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ABSTRACT

We propose MaDiT, a Masked autoregressive Detokenization Transformer for vi-
sual reconstruction and generation. It formulates visual tokenization as a flow-
matching problem: the model learns a mapping from a standard normal distri-
bution to the distribution of image data, conditioned on discrete visual and text
tokens as well as intermediate autoregressive context. The effectiveness of Ma-
DiT stems from two core designs. First, a masked autoencoder (MAE) fuses
multi-modal cues from vocabulary priors and partially unmasked patterns to pro-
duce discrete visual tokens imbued with semantic meaning. This mitigates am-
biguity and information loss that plague vanilla vector-quantized (VQ) represen-
tations. Second, we introduce a masked autoregressive de-tokenization pipeline
that reconstructs images in a low- to high- frequency fashion. By initially fo-
cusing on flat, low-frequency regions and progressively refining higher-frequency
details, our model reconstruct images with significantly improved fidelity. Within
this pipeline, a masked decoder generates context-rich embeddings, condition-
ing a dedicated velocity field for precise final reconstruction. Extensive experi-
ments show that MaDiT outperforms mainstream VQ tokenizers and enables high-
fidelity visual generation on top of existing LLMs.

1 INTRODUCTION

Autoregressive modeling has emerged as a powerful paradigm across natural language process-
ing Bai et al. (2023); Dubey et al. (2024) and multimodal tasks Liu et al. (2024b); Zhu et al. (2023);
Yao et al. (2024), enabling unified frameworks that integrate visual perception with linguistic inter-
faces. Building upon this progress, an increasing number of works Fang et al. (2024); Sun et al.
(2023b); Dong et al. (2023); Ge et al. (2024); Sun et al. (2024b) have begun extending autoregres-
sive modeling for visual generation. However, most existing approaches Sun et al. (2024b); Zhou
et al. (2024); Xie et al. (2024); Xiao et al. (2024) operate under a hybrid paradigm. They repre-
sent text inputs with discrete tokens as in LLMs Touvron et al. (2023),but handle visual outputs
in a continuous latent space Kingma (2013); Rezende et al. (2014) by repurposing LLMs as diffu-
sion backbones Ho et al. (2020); Song et al. (2020). This representational discrepancy introduces
additional architectural complexity and computational overhead, preventing autoregressive visual
generation from achieving the streamlined efficiency enjoyed by purely language tasks.

A widely adopted compromise is a two-stage VQ+diffusion pipeline for autoregressive image gen-
eration. Recent works Geng et al. (2025); Huang et al. (2025) first use an LLM to autoregressively
predict a sequence of discrete image tokens, then pass these tokens as auxiliary conditioning to a
powerful diffusion backbone (e.g., FLUX Batifol et al. (2025)) that reconstructs the final image.
While this design treats image tokens analogously to text, it delegates the heavy lifting of photore-
alistic rendering to the diffusion decoder. Consequently, the reconstruction quality is dominated by
the diffusion prior, while the discrete visual tokens act only as a weak semantic guide. For instance,
in the X-Omni pipeline Geng et al. (2025) (which employs a SigLIP-VQ tokenizer with a FLUX
diffusion decoder), we observe that the learned VQ token distribution is markedly more dispersed.
These discrete tokens capture only coarse, high-level structure of the image, while fine-grained vi-
sual details are relegated to the diffusion process. Consequently, reconstructions from such hybrids
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Autoregressive low- to high- frequency De-tokenization
(Taking 8 iteration steps for simplicity)

Visual 
Token

Text 
Token

In a locker-room scene, a player in an orange-and-
blue jersey numbered 48 stands beside a suited staffer, 
their exchange tense and focused. A jersey marked 14 
hangs behind them. Dramatic lighting and shadows 
heighten the serious, pregame mood—strategy, 
scrutiny, and the small rituals before competition.
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(a) Comparison of MaDiT against VQ+Diffusion pipeline X-omni in latent Distribution and Reconstruction results

(b) Illustration of Masked Autoregressive De-tokenization

Figure 1: Highlights of MaDiT. (a) A hybrid VQ+diffusion baseline (X-Omni) exhibits a diffuse
token distribution and produces blurred visual content that drifts toward the decoder’s own learned
style statistics. In contrast, MaDiT yields a more compact, uniform token distribution and preserves
high-fidelity local details. (b) MaDiT’s masked autoregressive de-tokenization follows a low-to-
high frequency schedule guided by per-patch KL divergence. The decoder first reconstructs flat,
low-detail regions; it then progressively unmasks tokens and uses earlier predictions to complete
complex structures, thereby improving overall reconstruction fidelity.

often drift toward the diffusion model’s own style statistics, leading to blurred high-frequency details
and noticeable color shifts away from the source input, as illustrated in Figure 1 (a).

In response, we propose MaDiT – a novel masked autoregressive detokenization Transformer
for high-fidelity visual generation. The effectiveness of MaDiT stems from two key designs.
First, we incorporate vocabulary priors from a pretrained LLM (e.g., Qwen Team (2024) or
LLaMA Grattafiori et al. (2024)) to infuse high-level semantic cues into the discrete visual tokens.
During tokenization, MaDiT uses a masked autoencoder that fuses three sources of information: the
discrete image tokens, the associated text tokens from a pretrained LLM’s vocabulary, and partially
unmasked patterns containing grounded visual details. By combining these cues, the encoder can
alleviate the ambiguity and information loss caused by codebook collapse in standard VQ tokeniza-
tion Esser et al. (2021). This results in discrete visual tokens that carry richer semantic context, pro-
viding a stronger guidance for downstream image reconstruction. Second, we introduce a masked
autoregressive de-tokenization strategy that reconstructs the image in a low- to high- frequency
manner. This approach is inspired by the information bottleneck principle of β-VAEs Higgins et al.
(2017): latent embeddings with low KL divergence (close to the prior) represent flat, low-frequency
regions, whereas those with high KL divergence encode complex high-frequency details. Leverag-
ing this insight, MaDiT derives a progressive masking schedule based on per-patch KL values. The
masked decoder first focuses on reconstructing the easiest content with available discrete tokens and
vocabulary priors as guidance. We then iteratively unmask more tokens (reducing the masking ratio)
and condition on the model’s earlier outputs to gradually reveal intricate details. By reconstructing
the image from low- to high-frequency content, the decoder concentrates on getting broad structures
right before refining finer details, ultimately achieving higher fidelity in the final reconstruction.

