

# 000 001 002 003 004 005 SMT-LEARNER: MOVEMENT TRAJECTORY LEARNING 006 TO DECODE MOTOR CONTROL STRATEGIES 007 008 009

010 **Anonymous authors**  
011 Paper under double-blind review  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035

## ABSTRACT

036 Spatiotemporal movement trajectory (SMT) representation is essential to under-  
037 standing the motor skill learning and adaptation strategies that inform neurore-  
038 habilitation practices. Movement performance metrics (i.e., speed, accuracy) are  
039 insufficient to characterize motor control strategies and learning patterns, partic-  
040 ularly in individuals with disordered movement. Motor skill learning patterns  
041 require an interpretable sequential SMT representation that preserves spatial, tem-  
042 poral, and performance variables. We present a novel SMT-Learner with trans-  
043 former autoencoders that optimize performance-aware contrastive and adaptive  
044 transfer losses, combining cross-task and cross-subject transfer paradigms. SMT-  
045 Learner encodes trajectories into a high-dimensional latent space and enables motor  
046 performance-aware learning. We introduce an Exploration-Exploitation (E-E) an-  
047 alytical framework that quantifies motor skill learning and control strategies to  
048 balance different movement patterns and micro-adaptation. We tested and vali-  
049 dated the SMT-Learner with two visuomotor reaching datasets: (1) a prospectively  
050 obtained cohort of term and preterm children’s motor learning and performance  
051 of unimanual and bimanual tasks, and (2) extensively overtrained non-human pri-  
052 mates performing target-directed reaching movements. Our ablation and baseline  
053 comparison across geometric, statistical, and clustering metrics demonstrated that  
054 SMT-Learner outperformed with the lowest reconstruction error (0.086) and op-  
055 timized clinical correlation with motor performance variables. Investigated E-E  
056 patterns significantly correlated with the early and late stages of motor learning and  
057 speed-accuracy trade-offs principles. The SMT-Learner framework provides an  
058 efficient computational approach to quantify motor learning strategies; potential ad-  
059 vanced downstream applications in developmental assessment, neurorehabilitation  
060 monitoring, and movement optimization in robotics or brain-computer interfacing.  
061  
062

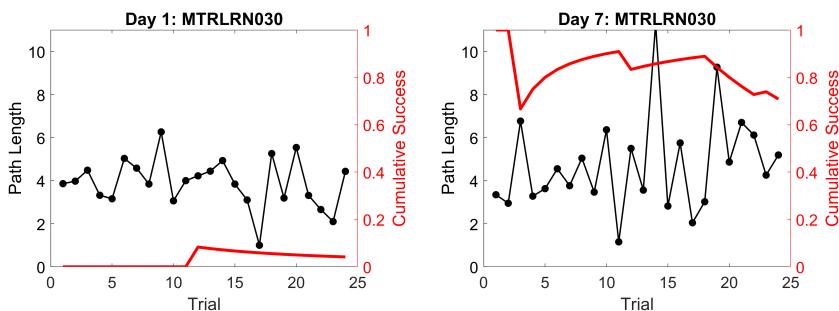
## 1 INTRODUCTION

063 Recent research in developing analytic tools for motion and kinematic data has applied ML/AI  
064 methods to understand motor recovery patterns and prognosis in individuals undergoing neurorehabil-  
065 itation (i.e., children with cerebral palsy Rapuc et al. (2024), traumatic brain injury Uparela-Reyes  
066 et al. (2024); Balaji et al. (2023), post stroke survivors Campagnini et al. (2022)) Choo & Chang  
067 (2022); Butepage et al. (2017); Song et al. (2017); Reinkensmeyer et al. (2016). Spatiotemporal  
068 movement analysis has created new opportunities to study human motor behavior Wulff et al. (2019);  
069 Renso et al. (2013), specifically in movement patterns Viviani & Terzuolo (1982); Kalayeh et al.  
070 (2015); Wulff et al. (2019); Long & Nelson (2013), motor rehabilitation Kitago & Krakauer (2013);  
071 Levin et al. (2010); van Andel et al. (2008); Murphy et al. (2011), and its underlying neural correlates  
072 Svoboda & Li (2018); Gallego et al. (2018). For example, ML-based kinematic analysis using  
073 spatial van Andel et al. (2008) or temporal Murphy et al. (2011) parameters of upper extremity  
074 tasks can predict movement smoothness and track movement quality. How different motor control  
075 strategies are related to upper extremity performance over long-term practice of a motor rehabilitation  
076 task is still challenging to decode. Understanding the motor behavior and learning processes from  
077 high-repetition and high-density spatiotemporal movement data necessitates new representation learning  
078 to decode the patterns. Research in motor learning and development involving spatiotemporal  
079 movement trajectories (SMT) utilizes diverse data capture and measurement technologies, includ-  
080 ing marker and markerless 3D motion capture systems Menolotto et al. (2020), wearable inertial  
081

