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Abstract

Visuals are valuable tools in teaching math001
word problems (MWPs), helping young learn-002
ers interpret textual descriptions into mathe-003
matical expressions before solving them. How-004
ever, creating such visuals is labor-intensive005
and we lack automated methods. In this pa-006
per, we present MATH2VISUAL, an automatic007
framework for generating pedagogically mean-008
ingful visuals from MWP text descriptions.009
MATH2VISUAL leverages a pre-defined visual010
language and a structured design space for vi-011
suals, informed by math teachers, to effectively012
capture the essential mathematical relation-013
ships within MWPs. Using MATH2VISUAL,014
we construct an annotated dataset of 1,903 vi-015
suals and evaluate Text-to-Image (TTI) models016
in generating visuals that align with our de-017
sign. We further fine-tune various TTI models018
with our dataset, demonstrating improvements019
in educational visual generation. Our work020
establishes a new benchmark for automated021
pedagogical meaningful visual generation and022
offers insights into the challenge of generating023
multimodal educational content.024

1 Introduction025

Math word problems (MWPs) are textual descrip-026

tions of mathematical scenarios that require in-027

terpreting linguistic and numerical information028

to derive mathematical expressions for problem-029

solving (Verschaffel et al., 2014). MWPs are a key030

part of primary school math education and have031

been the subject of significant research (Verschaffel032

et al., 2020). Solving MWPs is a complex cognitive033

task that progresses through several stages: prob-034

lem understanding, solution planning and solution035

execution (Opedal et al., 2023; Polya, 2014). It is a036

challenge for learners to interpret the text and map037

it to a mental model that captures the described038

mathematical relationships (Cummins et al., 1988;039

Stern, 1993), especially for young students (e.g.,040

Figure 1: Surplus operation example in Intuitive design
(Formal version: Figure 18). MWP: At home, Marian
made 10 gingerbread cookies, which she will distribute
equally among tiny glass jars. If each jar is to contain 3
cookies, how many cookies will remain unplaced?

grades 1–3) who are still developing their read- 041

ing and comprehension skills (Duke and Block, 042

2012). Beyond comprehension challenges, recent 043

findings reveal that children’s arithmetic skills do 044

not readily transfer between applied and academic 045

contexts (Banerjee et al., 2025), highlighting the 046

need to bridge intuitive experiences with formal in- 047

struction. Visuals designed specifically for MWPs 048

can bridge this gap by transforming mathemati- 049

cal concepts into intuitive representations (Cooper 050

et al., 2018), thus supporting student understanding 051

and problem solving (Mayer, 2002). 052

Although primary school math teachers have 053

long recognized the value of visuals when teach- 054

ing MWPs (Kaitera and Harmoinen, 2022; Boo- 055

nen et al., 2016), manually creating these visuals 056

is time-consuming and requires considerable ef- 057

fort (Xu et al., 2021). Current Text-to-Image (TTI) 058

models face limitations in generating visuals that 059

accurately reflect mathematical reasoning (Kajic 060

et al., 2024). In response, recent methods have 061

explored ways for automating the generation or re- 062

trieval of instructional images. For instance, Singh 063

et al. introduced a text-image matching task aimed 064

at retrieving and assigning web images to textbook 065

content (Singh et al., 2023). Building on the role 066
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of images in learning, another study explored using067

image semantics to generate visual multiple-choice068

questions for young learners (Singh et al., 2019).069

More recently, the Chain-of-Exemplar framework070

has been applied to generate both multiple-choice071

questions and their distractors using multimodal072

educational content that combines text and im-073

ages (Luo et al., 2024). However, these methods074

do not generate visuals for narrative contexts such075

as MWPs. Furthermore, there is no universally076

accepted visual representation for MWPs that is077

both pedagogically meaningful and scalable for078

automated generation.079

In response to this gap, we develop a pedagog-080

ically meaningful visual design for MWPs along081

with primary school math teachers. Here, we define082

pedagogical meaningful visuals as visuals that se-083

mantically and logically represent MWPs, helping084

learners to comprehend them accurately and clearly.085

Then, we introduce MATH2VISUAL, a framework086

for generating such visuals in image format from087

MWP text descriptions. Using MATH2VISUAL,088

we generate and annotate a dataset containing ∼2K089

pedagogical visuals for MWPs in grades 1–3. Fi-090

nally, we evaluate the ability of state-of-the-art TTI091

models to directly generate visuals that align with092

our proposed pedagogical design. We use our an-093

notated dataset to fine-tune various TTI models094

and demonstrate a performance improvement after095

fine-tuning. In summary, our contributions are:096

1 MATH2VISUAL, a scalable framework that in-097

corporates a tree-based visual language and a struc-098

tured design space to generate pedagogically mean-099

ingful visuals from MWP text descriptions.100

2 An annotated visual dataset that benchmarks101

models’ ability to generate mathematically rea-102

soned visuals and supports TTI model training.103

2 Related Work104

Math Word Problems in NLP Math word prob-105

lems have long been a focus of interest in the NLP106

community (Roy and Roth, 2015; Kushman et al.,107

2014; Huang et al., 2017; Amini et al., 2019; Xie108

and Sun, 2019; Drori et al., 2022), with research109

primarily aiming to improve computational mod-110

els’ ability to solve MWPs accurately. Approaches111

such as mapping text to expression trees (Koncel-112

Kedziorski et al., 2015; Yang et al., 2022; Roy and113

Roth, 2017) and explicitly modeling arithmetic op-114

erations (Mitra and Baral, 2016a; Roy and Roth,115

2018) have enhanced machine processing of math-116

ematical expressions in natural language. However, 117

most existing methods focus on producing numeri- 118

cal answers without human-interpretable reasoning, 119

which is essential in educational settings (Opedal 120

et al., 2023; Shridhar et al., 2022). To address 121

this limitation, recent work has explored integrat- 122

ing mental models and human-centered represen- 123

tations into MWP solving. The MathWorld frame- 124

work (Opedal et al., 2023) represents MWPs using 125

a graph-based semantic formalism aligned with hu- 126

man reasoning. However, it supports only the four 127

basic arithmetic operations, and lacks coverage of 128

“second-order” MWPs. 129

Visuals in Primary School Math Education Vi- 130

suals have long been recognized as critical tools 131

in primary school education, particularly in math 132

teaching (Kaitera and Harmoinen, 2022; Boo- 133

nen et al., 2016). Research indicates that well- 134

designed pedagogical visuals help students grasp 135

abstract concepts more readily (Small and Lin, 136

2025; Mayer, 2002; Evagorou et al., 2015) while 137

increasing their engagement (Cooper et al., 2018), 138

and improving study efficiency (Arcavi, 2003). 139

Many visual designs have been proposed for pri- 140

mary school math teaching. One common design 141

is bar model (Hoven and Garelick, 2007). The bar 142

model illustrates numerical relationships of math 143

problems through bars representing quantities, en- 144

abling visualization of mathematical concepts and 145

operations (Hoven and Garelick, 2007). The bar 146

model has proven to be effective in improving chil- 147

dren’s problem solving skills (Osman et al., 2018) 148

and their ability to use correct cognitive stategies 149

to solve the problem (Morin et al., 2017). An- 150

other modern design is Noyon, which introduces 151

a modular approach to expressing mathematical 152

problems visually (Saquib et al., 2021). Noyon em- 153

ploys iconic elements to construct representations 154

of mathematical concepts, offering a structured yet 155

flexible way to depict mathematical relationships. 156

Automated Visual Generation and Retrieval 157

in Education Although educational visuals are 158

widely recognized for their benefits and are fre- 159

quently used by primary school math teachers in 160

instruction (Jitendra and Woodward, 2019; Boonen 161

et al., 2016), the manual creation of such visuals 162

remains a time-consuming and resource-intensive 163

task (Xu et al., 2021). Recent advances in NLP 164

and educational technology have explored auto- 165

mated methods for generating or retrieving visual 166

content. For instance, tasks such as text-image 167
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matching have been proposed to assign web im-168