We further explore two variants of the reconstruction process. (i) The decoder directly regresses the
masked latent embeddings toward the target visual content at each refinement step. (ii) We build on
(i) by introducing a dedicated flow-based refinement module conditioned on the decoder’s output.
This flow-based module models the residual details under a learned Gaussian prior and iteratively
sharpens the output, further improving fidelity beyond what direct regression alone can achieve.
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Bolstered by these innovations, our tokenizer achieves markedly improved reconstruction fidelity.
As highlighted in Figure 1 (b), MaDiT yields a significant more compact and uniform token distribu-
tion, in stark contrast to the dispersed code distribution of X-Omni Geng et al. (2025). This indicates
better preservation of fine-grained information after quantization. Consequently, our reconstructions
exhibit higher local fidelity: Fine structures such as hands and facial attributes are rendered sharply
and accurately. Unlike prior VQ+diffusion hybrids that often impart a stylistic bias-causing outputs
to drift from the source content-our approach remains faithful to the source input.

2 MADIT

2.1 TASK FORMULATION AND OVERVIEW

Visual Tokenization as Flow-Matching. We formulate the visual tokenization as a flow-matching
problem. The goal is to learn a mapping that transports latent variables ϵ ∼ N (0, 1) to samples z
from the visual data distribution q, via an ordinary differential equation (ODE). If we condition only
on the discrete visual tokens, the ODE can be written as:

dzt = ψΘ (zt, t,V) dt (1)

whereψΘ is a learnable velocity field, and t ∈ [0, 1] is the continuous time variable, and V represents
the discrete visual token sequence that conditions ψΘ to guide the generation.

Directly solving the ODE with a differentiable solver during training is computationally expensive.
Instead, we regress a time-dependent vector field ut (z | ϵ) whose induced dynamics trace a prob-
ability path from N (0, I) to the target data distribution. For optimization efficiency, we use the
rectified-flow Esser et al. (2024), in which the trajectory between the target and standard normal
distribution is assumed to follows a “straight-line" path:

ut (z | ϵ) = (1− t) · z + t · ϵ (2)

Overall, the optimization objective for visual tokenization is to minimize the flow-matching loss:

LFM = Et,pt(z|ϵ),p(ϵ)
∥∥ψΘ

(
zt, t,V

2
)
− ut(z | ϵ)

∥∥2
2

(3)

By minimizing LFM , we learn a velocity field that can transport noise into image latents conditioned
on the discrete visual tokens V, thus achieving our visual reconstruction goals.

Reconstruction via Masked Autoregressive Decoder. Building on recent advances in masked
generative models Li et al. (2024); Wu et al. (2025b), we employ a Transformer encoder–decoder
architecture, augmented with masked image modeling, to provide strong contextual conditioning for
flow-based visual reconstruction. Concretely, we partition an input imageX intoN non-overlapping
patches {xi}Ni=1. We then randomly sample a masking ratio ρ ∈ [0.7, , 1.0] (for example, ρ = 0.7
means 70% of patches are masked) and define the masked index set Ω ⊆ 1, . . . , N with |Ω| = ⌊ρN⌋.
The Transformer encoder ingests two types of inputs to form a unified context representation: (i)
embeddings of the visible (unmasked) patches, and (ii) embeddings of the quantized visual tokens
V that represent the entire image in the learned visual codebook. To reconstruct the masked content,
we introduce a learnable mask token [m] for each masked patch. These mask tokens are appended
to the encoder’s output sequence (one [m] token per j ∈ Ω) and then passed into the Transformer
decoder. The decoder produces a contextual embedding cj for each mask token [m], capturing the
information needed to infer patch j from its surroundings.

We use these mask embeddings to condition the velocity field ψΘ in Equation 1. Over discretized
time integration (with step size ∆t), the reconstruction process for a masked patch can be factorized
into a series of conditional transitions. Starting from a fully noised latent xjt = ϵ at time t, the
probability of reconstructing patch j back to the original xj0 under the guidance of its mask token is:

p
(
xj0:t | [m]

)
= p

(
xjt

) t∏
i=1

p
(
xj(i−1)·∆t | z

j
i·∆t,[m], t

)
(4)

Here, p
(
xj0:t | [m]

)
denotes the distribution of the entire reverse-time trajectory from noised input

xjt = ϵ to a reconstructed patch, given the conditioning mask token. Essentially, the mask embed-
dings cj ensure that the flow-based decoder focuses on producing a patch consistent with both the
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Figure 2: Overview of MaDiT. MaDiT first incorporates vocabulary priors from a pretrained LLM
to enrich discrete visual tokens with high-level semantic cues via a masked autoencoder. This allevi-
ates the ambiguity and information loss caused by codebook collapse. Next, a masked autoregressive
de-tokenization pipeline reconstructs images through initially generating flat low-frequency struc-
tures and then progressively refining high-frequency details. A masked decoder ultimately produces
context-rich embeddings that condition a dedicated velocity field for the final reconstruction.

global code sequence and the visible context, as the image is iteratively reconstructed from noise.
Overview of MaDiT. Figure 2 provides an overview of MaDiT, which consists of two main compo-
nents: Vocabulary-enriched image tokenization (Section 2.2), which incorporates vocabulary priors
to enrich visual tokens with high-level semantic cues via a masked autoencoder; Masked autoregres-
sive detokenization (Section 2.3), which reconstruct images in a low- to high- frequency fashion.