measurement units (IMUs) Zhou & Hu (2008), that provide high spatial-temporal resolution for precise movement tracking. Digital tablets (e.g., iPads) have recently emerged as powerful tools to capture spatiotemporal aspects of movement, particularly in handwriting, individual finger movement, bimanual coordination, and fine motor skills Palmis et al. (2019); Mia et al. (2024). Importantly, these devices can capture high-resolution temporal and spatial data, including position coordinates, time, velocity, and acceleration during movement execution, needed for motor learning analyses. There are several ML/DL models extensively applied to spatiotemporal trajectory and motion analysis, such as motor recovery prediction Campagnini et al. (2022); Vu et al. (2018) or gait recovery Prakash et al. (2018); Hor et al. (2023), robotics Finn et al. (2016); Saveriano et al. (2023), pedestrian movement analysis Alahi et al. (2016); Rudenko et al. (2020), and autonomous vehicles Schwarting et al. (2018); Maqueda et al. (2018); Kuutti et al. (2020). However, SMT analysis in motor learning studies requires different approaches to decode motor control strategies, micro-adaptation, and learning progress, which potentially impact clinical intervention.

In our recent investigation on motor skill learning and performance using an iPad-based gamified visuomotor task among term and preterm school-aged children (N=72, Ages 5-8 years), a new computational problem was identified while interpreting control strategies, due to the nature of non-linear movement dynamics. Compared to term-born children, preterm children have a significantly higher risk of motor delays, which affects their ability to learn and perform motor skills compared to term-born peers Foulder-Hughes & Cooke (2003); Usitalo et al. (2020); Patel (2016); Allotey et al. (2018); Carter & Msall (2018); Spittle et al. (2016). In addition to lower motor performance, preterm children's ability to learn new motor skills may be impacted due to maladaptive developmental patterns Ortinau & Neil (2015) and differences in brain structures important for sensorimotor function Liu et al. (2010); Adams et al. (2010); Shimony et al. (2016). However, the underlying motor learning strategies used by preterm and term children are difficult to interpret from conventional motor performance parameters. Indeed, there is a distinction in movement variation and adaptation between these two groups. **Figure 1 exemplifies an individual's motor learning, where low (during practice) and high (retention) cumulative success rates, the probability of reaching the target at least once over a series of independent trials, had nearly similar movement path lengths.** Therefore, a research gap exists in understanding motor learning progress and control strategies from movement data and performance variables.

Existing DL-based trajectory autoencoder and embedding methods, such as STTraj2Vec Zhu et al. (2024), Variational Auto-Encoders (VAEs) Ivanovic et al. (2020), Sequence-to-Sequence Auto-Encoders Sarkar & Ghose (2018); Wang et al. (2022), while effective in movement prediction and classification yet challenging to interpret complex non-linear relationships in movement patterns. Transformer architectures with self-attention mechanisms Shaw et al. (2018) and self-supervised pre-training approaches (i.e., TimeContrast Guo et al. (2022), MovementContrast Shah et al. (2023)) are capable of capturing sequence dependencies and temporal relationships. However, the repetitive task-based motor training and therapy in rehabilitation practices require more sophisticated methods, which will



(a) Participant 030 had a very low success rate (red curve) relative to a moderate level of accuracy (4 times ideal path length) (b) After training, success rate increased to greater than 70% but the accuracy remained at a similar (and perhaps greater) level

Figure 1: Example of a participant's motor skills learning from Day 1 to Day 7, while a traditional parameter (i.e., movement path length) could not capture learning or overall performance on a task. In this task, participants moved a joystick up and down to map movement on a 2D game scene to achieve a target-directed destination from a source.

