human would.

While this approach is helpful for understanding the general
limitations of language models, it has two potential draw-
backs. First, it is applicable to only large language models
that can comprehend human-written prompts, entangling
linguistic capability with reasoning capability. Second, it
shows that a language model can or cannot demonstrate cer-
tain mental skills, but does not imply that the model would
employ those skills to perform a downstream task. For
example, passing false-belief tests does not guarantee that
a model will reason about the interpretation of the readers
when generating summaries. In general, scoring high on
psychological tests may not be sufficient to ensure language
models would behave like humans in real-life scenarios.

In this work, we take a different approach to evaluating
the cognitive capabilities of language models. We define
and evaluate task-oriented cognitive capabilities, which are
human-like capabilities that a model actually employs to
perform the task it is designed for. Enhancing these capa-
bilities thus warrants improved performance on the task. To
identify these capabilities, we build on two lines of work
from socio-cognitive science: Bayesian models of coopera-
tive communication (Wang et al., 2020; Goodman & Frank,
2016; Shafto et al., 2014) and studies on how humans imple-
ment Bayesian reasoning (Sanborn & Chater, 2016; Sanborn
et al., 2010; Vul et al., 2014; Mamassian et al., 2002). We
propose a mathematical cognitive model called bounded
pragmatic speaker, which can reasonably characterize the
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reasoning processes of both humans and language mod-
els. Casting humans and language models in the same way
enables us to juxtapose their cognitive capabilities. We
mathematically formulate two capabilities that a bounded
pragmatic agent must possess in order to generate optimally
pragmatic utterances. These conditions correspond to well-
known cognitive capabilities of humans: (i) the ability to
efficiently generate relevant utterances (the search capabil-
ity) (Bloom & Fischler, 1980; Gold et al., 2000; Trosborg,
2010) and (ii) the ability to accurately simulate the listener’s
interpretations of their utterances (the pragmatic capability)
(Premack & Woodruff, 1978; Gopnik & Astington, 1988;
Tomasello, 2019; Call & Tomasello, 2011; Frank & Good-
man, 2012). We design a simple procedure to quantitatively
evaluate these capabilities of a language model. To evalu-
ate each capability, we compute the task performance gap
between the model and an oracle model, which is identical
except that the evaluated capability of this model is at human
level. Figure 1 illustrates our procedure, which theoretically
can be applied to any language model.

We evaluate various language models on a navigation in-
struction generation problem (Anderson et al., 2018b),
where a model generates English instructions to guide real
humans in photo-realistic 3D environments. 1 Our eval-
uation reveals an interesting finding: all evaluated agents
possess relatively efficient search capability but inadequate
pragmatic capability. We improve the pragmatic capability
of the evaluated models by enabling them to reason proba-
bilistically about human listeners (Andreas & Klein, 2016;
Fried et al., 2018a), employing state-of-the-art instruction-
following agents (Magalhaes et al., 2019; Shen et al., 2022;
Hong et al., 2021) as models of human listeners. We obtain
significant improvement in success rate over the original
agents, shrinking the gap with human performance on held-
out data by 36%. Towards eliminating the remaining gap,
we illustrate with empirical evidence a major challenge in
developing better listener models. Specifically, when the
instruction-following agents are employed as listener mod-
els for the instruction-generating agent, they are required
to evaluate AI-generated instructions, which may be signifi-
cantly different from human-generated instructions. Hence,
a standard supervised-learning training scheme that only ex-
poses these models to human-generated instructions would
be inadequate for learning reliable models. We thus call
for construction of novel datasets, algorithms, and evalu-
ation methods for developing the pragmatic capability of
language models.

1Our human-evaluation dataset and interface are publicly
released at https://lingjunzhao.github.io/coop_
instruction.html.

Repeat N times
   (i) Generate candidate (search capability)
           ui ~ Sbase( ᐧ | e*)
   (ii) Evaluate candidate (pragmatic capability)
           score(ui) = LToM(e* | ui)
Return argmaxu∈D score(u), D = { u1 ,..., uN }
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Figure 1: We propose a framework called bounded
pragmatic speaker which can characterize pragmatic
reasoning in both humans and language models (a). A
bounded pragmatic speaker is composed of a base speaker
Sbase, representing prior knowledge that helps generate
instructions efficiently, and a theory-of-mind (ToM)
listener LToM, a hypothetical model of how the real listener
interprets instructions. Viewing language models and
humans through this unifying lens enables comparing
their cognitive capabilities (b). To evaluate a capability
of a model, we compare it with an oracle model which is
identical except that the evaluated capability is at human
level. The outcome of our evaluation can better inform the
future direction for improving the model (c).

2. Related Work
Navigation Instruction Generation. Instruction gener-
ation has been commonly studied in navigation settings
(Anderson et al., 1991; Byron et al., 2009; Koller et al.,
2010; Striegnitz et al., 2011; Goeddel & Olson, 2012; Fried
et al., 2018a;b). The Matterport3D simulator and the ac-
companying datasets (R2R (Anderson et al., 2018b), R4R
(Jain et al., 2019), and RxR (Ku et al., 2020)) offer more
challenging settings by combining photo-realistic scenes
with long, verbally rich instructions. Recent work on eval-
uating instruction generation agents (Zhao et al., 2021) re-
veals the ineffectiveness of standard learning and modeling
approaches to this problem. Wang et al. (2021) improve
the accuracy and interpretability of instructions in the RxR

https://lingjunzhao.github.io/coop_instruction.html
https://lingjunzhao.github.io/coop_instruction.html
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setting. Kamath et al. (2023) leverage this model to synthe-
size additional data for training instruction-following agents.
Our work aim to offer useful principles to further improve
these models.