2.2 VOCABULARY-ENRICHED IMAGE TOKENIZATION

We begin by encoding the input image into a continuous latent map using a pretrained VAE encoder
E Batifol et al. (2025). This latent map is then passed through a lightweight learnable adapter (archi-
tecturally similar to Geng et al. (2025)) and flattened into a sequence of latent vectors h1:L. Next,
we apply vector quantization by replacing each latent hl with its nearest neighbor from a learned
codebook C = {ck}Nn=1. This yields a sequence of L discrete visual tokens V = [v1, v2, . . . , vL],
where each vl ∈ Rd is the embedding for the selected codebook entry.

However, a known issue with standard VQ tokenizers is the loss of fine details Liu et al. (2025):
high-frequency textures tend to get “averaged out”. A limited codebook forces many distinct details
to map to the same few codes, often resulting in blurry reconstructions that miss sharp textures.
To mitigate this over-smoothing, we enrich the visual token representation with semantic context
from a pretrained LLM’s vocabulary (e.g., Qwen-2.5 Team (2024)or LLaMA-3 Grattafiori et al.
(2024)). When a text description for the input image is available, we tokenize the caption and
retrieve the corresponding word embeddings from a LLM. Let the sequence of text embeddings
be T = [t1, . . . , tS ], where each ts ∈ Rd after applying a linear projection to match the visual
token dimension. Intuitively, T provides high-level semantic cues — such as object categories and
attributes — that can help disambiguate visual tokens which might otherwise be confounded.

Next, we integrate these linguistic priors with the visual tokens leveraging a masked autoencoder.
We concatenate the visual and text tokens to form a joint sequence [V;T] ∈ R(L+S)×d. In addi-
tion, for each visible (unmasked) image patch during training, we include its original continuous
patch embedding (the VAE encoder output prior to quantization) as an auxiliary input. Thus, the
masked autoencoder processes a concatenation of all three sources of information: (1) the quantized
visual tokens V capturing global content in discrete form, (2) the text tokens T providing high-level
semantic context, and (3) the original embeddings of unmasked image patches providing grounded
local details. With it, the masked autoencoder can produce a contextually enriched representation
that will be leveraged by the decoder to predict masked visual patterns, as described below.

2.3 FLOW-BASED MASKED AUTOREGRESSIVE DETOKENIZATION

Two-stage Training Pipeline. We split the optimization of our masked autoregressive decoder into
two sequential stages to gradually increase its reconstruction fidelity:
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Stage 1 — Latent Regression Warm-up. The decoder learns to predict the continuous VAE latent for
each masked patch, providing a coarse initialization before the flow-based refinement. We randomly
select a subset Ω of patches to mask out, and treat the rest as visible context. The decoder then takes
one mask token for each masked position j ∈ Ω and attends to the encoder’s output, yielding a
context embedding cj . We then apply a linear projection on cj to produce ĥj , which is an estimate
of the original latent hj for the masked patch j. The training objective in Stage 1 is a simple mean
squared error (MSE) between the predicted ĥj and hj . By regressing the VAE latents of masked
patches, the decoder is effectively warmed up to capture the coarse structure of the image.

Stage2—High-fidelity Detail Refinement. We refine the decoder so that it can add realistic high-
frequency details to the coarse reconstructions from Stage 1. We achieve this by augmenting the
decoder with a flow-based conditional MLP Li et al. (2024); Team et al. (2025) that predicts a
residual update for each patch’s coarse estimate. For each masked patch j, we take the ground-
truth latent hj and add Gaussian noise to it. We then concatenate this noised latent with the coarse
prediction from Stage 1. This combined vector is fed into a patch-wise MLP, which is modulated by
the contextual embedding cj to output a velocity update ∆vj for the masked patch. Intuitively, this
∆vj denotes a direction that nudges the coarse prediction closer to the true latent, adding back the
high-frequency details that were missing. We train this MLP using the flow-matching objective in
Equation (3). By doing so, the model can generate textures that Stage 1 might have smoothed out.

Low-to-High Frequency Autoregressive Sampling Schedule. Our decoding strategy recon-
structs images in order of increasing complexity – from low-frequency/simple regions to high-
frequency/complex regions. This schedule is guided by the information bottleneck principle from
β-VAE Higgins et al. (2017). Per-patch Kullback-Leibler (KL) divergence in a VAE indicates how
much information that patch contains. Patches with large KL divergence deviate strongly from the
prior, requiring more “bits” to encode and typically corresponding to texture-rich content. Con-
versely, patches with a small KL divergence are very close to the prior, indicating low-information
regions that can be reliably predicted from surrounding context. Formally, for a single latent dimen-
sion with posterior N (µ, σ2), the KL divergence to the unit Gaussian prior has the closed form:

DKL

(
N (µ, σ2)

∥∥N (0, 1)
)
= 1

2

(
σ2 + µ2 − 1− lnσ2

)
. (5)

Summing this quantity over all channels of the latent hi yields a per-patch KL score Di
KL, which

measures the information content (in nats or “bits”) needed to encode patch i. A largeDi
KL indicates

that patch i contains unpredictable, complex content (posterior far from the prior), while a small
Di

KL suggests the patch is low-information (posterior close to prior). Armed with this KL-based
complexity measure, we guide the decoder’s reconstruction order accordingly. Simpler patches (low
DKL) are generated first, and more complex patches (high DKL) are filled in later. This acts as a
curriculum from simple to complex content: by the time the model tackles a highly detailed area, all
the surrounding simpler parts have been completed and serve as reliable context.

To implement this strategy with discrete visual tokens, we need to estimate each token’s “complex-
ity”. We achieve it by maintaing an exponential moving average of the KL values for each visual
codeword. For each codeword n, we track a running complexity score kln that represents the aver-
age KL-term of patches quantized to the n-th code. This complexity score is updated incrementally
during training. Formally, at each training step t we update kln as:

kl
(t)

n = (1− α) · kl(t−1)

n + α · E
[
Di

KL

∣∣∣q(hi) = n
]
, ∀hi ∈ B(t) (6)

where q(·) = n indicates that the latent is quantized to the codeword n, and B(t) denotes all patch
latents in the t-th training batch. E

[
Di

KL

∣∣∣q(hi) = n
]

is the sample mean of the KL-term for all
patches assigned to codeword n and 0 < α < 1 is a fixed smoothing factor. Over the course of
training, kln acts as a running estimate of how much information that token typically carries.