108 preserve trial-to-trial performance variables along with temporal and spatial patterns. This problem  
 109 motivated the design of a new SMT representation learning framework.  
 110

111 We propose a novel SMT-Learner that combines joint learning with movement performance-aware  
 112 multi-contrastive loss and adaptive transfer learning. A new human SMT dataset ( $D_1$ ) was created  
 113 from prior motor skill learning and performance investigation to train and evaluate the model. To  
 114 cross-validate the generalized applicability of SMT-Learner, evaluate with another hand reaching  
 115 trajectory dataset ( $D_2$ ) of highly trained non-human primates Scott et al. (2001); Scott & Kalaska  
 116 (1997). Moreover, we introduce an exploration-exploitation (E-E) analytical framework to quantify  
 117 motor control strategies and micro-adaptation from the representation, categorized as i) exploratory  
 118 strategy Svoboda & Li (2018) – where current movement does not correlate with previous movement  
 119 attempts, and ii) exploitative strategy Gallego et al. (2018) – where prior movements predict current  
 120 movement. We assessed how movement exploration and exploitation differed between: a) two types of  
 121 hand movements (unimanual and bimanual), b) term and preterm children, and c) early and late motor  
 122 learning phases. To provide further SMT-Learner interpretability, we conducted a case study analysis  
 123 showing two distinct optimal strategies captured by the framework: (1) Curvature optimization to  
 124 near-straight paths, and (2) Stepwise rectilinear movements with right-angle directional changes.  
 125

126 **Neuroscientific Foundation of E-E Framework:** Exploitation/exploration are well-established  
 127 concepts to study human and other species' cognitive and motor learning evaluation. E-E frameworks  
 128 Wyatt et al. (2024) found useful for studying how humans make decisions with known outcomes versus  
 129 acquiring new information and new outcomes with less certainty. For example, children tend to use  
 130 more explorative strategies early in development to gather more information, even when this approach  
 131 may be less rewarded Blanco & Sloutsky (2024). Human visual exploration studies demonstrated  
 132 Bayesian optimal foraging models Cain et al. (2012) and uncertainty reduction mechanisms Mirza  
 133 et al. (2018) that are parallel to movement exploration/exploitation. Established principles of motor  
 134 learning through adaptive combination of motor primitives Thoroughman & Shadmehr (2000) and  
 135 complementary roles of neural circuits Doya (2000) support E-E mechanisms in biological motor  
 136 systems. In non-human motor learning studies, E-E concepts are significantly applied to understand  
 137 motor learning behaviours and neural dynamics. One rodent exploratory behavior study Mumby et al.  
 138 (2002) demonstrated corticostriatal dynamics that reinforce the reduction of movement variability in  
 139 repetitive motor skill learning Dhawale et al. (2017) and refinement of muscle synergies Santos et al.  
 140 (2015), supporting distinction in early exploration and late exploitation strategies. Moreover, this  
 141 principle also explained how young songbirds produce highly variable vocalizations and strategically  
 142 transition to stereotyped songs with vocal motor learning Olveczky et al. (2005); Kojima et al. (2018).  
 143