ages to textbook content (Singh et al., 2023), while169

other studies have leveraged image semantics to170

generate visual multiple-choice questions (Singh171

et al., 2019) and employed frameworks like Chain-172

of-Exemplar to combine multimodal educational173

content for question generation (Luo et al., 2024).174

However, these approaches fail to generate visuals175

that reveal the underlying mathematical reasoning176

in MWPs.177

3 From MWP to Visual178

This section introduces MATH2VISUAL frame-179

work. We first present the desiderata for a good180

visual (Section 3.1), followed by an overview of181

MATH2VISUAL ( Section 3.2). Then, we explain182

each component of MATH2VISUAL (Section 3.3183

to 3.5). Finally, we detail the process of develop-184

ing visual designs with teachers and the evaluation185

criteria (Sections 3.6 and 3.7).186

3.1 Desiderata for a Good Visual187

For visuals aimed at supporting primary school188

educators and enhancing student understanding189

of MWPs (targeting grades 1–3), the following190

criteria are essential: (1) clearly convey the cen-191

tral ideas of an MWP (Evagorou et al., 2015; Ji-192

tendra and Woodward, 2019), (2) reduce unnec-193

essary cognitive load of students (Mayer, 2002),194

and (3) enhance student engagement (Cooper et al.,195

2018). Rather than focusing on decorative aes-196

thetics, the design should maintain a semantic and197

logical alignment with the MWP content.198

3.2 MATH2VISUAL Framework Overview199

Drawing inspiration from the desiderata above, we200

present an overview of the MATH2VISUAL frame-201

work in Figure 2. MATH2VISUAL follows a text-202

to-semantics-to-visual pipeline, similar to previ-203

ous visual generation works (Belouadi et al., 2023,204

2024). Given an MWP text description (TMWP)205

and, optionally, a solution formula (Fsolution), the206

framework uses an LLM to produce a visual lan-207

guage VL. VL is a semantic visual representation208

that holds the information needed to generate the209

visuals (see Section 3.3). The VL is then paired210

with a manually collected dataset of icons, called211

SV G and processed by two rendering programs212

(Rformal, Rintuitive) to generate two types of visuals:213

“Formal” (Vformal) and “Intuitive” (Vintuitive). De-214

tails of the visual design and rendering program are215

presented in Sections 3.4 and 3.5, respectively.216

3.3 Semantic Representation of MWP 217

To bridge the gap between formal mathematical 218

structure and visual expressiveness, we introduce a 219

tree-based Visual Language (VL) specifically tai- 220

lored for visual generation and clarity. 221

VL is a tree-based hierarchical language with 222

a structure closely resembling the expression tree 223

(Wang et al., 2018; Zhang et al., 2023) of the prob- 224

lem solution Fsolution. In the VL, we represent an 225

MWP using three primary components: entity, con- 226

tainer, and operation. We illustrate the mapping 227

from an MWP to these VL components using the 228

example in Figure 2. Note that the mapping from 229

an MWP to VL is not strictly deterministic—it re- 230

quires an intuitive understanding of visualization. 231

Therefore, we use an LLM with in-context learning 232

to perform the conversion. The full procedure is 233

detailed in Section 4.2. 234

(1) Entity is the smallest unit in VL and repre- 235

sents an element to be visualized. For instance, the 236

flower in Figure 2 is an entity. An entity is iden- 237

tified by attributes entity_name, entity_type 238

and entity_quantity. entity_name represents 239

the name of the entity as given in the MWP, 240

entity_type is entity’s category for visualization. 241

In Figure 2, the phrase “colorful flower” from the 242

MWP maps to entity_name, while “flower” be- 243

comes the entity_type. The entity_quantity 244

attribute specifies how many entities there are, 245

which are then logically grouped within a container. 246

(2) Container represents the grouping or pos- 247

session of entities as indicated in the MWP, 248

similar to the definition in (Opedal et al., 249

2023). For example, in Figure 2, Faye is 250

a container that possesses 88 colorful flow- 251

ers. A container is identified by attributes 252

container_name, container_type, attr_name 253

and attr_type. The container_name describes 254

the container’s name as stated in the MWP, while 255

container_type defines its category for visualiza- 256

tion. In Figure 2, “Faye” is the container_name 257

and “girl” is the container_type. The attr_name 258

and attr_type are optional attributes that provide 259

additional contextual details of the container. 260

(3) Operation represents mathematical or logical 261

relationships between containers. In addition to ba- 262

sic arithmetic operations such as addition, subtrac- 263

tion, multiplication, and division, we incorporate 264

additional operations including surplus, compar- 265

ison and unit transformation. These operations 266

enable us to cover 94.4% of grade 1-3 MWPs in 267
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Figure 2: MATH2VISUAL Framework: Our approach first converts the MWP text description into a Visual
Language (VL) expression using an LLM. The VL is then passed to a rendering program that generates the
corresponding visual. The presented visual is in “Formal” design.

the ASDiv dataset (Miao et al., 2020). Operations268

are denoted as:269

operation(container1, container2, (1)270

result_container)271

The final VL is a composition of the solution272

tree Fsolution and the operations. Thus, container1273

and container2 in eq. 1 can themselves be op-274

erations, enabling nested operations and support-275

ing hierarchical representations for more complex276

MWPs. We use identical attributes for container1,277

container2, and result_container to ensure consis-278

tency and ease LLM interpretation. For example,279

in Figure 2, an inner subtraction operation is per-280

formed between container Faye and Mike, and the281

resulting value is divided by container bouquet282

through an outer division operation.283

3.4 Visual Design284

In this section, we describe how elements from285

a VL are visualized. Our design, informed by286

an exploratory study with five primary school287

math teachers (Section 3.6), is inspired by the bar288

model (Hoven and Garelick, 2007) and Noyon’s289

modular design (Saquib et al., 2021) (Section 2).290

Container with Entity: Inspired by Noyon’s291

modular design and the bar model’s structure, we292

depict containers as rectangles enclosing visual-293

ized entities. For quantities over ten, a single en-294

tity is shown with its number overlaid, consistent295

with Twinkl datasets (twinkl, 2025). The attributes296

container_name and container_type are visual-297

ized as a small icon accompanied by text above the298

container rectangle, as shown in Figure 2. Addition-299

ally, if attr_name and attr_type have non-empty300

values, they are displayed as the icon alongside the301

container icon.302

Operation: As informed by exploratory study 303

(see Section 3.6), we visualize operations using 304

two visual variations: “Formal” and “Intuitive”. 305

The “Formal” variation represents operations using 306

mathematical symbols (e.g. “+”, “-”, “×”, “÷”) 307

accompanied by text, as shown in Figure 2. More 308

examples are in Appendix B.1. 309

In the “Intuitive” variation, each operation is 310

represented through a specific visual arrangement, 311

we present high level description below, with more 312

details in Appendix C.5. 313

• Addition: Containers in the addition operation 314

are enclosed in a large rectangle (see Figure 12). 315

• Subtraction: The minuend container is visual- 316

ized first, with the subtracted entities crossed out 317

(see Figure 13). 318

• Multiplication: The multiplicand container is 319

repeated to represent multiplication (see Figure 14). 320

For special area computing problems, it is depicted 321

as a single entity with dimensions matching the 322

MWP’s width and length (see Figure 15). 323

• Division: The division operation is visualized as 324

the post-division state, with multiple entity rectan- 325

gles representing groups enclosed within a larger 326

rectangle (see example in Figure 16 and 17). 327

• Surplus: Similar to division, but the surplus 328

entity is visualized separately (e.g., see Figure 1). 329

• Comparison: This operation involves comparing 330

different entities by visualizing them on a balance 331

scale. Each entity is placed on one side of the scale 332

(see example in Figure 19). 333

• Unit Transformation: The unit transformation 334

operation is for questions that involve changes in 335

measurement units. We adopt a purple bubble 336

above each entity to display its value in the trans- 337

formed unit (see example in Figure 20). 338

Finally, for MWPs with multiple operations, we 339
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follow these visualization rules for each operation340

and dynamically combine them to form the overall341

expression tree (see Figure 21).342

3.5 From Visual Language to Visual343

We convert our Visual Languages (VLs) into visu-344

als using dedicated rendering programs. Each en-345

tity in VL is mapped to a visual icon from an SVG346

dataset, while preserving the operations and rela-347

tionships between the containers. To achieve this,348

we convert the VL into a tree structure that captures349

the hierarchical relationships between operations350

and containers. We traverse the tree to compute351

the relative positions of each container in the visual352

based on its attributes (such as entity_quantity)353

and the layout corresponding to the involved oper-354

ations (see Section 3.4). The overall process pro-355

duces a global layout plan for rendering. Finally,356

we traverse the tree, assigning a corresponding357

SVG icon for each “type” attribute (entity_type,358

container_type, and attr_type) and render the359

complete visual based on the global layout plan.360

Note that the attributes in result_container are361

only used in “Intuitive” visual generation. The362

complete algorithm is presented in Algorithm 1.363

3.6 Validating designs with Teachers364

Co-Designing Visuals with Teachers: We con-365

ducted an exploratory study with five experienced366

primary school math teachers (grades 1–3; demo-367

graphics in Table 5) who regularly use visuals to368

teach MWPs. During the study, participants eval-369

uated six alternative visual designs, provided sug-370

gestions, and discussed evaluation criteria for our371

generated visuals. Further details on the designs,372

study protocol, and results are in Appendix C.373

Participants Recognize Our Design’s Value for374

Teaching Our exploratory study results (Tables 6375

and 7) confirmed that teachers perceive our visuals376

as effective in clearly conveying the central ideas377

of MWP, reducing unnecessary cognitive load, and378

enhancing student engagement. We asked partic-379

ipants to rate our visual design on a 7-point Lik-380

ert scale (7 being the highest). Every participant381

awarded a perfect 7.0 for both “usefulness for teach-382

ing” and “likelihood of frequent use in class,” and383

the average score for “helpfulness for student under-384

standing of MWPs” was 6.8. These ratings indicate385

that our design is pedagogically meaningful.386

Suggestions for Refining the Visual Represen-387

tation Participants highlighted two key insights:388

the “Formal” design, which incorporates math sym- 389

bols, best enhances the clarity of mathematical 390

expressions, while the “Intuitive” design best im- 391

proves student engagement and reduces unneces- 392

sary cognitive load. Their feedback on how quan- 393

tities should be represented led to refinements in 394

our approach. Consequently, our final design offers 395

two variations: “Formal” design emphasizing clar- 396

ity and “Intuitive” design tailored for engagement 397

and optimization of cognitive load. 398

3.7 Evaluation Criteria for Generated Visuals 399

After discussions with five math teachers, we es- 400

tablished the following criteria to evaluate our gen- 401

eration approach in reproducing our design. 402

(i) Accuracy measures how accurately the quantity 403

of entities and relationships between entities in the 404

visual reflect the MWP. This criterion is crucial in 405

education as it is important for students to learn 406

accurate information. (Metzger et al., 2003; Goldin 407

and Shteingold, 2001). 408

(ii) Completeness evaluates whether all elements 409

necessary for solving the MWP—including entities, 410

quantities, mathematical relationships, and contex- 411

tual cues that affect problem interpretation—are 412

present in the visual. This criterion is vital in ed- 413

ucation, as teachers should provide complete and 414

necessary information to learners (Crosby, 2000). 415

(iii) Clarity measures how easily students can in- 416

terpret the visual without confusion or ambiguity. 417

This includes clear distinctions between entities, 418

appropriate use of labels and unambiguous spatial 419

arrangements. Clarity is important in math teach- 420

ing, as it supports effective learning (Metzger et al., 421

2003; Goldin and Shteingold, 2001). 422

(iv) Cognitive Load Optimization assesses 423

whether the visual minimizes unnecessary cogni- 424

tive load caused by distractions or redundant details 425

that do not contribute to problem-solving. Mini- 426

mizing unnecessary cognitive load is crucial since 427

learners’ working memory can process only a few 428

elements at a time (Kirschner, 2002). 429

4 Visual Dataset Generation 430

In this section, we describe the process of generat- 431

ing a visual dataset from MWPs. 432

4.1 MWP Data Source 433

We select the ASDiv dataset (Miao et al., 2020) as 434

our source of MWPs as it covers a diverse range of 435

problem types and includes grade-level annotations 436
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for each question. We collect 1,268 MWPs suitable437