During sampling stage, we use a masked autoregressive decoding procedure similar to MAR Li
et al. (2024). We begin with all patches masked and gradually decrease the masking ratio to 0
via a cosine schedule. At the first iteration, only the visual and text tokens are provided to the
decoder — no image patches are visible yet. The decoder then selects a subset of patches with
the smallest KL-terms to reconstruct. These might correspond to flat regions which the model can
confidently generate using just the prior and global context. Once those patches are reconstructed,
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we mark them as visible and feed them back into the encoder. In the second iteration, a slightly
lower masking ratio is used. The decoder then reconstructs next batch of patches — again chosen
by lowest remaining KL. This process repeats, revealing more patches each time, until all patches
have been reconstructed. Let index the autoregressive rounds as k = 1, 2, . . . ,K, and xk denote the
set of patches reconstructed in the k-th iteration, the overall joint probability is factorized as:

p
(
x1, · · · ,xK

)
=


K∏
k

p
(
xk | [V,T]

)
, k = 1

K∏
k

p
(
xk | [V,T],x1, · · · ,xk−1

)
, k > 1

(7)

Here x1 denotes the easiest patches reconstructed in the first round (modeled conditioned only on
the token sequence), and each xk for k > 1 is generated conditioned on both the token sequence
and all previously reconstructed patches. Subsequently, the masked patches produced by the de-
coder condition a lightweight velocity model to reconstruct the corresponding patches from noised
samples. We also incorporate classifier-free guidance during sampling, by interpolating between
ψΘ (zt, t, [V,T]) and its unconditional counterpart ψΘ (zt, t,D) via a scaling factor w,

ψ̃Θ (zt, t, [V,T]) = ωψΘ (zt, t, [V,T]) + (1− ω)ψΘ (zt, t,D) (8)

where D is a learnable dummy token under unconditional sampling. Overall, Algorithm 1 summa-
rizes the sampling procedure of masked autoregressive rectified-flow decoder.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

Evaluation Metrics. We evaluate reconstruction on ImageNet-1K (validation split) and MJHQ at
512×512. All images are resized with aspect-ratio preservation, center-cropped, and rescaled to
512×512 before encoding. Reconstruction is assessed with four metrics: PSNR↑, SSIM↑, LPIPS↓,
and reconstruction FID (rFID)↓. For text-to-image compositionality and semantic alignment, we
evaluate on GenEval Ghosh et al. (2023) and DPG-Bench Hu et al. (2024). Unless otherwise stated,
all metrics are reported at 512×512 under a shared preprocessing pipeline across methods. Addi-
tional implementation details, model sizes, and training schedules are provided in the Section A.3.

3.2 RESULTS ON RECONSTRUCTION QUALITY

Quantitative and qualitative results. Table 1 summarizes reconstruction on ImageNet-1K (val)
and MJHQ at 512×512. Across both datasets, our tokenizer delivers consistently superior or
on-par scores relative to strong VQ baselines. Notably, despite using a smaller codebook than
Open-MAGVIT2 Luo et al. (2024) (65,536–262,144 codewords), our approach attains competitive
reconstruction quality.
Figure 3 visualizes JourneyDB reconstruction results. The VQGAN-style CosMos tokenizer Agar-

wal et al. (2025) often misses fine facial attributes and micro-textures, yielding over-smoothed sur-
faces. In contrast, our masked autoregressive de-tokenization recovers high-frequency detail while
maintaining global color fidelity. Relative to the VQ+diffusion pipeline X-Omni, our reconstruc-
tion results remain faithful to the source content and palette, with no systematic drift toward a
decoder-specific “style.”. This mitigates the softened textures and color shifts commonly observed
in diffusion-conditioned hybrids.
Ablation: de-tokenization strategy. We ablate the impact of each decoding component in Table 2a.
(i) Direct masked regression (base). Masked autoregressive decoding that directly regresses latent
embeddings. (ii) + Flow-based refinement. Adding a lightweight flow-matching velocity predictor
yields consistent gains in both distortion and perceptual quality (rows 1→2). (iii) + Classifier-free
guidance. Applying classifier-free guidance (CFG) during refinement further increases PSNR to
23.66 and reduces rFID to 0.66 (row 3). (iv) + KL-aware coarse-to-fine sampling. Scheduling
masked sampling by the offline VAE’s per-region KL (low-KL first, high-KL last) focuses capacity
on texture-rich regions in later rounds, reducing rFID to 0.57 (row 4).
Ablation: vocabulary-enriched tokenization. Table 2b considers three training settings for
text–visual fusion during training: (a) w/o vocabulary enrichment (only discrete visual tokens con-
dition the encoder–decoder), (b) text to encoder only, and (c) text to both encoder and decoder.
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Original Image MaDiT CosMos X-omni

Figure 3: Qualitative comparison
of reconstruction fidelity at resolu-
tion 512×512. We compare MaDiT
with CosMos and X-Omni. CosMos
(VQGAN-style) fails to recover fine
facial attributes and micro-textures,
producing over-smoothed surfaces.
X-Omni exhibits drift toward the
FLUX decoder’s style, with softened
textures and perceptible palette shifts.
In contrast, our MaDiT can better pre-
serve global structure while render-
ing crisp local detail and stable col-
ors, remaining faithful to the source
content. We also observe improved
edge continuity and fewer ringing ar-
tifacts. Improvements are most ev-
ident in high-frequency regions and
text details, consistent with the lower
LPIPS and rFID in Table 1.

Table 1: Quantitative reconstruction comparison with prior VQ tokenizers on ImageNet val and
MJHQ. For ImageNet val, which lacks paired captions, reconstruction is conditioned only on dis-
crete visual tokens. For MJHQ, we incorporate multimodal conditioning using tokens extracted
from text prompts and images. Ablation studies in Tables 2a and 2b follow the same settings.