Mathematical Models of Human Communication. Dif-
ferent from communication within agents (Lazaridou et al.,
2020; Roman Roman et al., 2020), human communica-
tion is a cooperative act (Grice, 1975; Scott-Phillips, 2014;
Tomasello, 2019). Pragmatic communication in humans
may involve different cognitive capabilities like basic under-
standing of language and social rules (Trosborg, 2010) and
reasoning about the physical world (Bender & Koller, 2020)
and human behavior (Enrici et al., 2019; Rubio-Fernandez,
2021). Our work describes similar capabilities but provides
a formal mathematical description. Development of mathe-
matical models of human communication have been greatly
useful for understanding human behaviors (Ho et al., 2016;
Sumers et al., 2022) and building communication agents
(Andreas & Klein, 2016; Fried et al., 2018a;b; FAIR, 2022;
Lin et al., 2022; Zhu et al., 2021; Bao et al., 2022). Wang
et al. (2020) unify these models under an optimal-transport
framework. The model we propose in this work is a gener-
alized version capturing the essence of these models.

Evaluating Cognitive Capabilities of Neural Networks.
Many benchmarks for evaluating the cognitive capabilities
of AI-based agents have been created, focusing on theory-
of-mind capabilities (Le et al., 2019; Roman Roman et al.,
2020), grounding (Lachmy et al., 2022; Udagawa & Aizawa,
2019; Haber et al., 2019), or commonsense reasoning (Tal-
mor et al., 2019; Levesque et al., 2012; Zellers et al., 2019;
Sap et al., 2019). Large language models have demonstrated
exceptional performance on following human instructions
and solving complex reasoning tasks (Bubeck et al., 2023;
Anil et al., 2023), raising the question of whether their cog-
nitive capabilities are similar or as advanced as those of
humans. Mahowald et al. (2023) advocate for separating for-
mal competence (knowledge about linguistic rules and pat-
terns) from their functional competence (knowledge about
the world usage in the world) when assessing these models.
Our bounded pragmatic speaker framework mathematically
formalizes this description, allowing for quantitative evalua-
tion of these competencies. Recent work (Sap et al., 2022;
Kosinski, 2023; Ullman, 2023; Hu et al., 2023) examines
cognitive capabilities of large language models through tests
inspired by human psychological tests. The goal of these
studies is to determine the limits of large language models,
potentially calibrating the expectation on them. On the other
hand, our focus is to devise a method that can be applied
to language models of any size and benchmark cognitive
capabilities that are relevant for accomplishing a specific
task.

3. Problem Setting
We are concerned with instruction generation: learning a
speaker agent r that generates language instructions to guide
a human listener h to reach states in an environment.

Human Listener. We imagine a human listener h acting
in a partially observed environment with states s. The
human does not have access to states but only observations
oh and takes actions ah. An instruction u ∈ U is a
language utterance consisting of words. A trajectory
e = (s1, o1, a1, · · · , sT , oT , aT ) is an execution of an
instruction. The human can follow instructions to generate
trajectories in the environment. For example, in an indoor
navigation setting, upon hearing “go the kitchen and stop
next to the oven”, a human walks to the specified location.
We define Lh(e | u) as the probability that the human
generates e upon hearing u.

Speaker Agent. In each task, the speaker
agent first imagines an intended trajectory
e⋆ = (s1, o

r
1, a

r
1, · · · , sT , orT , arT ), which specifies a path

to get to an intended goal state sT from the human’s current
state s1. Because the human’s actions and perception may
differ from those of the speaker, they may not be able to com-
prehend e⋆ even if it is presented to them. Thus, the speaker
needs to translate the trajectory into an instruction û that the
human can understand and follow. To do so, it implements
a language model Sr(u | e), and an inference algorithm
Gen(Sr, e) to craft instructions based on the model (e.g.,
greedy or beam-search decoding). The speaker’s objective is
to generate instructions that maximize the expected chance
of the listener reconstructing the intended trajectories

argmax
Sr

Ee⋆ [Lh(e
⋆ | Gen(Sr, e

⋆))] (1)

Evaluation. The speaker is evaluated using a dataset Deval
of held-out trajectories. For each trajectory e⋆k ∈ Deval, we
generate an instruction ûk = GEN(Sr, e

⋆
k). The instruction

is then presented to a (real) human listener to follow, pro-
ducing a trajectory eh

k ∼ Lh(· | ûk). The performance of
the speaker, denoted by ρ(r), is the average similarity, Ψ,
between the human-generated and the intended trajectories:

ρ(r) ≜
1

|Deval|
∑

e⋆
k∈Deval

Ψ(eh
k, e

⋆
k) (2)

We will specify the choices for the metric Ψ in the experi-
mental setup section (Section 6).

4. Task-Oriented Cognitive Capabilities
Human have evolved highly effective cognitive capabilities
for communication. How can we endow a speaker agent
with similar capabilities and quantify the degree of resem-
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blance between its capabilities and those of a human?