for our MATH2VISUAL framework, constituting438

94.4% of the grade 1–3 MWPs in ASDiv.439

4.2 Dataset Creation440

In this section, we explain our dataset creation pro-441

cess. First, we manually wrote 30 VL examples442

that serve as in-context demonstrations for LLMs.443

Using these examples, we prompt the GPT-4o1444

mini model (OpenAI, 2024b) to generate the re-445

maining VL for our collected MWPs. The prompt446

is shown in Appendix F.1. For each generated VL,447

we automatically retrieve the entities for visualiza-448

tion and manually collect the corresponding SVG449

icons of these entities from multiple sources (svgre-450

poRepoFree, 2025; iconfont, 2025; svgen, 2025;451

Condino, 2022; YILDIRIM, 2023; pexels, 2025).452

These SVG icons are then combined with the VL to453

render a total of 1,903 visuals—comprising 1,268454

“Formal” visuals and 635 “Intuitive” visuals. Fi-455

nally, two researchers manually validate each ren-456

dered visual and its associated VL to ensure it ac-457

curately represents the corresponding MWP. The458

process, including SVG collection and manual ver-459

ification, required approximately 160 hours of ded-460

icated effort. Table 8 provides an overview of our461

annotated dataset and comparisons with other math462

pedagogical visual datasets.463

5 Results and Analysis464

In this section, we aim to address the following465

experimental questions regarding MATH2VISUAL:466

1 How does the choice of generation framework467

affect the quality of the generated visuals?468

2 How does incorporating the solution formula of469

an MWP impact the generation results?470

3 How does fine-tuning on synthesized visual471

dataset enhance model performance in generating472

pedagogical meaningful visuals?473

5.1 Experiment Design474

To assess various strategies for producing visuals,475

we conduct two sets of experiments: one to evaluate476

how effectively LLMs generate VL, and another to477

compare our MATH2VISUAL framework with the478

latest TTI models for generating visuals.479

Evaluating LLMs for Generating Visual Lan-480

guage We create a test set of 257 VL instances481

using stratified sampling based on “Grade” (e.g.,482

Grade 1) and “Question Type” (e.g., addition)483

from our annotated dataset. We compare two484

recent LLMs with strong reasoning capabilities: 485

OpenAI o3-mini (OpenAI, 2025) and Gemini 2.0 486

Flash (Google, 2025), to see how accurately they 487

can generate VL. We provide both models with 488

prompts in Appendix F.1 and vary whether we in- 489

clude solution formulas in the prompt to test the 490

effect on generation quality. We measure perfor- 491

mance by computing: (1) Logic Match Ratio: Ratio 492

of generated VLs correctly match the ground truth 493

VLs from annotation in terms of operations and the 494

quantity of entities. (2) Edit Distance: The aver- 495

age distance between generated and ground-truth 496

VL. We compute this using Zhang–Shasha tree 497

edit distance algorithm (Zhang and Shasha, 1989), 498

implemented through the zss package1. 499

Evaluating Methods for Generating Visuals 500

For evaluating different methods of generating vi- 501

suals, we conduct a two-stage assessment. In the 502

first stage, we perform initial human evaluation 503

using two test sets (Formal and Intuitive), each con- 504

taining 24 visuals. These visuals are stratifiedly 505

sampled based on "Grade" and "Question Type" 506

from our annotated dataset. 507

We evaluate two state-of-the-art TTI mod- 508

els, DALLE-3 (OpenAI, 2024a) and Recraft- 509

V3 (Recraft, 2024), using prompts detailed in Ap- 510

pendix F.2 while experimenting with both prompts 511

with and without solution formulas. We compare 512

the visuals generated by DALLE-3 and Recraft-V3 513

with those rendered from VL generated by o3-mini 514

and Gemini 2.0 Flash, alongside ground-truth vi- 515

suals from our annotated dataset. Two researchers 516

independently evaluate each visual based on the 517

criteria described in Section 3.7. 518

To validate results of initial evaluation, we 519

selected the best-performing TTI model and 520

MATH2VISUAL with the best LLM for an ex- 521

panded human evaluation using the same settings. 522

For this phase, we created two additional test sets 523

(Formal and Intuitive), each with 72 visuals. 524

5.2 Results of Visual Language Evaluation 525

In the upper part of Table 1, we show evaluation 526

results for VL generated by various methods. The 527

o3-mini with formula achieves a logic match ra- 528

tio of 96.89%, indicating close alignment with the 529

ground truth in operations and entity quantities. 530

Additionally, the Gemini-2-flash model with for- 531

mula records the lowest edit distance, suggesting 532

its generated VL closely matches the ground truth 533

1https://github.com/timtadh/zhang-shasha
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attribute values.534

Within the same model, including the solution535

formula reduces the edit distance while increasing536

the logic match ratio of the generated VL. However,537

advanced models like o3-mini can still achieve a538

91% logic match even without formula.

Criterion Edit Dist↓ LM Ratio↑

o3-mini(F) 2.82 96.89
o3-mini 2.90 91.05
gemini-2-flash(F) 2.67 90.27
gemini-2-flash 2.96 72.76

ft_llama-3.1-large(F) 2.28 89.50
ft_llama-3.1-large 2.52 80.54
zs_llama-3.1-large(F) 4.67 1.95
zs_llama-3.1-large 4.47 3.11

Table 1: Visual Language Generation Results: F indi-
cates generation with the solution formula. Scores are
averaged over 257 V L instances per method.539

5.3 Results of Visual Evaluation540

The upper part of Table 2 shows evaluation results541

for visuals generated by different methods. Based542

on these, we selected o3-mini(F) and recraft-v3(F)543

for the expanded human evaluation, with results in544

the lower part of Table 2. These results confirm545

the trends observed in our initial human evaluation.546

Our key findings are as follows:547

MATH2VISUAL Scores Highly on All Criteria548

The MATH2VISUAL framework, equipped with the549

latest LLMs, outperforms other TTI models across550

all criteria, demonstrating its capability to generate551

accurate visuals aligned with our design. The o3-552

mini model performs best on the Formal dataset,553

while the Gemini-2-flash model achieves better re-554

sults on the Intuitive dataset. The scores for the555

Formal dataset are consistently higher across crite-556

ria compared to the Intuitive dataset. This discrep-557

ancy may be due to the Intuitive dataset containing558

slightly more complex questions for converting to559

VL. However, the score difference remains rela-560

tively small, around 0.4.561

Solution Formula Increases Performance562

Within the same model, including the solution for-563

mula as input increases performance in most cases,564

possibly because it offers a structured representa-565

tion of the MWP that helps the model understand566

the mathematical relationships between containers.567

5.4 Fine-Tuning for Visual Generation568

In this section, we evaluate the effectiveness of fine-569

tuning LLMs and TTI models using our annotated570

dataset. We fine-tuned the LLMs using 80% of the571

annotated data, while for the TTI models, we fine- 572

tuned Formal models with 80% of the Formal data 573

and Intuitive models with 80% of the Intuitive data 574

(details in Appendix G). Specifically, we fine-tuned 575

two LLMs, Llama-3.1-8B (Dubey et al., 2024) and 576

Mistral-7B-v0.3 (Mistral, 2024), as well as two 577

TTI models, Flux.1-dev (Blackforest, 2024) and 578

Stable Diffusion-3.5-large (Esser et al., 2024). For 579

each model, we fine-tuned two versions: one using 580

dataset with solution formula input and one without 581

formula. Results for Llama-3.1-8B are presented 582

in Tables 1 and 2, for Flux.1-dev in Table 2, and 583

for the other models in Tables 9 and 10. 584

As shown in the lower part of Table 1, the Llama 585

model fine-tuned with formula achieves the lowest 586

edit distance among all models, significantly re- 587

ducing the edit distance compared to its zero-shot 588

version. It also achieves a logic match ratio compa- 589

rable to the latest LLMs and higher than that of the 590

model fine-tuned without formula input. 591

The middle section of Table 2 shows that the vi- 592

suals generated by MATH2VISUAL with the Llama 593

model fine-tuned with the formula achieve scores 594

comparable to those of the latest LLMs across all 595

criteria. Similarly, the Flux model fine-tuned with 596

the formula performs comparably to the latest TTI 597

models. In every instance, models fine-tuned on 598

datasets with formula outperform those without for- 599

mula. Our expanded human evaluation (see lower 600

section of Table 2) further validates these findings. 601

5.5 Qualitative Analysis on TTI Models and 602

Discussion 603

To identify and understand common errors in vi- 604

suals generated by TTI models, we performed a 605

qualitative analysis. We use thematic analysis to 606

identify recurring error patterns. This process in- 607

volved two phases: an initial exploration with 120 608

visuals to identify error types and then a systematic 609

evaluation of visuals using these categories with 610

576 visuals generated by three representative meth- 611

ods. The error types include: (1) Quantity Error: 612

an incorrect number of entities; (2) Relation Error: 613

incorrect mathematical relationships between con- 614

tainers; (3) Structural Misalignment: visuals that 615

do not align structurally with our design, featuring 616

misaligned elements or disorganized groupings; (4) 617

Missing Entities: visuals missing necessary enti- 618

ties for solving MWP; and (5) Missing Contextual 619

Cues: visuals lacking essential contextual cues for 620

solving MWP. Table 3 reports the ratio of each 621

error type, and the findings are discussed below. 622
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Method Accuracy Completeness Clarity Cog Load Opt