VQ-Tokenizer Tokens Codebook PSNR ↑ SSIM ↑ LPIPS ↓ rFID ↓
ImageNet 512×512
Taming-VQGAN Esser et al. (2021) 32× 32 16,384 21.91 0.57 0.28 1.28
IBQ Shi et al. (2024) 32× 32 16,384 23.36 0.64 0.23 0.53
LlamaGen Sun et al. (2024a) 32× 32 16,384 22.51 0.62 0.24 0.70
Open-MAGVIT2 Luo et al. (2024) 32× 32 262,144 23.84 0.65 0.22 0.53
Cosmos-DI Agarwal et al. (2025) 32× 32 64,000 22.16 0.59 0.27 1.46

MaDiT 1024 65,536 23.95 0.65 0.21 0.57

MJHQ 512×512
Cosmos-DI Agarwal et al. (2025) 32× 32 64,000 22.64 0.66 0.26 2.34
IBQ Shi et al. (2024) 32× 32 26,2144 24.74 0.74 0.20 1.10
X-Omni Geng et al. (2025) 32× 32 16,384 14.39 0.34 0.53 11.17

MaDiT 1024 65,536 24.90 (+10.51) 0.75 (+0.41) 0.20 (+0.33) 1.04 (+10.13)

Injecting text embeddings into the encoder-only yields the largest improvement over (a), reducing
rFID by 0.26. This indicates that semantic priors help disambiguate visually similar codes and
stabilize high-frequency reconstruction.

3.3 RESULTS ON TEXT-TO-IMAGE GENERATION

Quantitative results. Table 3 reports zero-shot results on GenEval Ghosh et al. (2023) and
DPG-Bench Hu et al. (2024). For GenEval, MaDiT+Qwen2.5 attains an overall score of 0.79,
exceeding the autoregressive Show-o by +0.26 and performing on par with Janus-Pro. On DPG-
Bench, MaDiT+Qwen2.5 achieves an overall 84.63, edging out Janus-Pro (84.19) by +0.44, and
surpassing the strong diffusion baseline SD3-Medium by +0.55. These gains are consistent across
categories such as entity grounding, attributes, and relations.
Qualitative results. Figure 4 contrasts text-to-image generations with Janus-Pro-7B Chen et al.
(2025c). The visualization illustrates that our MaDiT framework, integrated with Qwen2.5-7B,
better adheres to prompt semantics and maintains coherent global composition. Relative to the com-
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Table 2: Ablation study on core components of MaDiT framework at resolution 512× 512.

(a) Ablation on de-tokenization strategy at ImageNet val set.

Latent
Regression

Flow-based
Refinement CFG

KL.
Sampling PSNR↑ rFID↓

✓ 22.64 1.03
✓ ✓ 23.02 0.90
✓ ✓ ✓ 23.66 0.66
✓ ✓ ✓ ✓ 23.95 0.57

(b) Ablation on Training setting of Vocabulary-
enriched Tokenization at MJHQ dataset.

Tokenizer Training setting PSNR↑ rFID↓

MaDiT
w/o 24.61 1.30
encoder-only 24.82 1.12
encoder-decoder 24.90 1.04

Table 3: Zero-shot text-to-image Generation on GenEval and DPG-Bench. Comparison of Ma-
DiT+Qwen2.5 with strong open-weight models.

GenEval
Generator type S. Obj. T. Obj. Count. Colors Position C. Attri. Overall↑
SD3-Medium Esser et al. (2024) Diff 0.99 0.94 0.72 0.89 0.33 0.60 0.74
MaskGen-XL Kim et al. (2025) Mask 0.99 0.61 0.55 0.81 0.13 0.31 0.57
DC-AR Wu et al. (2025b) Mask 1.0 0.75 0.52 0.90 0.45 0.51 0.69
LlamaGen Sun et al. (2024a) AR 0.71 0.34 0.21 0.58 0.07 0.04 0.32
Show-o Xie et al. (2024) AR 0.95 0.52 0.49 0.82 0.11 0.28 0.53
Janus-pro Chen et al. (2025c) AR 0.99 0.89 0.59 0.90 0.79 0.90 0.80
OmniGen2 Wu et al. (2025a) AR 1.0 0.95 0.64 0.88 0.55 0.76 0.80

MaDiT+Qwen2.5 AR 1.0 0.95 0.76 0.84 0.54 0.62 0.79

DPG-Bench
Generator type Global Entity Attribute Relation Other Overall↑
DALL-E 3 Betker et al. (2023) Diff 90.97 89.61 88.39 90.58 89.83 83.50
SD3-Medium Esser et al. (2024) Diff 87.90 91.01 88.83 80.70 88.68 84.08
Emu3-Gen Wang et al. (2024) AR 85.21 86.68 86.84 90.22 83.15 80.60
OmniGen2 Wu et al. (2025a) AR 88.81 88.83 90.18 89.37 90.27 83.57
Janus-pro Chen et al. (2025c) AR 86.90 88.90 89.40 89.32 89.48 84.19

MaDiT+Qwen2.5 AR 82.98 91.47 87.26 91.47 84.40 84.63 (+0.44)

petitive method Janus-pro-7B Chen et al. (2025c), our samples show clearer high-frequency details,
fewer artifacts, and more stable color palettes.