We propose a mathematical framework that reasonably
characterizes the human cognitive process for instruction
generation (Section 4.1). We show that this model can also
describe the operation of language models, which allows
us to compare them with humans on specific cognitive
capabilities. We identify two capabilities that are requisite
for any agent implementing our framework to generate op-
timal instructions (Section 4.2), and introduce an evaluation
scheme for collating these capabilities (Section 4.3).

4.1. A Mathematical Cognitive Model of Instruction
Generation

To formulate how humans generate instructions, we build on
mathematical models of cooperative communication (Wang
et al., 2020; Goodman & Frank, 2016; Shafto et al., 2014).
We consider a general version where a speaker agent con-
structs a pragmatic speaker model Sprag(u | e) based on
two constituents: a base speaker model Sbase(u | e) and a
theory-of-mind (ToM) listener model LToM(e | u). The base
speaker represents general knowledge of the agent about
the world and the language it speaks. The ToM listener
reflects situated knowledge about the listener, simulating
how they would behave in the environment given an instruc-
tion. A pragmatic speaker aims to maximize the chance
of the listener interpreting its instruction correctly, but it is
still influenced by its general knowledge (e.g., social biases,
language style). Formally, it is defined as:

Sprag(u | e) ∝ LToM(e | u)Sbase(u | e) (3)

To convey an intended trajectory e⋆, this speaker utters an
instruction of maximum probability under its model:

ûprag ≜ argmax
u∈U

Sprag(u | e⋆)

= argmax
u∈U

LToM(e⋆ | u)Sbase(u | e⋆) (4)

Humans as bounded pragmatic speakers. The prag-
matic speaker model accounts for human behaviors highly
accurately on problems where U is a small discrete space
(Frank & Goodman, 2012). However, in problems like
instruction generation where U is an unbounded set of lin-
guistic expressions, it is unlikely that humans, which are
known to be agents with bounded rationality (Simon, 1957),
are able to compute the optimal utterance in Eq 4 exactly. A
hypothesis, supported by empirical evidence, is that humans
perform approximate inference via Monte-Carlo sampling
(Sanborn & Chater, 2016; Sanborn et al., 2010; Vul et al.,
2014; Mamassian et al., 2002). Applying this hypothesis to
our setting, we derive a more practical model of how human
generate instructions, in which they perform the search for
the best utterance on only a subspace Usub of U defined by a

set of candidates sampled from Sbase

ûbounded-prag ≜ argmax
u ∈ Usub ⊂ U

LToM(e⋆ | u) (5)

where Usub = {ui ∼ Sbase(· | e⋆) | 1 ≤ i ≤ N}. We call
an agent that generates instructions according to Eq 5 a
bounded pragmatic speaker (Figure 2). For such a speaker,
instruction generation involves two tasks: candidate
generation (performed by Sbase) and candidate evaluation
(performed by LToM). The former task ensures that the
generation of an instruction is efficient, while the latter
guarantees the generated instruction conveys the intended
meaning to the human listener.

4.2. Formulating Task-Oriented Cognitive Capabilities

What cognitive capabilities enable humans to generate effec-
tive instructions? Viewing humans as bounded pragmatic
speakers allows us to mathematically characterize those ca-
pabilities. Specifically, we require a bounded pragmatic
speaker to be able to output the optimal utterance, i.e. satis-
fying

ûbounded-prag = u⋆ ≜ argmax
u

Lh(e
⋆ | u) (6)

where Lh is the human listener.

For this equation to hold, the constituent models Sbase and
LToM of the bounded pragmatic speaker must meet certain
conditions. The condition for Sbase is that the candidate set
it generates must contain the optimal instruction, i.e. u⋆ ∈
Usub. This condition requires Sbase to be capable of quickly
generating candidates and placing high probability on u⋆ so
the instruction can be found by sampling a few candidates.
We refer to this capability as the search capability.

Meanwhile, the condition for LToM is that it has to rank u⋆

first among the candidates in Usub. Meeting this condition
demands having the capability of constructing a mental
emulation of the human listener and simulating the actions
of the listener after receiving an instruction. We refer to this
capability as the pragmatic capability.

The search and pragmatic capabilities are orthogonal and
complementary. An agent with flawless pragmatic capability
can evaluate the goodness of instructions given to it, but may
not be able to efficiently generate good instructions by itself.
In contrast, an agent with effective search capability can
quickly bring to attention highly relevant utterances but
cannot select the best one to output if its ToM model is
erroneous.

4.3. Evaluating Task-Oriented Cognitive Capabilities

We have defined two cognitive capabilities that are requisite
for humans in instruction generation. In this section, we will
prove that a language model can also be cast as a bounded
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Start

Goal

Human Listener

Candidate set

u1: Walk past the stairs and 
out the door that leads 
outside. Wait on the porch. 

u2: Walk across the living 
room and out the doors on the 
other side. Stop just outside 
the door
…

e1 e2

Figure 2: The cognitive process of a bounded pragmatic speaker. In every task, the speaker first imagines a trajectory it
wants to convey to the human listener. To reduce the search space, it then uses the base speaker to generate a small set
of relevant candidate instructions. After that, it employs the theory-of-mind listener to simulate how the human listener
would follow each instruction in the candidate set. The speaker finally elects the candidate instruction that causes the
theory-of-mind listener to generate the trajectory most similar to the intended trajectory. The output instruction is finally
sent to the human listener for a real execution in the environment.

pragmatic speaker. Hence, we can compare it with a human
on the two cognitive capabilities.