Formal Intuitive Formal Intuitive Formal Intuitive Formal Intuitive

pr
om

pt
in

g
o3-mini(F) 4.92 4.58 5.00 4.67 4.88 4.67 4.96 4.54
o3-mini 4.83 4.54 4.96 4.50 5.00 4.67 4.96 4.42
gemini-2-flash(F) 4.79 4.50 4.92 4.57 4.96 4.79 4.96 4.65
gemini-2-flash 4.54 4.62 4.58 4.57 4.79 4.67 4.75 4.61
recraft-v3(F) 3.33 2.96 3.75 3.62 3.75 4.00 3.63 3.96
recraft-v3 3.26 2.96 3.50 3.33 3.54 3.75 3.54 3.92
dalle-3(F) 2.96 3.04 3.21 3.42 2.54 2.33 2.54 2.50
dalle-3 2.79 2.96 2.83 3.33 2.12 2.29 2.17 2.46

fin
e-

tu
ni

ng

ft_llama-3.1-8B(F) 4.79 4.83 4.83 4.83 4.83 4.83 4.83 4.83
ft_llama-3.1-8B 4.58 4.83 4.63 4.83 4.67 4.83 4.67 4.83
zs_llama-3.1-8B(F) 1.25 1.33 1.25 1.33 1.33 1.33 1.29 1.33
zs_llama-3.1-8B 1.08 1.00 1.04 1.00 1.17 1.00 1.17 1.00
ft_flux.1-dev(F) 3.21 2.62 3.38 3.38 3.38 3.12 3.50 3.33
ft_flux.1-dev 3.12 2.21 3.33 3.38 3.33 3.17 3.29 3.25
zs_flux.1-dev(F) 3.13 2.50 3.21 2.83 3.33 3.25 3.42 3.63
zs_flux.1-dev 3.13 2.42 3.21 2.83 3.33 3.25 3.42 3.63

ex
p.

ev
al o3-mini(F) 4.97 4.96 5.00 4.97 4.94 4.94 4.96 4.96

recraft-v3(F) 2.65 3.00 3.57 3.82 3.58 3.76 3.18 3.29
ft_llama-3.1-8B(F) 4.93 4.92 4.92 4.92 4.99 4.92 4.96 4.97
ft_flux.1-dev(F) 2.49 2.53 2.60 2.64 3.67 3.54 3.89 3.92

Table 2: Human Evaluation of Visual Representations: In the upper and middle parts of the table, 48 visuals (24
Formal, 24 Intuitive) were evaluated with scores averaged from two researchers on a 1–5 scale. In the lower part
(expanded evaluation), 144 visuals (72 Formal, 72 Intuitive) were further evaluated with the best performing models.
(F) indicates use of the solution formula as input; “ft” denotes a fine-tuned model and “zs” a zero-shot model.

Method Quantity Err Relation Err Struct Misalign Miss Visual Items Miss Contex Cues

Formal Intuitive Formal Intuitive Formal Intuitive Formal Intuitive Formal Intuitive

ft_flux.1-dev(F) 0.72 0.74 0.85 0.81 0.35 0.23 0.44 0.30 0.57 0.49
zs_flux.1-dev(F) 0.77 0.78 0.92 0.85 1.00 1.00 0.74 0.66 0.62 0.60
recraft-v3(F) 0.41 0.38 0.82 0.81 0.64 0.94 0.44 0.18 0.35 0.50

Table 3: Statistical Results for Qualitative Analysis: For each method, 192 visuals (96 Formal and 96 Intuitive)
were evaluated, with each score representing the ratio of corresponding error.

Fine-tuning Improves Structural Alignment623

and Entities Inclusion Table 3 shows that fine-624

tuning the Flux model significantly reduces both625

structural misalignment and missing entity errors626

compared to the zero-shot model. The fine-tuned627

model generated visuals align to our design by con-628

sistently representing containers as rectangles en-629

compassing entities. In contrast, while the zero-630

shot version generally represents quantities accu-631

rately as numbers, it often fails to properly visualize632

the corresponding entities. Overall, fine-tuning de-633

creases error rates across all evaluated categories.634

Relation Errors Remain a Severe Problem De-635

spite improvements from fine-tuning, all models636

exhibit high relation error ratio (ranging from .82 to637

.92 in Formal and .81 to .85 in Intuitive), indicating638

a persistent challenge in accurately depicting math-639

ematical relationships between containers. We find640

that visuals generated by TTI models frequently641

employ incorrect operations or fail to depict the642

intended relationships. While existing work has643

explored methods for generating precise numerical644

quantities in visuals (Binyamin et al., 2024), fur-645

ther research is needed to develop techniques that646

effectively visualize mathematical relationships. 647

6 Conclusion 648

This work introduces MATH2VISUAL, an auto- 649

matic framework for generating scalable and ped- 650

agogically meaningful visuals from MWP text de- 651

scriptions. MATH2VISUAL leverages a graph- 652

based visual language and a structured visual 653

design space—developed in collaboration with 654

math teachers—to effectively capture the essen- 655

tial mathematical relationships within MWPs. Us- 656

ing MATH2VISUAL, we generated and annotated 657

a dataset of 1,903 visuals and evaluated state-of- 658

the-art Text-to-Image (TTI) models on their ability 659

to produce visuals that align with our design. We 660

further demonstrated that fine-tuning these models 661

on our dataset improves the quality of visual gener- 662

ation. While our results represent a promising step 663

toward the automated generation of pedagogically 664

meaningful visuals, challenges remain in directly 665

generating such visuals with current TTI models. 666

Future work will explore more scalable and flexible 667

generation frameworks and further refine our visual 668

design to better support educational outcomes. 669
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Limitations670

(i) Scope of Representation MATH2VISUAL is671

currently limited to math word problems involving672

the seven operations defined in this paper (addi-673

tion, subtraction, multiplication, division, surplus,674

comparison, unit transformation). Although our675

framework can handle MWPs that require multi-676

ple operations, the solution must be expressible677

in a single formula. Future work could extend678

MATH2VISUAL to support more complex problem679

formulations that require multiple interconnected680

equations.681

(ii) Language Restriction Our study focuses682

solely on MWPs written in English. While683

MATH2VISUAL should, in principle, be applicable684

to similar problems in other languages, adapting685

the system for multilingual support remains an av-686

enue for future exploration.687

(iii) Predefined Visual Style and Input Require-688

ments Despite achieving 94.4% coverage of grade689

1-3 MWPs in the ASDiv dataset (Miao et al., 2020),690

MATH2VISUAL relies on a predefined visual style691

and requires a SVG dataset of entity icons as in-692

put. Although this controlled approach ensures693

the pedagogical validity of visuals and is an ef-694

fective strategy given current model capabilities,695

it inherently limits generation flexibility. Future696

research may explore more versatile frameworks,697

such as adapting advanced Text-to-Image models,698

to generate pedagogically valuable visuals without699

predefined styles.700
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A Visual Language Details 1047

A.1 Example of Visual Language 1048

In the MWP description “Jake picked up three ap- 1049

ples in the morning...” the container1 could be 1050

specified as entity_name: apple, entity_type: 1051

apple, entity_quantity: 3, container_name: 1052

Jake, container_type: boy, attr_name: 1053

morning, attr_type: morning. These additional 1054

attributes are not fixed and may vary according to 1055

different interpretations. 1056

A.2 Comparison of Visual Language with 1057

Other MWP Works 1058

We show the comparison of our Visual Language 1059

with other MWP works in Table 4. 1060

B Example of Visuals 1061

B.1 Example of Formal Visual 1062

We provide examples of “Formal” visuals in Fig- 1063

ures 3 to 11.

Figure 3: Example of addition operation in Formal
design (Intuitive version: Figure 12). Corresponding
MWP: Janet has nine oranges, and Sharon has seven
oranges. How many oranges do Janet and Sharon have
together?

Figure 4: Example of subtraction operation in Formal
design (Intuitive version: Figure 13). Corresponding
MWP: Millie had 9 bracelets. She lost 2 of them. How
many bracelets does Millie have left?
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Work Arithmetic
Coverage Conceptual Coverage Semantic

Granularity Problem Depth

Visual Language (ours) (+, -, ×, ÷, surplus,
>,<)

Transfer, Rate, Comparison,
Part-whole, Surplus, Unit
Transformation, Multiple

Steps

Concepts &
equations

multiple-order
MWP

(Opedal et al., 2023) (+, -, ×, ÷) Transfer, Rate, Comparison,
Part-whole World model first-order MWP

(Hosseini et al., 2014) (+, -) Transfer World model first-order MWP

(Mitra and Baral, 2016b) (+, -) Transfer, Comparison (add),
Part-whole

Concepts &
equations first-order MWP

(Roy and Roth, 2018) (+, -, ×, ÷)
Transfer, Rate, Comparison,

Part-whole, Concepts &
equations

Concepts &
equations

multiple-order
MWP

Table 4: Comparison of our Visual Language approach with existing MWP methods.

Figure 5: Example of multiplication operation in Formal
design (Intuitive version: Figure 14). Corresponding
MWP: 5 boats are in the lake. Each boat has 3 people.
How many people are on boats in the lake?

Figure 6: Example of area operation (a special type
of multiplication operation) in Formal design (Intuitive
version: Figure 15). We use the ruler icon to represent
measurement units like feet, meters, etc. Corresponding
MWP: Rug A is 8 feet by 4 feet, and Rug B is 5 feet by
7 feet. Which rug should Mrs. Hilt buy if she wants the
rug with the biggest area?

B.2 Example of Intuitive Visual1065

and examples of “Intuitive” visuals in Figures 121066

to 21.1067

C Details of Exploration Study1068

C.1 Participants’ Demographics1069

We recruited primary school math teachers through1070

Prolific (Prolific, 2025) and paid them 15 USD1071

per hour, which is adequate given the participants’1072

Figure 7: Example of division operation in Formal
design (Intuitive version: Figure 17). Corresponding
MWP: Mrs. Hilt bought carnival tickets. The tickets
cost $1 for 4 tickets. If Mrs. Hilt bought 12 tickets, how
much did she pay?

Figure 8: Example of division operation in Formal de-
sign (Intuitive version: Figure 16). It represents visuals
of a division operation in an MWP, asking for the quan-
tity per group. Corresponding MWP: Lexie’s younger
brother helped pick up all the paper clips in Lexie’s
room. He was able to collect 81 paper clips. If he wants
to distribute the paper clips in 9 boxes, how many paper
clips will each box contain?

country of residence. We present the participants’ 1073

demographics in Table 5. 1074

C.2 Study Protocol 1075

Our study obtained ethical approval and collected 1076

consent forms from each participant. During the 1077

study, participants were first introduced to the back- 1078

ground of the study. They then completed four ses- 1079
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Figure 9: Example of comparison operation in Formal
design (Intuitive version: Figure 19). Corresponding
MWP: Tessa has 4 apples. Anita gave her 5 more. She
needs 10 apples to make a pie. Does she have enough
to make a pie?