4 RELATED WORKS

Visual Quantization. VQ-VAE Van Den Oord et al. (2017) stands as a pivotal work in image
quantization Lee et al. (2022); Yu et al. (2021); Peng et al. (2022). VQ-GAN Yu et al. (2021)
further refines this apporach by incorporating adversarial and perceptual losses to capture more pre-
cise visual elements. RQ-VAE Lee et al. (2022) and MoVQ Zheng et al. (2022) explore multiple
vector quantization steps per latent embedding. MAGVIT-v2 Yu et al. (2023) and FSQ Mentzer
et al. (2023) introduce lookup-free quantization strategies, leading to large visual codebooks and
expressive representations. TiTok Yu et al. (2024b) adopts a masked transformer encoder-decoder
to tokenize images at resolution 256× 256 into an one-dimensional sequence of 32 discrete tokens.
Despite advances, the latent distributions of quantized visual tokens diverge significantly from those
of text. The disparities between two modalities impose considerable challenges for autoregressive
modeling. Although recent efforts Zhu et al. (2024); Yu et al. (2024a) address this by utilizing
a LLM’s fixed vocabulary as the visual codebook, aligning visual and linguistic modalities more
directly, the resulting tokens typically preserve the intrisic two-dimensional structure of images.
Consequently, autogressive models must predict visual tokens in a line-by-line manner, deviating
from the one-dimensional text-processing approach used by existing LLMs.
In contrast, our proposed MaDiT uses a masked autoencoder that fuses information from multi-
modal discrete tokens and partially unmasked image patches containing local visual details. By
combining these cues, MaDiT alleviates the ambiguity and information loss associated with code-
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Close-up of a cat styled with vivid, face-paint like colors—
blue, red, and yellow streaks across its fur. Bright orange-and-
black eye makeup sharpens its intense gaze, while a white 
nose pops against the palette. A beaded collar adds elegance. 
A soft, blurred background isolates the surreal, artful portrait.

Smiling courier in a black cap and sleeveless top lifts a cardboard 
box, greeting someone off-camera. Soft, blurred greenery and a 
hint of a building set an outdoor backdrop. Curly hair peeks 
beneath the cap as the friendly exchange suggests a package 
delivery. Warm, welcoming mood.

Surreal portrait of a woman merging with nature: her hair 
unfurls into autumn leaves—greens, golds, and ember 
orange—woven seamlessly through her locks. Against a dark 
backdrop, the foliage glows, blurring the line between figure 
and forest. The image feels ethereal and dreamlike, evoking a 
quiet sense of belonging and seasonal transformation.

On a wooden surface, a clear glass vase holds deep red roses 
with lush greenery. A tall ornate candlestick with a lit red taper 
warms the backdrop, while two small decorative votives glow 
to the right. Soft candlelight and rustic wood lend intimacy and 
sophistication—an elegant still life suited to a special occasion 
or a quiet evening at home.

Surreal portrait of a person with a bisected face: the left half 
coated in a textured, honeycomb pattern like scales or armor, 
the right half smooth and natural. Loose, light-colored hair 
frames the head. A neutral dark-gray background isolates the 
figure, heightening the contrast between organic skin and 
patterned surface. 

Janus-pro MaDiT+Qwen2.5 Janus-pro MaDiT+Qwen2.5 Janus-pro MaDiT+Qwen2.5

Janus-pro MaDiT+Qwen2.5 Janus-pro MaDiT+Qwen2.5 Janus-pro MaDiT+Qwen2.5

Surreal landscape with a giant sentient tree whose trunk and branches 
form a humanoid face, roots splayed like veins. A lone figure stands in 
a shallow stream at its base, gazing up. Rain falls from a vivid yellow 
sky over smaller, green, bark-textured trees. Bold contrasts—bright 
sky against deep greens—create a mystical, otherworldly scene.

Figure 4: Text-conditioned image generation: MaDiT (ours) vs. Janus-Pro-7B. All MaDiT sam-
ples are generated natively at 512×512. Janus-Pro renders at 384×384 and is resized to 512×512
for visualization. MaDiT produces sharper visual patterns and more reliable attribute–object bind-
ings and spatial relations, whereas the upsampled Janus-Pro images often exhibit softened textures.

book collapse in standard VQ tokenization. This results in discrete visual tokens that carry richer
semantic context, providing a stronger guidance for high-fidelity image reconstruction.

Autogressive Visual Generation. Most existing autoregressive visual generation models Liu et al.
(2024a); Chen et al. (2025c); Team; Zhou et al. (2024); Sun et al. (2024a); Dubey et al. (2024);
Tian et al. (2024) primarily focus on a sequential pixel-by-pixel process. Chameleon Team si-
multaneously addresses image captioning and generation within a unified Transformer framework.
Janus Chen et al. (2025c) decouples visual encoding into separate pathways yet employs a sin-
gle transformer for multimodal understanding and generation. Lumina-mGPT Liu et al. (2024a)
captures extensive multimodal capabilities by applying a next-token prediction objective over in-
terleaved text-image sequences. Transfusion Zhou et al. (2024) integrates next-token prediction for
text with diffusion-based generation for images, unifying discrete and continuous modalities in one
system. LlamaGen Sun et al. (2024a), built on vanilla autoregressive models, deliberately avoids
visual inductive biases, instead advancing image generation through proper scaling. VAR Tian et al.
(2024) attempts to address this concern by reframing autoregressive visual generation as a coarse-
to-fine “next-scale” or “next-resolution” prediction process. However, it remains susceptible to error
accumulation when predicting multiple tokens in parallel.

5 CONCLUSION

We presented MaDiT, an masked autoregressive detokenization Transformer for high-fidelity recon-
struction and text-to-image generation. The approach combines two key components: (i) a vector-
quantized tokenizer augmented with vocabulary priors from a pretrained LLM, which enriches the
visual codebook without expanding its size; and (ii) a coarse-to-fine masked de-tokenization strategy
guided by an offline VAE’s region-wise KL profile, which reconstructs low-frequency content first
and progressively refines high-frequency details. An optional flow-based refinement module further
enhances local textures under a learned Gaussian prior. Integrated with a 7B-parameter backbone
(Qwen2.5-7B), MaDiT achieves state-of-the-art fidelity on standard reconstruction metrics. For
text-to-image generation, MaDiT attains strong results on DPGBench and GenEval.
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A APPENDIX

A.1 LLM USAGE STATEMENT

We used LLMs solely as a general-purpose writing assistant. Its role was limited to language polish-
ing (grammar, clarity, tone), line-editing and rephrasing for readability, improving section titles and
transitions. All technical ideas, model designs, experiments, analyses, results, and citations were
conceived, implemented, and validated by the authors. All LLMs outputs were reviewed, edited,
and verified by the authors; The authors take full responsibility for all content in the paper.
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Algorithm 1 Sampling procedure of the masked autoregressive decoder.