Language models as bounded pragmatic speakers. We
consider a speaker agent r that learns a language model
Sr(u | e) and runs an inference algorithm to compute
an output ûinfer = GEN(Sr, e

⋆) ≈ argmaxu∈U Sr(u |
e⋆). Generative LSTM- or Transformer-based models that
implement greedy or beam-search decoding are examples
of this agent. We make the following assumption about the
inference algorithm.2

Assumption (Better-than-sampling inference algorithm).
We assume the inference algorithm is better at finding
argmaxu∈U Sr(u | e⋆) than drawing a small number
of N samples from Sr. Formally, let γ be the probabil-
ity of drawing e⋆ and a set of N instructions from Sr

such that Sr(ûinfer | e⋆) > maxu∈Usub Sr(u | e⋆), where
ûinfer = GEN(Sr, e

⋆). We assume that γ is large for a
small integer N > 0.

If this assumption holds, then with high probability, the
agent r behaves identically to a bounded pragmatic speaker

2We empirically verify that this assumption holds for the agents
we evaluate with N = 10 and γN ranging from 0.7 to 0.9. We
estimate γN by computing the fraction of evaluation examples
where the agent’s model ranks ûinfer above N samples drawn from
it.

that computes its output as:

û ≜ argmax
u∈Ur

sub

Sr(u | e⋆) (7)

Ur
sub ≜ {ûinfer} ∪ {ui ∼ Sr | 1 ≤ i ≤ N} (8)

This agent uses Sr as both the base speaker Sbase and ToM
listener LToM. Due to our assumption, on most inputs, the
agent outputs ûinfer, similar to the original agent. We employ
this bounded pragmatic speaker as the proxy for the original
agent in comparisons with humans, and also refer to it as r.

Evaluation scheme. To evaluate a cognitive capability
(search or pragmatic) of a speaker r, we compute the perfor-
mance gap between it and an oracle agent that is at human
level on the evaluated capability, but is equally good as it
is at the other capability. Specifically, we define r⋆search to
be an oracle speaker that employs Sr as the ToM model but
is given a “gold” candidate set U⋆

cand that always contains
a human-generated reference instruction u⋆. It selects its
output as follows

u⋆
search ≜ argmax

u∈U⋆
cand

Sr(u | e⋆) (9)

This agent has similar pragmatic capability as r but
human-level search capability. Next, we construct r⋆pragmatic,
an oracle that generates candidates using Sr but employs
a human Lh to rank the candidates

u⋆
pragmatic ≜ argmax

u∈Ur
sub

Lh(e
⋆ | u) (10)

with Ur
sub from Eq 8. The search capability of r⋆pragmatic is

as good as r but its pragmatic capability is that of a human.
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We calculate the prospective performance gain (PPG) with
respect to each capability as follows

PPGsearch(r) ≜ ρ(r⋆search)− ρ(r) (11)

PPGpragmatic(r) ≜ ρ(r⋆pragmatic)− ρ(r) (12)

where ρ is the performance on held-out data (Eq 2 of §3).
Each metric computes the potential improvement if the cor-
responding capability is upgraded to match with that of a
human. Comparing the two metrics reveals which of the
two capabilities of r is currently more deficient and informs
future development direction for the agent. For example, if
PPGsearch(r) is large and PPGpragmatic(r) is small, it means
that r is scoring the candidate instructions highly accurately
but it is bad at finding high-score instructions. In this case,
developers may want to focus on devising a more effective
inference algorithm to improve the search capability of r.
On the other hand, if r estimates poorly calibrated scores,
signified by PPGpragmatic(r) being large, enhancing its infer-
ence algorithm is fruitless, but endowing it with a module
that simulates the listener’s behavior more accurately would
boost its performance.

5. Improving Pragmatic Capability with
Ensemble Instruction-Following Agents

In cases where our evaluation scheme indicates that the
pragmatic capability of a language model is deficient, we
improve it by installing a better ToM listener model. A
common approach to learning this listener model is to use
the same dataset used for learning the speaker model (An-
dreas & Klein, 2016; Fried et al., 2018a;b). We argue that
this approach has a potential drawback. A ToM model
learned in this way is only exposed to human-generated
input instructions. At deployment time, it would likely expe-
rience a covariate shift because as a ToM model, the model
is then asked to score instructions generated by a speaker
model, not by humans. These instructions may be incorrect,
ungrammatical, or may simply have a different style than
human-generated instructions. This covariate shift would
hamper the model’s judgement. Our preliminary experi-
ments (Appendix A.6) confirm that using a listener trained
on only human-generated inputs as the ToM model hurts
rather than improves the performance of various speakers.

We show that this problem can be alleviated by employing
ToM models that have calibrated uncertainty on unseen in-
structions. We obtain calibrated models through ensembling
(Lakshminarayanan et al., 2017): we train listener models
L̂(k)(e | u), k = 1 . . .K, each on a random 90% subset of
the training data with different random initial seeds.