144 We statistically validated the following hypotheses to demonstrate our framework's effectiveness  
 145 and its clinical implications. **Hypothesis 1a:** *Early learning will be more explorative and will shift*  
 146 *to an exploitative strategy in the late learning phase in all participants.* **Hypothesis 1b:** *Preterm*  
 147 *children will exhibit a higher exploration/exploitation (E-E) ratio than term children, particularly*  
 148 *for the bimanual skill learning task.* Our cross-validation hypotheses are: **Hypothesis 2a:** *As*  
 149 *monkeys were extensively overtrained ( $D_2$ ), their overall E-E ratio will be significantly lower than*  
 150 *that of a human learner on an untrained task.* **Hypothesis 2b:** *The E-E ratio will decrease over*  
 151 *sequential trials of the same motor learning task, even in well-trained non-human primates, reflecting*  
 152 *a micro-adaptation learning process.* The methodological validation will also confirm a speed-  
 153 accuracy trade-off principle of motor skill development Plamondon & Alimi (1997); Spieser et al.  
 154 (2017); Molina et al. (2019) preserved by SMT-Learner representation. **Hypothesis 3a:** *Movement*  
 155 *performance variables such as movement speed or accuracy will correlate negatively or positively,*  
 156 *respectively, with E-E ratio.* This hypothesis will clinically validate our framework's relationship to  
 157 conventional motor performance variables. Finally, we discuss the potential of the presented approach  
 158 for clinical translation with limitations and future directions.  
 159

## 2 PRELIMINARY

160 **Movement path.** A real movement path  $P$  is a continuous function of time mapping 2D spatial  
 161 coordinates. Movement path is a function defined as,  $P : [0, T] \rightarrow \mathbb{R}^d$ , where  $T$  is the total time  
 162 duration of a movement path and for each time point  $t \in [0, T]$ ,  $P(t) = (x_t, y_t)$ , return a 2D position  
 163 with x-coordinate and y-coordinate value in the movement space.  
 164

162 **Trajectory.** A trajectory ( $\mathcal{T}$ ) of a moving object is a sequence of positions over time in the movement  
 163 space, define as  $\mathcal{T} = \{(x_1, y_1, t_1), (x_2, y_2, t_2), \dots, (x_n, y_n, t_n)\}$ . Where  $(x_i, y_i)$  represents spatial  
 164 coordinates at time  $t_i$  with  $0 = t_1 < t_2 < \dots t_n = T$  and  $n$  is the number of recorded positions.  
 165

166 **Problem Formulation.** Given a dataset of  $N$  spatiotemporal movement trajectories,  $D$   
 167  $= \{\mathcal{T}_1, \mathcal{T}_2, \dots, \mathcal{T}_N\}$ , where each trajectory  $\mathcal{T}_i$  defined as  $\mathcal{T}_i = \{(x_j, y_j, t_j) | j = 1, 2, \dots, m\}$ . Each trajectory has associated temporal metadata  $M_i = \{m_1, m_2, \dots, m_k\} \subseteq \{pid, task, c\_time, rmsd, is\_success\}$ . Here,  $c\_time$  is the total completion time of the movement  
 168 from source to destination in seconds,  $task$  indicates experimental visuomotor/movement  
 169 task,  $rmsd$  is root mean square deviation of the original movement path from direct straight line  
 170 ( $source \rightarrow destination$ ), and  $is\_success$  is a flag (0 or 1) that indicate the successfully reaching  
 171 the destination. We aim to train a trajectory autoencoder to learn a mapping function  $f_\theta : \mathcal{T} \rightarrow \mathbb{R}^d$   
 172 that transforms each variable-length trajectory into a  $d$ -dimensional vector,  $\varepsilon_i = f_\theta(\mathcal{T}_i) \in \mathbb{R}^d$  and  
 173 captures spatio-temporal patterns with preservation of movement performance metrics. We focus  
 174 on developing SMT-Learner, combining a self-attention encoder and self-supervised pre-training to  
 175 optimize trajectory reconstruction and movement performance-aware multi-contrastive loss, enabling  
 176 transfer learning. The goal is to achieve embedding  $\mathbb{R}^d$  as a representation of SMT to conduct down-  
 177 stream experiments, specifically the motor learning behavior and the detection of control strategies  
 178 using E-E analysis.  
 179