Require: [T;V] – sequence of text and visual tokens; steps – total autoregressive iterations; and {kl}Nn=0 –
an EMA average of the observed KL-term for the n-th codeword.

Ensure: {xk}Kk=0 – reconstructed image patches (for all iterations k).
1: set← ∅ ▷ Initialize an empty set of reconstructed patches
2: for k = 0 to steps− 1 do
3: Concatenate [T;V] with {x0, . . . ,xk−1} and feed into the masked encoder-decoder.
4: Sample a masking ratio for iteration k from a cosine schedule (starting at 1.0 and decreasing toward 0).
5: Identify the subset of currently masked patches to reconstruct (patches with the lowest KL-term).
6: Reconstruct the selected patches using classifier-free guidance (see Equation (8) in the main text).
7: set.update(xk) ▷ Add the newly reconstructed patches to the set
8: end for
9: return set ▷ Return all reconstructed patches

A.2 PROCEDURE OF THE MASKED AUTOREGRESSIVE DE-TOKENIZATION

Algorithm 1 summarizes the iterative masked autoregressive de-tokenization (patch reconstruction)
procedure. At the first iteration (k = 0), only the sequence of text and visual tokens [T;V] is pro-
vided to the masked encoder-decoder architecture—no actual image patches are visible yet. The
decoder selects a subset of patches with the smallest Di

KL values (i.e., the easiest patches) to recon-
struct first. These typically correspond to flat or simple regions (e.g. sky or walls) that the model
can confidently generate using just the prior and global context. Once those patches are filled in,
we mark them as visible and feed their newly generated embeddings back into the encoder–decoder
model for the next iteration.

In the second iteration, a slightly lower masking ratio is used (per the cosine schedule), meaning
more patches are now treated as visible context. Using this expanded context, the decoder then
reconstructs the next batch of masked patches—again chosen by the lowest remaining KL values.
This process repeats, gradually revealing additional patches at each iteration, until all patches have
been reconstructed (i.e. until the masking ratio reaches 0 and no masked tokens remain).

At each iteration, we employ the learned velocity field module to generate the pixel content for the
newly selected patches. Concretely, for each selected masked patch j, we draw a random noise
latent ϵj and perform rectified flow-based decoding from t = 1 (noise) down to t = 0 (signal).
This sampling is conditioned on the token sequence [T;V] as well as the patch’s context embedding
cj (extracted from the masked decoder). The result is a reconstructed latent for patch j. In this
manner, the original mask token [m]j is “replaced” by a generated patch in the image. These newly
generated patches are subsequently fed back into the model as known context for the following
iterations. Finally, a pretrained continuous VAE then converts all predicted patch embeddings to the
pixel space.

A.3 TRAINING DATASETS AND STRATEGY

For evaluating image reconstruction on the ImageNet validation set (50k images), we train our tok-
enizer using only the ImageNet-1k training split, to ensure a fair comparison with prior work. For
evaluating reconstructions on MJHQ-30k benchmark (a set of 30k high-quality images and cap-
tions), we assemble a diverse tokenizer training corpus from multiple open-source datasets, includ-
ing PD12M Meyer et al. (2024), LAION-Aesthetic Offerman et al., LAION-Pop Lee et al. (2024),
and JourneyDB Sun et al. (2023a). The resulting trained tokenizer is later integrated with the LLM
for high-fidelity image generation.

For text-to-image generation, we employ a two-stage training strategy on paired image–text data.
Stage 1: Pre-training for image–text alignment. We compile approximately 10 million image–text
pairs from the aforementioned open datasets (PD12M Meyer et al. (2024), LAION-Aesthetic Of-
ferman et al., LAION-Pop Lee et al. (2024), JourneyDB Sun et al. (2023a)). To enrich the textual
descriptions and strengthen image–text alignment, we recaption each image using the Qwen-2.5-
VL-7B-Instruct Bai et al. (2025) vision-language model, obtaining detailed descriptions averaging
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80–120 tokens. Stage 2: Instruction tuning for image generation. We then fine-tune the model
on high-quality instruction-following data for image generation. This includes the BLIP3o-60k
dataset Chen et al. (2025a) (a curated set of 60k prompt–image pairs distilled via GPT-4o) and
ShareGPT-4o-Image Chen et al. (2025b), a collection of 45k text-to-image examples at GPT-4 level
quality. In combination, this two-stage curriculum first equips the model with broad visual–linguistic
alignment capabilities, and then refines it to produce faithful, high-quality images in response to user
instructions.

A.4 IMPLEMENTATION DETAILS

Our tokenizer converts a 512×512 image into 1,024 discrete tokens, sampled from a large codebook
of size 65,536. The backbone is a MAE-style masked encoder–decoder with explicit positional
embeddings on all patch tokens. In our 512 × 512 configuration, both the encoder and decoder
comprise 20 Transformer layers with hidden size 1536. During reconstruction, the decoder predicts
patch-level latents, which are then transformed to RGB pixel space by the SDXL Podell et al. (2023)
continuous VAE decoder.

The learned velocity-field component (used for flow-matching decoding) is modeled as a lightweight
MLP with multiple residual blocks (inspired by the design in MAR Li et al. (2024)). For 512× 512
images, this MLP comprises 12 residual blocks, each with 1536 channels. During the autoregressive
de-tokenization stage, we perform 64 iterations (reconstructing a subset of patches in each iteration)
and use an inner flow-matching sampling step size of 10 to progressively refine each patch’s genera-
tion. These design choices (large codebook, deep transformer, and sufficient sampling steps) ensure
that our tokenizer can capture fine-grained image details while remaining tractable in both training
and inference.

To achieve autoregressive text-conditioned image generation, we employ the Qwen2.5-7B language
decoder Team (2024) as our visual generative backbone. At the pre-training stage, we empirically
select a global batch size of 1,024 and a learning rate of 1× 10−4, training the model for 10 epochs.
Consistent with LLaVA Liu et al. (2023), we use the Adam optimizer without weight decay, applying
a cosine learning-rate schedule with a warm-up ratio of 3%. For the instruct tuning stage, we adopt
a learning rate of 2× 10−5, finetuning the model for 5 epochs.