We also leverage access to a simulation of the envi-
ronment to construct better ToM models. Note that
the probability that a ToM model LToM assigns to an

instruction can be seen as an expectation of a binary metric:
LToM(e⋆ | u) = Ee∼LToM(·|u) [1{e = e⋆}], which does not
award credit if e overlaps only partially with e⋆. We propose
two augmentations: (i) replace the binary metric with a soft
metric Ψ(e, e⋆) that can measure partial similarity between
trajectories and (ii) approximate the expectation by execut-
ing listeners L̂(k) in the simulated environment to sample
trajectories. Our final model selects its instruction as:

ûaugment-ToM ≜ argmax
u∈Ur

sub

LToM(e⋆ | u) (13)

LToM(e⋆ | u) ∝ 1

KM

K∑
k=1

M∑
j=1

Ψ(ej(L̂
(k),u), e⋆)

Ur
sub ≜ {ûinfer} ∪ {ui ∼ Sr | 1 ≤ i ≤ N}

where e(L,u) denotes a trajectory sampled from a listener
model L conditioned on an instruction u, and M is the
number of trajectories we sample from each listener.
Essentially, the score LToM(e⋆ | u) of each candidate
instruction is the average performance metric of K listeners,
each of which attempts to follow the instruction M times.

6. Experimental Setup
Environment and Dataset. We employ Matterport3D
(Anderson et al., 2018b), a photo-realistic simulator of the
visual perception of a person walking in an indoor envi-
ronment. At any location, an agent is provided with RGB
images capturing the 360-degree panoramic view when look-
ing from that location. We train and evaluate our models
using the Room-to-Room (R2R) language-based navigation
dataset. Each data point was collected by asking an English-
speaking crowd-worker to write a verbal description of a
path in an environment. The dataset is split into a training
set (61 environments, 4,675 paths), a seen validation set
(environments seen during training, 340 paths), and an un-
seen validation set (11 environments unseen during training,
783 paths). We train the models using the training set and
perform model selection on the unseen validation set. Per-
formance metrics are computed on the seen validation set.

Speaker Models. We evaluate three speaker architectures:
(1) a decoder-only GPT-2 pre-trained on text (Radford et al.,
2019); (2) an LSTM encoder-decoder (Shen et al., 2022);
(3) a Transformer encoder-decoder (Vaswani et al., 2017).
Parameters of the latter two models are randomly initialized.
Details are in Appendix A.2.

Human Evaluation. We evaluate each speaker model on
75 paths in the seen validation data split. In the end, we
have annotated 1,200 instructions generated by 16 differ-
ent systems (humans, 3 speaker models, and their ablated
and augmented versions). To evaluate a speaker model, we
present its generated instructions to a human annotator and
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ask them to follow the instructions to navigate in Matter-
port3D environments. We adapt the PanGEA tool3 to setup
a web navigation interface and create a task on Amazon Me-
chanical Turk (MTurk). We recruit 213 human evaluators in
total. More details about the setting are given in Appendix
A.5.

Performance Metrics. The quality of a speaker is deter-
mined by the similarity between the intended trajectories
and the actual trajectories that the human evaluators generate
by following the speaker’s instructions. We compute these
similarity metrics: Success rate (SR) averages binary indi-
cators of whether the final location of a human-generated
trajectory is within three meters of the final location of the in-
tended trajectory; SPL (Anderson et al., 2018a) weights the
success indicator with the ratio between the intended travel-
ing distance and the actual one; and NDTW and SDTW
are metrics based on dynamic time-warping alignment (Ma-
galhaes et al., 2019), capturing the similarity between two
point sequences. NDTW computes only a sequence similar-
ity score while SDTW weights the score with the success
indicator.

7. Experiments
We investigate the following questions:

(a) How well do the speakers perform on our problem? We
find that, despite implementing advanced architectures,
these speakers perform poorly compared to human
speakers.

(b) What causes their performance deficiency? Using our
evaluation scheme, we identify that the speakers pos-
sess decent search capability but inadequate pragmatic
capability.

(c) Can we improve the speakers by equipping them with
better ToM listeners? We employ ensembles of state-
of-the-art instruction-following agents as ToM listeners
for the speakers, and obtain significant improvements.

(d) What are the challenges in bridging the performance
gap with human speakers? We show that instruction-
following agents trained with only human-generated
instructions are not optimal for serving as ToM listener
models.

How well do the speakers perform on our problem? As
seen in Figure 3, there is a wide margin between the agent
speakers and the human instructors. The best model speaker
(EncDec-Transformer) lags behind the humans by 21.6
NDTW points. The encoder-decoder architecture with cross-
attention of EncDec-Transformer outperforms the decoder-
only self-attention architecture of GPT-2 (+11.7 NDTW),

3https://github.com/google-research/
pangea
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Figure 3: Performance of different speakers on held-out
evaluation data, grouped by performance metrics (NDTW,
SR, SPL, SDTW). Human speakers are annotators of the
R2R dataset. There is a considerable gap between model
and human speakers.
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Figure 4: Performance (in NDTW) of the speakers and
their human-augmented versions. Possessing human-level
pragmatic capability improves performance of the speakers,
showing that their original pragmatic capability is highly
deficient compared to that of a human.

indicating that fusing the vision and language features too
early in an architecture may be detrimental. On the other
hand, EncDec-Transformer leads over EncDec-LSTM by
4.1 points NDTW, suggesting that the Transformer architec-
ture is more effective than LSTM in this problem.