Figure 10: Example of unit transformation operation
in Formal design (Intuitive version: Figure 20). Corre-
sponding MWP: Charles found 6 pennies on his way to
school. He also had 3 nickels already at home. How
much money does he now have in all?

Figure 11: Example of multiple steps operation in For-
mal design (Intuitive version: Figure 21). Correspond-
ing MWP: There are 5 boys and 4 girls in a classroom.
After 3 boys left the classroom, another 2 girls came in
the classroom. How many children were there in the
classroom in the end?

sions, as described below. The entire study ranged1080

from 1.5h to 2h.1081

In the first session, participants were asked to1082

indicate their preference between two visual ap-1083

proaches: (1) using multiple visuals, where each1084

visual represents one sentence of the MWP, or (2)1085

using a single visual to represent the entire MWP.1086

In the second session, we presented six design1087

variations to the participants. These variations dif-1088

fered based on two design choices:1089

Figure 12: Example of addition operation in Intuitive de-
sign (Formal version: Figure 3). Corresponding MWP:
Janet has nine oranges and Sharon has seven oranges.
How many oranges do Janet and Sharon have together?

Figure 13: Example of subtraction operation in Intu-
itive design (Formal version: Figure 4). Corresponding
MWP: Millie had 9 bracelets. She lost 2 of them. How
many bracelets does Millie have left?

1. How Quantities Are Visualized: 1090

• Abstract: Quantities are represented as 1091

text from the MWP. 1092

• Hybrid: A single item is visualized with 1093

a label at the bottom-right corner indicat- 1094

ing its quantity. 1095

• Visual: Items are directly drawn in quan- 1096

tities matching their number. 1097

2. How Operations Are Visualized: 1098
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Figure 14: Example of multiplication operation in Intu-
itive design (Formal version: Figure 5). Corresponding
MWP: 5 boats are in the lake. Each boat has 3 people.
How many people are on boats in the lake?

Figure 15: Example of area operation (a special type
of multiplication operation) in Intuitive design (Formal
version: Figure 6). Corresponding MWP: Rug A is 8
feet by 4 feet, and Rug B is 5 feet by 7 feet. Which
rug should Mrs. Hilt buy if she wants the rug with the
biggest area?

• Formal: Mathematical operations are1099

represented using standard symbols (e.g.,1100

+, -, ×, ÷).1101

• Intuitive: Operations are visualized us-1102

ing specific arrangements for each opera-1103

Figure 16: Example of division operation in Intuitive
design (Formal version: Figure 8). It represents visuals
of a division operation in an MWP, asking for the quan-
tity per group. Corresponding MWP: Lexie’s younger
brother helped pick up all the paper clips in Lexie’s
room. He was able to collect 81 paper clips. If he wants
to distribute the paper clips in 9 boxes, how many paper
clips will each box contain?

tion, as described in Section 3.4. 1104

By combining the three approaches for quan- 1105

tities and the two approaches for operations, we 1106

created six unique design variations. Each varia- 1107

tion was introduced to the participants and their 1108

feedback was sought based on the following cri- 1109

teria: (1) Clarity: The extent to which the visual 1110

design clearly represents the math word problem. 1111

(2) Engagement: Whether the visual design helps 1112

improve student engagement. (3) Cognitive Load: 1113

Whether the visual design avoids introducing un- 1114

necessary cognitive load for students. 1115

We asked participants to complete a question- 1116

naire after reviewing each design and collected 1117

their suggestions for improving the respective de- 1118

sign variations. We randomized the presentation 1119

order of the design variations to minimize order 1120

effects. 1121

In the third session, we aimed to gather feedback 1122
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Figure 17: Example of division operation in Intuitive
design (Formal version: Figure 7). It represents visuals
of a division operation in an MWP, asking for the num-
ber of groups. Corresponding MWP: Mrs. Hilt bought
carnival tickets. The tickets cost $1 for 4 tickets. If Mrs.
Hilt bought 12 tickets, how much did she pay?

Figure 18: Example of surplus operation in Intuitive
design (Intuitive version: Figure 1). Corresponding
MWP: At home, Marian made 10 gingerbread cookies
which she will distribute equally in tiny glass jars. If
each jar is to contain 3 cookies each, how many cookies
will not be placed in a jar?

on our “Intuitive” design, which visualizes differ-1123

ent operations. The design details are presented1124

in Section 3.4. We used the same criteria as in1125

session two and asked participants to complete a1126

questionnaire after reviewing each operation de-1127

sign, collecting their suggestions for improvement.1128

We also randomized the presentation sequence of1129

Figure 19: Example of comparison operation in Intu-
itive design (Formal version: Figure 9). Corresponding
MWP: Tessa has 4 apples. Anita gave her 5 more. She
needs 10 apples to make a pie. Does she have enough
to make a pie?

Figure 20: Example of unit transformation operation
in Intuitive design (Formal version: Figure 10). Corre-
sponding MWP: Charles found 6 pennies on his way to
school. He also had 3 nickels already at home. How
much money does he now have in all?

designs in session three. 1130

In session four, we discussed with each partic- 1131

ipant the criteria to use for analyzing the subse- 1132

quently generated visuals. This evaluation focused 1133

not on the design itself but on how effectively our 1134

generation approach could reproduce the intended 1135

design. After completing all the sessions, we asked 1136

participants to complete a post-task questionnaire 1137

assessing the pedagogical value of our visual de- 1138

sign. The results are presented in Section 3.6. 1139

C.3 Additional Results 1140

Single Visual is Preferred for Clarity and Sim- 1141

plicity Most of the participants (4) prefered the 1142
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Figure 21: Example of multiple steps operation in Intu-
itive design (Formal version: Figure 11). Corresponding
MWP: There are 5 boys and 4 girls in a classroom. Af-
ter 3 boys left the classroom, another 2 girls came in
the classroom. How many children were there in the
classroom in the end?

PID Language in
Teaching

Age Gender

1 English 52 Male
2 English 45 Male
3 English 35 Female
4 English 44 Female
5 English 37 Female

Table 5: Participants’ Demographics: We recruited five
primary school math teachers who teach grades 1–3
through Prolific. All teachers consider themselves expe-
rienced educators in using visuals to teach MWPs.

single visual design than multiple visual per MWP.1143

They mentioned single visual have better clarity1144

and is explicit enough for simple MWP for grade1145

1-3 students.1146

Paticipants’ Suggestions on Design Decisions1147

The results of study session two are presented in1148

Table 6. Participants noted that the use of math1149

symbols in the ’Formal’ design enhances clarity,1150

while the ’Visual’ and ’Intuitive’ designs increase1151

engagement and reduce unnecessary cognitive load.1152

However, they also mentioned that the purple circle1153

with a quantity inside caused confusion for learners.1154

They recommended displaying the quantity directly1155

on the visual item and reserving the circle exclu-1156

sively for question marks. Based on participants’1157

feedback, we refined the designs and developed the1158

final version, which includes two variations: the1159

’Formal’ design using math symbols and the ’In-1160

tuitive’ design featuring specific arrangements for1161

different operations. More details about our final1162

design are provided in Section 3.4.1163

Design Clarity Engagement Cog Load Opt

AF 5.0 5.4 4.6
AI 3.6 4.6 3.0
HF 3.0 3.6 1.6
HI 2.0 4.2 1.4
VF 4.6 5.6 3.4
VI 4.8 6.0 5.2

Table 6: Results of exploratory study session 2. In “De-
sign” column, “A” represents “Abstract”; “H” means
“Hybrid”; “V” means “Visual”; “F” means “Formal”; “I”
means Intuitive. Different combinations reflect different
designs, which we discuss in Appendix C.3. All scores
are on a 7-point Likert scale, where higher values in-
dicate better performance. Four participants indicated
that, after slight modifications to the question mark, the
clarity score of the AI design would be 7.

Participants Satisfied with the Intuitive Design 1164

The results of study session three are presented in 1165

Table 7. Overall, participants expressed satisfac- 1166

tion with the current “Intuitive” design for different 1167

operations, with scores ranging from 4.8 to 7 across 1168

various criteria. They suggested that using a bal- 1169

ance scale to represent comparison problems could 1170

further enhance engagement and reduce cognitive 1171

load. Additionally, they recommended including 1172

less text in the visuals to minimize cognitive load 1173

for learners. Our final design incorporates these 1174

suggestions, as detailed in Section 3.4.

Operation Clarity Engagement Cog Load Opt

Addition 5.4 6.4 5.0
Subtraction 5.0 6.4 5.2
Multiplication 7.0 6.4 6.0
Division 6.4 6.6 5.4
Surplus 6.8 6.6 5.8
Comparison 5.6 6.0 4.8
UnitTrans 6.6 6.6 5.6
MultiSteps 6.6 6.6 5.8

Table 7: Results of exploratory study session 3. They
reflect experts’ evaluations of the “Intuitive” design for
different operations. All scores are on a 7-point Likert
scale, where higher values indicate better performance.