### 181 3 METHODOLOGY

182 SMT-Learner builds upon transformer-based sequential processing Vaswani et al. (2017) and self-  
 183 supervised contrastive learning Chen et al. (2020), which includes movement performance meta-  
 184 criterions as contrastive loss for representing trajectories into the embedded space and enables transfer  
 185 learning Zhang & Gao (2022). **SMT-Learner is driven by motor learning principles, designed to**  
 186 **learn domain-agnostic representations of planar reaching tasks to decode motor learning and control**  
 187 **strategies—measured through speed, accuracy, and success.**  
 188

#### 190 3.1 TRAJECTORY PROCESSING

191 **Normalization.** A normalized trajectory  $\mathcal{T}'$  is a standardized representation of spatial curve that  
 192 resolves the variable-lengths and geometric constraints of randomize start and target of a moving  
 193 object. A trajectory transformation process  $\mathcal{N}$  applied to normalize a trajectory,  $\mathcal{T}' = \mathcal{N}(\mathcal{T}) =$   
 194  $\{(P_j, t_j) | j = 1, 2, 3, \dots, m\}$ , where  $\mathcal{T}'$  origin-centered at  $\mathcal{T}'_1 = (P_{(0,0)}, t_1)$ , target-aligned at  
 195  $\mathcal{T}'_m = (P_{(0,0)}, t_m)$ . transformation process  $\mathcal{N}$  involves:  
 196

197 (i) Translate position  $P$  of the trajectory to center:  $P'_i = P_i - P_1 = \{x_i - x_1, y_i - y_1\}$ ,  
 198

199 (ii) Rotation by  $\theta$  angles to align with target position:  $R(\theta) = \begin{bmatrix} x_i \cos \theta - y_i \sin \theta \\ x_i \sin \theta + y_i \cos \theta \end{bmatrix}$ , and  
 200

201 (iii) Trajectory is scaled by factor  $s$  to finalize position into a specific magnitude:  $s = \frac{\|\vec{V}_{target}\|}{\|\vec{V}_{end}\|}$ ,  
 202

203 where  $\vec{V}_{target} = P_{(0,1)} - P_{(0,0)}$  and  $\vec{V}_{end} = P_n - P_1$ . Finally, positional normalization of trajectory  
 204 is transformed by  $\mathcal{T}_{norm} = P'_i \times R(\theta) \times s$ .  
 205

206 **The rotating/scaling trajectories to a canonical frame removes absolute direction and can obscure**  
 207 **biomechanical/cognitive asymmetries. We kept this normalization to simplify trajectory learning**  
 208 **while preserving spatial and temporal structure, but we have incorporated directional semantics by**  
 209 **adding the target direction angle,  $\theta_i = \text{atan2}(P_n - P_i)$  to each timestep input and optionally the**  
 210 **rotation angle used in normalization as auxiliary inputs.**  
 211

212 **Resampling.** For each normalized trajectory sequence with a given length  $n$ , we applied a parame-  
 213 terized approach to get fixed  $m$  points that preserve spatial and temporal characteristics. A uniform  
 214 space parameter,  $u'_j = \frac{j-1}{m-1}$ , for  $j = 1, 2, 3, \dots, m$  is defined to obtain exactly  $m$  resampled points  
 215 by identifying segments in the original trajectory where  $u_i \leq u'_j < u_{i+1}$ , where  $u_i = \frac{i-1}{n-1}$ , for