What causes the speakers’ deficiency? Next, we investi-
gate whether the lack of search or pragmatic capability is
responsible for the deficiency of the speakers. The prospec-
tive performance gains presented in Figure 4 show that it is
under-performed pragmatic capability that primarily causes
the models to perform poorly. Specifically, while equipping
the models with oracle search capability only improves their
performance by 9.4% on average, granting them oracle prag-
matic capability nearly doubles their performance metrics.
In fact, the search capability of the models is already as
good as that of the humans we employ, because the mod-
els with oracle pragmatic capability achieve even slightly
higher NDTW scores than the human speakers.

Can we improve the speakers by equipping them with
better ToM models? Following the procedure described
in Section 5, we train state-of-the-art instruction-following
agents to serve as ToM listener models for the speakers.

https://github.com/google-research/pangea
https://github.com/google-research/pangea
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Base speaker Sbase

ToM listener LToM Fine-tuned GPT-2 EncDec-LSTM EncDec-Transformer

None 37.7 (▲ 0.0) 45.3 (▲ 0.0) 49.4 (▲ 0.0)

Single VLN-BERT (Majumdar et al., 2020) 38.9 (▲ 1.2) 39.8 (▼ 5.5) 46.2 (▼ 3.2)

Ensemble of 10 EnvDrop-CLIP (Shen et al., 2022) 37.8 (▲ 0.1) 53.1† (▲ 7.8) 57.3† (▲ 7.9)

Ensemble of 10 VLN⟳ BERT (Hong et al., 2021) 43.4 (▲ 5.7) 56.4‡ (▲ 11.1) 54.2 (▲ 4.8)

Humans (skyline) 72.9‡ (▲ 35.2) 76.2‡ (▲ 30.9) 75.2‡ (▲ 25.8)

Table 1: Performance (in NDTW) of the speakers when equipped with different ToM models. Each base speaker generates
11 candidates (i.e. N = 10). Ensemble listeners significantly improve performance. ‡ and † indicate results that are
significantly higher than those of “None” (row 1) with p < 0.05 and p < 0.1, respectively (two-related-sample t-test).

Listener
Instructions generated by VLN-BERT EnvDrop-CLIP VLN⟳ BERT

Humans (R2R dataset) 65.4 (▼ 0.0) 47.2 (▼ 0.0) 65.0 (▼ 0.0)

Fine-tuned GPT-2 43.1‡ (▼ 22.3) 31.6‡ (▼ 15.6) 39.9‡ (▼ 25.1)

EncDec-LSTM 50.0‡ (▼ 15.4) 43.7 (▼ 3.5) 49.3‡ (▼ 15.7)

EncDec-Transformer 52.1‡ (▼ 13.3) 41.5 (▼ 5.5) 51.9‡ (▼ 13.1)

Table 2: Agreement (in NDTW) of human and model listeners on instructions generated by different speakers. The level
of agreement decreases substantially when shifting from human-generated to model-generated instructions. ‡ indicate
results that are significantly lower than the human skyline (row 1) with p < 0.05 (according to a two-related-sample t-test).

Performances of different combinations of speakers and
listeners are given in Table 1. We see the largest improve-
ment (+7.9 NDTW) over the best base speaker (EncDec-
Transformer) by augmenting this speaker with an ensemble
of 10 EnvDrop-CLIP listeners as the ToM model. We show
qualitative examples where having a ToM listener enables
the speaker to generate a more accurate instruction in Ap-
pendix A.7.

We observe that ensemble models consistently outperform
single models. More results about the effectiveness of
ensemble listeners compared to single listeners are given
in Appendix A.6.

What are the challenges in bridging the performance
gap with human speakers? Despite the promising im-
provements, there remains a large gap of 17.9 NDTW points
between our best speaker and the human speakers. As sug-
gested by Figure 4, this gap can be closed by developing
accurate ToM models. We argue that optimal ToM models
cannot be simply obtained by learning optimal instruction-
following agents, because the latter is learned to execute
human-generated instructions while the former is asked to
rank model-generated instructions. To illustrate the differ-
ence, we measure the agreement between human and model
listeners on instructions generated by different speakers.
We define the agreement score between a human Lh and a

model L̂ as

Agreement(Lh, L̂)

= Averageu∈Deval
(NDTW(eh(u), ê(u))) (14)

where eh(u) and ê(u) are the trajectories generated by Lh

and L̂ given u, respectively, and Deval denotes the R2R seen
validation set.

As seen in Table 2, the listener agents agree more with
the humans on human-generated instructions than on
model-generated ones. The results imply even an opti-
mal instruction-following agent can fail to improve a base
speaker in the presence of an input distribution mismatch.
We thus advocate for developing ToM models that are robust
or can adapt quickly against covariate shift, and for eval-
uating performance of these models on model-generated
instructions.

8. Conclusion
This work introduces a framework for analyzing task-
oriented cognitive capabilities of instruction-generation lan-
guage models. We show that insights from the analysis
are helpful in directing development on these models. Our
results highlight the necessity of constructing better ToM
models for improving these models. We argue that learning
accurate ToM listener models is met with novel, distinct
challenges. We hope that our findings will motivate the
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community to focus more on evaluating task-oriented cog-
nitive capabilities and to create datasets, training methods,
and evaluation procedures for enhancing the pragmatic ca-
pability of language models.
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Hyperparam GPT-2 Transformer

Learning rate 10−4 10−4

Batch size 4 32
Optimizer AdamW AdamW
Num. of training iterations 2× 105 16× 104

Max. action steps 15 35
Max. instruction length 100 80
Image feature size 2048 512
Orientation feature size 128 128
Embedding dropout 0.1 0.3
Hidden size 768 512
Num. of hidden layers 1 1
Hidden-layer dropout rate 0.0 0.6
Num. of encoder layers - 2
Num. of decoder layers 12 2
Transformer dropout rate 0.1 0.3
Beam size 5 1

Table 3: Hyperparameters for training the GPT-2 EncDec-
Transformer speakers.