1175

Potential Application of Our Visuals Partici- 1176

pants suggested several potential applications for 1177

our visuals. They noted that our visuals can be 1178

easily attached to slides or textbooks and help with 1179

the following: 1180

• Facilitating MWP Understanding: Four 1181

teachers mentioned that displaying our visu- 1182

als in class can help students, especially those 1183
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with learning difficulties, better access MWPs1184

and build confidence in solving them.1185

• Enhancing Student Engagement: Two1186

teachers suggested using the visuals1187

interactively—pointing to different entities1188

in visuals and asking students to link them1189

to corresponding parts of the MWP—can1190

enhance engagement and learning.1191

• Teaching Mathematical Operations: All1192

five teachers agreed that the Intuitive design1193

aids in teaching operations by representing1194

them intuitively, thereby making abstract op-1195

erations concrete and easier to understand.1196

C.4 Details of Entity Visualization Design1197

If the entity_quantity does not exceed ten, we visu-1198

alize each entity individually. For quantities greater1199

than ten, we represent a single entity accompanied1200

by the quantity number overlaid on it. This ap-1201

proach aligns with common designs in popular edu-1202

cational visual datasets like Twinkl (twinkl, 2025).1203

C.5 Details of Operation Visualization1204

Designs1205

Operations define the relationships between differ-1206

ent containers. In addition to basic arithmetic oper-1207

ations such as addition, subtraction, multiplication,1208

and division, we incorporate additional operations1209

including surplus, comparison, unit transformation,1210

and multi-step calculations. These operations en-1211

able our approach to cover 94.4% of Grade 1-31212

MWPs in the ASDiv dataset (Miao et al., 2020).1213

We visualize these operations using two visual1214

variations: “Formal” and “Intuitive”. In the “For-1215

mal” variation, operations are represented using1216

mathematical symbols such as “+”, “-”, “×”, and1217

“÷”, accompanied by text. We show examples in1218

Appendix B.1.1219

In the “Intuitive” variation, each operation is1220

represented through a specific visual arrangement1221

(see visual examples in Appendix B.2):1222

Addition: Containers involved in the addition are1223

enclosed within a rectangle. A purple circle with a1224

question mark is placed at the bottom-right corner1225

of the rectangle.1226

Subtraction: The minuend container is visualized1227

first, with the subtracted items crossed out. A pur-1228

ple circle with a question mark is placed at the1229

bottom-right corner of the rectangle.1230

Multiplication: The multiplicand container is vi-1231

sualized repeatedly to indicate multiplication. All1232

entities are enclosed within a larger rectangle, with 1233

a purple circle and a question mark added at the 1234

bottom-right corner, similar to addition. A special 1235

type of multiplication involves computing “area”. 1236

For such problems, we visualize it as a single item 1237

with dimensions corresponding to the width and 1238

length described in the MWP. 1239

Division: The division operation is visualized as 1240

the post-division state, with multiple container rect- 1241

angles representing groups enclosed within a larger 1242

rectangle. If the MWP asks for the quantity per 1243

group (e.g., "10 apples divided into 5 boxes, how 1244

many per box?"), a purple question mark circle is 1245

placed at the bottom-right of the last container. If 1246

it asks for the number of groups (e.g., "10 apples, 1247

2 per box, how many boxes?"), the question mark 1248

is placed at the top-right of the larger rectangle. 1249

Surplus: Similar to division, but the surplus con- 1250

tainer is visualized separately as the remainder. The 1251

remainder is placed at last, with a purple circle and 1252

a question mark at the bottom-right corner of its 1253

rectangle. 1254

Comparison: This operation involves comparing 1255

different entities by visualizing them on a balance 1256

scale. Each container is placed on one side of the 1257

scale. 1258

Unit Transformation: We adopt a purple bubble 1259

above each visual item to display its value in the 1260

transformed unit. 1261

Finally, for MWPs with multiple operations, we 1262

follow these visualization rules for each operation 1263

and dynamically combine them to form the overall 1264

expression tree (see Figure 21). 1265

D Annotated Dataset Statistics 1266

We present the annotated dataset statistics in Ta- 1267

ble 8. 1268

E Details of Rendering Programs 1269

We present the algorithm for rendering programs 1270

in Algorithm 1. We use rendering programs to map 1271

from VL to the desirable visual. The rendering 1272

program first converts the VL into a tree structure 1273

T , where each operation becomes a parent node 1274

and each container becomes a child node. Next, 1275

we traverse T in a bottom-up manner. During this 1276

traversal, when a container node is encountered, its 1277

relative position is computed based on its attributes 1278

(e.g. the quantity of entity in this container). Con- 1279

versely, when an operation node is encountered, 1280

the relative positions of its child nodes are updated 1281
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Dataset Visuals Domain Use Cases Grade Level

MATH2VISUAL
(ours)

1,903 Primary School Math Word
Problems

Supporting primary school
students’ math understanding;

Evaluating and training
Text-to-Image models on

pedagogical visual generation

Primary school
grade 1-3

MATH-Vision 3,040 General mathematics,
competition-level problems

Visual math problem-solving;
Evaluating multimodal models

on math reasoning

Middle school
to high school
(competition-

level difficulty)

MathVista 6,141 Logical, algebraic, and
scientific reasoning

Math visual question answering;
Puzzle-solving ; logical

reasoning; Function analysis ;
diagram understanding

Varied
(elementary to

advanced
reasoning)

Table 8: Dataset Statistics

according to the operation type. Note that the po-1282

sitioning of “Formal” and “Intuitive” visuals dif-1283

fers, as detailed in Section 3.4. Once all relative1284

positions are determined, a global layout plan is1285

computed from these values. Finally, we traverse1286

the tree in a top-down order and render each con-1287

tainer and operation node according to the global1288

layout plan, using the corresponding elements from1289

the SVG dataset. We retrieve the SVG icon cor-1290

responding to the entity_type, container_type1291

and attr_type and map it as the source to the1292

visual. The complete algorithm is presented in Al-1293

gorithm 1.1294

F Generation Prompts1295

F.1 Prompt For Visual Language generation1296

We present the prompt we used for generating Vi-1297

sual Language from MWP as below:1298

You are an expert in converting math word1299
problems into a structured 'visual language1300
'. Your task is to generate a visual1301
language expression based on the given math1302
word problem.1303

1304
**Background Information**1305
You should use the following fixed format for1306

each problem:1307
<operation>(1308

container1[entity_name: <name>, entity_type:1309
<type>, entity_quantity: <number>,1310
container_name: <container>,1311
container_type: <container type>,1312
attr_name: <attr>, attr_type: <attr type1313
>],1314

container2[entity_name: <name>, entity_type:1315
<type>, entity_quantity: <number>,1316
container_name: <container>,1317
container_type: <container type>,1318
attr_name: <attr>, attr_type: <attr type1319
>],1320

result_container[entity_name: <name>,1321
entity_type: <type>, entity_quantity: <1322
number>, container_name: <container>,1323
container_type: <container type>,1324

Algorithm 1 Rendering Visuals from MWP Visual
Language

Require:
V L: A visual language representation of the
MWP
SV G: A dataset of SVG elements for render-
ing

Ensure: Rendered MWP visualization
1: Step 1: Parse VL
2: Convert the visual language (V L) into a tree

structure T , ignoring result_container when
generating “Formal” Visuals.

3: Step 2: Plan Layout
4: for each node n in T (traverse in bottom-up

order) do
5: if n represents a container then
6: Determine the relative position of

n based on its attributes (e.g., type, en-
tity_quantity)

7: else if n represents an operation then
8: Update the relative position of n’s child

node based on the operation type
9: end if

10: end for
11: Step 3: Compute Global Layout
12: Integrate the relative positions from all nodes

to form a coherent global layout plan
13: Step 4: Render SVG
14: for each node n in T (traverse in top-down

order) do
15: Retrieve the final coordinates for n from

the global layout plan
16: Render n using the corresponding SVG

element from the SV G dataset
17: end for
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attr_name: <attr>, attr_type: <attr type1325
>]1326

)1327
1328

operation can be "addition", "subtraction", "1329
multiplication", "division", "surplus", "1330
area", "comparison", or "unittrans".1331

1332
Each container has the attributes: entity_name,1333

entity_type, entity_quantity, container_name1334
, container_type, attr_name, attr_type.1335

For example, a girl named Lucy may be1336
represented as:1337

entity_name: Lucy, entity_type: girl.1338
1339

The optional attributes container_name,1340
container_type, attr_name, and attr_type1341
allow extended descriptions.1342

In the MWP description "Jake picked up three1343
apples in the morning...", the container11344
could be:1345

entity_name: apple, entity_type: apple,1346
entity_quantity: 3, container_name: Jake,1347
container_type: boy, attr_name: morning,1348
attr_type: morning.1349

These additional attributes are not fixed and1350
may vary according to different1351
interpretations.1352

1353
Example of Visual Languages: ...1354

1355
Once you are ready to perform the task, you may1356

write down your thought process, but please1357
ensure that you provide the final visual1358
language expression in the following format1359
at the end:1360

1361
visual_language: <the visual language result>1362
Question:1363
Formula:1364

F.2 Prompt for Visual Generation1365

F.2.1 Prompt for Formal Visual Generation1366

Please Create an educational visual for this1367
math word problem: ...1368

Suppose this problem has formula: ...1369
1370

The visual consists of:1371
1. Container: We use rectangular sections to1372

represent different containers or group of1373
entities. Inside each rectangle, display the1374
entities of this container (e.g., apples,1375
balls, etc.).1376

2. Container Name: Above each rectangle, place a1377
container icon (e.g., an orange basket, jar1378
, or other container type) and label it with1379
the container's name (e.g., 'basket,' 'jar,1380
etc).1381

3. Operation Symbol: Between each two rectangles,1382
include an operation symbol that varies1383
depending on the problem1384

4. Outcome Section: To the right, place an '='1385
symbol followed by a '?' to symbolize the1386
unknown solution.1387

1388
Example:1389
For problem: Lucy has five oranges and Jake has1390

two oranges. How many oranges do they have1391

together? 1392
formula: 5+2=7 1393
The visual consists of two containers, "Lucy" 1394

and "Jake," as rectangulars labeled with 1395
their names and icons (boy icon for Jake and 1396
girl for Lucy) on the top of each rectangle 1397
. Each rectangle contains oranges 1398
corresponding to their quantities (Lucy: 5, 1399
Jake: 2). A "+" symbol between the 1400
rectangles indicates the addition operation, 1401
and an "=" followed by a question mark 1402
represents the unknown solution. 1403