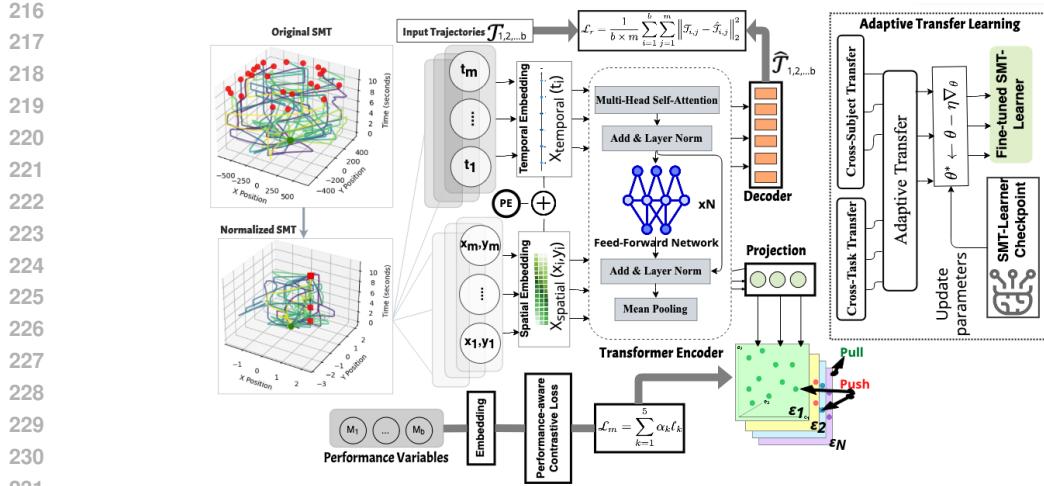


Figure 2: Architecture of SMT-Learner with transfer paradigm

$i = 1, 2, 3, \dots, n$ . An interpolation weight,  $\alpha_j = \frac{u_j' - u_i}{u_i + 1 - u_i}$  is used to calculate each dimension of the trajectory using the following equations:  $x_j' = (1 - \alpha_j) x_i + \alpha_j x_{i+1}$ ,  $y_j' = (1 - \alpha_j) y_i + \alpha_j y$ , and  $t_j' = (1 - \alpha_j) t_i + \alpha_j t_{i+1}$ .

### 3.2 SMT-LEARNER AND ADAPTIVE TRANSFER

The SMT-Learner consists of five layers (Figure 2): i) dual-stream spatial and temporal embedding, ii) transformer encoder with multi-head self-attention and feed-forward network, iii) dual-headed output with projection and decoder, iv) a movement performance-aware contrastive learning with transfer paradigm, and v) a joint optimization with contrastive and reconstruction loss. The spatial ( $x_i, y_i$ ) and temporal ( $t_i$ ) components of each point in the normalized trajectory  $\mathcal{T}$  are projected into a  $D$ -dimensional space using  $X_{\text{spatial}}$  and  $X_{\text{temporal}}$  linear transformer with a positional encoder. Spatial & temporal embedding results a tensor  $X$  of shape  $(b \times m \times D)$ , where  $b$  is the batch size and  $m$  is the number of points in a trajectory, which is the input of the Transformer encoder. Two parallel branches processed the output of the transformer encoder to generate the final embedded representation and reconstructed trajectory using a Projection Head and Decoder, respectively. Embedded output of the non-linear Projection Head He et al. (2020) is  $E = \text{ReLU} \left( w_1^{\text{proj}} \cdot Z_{\text{global}} + b_1^{\text{proj}} \right) w_2^{\text{proj}} + b_2^{\text{proj}}$ , with shape  $(b \times d)$  contains  $E \subset (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_b)$  embeddings where each  $\varepsilon_i \in \mathbb{R}^d$ . Embeddings  $\varepsilon_i$  was used for constative loss calculation. The Decoder reconstructed the original trajectory as  $\hat{\mathcal{T}} = \text{Reshape} (w^{\text{dec}} \cdot Z_{\text{global}} + b^{\text{dec}})$ . The reconstructed trajectory used to calculate the reconstruction loss ( $\mathcal{L}_r$ ) using Equation 1.

$$\mathcal{L}_r = \frac{1}{b \times m} \sum_{i=1}^b \sum_{j=1}^m \left\| \mathcal{T}_{i,j} - \hat{\mathcal{T}}_{i,j} \right\|_2^2 \quad (1)$$

#### 3.2.1 PERFORMANCE-AWARE CONTRASTIVE LEARNING

The model learns the representation in embedded space  $\varepsilon \in \mathbb{R}^d$  from the motor performance meta criterion ( $M_i$ ) using “pull” and “push” operations, where pull similar trajectories or push dissimilar ones based on the multi-contrastive loss function ( $\mathcal{L}_m$ ) as calculated using Equation 2 and 3.