A. Appendices
A.1. The Room-to-Room dataset

The R2R dataset (Anderson et al., 2018b) was originally
created for training instruction-following agents. Each data
point was collected by asking a crowd-worker to write a
verbal description of a path in an environment. In the end,
each path was annotated with three instructions. Each in-
struction contains 29 words on average. The dataset is split
into a training set (61 environments, 4,675 paths), a seen
validation set (340 paths) whose paths are sampled in the
training environments, and an unseen validation set (11 envi-
ronments unseen during training, 783 paths). We do not use
the unseen test split because it does not provide ground-truth
paths of the descriptions. We use the dataset consistent to
their MIT License.

A.2. Implementation of Speaker Models

We train the speakers with a standard maximum-likelihood
objective using the AdamW optimizer (Loshchilov & Hutter,
2019) with a learning rate of 10−4.

The speaker models take a sequence of visual observations
and actions from the trajectory e⋆ as input and output a text
instruction u. The model is trained to estimate conditional
probability Sθ(u|e⋆). We use grid search to select the
model and training hyperparameters, and the best-found
values are listed in Table 3.

Input. The input trajectory e⋆ is a sequence of panoramic
views and actions. Each panoramic view at time step t
is represented by 36 vectors {ot,i}36i=1, each of which is
a visual feature vector extracted from a pre-trained vision
model concatenated with orientation features describing
the agent’s current gaze direction. The image features of
the GPT-2 model are extracted from a ResNet-152 model
(He et al., 2016), whereas those of the encoder-decoder
models are from a CLIP model (Radford et al., 2021). Each
ground truth action a⋆t , which moves the agent to an adjacent
location, is represented by image features from the gaze
direction of the agent when looking towards that adjacent
location, and orientation features capturing the direction
of the adjacent location relative to the agent’s current gaze
direction.

Output. The output of a speaker model is a language
instruction describing the input trajectory. At test time,
the GPT-2 model employs beam search, and the encoder-
decoder models generate instructions via greedy decoding
(Shen et al., 2022).

Training Objective. We train the speakers with
maximum-likelihood objective:

max
θ

∑
(u⋆,e⋆)∈Dtrain

|u⋆|∑
t=1

logSθ(u
⋆
t | e⋆,u⋆

<t) (15)

where θ is the speaker model parameters, u⋆
t is t-th word of

the ground-truth instruction, and u⋆
<t is the first t− 1 words

of the instruction.

We select the best model based on the unseen-validation
BLEU score (Papineni et al., 2002) of the model-generated
instructions with the respect to the ground-truth instructions.

Tools. We use SacreBLEU 2.2.1 to compute BLEU scores.
For preprocessing and implementing the speaker models,
we use Pytorch 1.7.1, NLTK 3.6.7, SentencePiece 0.1.97,
and Huggingface Transformers 4.5.1.

Computation. The GPT-2 model has 124.4 million pa-
rameters, and was trained for 24 hours on single NVIDIA
GEFORCE RTX 2080 Ti. The EncDec-LSTM model has
7.5 million parameters, taking 24 hours to train on single
NVIDIA RTX A6000. The EncDec-Transformer model has
56.6 million parameters, trained on single NVIDIA RTX
A6000 for 48 hours.

A.3. Fine-tuning GPT-2 Speaker Model

To represent the trajectory features as a sequence of feature
vectors to feed into the GPT-2 model, we first average the
view features ōt for each time step:



Define, Evaluate, and Improve Task-Oriented Cognitive Capabilities for Instruction Generation Models

Performance Metrics

Speaker SR ↑ SPL ↑ NDTW ↑ SDTW ↑ Path Len ↓ Interpretability ↑

Without ToM listener

Finetuned GPT-2 36.0 27.8 37.7 24.5 20.9 2.9

EncDec-LSTM 49.3 37.6 45.3 33.8 17.4 3.3

EncDec-Transformer 54.7 43.8 49.4 40.4 15.8 3.4

With 10 VLN⟳ BERT as ToM listener

Finetuned GPT-2 46.7 30.9 43.4 28.1 21.2 3.0

EncDec-LSTM 54.7 46.0 56.4 41.9 14.0 3.1

EncDec-Transformer 52.0 44.0 54.2 41.6 17.7 3.2

Humans (R2R dataset) 76.0 67.6 71.0 64.8 14.2 3.6

Table 4: Humans evaluation results on instructions generated by the speaker models. The similarity metrics are defined in
§6. Path Len measures the average length of the generated trajectories. Interpretability indicates how easy or difficult to
follow the instructions according to human evaluators (without knowing the ground-truth trajectory).

ōt =
1

36

36∑
i=1

ot,i (16)

We compute the input features e⋆t by concatenating the
panoramic view features and ground truth action features:

e⋆t = [ōt; a
⋆
t ] (17)

The sequence of feature vectors e⋆ representing a trajectory
is calculated as follows

e⋆ = [tanh(e⋆1W ); · · · ; tanh(e⋆TW )] (18)

where W is parameters of a linear layer.