A.5 MADIT INTEGRATED WITH AN LLM FOR AUTOREGRESSIVE GENERATION

Figure 5 provides an overview of how we integrate our MaDiT with a pre-trained large language
model (LLM) to enable autoregressive text-to-image generation. We extend the LLM’s vocabulary
with a dedicated set of visual tokens corresponding to entries in the tokenizer’s codebook. Specifi-
cally, we introduce special tokens <v>_0, <v>_1, <v>_2, . . ., <v>_N , where N is the codebook
size (e.g., N = 65,536). We initialize these new token embeddings by drawing from a multivari-
ate normal distribution matching the mean and covariance of the LLM’s existing word embeddings.
This initialization places the new visual tokens in a compatible feature space, facilitating smoother
integration.

For training this coupled model, we construct single-turn instruction–response pairs using
text–image data. The text prompt serves as the “instruction,” and the target “response” is the se-
quence of discrete visual tokens (produced by our tokenizer) that represents the corresponding im-
age. We then fine-tune the LLM on this paired data using a standard autoregressive language model-
ing objective (following the approach of LLaMA and related works Touvron et al. (2023); Liu et al.
(2023)). Through this training, the LLM learns to output the correct sequence of visual tokens in
response to a given text prompt, and to terminate the sequence with an end-of-image token once the
image token sequence is complete.

At inference time, given a user’s text prompt, the LLM generates a sequence of visual tokens au-
toregressively, until the end-of-sequence token is produced. This predicted token sequence is then
passed to our MaDiT reconstruction module. Using the flow-based decoder sampling process de-
scribed above, the model ultimately reconstructs a high-fidelity image corresponding to the prompt.
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Figure 5: Pipeline of integrating MaDiT with LLMs for autoregressive text-conditioned generation.

A.6 ADDITIONAL EXPERIMENTAL RESULTS

Additional Reconstruction Results. In Figure 6, we present supplementary 512×512 image recon-
struction examples from the JourneyDB dataset. We compare our MaDiT tokenizer’s reconstructions
against those from X-Omni, a recent VQ–diffusion hybrid pipeline. Each pair of images (ours on
the left, X-Omni on the right) highlights that our method more faithfully preserves fine details and
textures from the original image. In particular, the MaDiT reconstructions maintain higher fidelity
in high-frequency regions (e.g. intricate patterns, small text, and sharp edges), underscoring the
effectiveness of our tokenizer’s design.

Additional Text-to-Image Generation Examples. Figure 7 provides an extended qualitative com-
parison of text-conditioned image generation between our approach and the Janus-Pro-7B multi-
modal model. Across a variety of example prompts, our MaDiT + Qwen2.5 method demonstrates
a stronger ability to capture nuanced semantic details from the text. The images produced by our
approach are often more coherent and closely aligned with the given prompt (in terms of depicted
objects, attributes, and overall scene) compared to the outputs from Janus-Pro-7B. These results
illustrate the advantages of our high-fidelity tokenizer and two-stage training pipeline in bridging
textual semantics with visual content for generation.
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Original Image V2Flow X-omni Original Image V2Flow X-omniOriginal Image MaDiT X-Omni Original Image MaDiT X-Omni

Figure 6: Qualitative comparison of 512×512 image reconstructions using our MaDiT tokenizer
(left in each pair) versus the VQ–diffusion hybrid pipeline X-Omni (right in each pair). Our method
consistently retains more fine-grained details of original images compared to X-Omni.

Portrait of a person with long, wavy blonde hair and bangs, 
wearing a dark green top with a fur-lined collar. Soft natural 
light and a blurred outdoor background create a calm, serene 
mood. The focus stays on the face and upper body, 
highlighting the hairstyle and cozy texture.

Vibrant still life: a floral bowl in greens and oranges brims with red 
and green grapes, a ripe apple, and dusky plums. On the wooden 
table, scattered plums and a cut lemon add freshness. A deep green 
curtain sets a rich backdrop, making the fruit’s colors glow.

Janus-pro V2Flow+Qwen2.5 Janus-pro V2Flow+Qwen2.5 Janus-pro V2Flow+Qwen2.5

Janus-pro V2Flow+Qwen2.5 Janus-pro V2Flow+Qwen2.5 Janus-pro V2Flow+Qwen2.5

A tall glass of vivid orange juice anchors a wooden tabletop, 
flanked by whole, halved, and sliced oranges that glisten with 
freshness. Behind, clusters of purple grapes deepen the 
palette. Warm light and soft shadows create a cozy, appetizing 
scene that makes the juice look especially refreshing.

A group of white chickens gather closely, their vivid red 
combs and wattles popping against a dark, blurred background. 
A central bird faces the camera in sharp focus, chest forward 
and eyes bright, while three companions stand slightly behind, 
softly out of focus. Soft light emphasizes fluffy plumage and 
fine feather textures, creating depth and a lively, alert mood.

A blonde with two braids in a brown cowboy hat and leather 
jacket, a pale scarf at the neck, stands beside a white-maned 
horse in a black halter. Jagged rock formations frame a sun-
bleached canyon backdrop. The scene feels Western—quiet 
companionship, open air, and a hint of adventure.

A young child with curly blonde hair cradles a glowing orb, its warm 
light washing over their face and hoodie. The surrounding darkness 
melts into soft ambers and browns, suggesting an intimate, dreamlike 
interior. Gentle chiaroscuro heightens the sense of quiet wonder, 
turning the moment into a small ritual of innocence and awe.

MaDiT+Qwen2.5 MaDiT+Qwen2.5

MaDiT+Qwen2.5 MaDiT+Qwen2.5 MaDiT+Qwen2.5

MaDiT+Qwen2.5

Figure 7: Qualitative text-to-image generation results. Comparison of images produced by the
Janus-Pro-7B model (left in each pair) versus our MaDiT+Qwen25 model (right in each pair), given
the same text prompts. Our generated images show greater semantic alignment with the prompts
and richer details (e.g., more accurate objects and scene attributes).
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