1404
Special cases: 1405
1. For comparison problem, please use a balance 1406

scale to weigh different entities. For 1407
problem 'Lucy has 4 strawberries. Jake gave 1408
her 5 more. She needs 10 strawberries to 1409
make a cake. Does she have enough to make a 1410
cake?' We draw a balance scale. On the left 1411
side of the scale, two rectangular sections 1412
represent 'Lucy' and 'Jake,' each labeled 1413
with their names and icons. Lucy's section 1414
contains 4 strawberries, and Jake's section 1415
contains 5 strawberries. A "+" symbol 1416
indicates the addition of their strawberries 1417
. To the right of this, an "=" symbol and a 1418
question mark. On the right side of the 1419
scale, another rectangular section labeled " 1420
cake" contains 10 strawberries, representing 1421
the required amount. An "=" symbol and a 1422
question mark follow it. 1423

2. For unit transformation problem, please use a 1424
purple buble with the converted value in it 1425
on the top of each item to represent the 1426
unit value of the current item. For example, 1427
a problem like 'Charles found 6 pennies on 1428
his way to school. He also had 3 nickels 1429
already at home. How much money does he now 1430
have in all?' can be represented as a visual 1431
: on the left side, a rectangular section 1432
labeled "on his way" contains 6 pennies, 1433
each with a purple bubble above it 1434
displaying its converted value of 0.01 ( 1435
representing dollars). On the right side, 1436
another rectangular section labeled "home" 1437
contains 3 nickels, each with a purple 1438
bubble above it displaying its converted 1439
value of 0.05. A "+" symbol is placed 1440
between the two sections to indicate the 1441
addition of their values. To the right of 1442
the sections, an "=" symbol is followed by a 1443
question mark. 1444

3. For surplus problem, please use text 1445
remainder with a new question mark after 1446
previous question mark. 1447

4. If any container have item quantity higher 1448
than 10, please visualize only one item 1449
inside this container rectangle to be bigger 1450
and put the quantity number to cover the 1451
item. For example, if the problem is 'Lucy 1452
has 15 apples and Jake has 3 apples. How 1453
many apples do they have together?', the 1454
visual should show 15 apples for Lucy and 3 1455
apples for Jake. Lucy's apples should be 1456
represented by a single apple that is larger 1457
than Jake's apples, and the number 15 1458
should be placed on top of it to indicate 1459
the quantity. Jake's apples should be 1460
represented by three smaller apples. The "+" 1461
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symbol between the two entities indicates1462
the addition operation, and an "=" symbol1463
followed by a question mark.1464

F.2.2 Prompt for Intuitive Visual Generation1465

Please Create an educational visual for this1466
math word problem: ...1467

Suppose this problem has formula: ...1468
1469

The visual consists of:1470
1. Container: We use rectangular sections to1471

represent different containers or group of1472
items. Inside each rectangle, display the1473
items of this container (e.g., apples, balls1474
, etc.).1475

2. Container Name: Above each rectangle, place a1476
container icon (e.g., an orange basket, jar1477
, or other container type) and label it with1478
the container's name (e.g., 'basket,' 'jar,1479
etc).1480

1481
Handle different operations:1482
1. For addition, use a big rectangle to cover1483

all container rectangles need to be added1484
together. And place a purple circle with1485
question mark inside at the right bottom1486
side of the big rectangle.1487

2. For subtraction, first visualize minuend1488
container then cross out item that been1489
subtracted. Place a purple circle with1490
question mark inside at the right bottom1491
side of the minuend container rectangle.1492

3. For multiplication, repeatedly visualize the1493
multiplicand container. Use a big rectangle1494
to cover all container. Place purple circle1495
with question mark similar as addition.1496

4. For division, visualize it as the state after1497
division, with many container rectangles1498
represent different groups. If asking about1499
quantity in single container, place purple1500
circle at the right bottom of the last1501
container rectangle. If asking about number1502
of container, place purple circle at the1503
right top of the big rectangle.1504

5. For surplus, similar as division, only1505
difference is you should visualize the1506
surplus container at the last and place the1507
purple circle at the right bottom side of1508
surplus container rectangle.1509

6. For comparison, use a balance scale to weigh1510
different containers. Visualize entities on1511
the left and right side of the scale1512
separately.1513

7. For unit transformation, use a purple buble1514
with the converted value in it on the top of1515
each item to represent the unit value of1516
the current item.1517

8. For problem involving multiple addition and1518
subtraction, use the same visualization rule1519
and combine dynamically.1520

1521
Example:1522
For problem: Lucy has five oranges and Jake has1523

two oranges. How many oranges do they have1524
together?1525

formula: 5+2=71526
The visual consists of two containers, "Lucy"1527

and "Jake," as rectangulars labeled with1528
their names and icons (boy icon for Jake and1529

girl for Lucy) on the top of each rectangle 1530
. Each rectangle contains oranges 1531
corresponding to their quantities (Lucy: 5, 1532
Jake: 2). A bigger rectangle encompasses the 1533
two containers to indicate addition. 1534

G Fine-tuning Details 1535

G.1 Fine-tuning LLMs 1536

For fine-tuning LLMs, we create a training set 1537

containing 1,011 VL instances using stratified 1538

sampling based on “Grade” and “Question Type,” 1539

which occupies 80% of the entire dataset. We fine- 1540

tuned four variations of LLMs in total: Llama-3.1- 1541

8B with formula, Llama-3.1-8B without formula, 1542

Mistral-7B-v0.3 with formula, and Mistral-7B-v0.3 1543

without formula. 1544

In line with the methodology described in (Wang 1545

et al., 2024), all models are fine-tuned for 10 epochs 1546

using a per-device batch size of 2 with gradient 1547

checkpointing enabled. We set an initial learning 1548

rate of 2.5e-5 and employ a linear learning rate 1549

decay scheduler with a warmup phase comprising 1550

3% of the total training steps. Model optimiza- 1551

tion is performed using the paged_adamw_8bit op- 1552

timizer (Loshchilov and Hutter, 2019) from the 1553

transformers library (Wolf et al., 2020) to min- 1554

imize the negative log-likelihood of the ground- 1555

truth responses. Additionally, LoRA adapters (Hu 1556

et al., 2022) are incorporated to efficiently fine-tune 1557

the models. We use one RTX 4090 GPU to fine- 1558

tune each model; the Llama-3.1-8B with formula 1559

and Llama-3.1-8B without formula models have 1560

8 Billion parameters and take 12 hours to train; 1561

the Mistral-7B-v0.3 with formula and Mistral-7B- 1562

v0.3 without formula models have 7 Billion pa- 1563

rameters and take 11 hours to train. We report the 1564

human evaluation of a single inference result for 1565

each model. 1566

G.2 Fine-tuning Text-to-Image Models 1567

For fine-tuning TTI models, we create a Formal 1568

visual training set containing 1,011 visuals corre- 1569

sponding to the training set used by the LLM, and 1570

an Intuitive visual training set containing 502 vi- 1571

suals. Both training sets occupy 80% of their cor- 1572

responding ground truth datasets. We fine-tuned 1573

four variations of TTI models in total: Flux.1-dev 1574

with formula, Flux.1-dev without formula, Sta- 1575

ble Diffusion-3.5-large with formula, and Stable 1576

Diffusion-3.5-large without formula. 1577

All TTI models are fine-tuned for 10 epochs, 1578

with a training batch size of 5 and gradient check- 1579

21



Method Accuracy Completeness Clarity Cog Load Opt
Formal Intuitive Formal Intuitive Formal Intuitive Formal Intuitive

ft_ mistral-7B-v0.3(F) 2.83 2.71 3.00 2.67 3.00 2.71 2.96 2.71
ft_ mistral-7B-v0.3(NF) 2.54 2.08 2.67 2.04 2.67 2.08 2.63 2.08
zs_ mistral-7B-v0.3(F) 1.33 1.00 1.38 1.00 1.46 1.00 1.46 1.00
zs_ mistral-7B-v0.3(NF) 1.25 1.00 1.21 1.00 1.29 1.00 1.33 1.00
ft_stable-diffusion-3.5-large(F) 2.96 2.88 3.12 3.08 2.92 3.75 2.83 3.58
ft_stable-diffusion-3.5-large(NF) 2.96 2.75 3.08 3.08 2.79 3.58 2.83 3.54
zs_stable-diffusion-3.5-large(F) 2.71 2.67 2.96 2.92 2.83 3.08 2.83 2.96
zs_stable-diffusion-3.5-large(NF) 2.71 2.67 2.96 2.71 2.83 3.08 2.83 2.96

Table 9: Other evaluation results for different visual generation methods. For each method, 48 visuals (24 Formal
and 24 Intuitive) were evaluated, with each score representing the average rating from two researchers on a 1–5
scale (higher is better). (F) indicates the method used the solution formula as input, while (NF) indicates it did not.
“ft” means this model is fine-tuned on our annotated dataset, while “zs” means zero-shot.

pointing enabled; we employ the AdamW_BF161580

optimizer (Loshchilov and Hutter, 2019) with an1581

initial learning rate of 1e-5 and a polynomial learn-1582

ing rate scheduler (with zero warmup steps). We1583

integrate LoRA adapters via the Lycoris approach1584

within a diffusers attention framework (Yeh et al.,1585

2023). Additionally, images are generated at a res-1586

olution of 1024. We use one RTX 4090 GPU to1587

fine-tune each model; the Flux.1-dev with formula1588

and Flux.1-dev without formula models have 121589

billion parameters and take 48 hours to train, while1590

the Stable Diffusion-3.5-large with formula and1591

Stable Diffusion-3.5-large without formula models1592

have 8.1 billion parameters and take 15 hours to1593

train. We report the human evaluation of a single1594

inference result for each model.1595

G.3 Other Fine-tuning Results1596

We present other fine-tuning experiment results in1597

Table 9.1598

H Details of Qualitative Analysis1599

H.1 Procedure1600

The thematic analysis was performed on a sample1601

of 120 visuals generated by the fine-tuned Flux1602

model with formula, zero-shot Flux model with1603

formula and Recraft-v3 with formula, and a total of1604

eight error types were identified. However, three of1605

these error types occurred fewer than eight times.1606

After discussing the findings, we consolidated the1607

labels and focus on five major types of error in1608

close coding.1609

In the systematic evaluation phase, two re-1610

searchers manually analyzed 576 visuals generated1611

by the fine-tuned Flux model with formula, the1612

zero-shot Flux model with formula, and Recraft-v31613

with formula.1614

H.2 Statistical Results 1615

We present the statistical results for supporting 1616

qualitative analysis in Table 3. 1617

Criterion Edit Dist↓ LM Ratio↑

ft_ mistral-7B-v0.3(F) 2.98 39.30
ft_ mistral-7B-v0.3(NF) 3.14 19.07
zs_ mistral-7B-v0.3(F) 7.05 0
zs_ mistral-7B-v0.3(NF) 6.86 0

Table 10: Other results of Visual Language generation.
F denotes generation with the solution formula as input,
while NF denotes generation without the formula.