For the instruction u⋆, we perform an embedding look-up
of its words. Then, we first prompt the model with e⋆ and
then train it to generate u⋆ as a suffix.

A.4. Training Encoder-Decoder Speaker Models

Our EncDec-LSTM model follows the implementation of
the speaker in Shen et al. (2022). We implement the EncDec-
Transformer model by replacing the LSTM layers of the
speaker model described in Tan et al. (2019) with Trans-
former layers (Vaswani et al., 2017).

A.5. Human Evaluation Interface and Data Collection

We pay the evaluator $5.20 per task which takes about 25
minutes, and the payment is decided by state minimum wage.
For each task, we ask the evaluator to follow six instruction-
following sessions. One of the six sessions, which appears in
all tasks, is a quality-control test featuring an easy-to-follow

human-written instruction. We only approve an evaluator
if they navigate successfully to the goal destination in this
test. Following Zhao et al. (2021), we instruct the judges to
not explore the environments unnecessarily and not wander
back and forth unless they are lost. We record the trajec-
tories created by the human and use them to compute the
performance metrics.

Figure 5 shows the interface for our human evaluation to
collect annotations, which we adapted from the PanGEA
tool4 consistent with their Apache License v2.0. After
a human evaluator finishes following an instruction, we
recorded the path they generate and compute similarity
metrics with respect to the ground-truth path. After the
instruction-following sessions, we ask each evaluator to as-
sess the interpretability of the instructions by asking them
how easy (or difficult) it was for them to follow the in-
struction. We provide four rating levels ranging from “1: I
couldn’t follow any part of the instruction” to “4: very easy,
the instructions gave accurate and sufficient information for
me to follow”. The answer of the evaluators is converted to
a score between one and four.

Table 4 shows the human evaluation results of the three
speaker models we evaluated.

For the human evaluation survey, participants will be re-
stricted to those fluent in English. There are no other re-
strictions for this study. Participants must be at least 18
years old. Before completing the survey, participants will be
shown information about the task requirement: You are in a

4https://github.com/google-research/
pangea

https://github.com/google-research/pangea
https://github.com/google-research/pangea
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Figure 5: Human evaluation interface.

Figure 6: Comparison of using single and ensemble ToM
listeners.

building, and are provided with a short set of instructions to
navigate to a target location. Please follow the instructions

as closely as possible. Do NOT explore the building unnec-
essarily and do NOT wander back and forth unless you are
lost. Please read ALL of the instructions before you start
moving.

We waive consent for this study for several reasons: 1)
Minimal risk: The study collects minimal identifying in-
formation and there are no known risks for the subjects
beyond everyday computer use. 2) Rights and welfare: All
participants will be shown all information regarding task
requirements before they complete our survey. They must
consent to performing the task before they are shown the
questions. 3) Practicality: Since the sessions are conducted
online on a large scale, it would be infeasible to require
all users to send a signed form. 4) Post participation infor-
mation: We do not think there is any pertinent information
that is not already shared with the participants before or
during our experiments, so we do not feel it is necessary to
provide any additional information after participation. PI
information will be shared with the participants to enable
them to obtain additional information about the study post
completion.

For data anonymization, we removed the only identifying
information, Amazon Mechanical Turk ID, after collecting
the human annotation data. This information would also
be removed for future dataset release. The dataset will be
released under MIT license terms, which are compatible
with those of the tools used to create it, and will be intended
for research usage.

A.6. Single vs. Ensemble Listeners

As a preliminary experiment, we compare the effectiveness
of a single and an ensemble of 10 VLN⟳ BERT agents
when serving as the ToM model of a speaker. Results in
Figure 6 show that the ensemble listener is significantly
better than the single listener for two different speakers.

A.7. Qualitative Examples

In Figure 7, we show qualitative examples where having a
ToM listener enables the speaker to generate a more accurate
instruction.
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Human: Turn around and walk down the stairs to the bottom. Walk 
into the kitchen and stand near the kitchen table.

EncDec-Transformer: Go down the stairs and stop at the bottom of 
the stairs. [correct destination is next to dining table]

EncDec-Transformer + ToM Listener (Ensemble of 10 VLN↻ BERTs): 
Walk down the stairs and wait by the dining room table and chairs.

(a)

Human: Walk along the patio towards the couch. Stop next to 
the table that is in front of the couch.
EncDec-Transformer: Walk straight down the walkway and 
stop next to the first chair on the left. [Correct destination is 
next to the couch and table]
EncDec-Transformer + ToM Listener (Ensemble of 10 EnvDrop-
CLIP): Go straight down the walkway. Go straight and pass the 
two chairs. Stop near the landing with the pillars.

(b)

Human: Turn around and exit out the door in the right corner. Enter the next room and 
walk straight ahead towards the outdoor area. Stop once you pass the columns and are 
in the middle facing all the chairs looking outside.
EncDec-LSTM: Exit the bathroom and turn left. Walk past the bed and wait by the two 
chairs. [Correct destination is next to the chairs in the outdoor area]
EncDec-LSTM + ToM Listener (Ensemble of 10 EnvDrop-CLIP): Walk out of the 
bathroom and make a left. Walk through the bedroom and continue straight towards 
the red chair. Stop at the chair before getting to the red front of the patio.

(c)

Figure 7: Qualitative examples where the pragmatic speaker (the last model) avoids missing information by simulating
the interpretation of the human listener.