I Ethical Consideration and Applications 1618

I.1 Potential Risks 1619

One potential risk is that the generated visuals 1620

might be misinterpreted if they do not accurately 1621

capture the intended mathematical relationships, 1622

potentially leading to confusion among students 1623

and educators. To minimize this risk, we collab- 1624

orated closely with primary school math teachers 1625

to develop the structured design space that aligns 1626

with pedagogical standards. We further annotate 1627

the generated dataset and ensure clarity and accu- 1628

racy in the visuals. 1629

I.2 Terms of Use 1630

This section outlines the terms and conditions for 1631

the use of MATH2VISUAL. By using the code and 1632

datasets in this project, users agree to the following 1633

terms: 1634

Prohibited Use The code and datasets shall not 1635

be used for commercial purposes without prior writ- 1636

ten consent from the authors. 1637

Attribution When using or referencing the code 1638

and datasets, users must provide proper attribution 1639

to the original authors. 1640
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No Warranty This project is provided as is with-1641

out any warranties of any kind, either expressed or1642

implied, including but not limited to fitness for a1643

particular purpose. The authors are not responsible1644

for any damage or loss resulting from the use of1645

this project.1646

Liability The authors shall not be held liable for1647

any direct, indirect, incidental, special, exemplary,1648

or consequential damages arising in any way out1649

of the use of the MATH2VISUAL project.1650

Updates and Changes The authors reserve the1651

right to make changes to the terms of this license1652

or the MATH2VISUAL itself at any time.1653

I.3 Compliance with Artifact Usage and1654

Intended Use Specifications1655

I.3.1 Compliance with Existing Artifact Usage1656

In our study, we utilized a range of existing ar-1657

tifacts, such as open-source SVG datasets from1658

various sources (svgrepoRepoFree, 2025; iconfont,1659

2025; svgen, 2025; Condino, 2022; YILDIRIM,1660

2023; pexels, 2025) and ASDiv dataset (Miao et al.,1661

2020), to develop our visual datasets. We rigor-1662

ously ensured that our usage of these materials1663

was in strict accordance with their intended pur-1664

poses, aligning with each dataset’s vision of freely1665

accessible content. Additionally, we employed var-1666

ious computational tools within their prescribed1667

licensing terms, thus adhering to ethical and legal1668

standards.1669

I.3.2 Specification of Intended Use for1670

Created Artifacts1671

Our research led to the development of two signifi-1672

cant artifacts:1673

Framework for Generating Pedagogically Mean-1674

ingful Visuals1675

Intended Use: This framework is designed for1676

academic research and educational technology de-1677

velopment. It facilitates the generation of peda-1678

gogically meaningful visuals, aiming to enhance1679

AI-driven educational tools.1680

Restrictions: The framework should be used1681

within the bounds of educational and research set-1682

tings. Any commercial or high-stakes educational1683

application is advised against without further vali-1684

dation and ethical review.1685

Ethical Considerations: We emphasize the re-1686

sponsible use of this framework, particularly in1687

maintaining the integrity and context of the source 1688

textbooks. 1689

Dataset of Generated Visuals 1690

Intended Use: The dataset is primarily intended 1691

for research in educational technologies. It offers a 1692

resource for developing and testing Text-to-Image 1693

models in educational contexts. 1694

Restrictions: This dataset is not recommended 1695

for direct application in live educational settings 1696

without substantial vetting, as it may contain syn- 1697

thetic inaccuracies. 1698

Data Ethics: As the dataset is derived from 1699

open-source SVG datasets, it respects the principles 1700

of open access. We encourage users to keep the 1701

dataset within academic and research domains, in 1702

line with the ethos of the source material. 1703

I.4 Data Collection and Anonymization 1704

Procedures 1705

In our research, rigorous steps were taken to ensure 1706

that the data collected and used did not contain 1707

any personally identifiable information or offen- 1708

sive content. The data, primarily sourced from 1709

open-access MWP datasets and SVG datasets, in- 1710

herently lacked individual personal data. For the 1711

components involving human interaction, such as 1712

feedback or evaluation, all identifying information 1713

was carefully removed to maintain anonymity. Ad- 1714

ditionally, we implemented a thorough review pro- 1715

cess to screen for and exclude any potentially offen- 1716

sive or sensitive material from our dataset. These 1717

measures were taken to uphold the highest stan- 1718

dards of privacy, ethical data usage, and respect for 1719

individual confidentiality. 1720

I.5 Artifact Documentation 1721

I.5.1 Visual Generation Framework 1722

Domain Coverage The framework is designed 1723

to generate pedagogically meaningful visuals from 1724

MWP for teaching MWP. 1725

Operation Coverage It covers seven operations 1726

including: addition, subtraction, multiplication, di- 1727

vision, surplus, comparison and unit transforma- 1728

tion. 1729

I.5.2 Dataset of Generated Visuals 1730

Visual and Style The visuals are primarily gener- 1731

ated from English MWPs. The style is educational 1732

and academic, suited for educational purposes. 1733

23



Content Diversity The dataset spans multiple1734

academic disciplines, offering a rich variety of top-1735

ics and themes.1736

Demographic Representation While the dataset1737

itself does not directly represent demographic1738

groups (as it is synthesized from MWP dataset),1739

the diversity in the source material reflects a broad1740

spectrum of cultural and societal contexts.1741

I.6 Use of AI Assistants in Research1742

In our study, AI assistants were used sparingly and1743

in accordance with ACL’s ethical guidelines. We1744

utilized ChatGPT and Grammarly for basic para-1745

phrasing and grammar checks, respectively. These1746

tools were applied minimally to ensure the authen-1747

ticity of our work and to adhere strictly to the regu-1748

latory standards set by ACL. Our use of these AI1749

tools was focused, responsible, and aimed at sup-1750

plementing rather than replacing human input and1751

expertise in our research process.1752

I.7 Instructions Given To Participants1753

I.7.1 Disclaimer for Annotators1754

Thank you for participating in our evaluation pro-1755

cess. Please read the following important points1756

before you begin:1757

• Voluntary Participation: Your participation1758

is completely voluntary. You have the free-1759

dom to withdraw from the task at any time1760

without any consequences.1761

• Confidentiality: All data you will be work-1762

ing with is anonymized and does not contain1763

any personal information. Your responses and1764

scores will also be kept confidential.1765

• Risk Disclaimer: This task does not involve1766

any significant risks. It primarily consists of1767

reading and scoring generated visuals.1768

• Queries: If you have any questions or con-1769

cerns during the task, please feel free to reach1770

out to us.1771

I.7.2 Instructions for Experiments1772

Thank you for participating in our study. This re-1773

search has received ethical approval, and your con-1774

sent has been obtained. The entire study will take1775

approximately 1.5 to 2 hours and consists of four1776

sessions. Please read the instructions below care-1777

fully:1778

Session One – Visual Approach Preference: 1779

You will be shown two visual approaches for repre- 1780

senting math word problems (MWPs): 1781

1. Multiple Visuals: Each visual represents one 1782

sentence of the MWP. 1783

2. Single Visual: One visual represents the en- 1784

tire MWP. Please indicate your preference between 1785

these two approaches. 1786

Session Two – Design Variation Evaluation: 1787

You will review six design variations for visual- 1788

izing MWPs. These variations differ based on: 1789

How Quantities Are Visualized: 1790

1. How Quantities Are Visualized: 1791

• Abstract: Quantities are represented as 1792

text from the MWP. 1793

• Hybrid: A single item is visualized with 1794

a label at the bottom-right corner indicat- 1795

ing its quantity. 1796

• Visual: Items are directly drawn in quan- 1797

tities matching their number. 1798

2. How Operations Are Visualized: 1799

• Formal: Mathematical operations are 1800

represented using standard symbols (e.g., 1801

+, -, ×, ÷). 1802

• Intuitive: Operations are visualized us- 1803

ing specific arrangements for each opera- 1804

tion. 1805

For each design variation, please complete a ques- 1806

tionnaire rating: 1807

• Clarity: How clearly the visual design repre- 1808

sents the MWP. 1809

• Engagement: Whether the design appears to 1810

improve student engagement. 1811

• Cognitive Load: Whether the design avoids 1812

introducing unnecessary cognitive load. 1813

The order of presentation will be randomized to 1814

minimize order effects. 1815

Session Three – Operation Design Feedback: 1816

In this session, you will review our “Intuitive” de- 1817

sign for visualizing mathematical operations. Us- 1818

ing the same criteria (Clarity, Engagement, Cog- 1819

nitive Load), please provide your feedback via a 1820

questionnaire. The presentation order will also be 1821

randomized. 1822
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Session Four – Evaluation Criteria Discussion:1823

We will discuss with you the criteria that will be1824

used to analyze the visuals generated by our sys-1825

tem. This discussion focuses on how effectively1826

our automated generation approach reproduces the1827

intended design. After this discussion, you will1828

complete a post-task questionnaire assessing the1829

pedagogical value of the visual design.1830

Please answer all questions honestly and provide1831

any suggestions for improvement. Your feedback is1832

crucial for enhancing our framework. If you have1833

any questions during the study, feel free to ask the1834

researcher.1835

Thank you for your time and valuable input!1836

I.7.3 Data Consent1837

The data you provide during this study will be used1838

solely for academic research purposes. All informa-1839

tion will be anonymized and securely stored, and1840

any published or shared data will be aggregated to1841

ensure your privacy. By participating, you agree to1842

the use of your data as described, but you retain the1843

right to withdraw your consent at any time with-1844

out penalty. If you have any questions about how1845

your data will be used, please feel free to ask the1846

research team.1847
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