$$\mathcal{L}_m = \sum_{k=1}^5 \alpha_k \ell_k \quad (2)$$

$$\ell_k = \frac{\sum_i \sum_{j \neq i} \psi_k(i, j) \log \frac{e^{\varepsilon_i \cdot \varepsilon_j / \tau}}{\sum_{l \neq i} e^{\varepsilon_i \cdot \varepsilon_l / \tau}}}{\sum_i \sum_{j \neq i} \psi_k(i, j) + \mathcal{C}} \quad (3)$$

270 Where  $\ell_k$  is loss components for corresponding meta criterion  $m_k$  and weight factor  $\alpha_k$  as  
 271  $\sum_{k=1}^K \alpha_k = 1$ .  $\mathbb{C} = e^{-6}$  to avoid numerical instability. For each batch of embedded trajectories,  $E$ , contrastive loss components  $\ell_k$  are computed based on the similarity matrix ( $\psi_k$ ) for meta  
 272 criterion  $k$  with a temperature parameter  $\tau$  Wang & Isola (2020). Trajectory meta criterion completion  
 273 time ( $c\_time$ ), root mean square deviation ( $rmsd$ ) and successfully reaching the destination ( $success$ )  
 274 have been used as specialized similarity measures. Let's define the rmsd distance as  $d$ , while the  
 275 similarity between two trajectories  $\varepsilon_i$  and  $\varepsilon_j$  from batch  $E$  is computed by Equation 4.  
 276

$$\psi_{rmsd}(i, j) = 1 - \frac{|d_i - d_j|}{\max_{k,l} |d_k - d_l| + \mathbb{C}} \quad (4)$$

280 Here,  $\max_{k,l} |d_k - d_l|$  find the max difference in sequential paired samples of  $E$ . Completion  
 281 time contrastive loss captured comparable timeframe patterns to pull or push embeddings based on  
 282 the similarity calculation. Other two similarity matrices,  $\psi_{c\_time}(i, j)$  and  $\psi_{success}(i, j)$  capture  
 283 movement speed and efficiency to learn representation. Finally, the participant ID ( $pid$ ) and movement  
 284 tasks ( $task$ ) information were used as cross-subject and cross-task knowledge transfer to balance  
 285 learning with specific and generalized patterns.  
 286

### 287 3.2.2 ADAPTIVE LEARNING WITH CROSS-TASK AND CROSS-SUBJECT TRANSFER

288 The characteristics of movement trajectory in rehabilitation or robotics space depend on the task  
 289 executed, which impacts the trajectory shape, such as opening a door or moving an object from source  
 290 to destination using only up-down, left-right actions. Cross-task knowledge transfer is important  
 291 to preserve task-specific information and movement patterns in the representation space Shi et al.  
 292 (2023). Whereas, the cross-subject transfer paradigm allows flexible control on subject-specific  
 293 knowledge learned across all other subjects, for a target subject to generalize the learning in offline  
 294 mode. Our transfer process simultaneously optimized joint losses  $\mathcal{L}_{total} = \mathcal{L}_r + \mathcal{L}_m$ . For a transfer  
 295 paradigm (i.e., cross-task, cross-subject), two hyperparameters ( $\lambda_1$  and  $\lambda_2$ ) with a transfer-specific  
 296 regularization are applied to optimize loss and appropriate separation between different subjects and  
 297 tasks. Equations 5 and 6 update weights for a specific transfer type, where  $\text{sim}(\varepsilon_i, \varepsilon_j) = \frac{\varepsilon_i \cdot \varepsilon_j}{\|\varepsilon_i\| \|\varepsilon_j\|}$   
 298 represents cosine similarity between embeddings and  $\mathbb{I}[\text{factor}_i \neq \text{factor}_j]$  is an indicator function for  
 299 different tasks or subjects, respectively.  
 300

$$\mathcal{L}_{\text{transfer}} = \mathcal{L}_r + \lambda_1 \mathcal{L}_m + \lambda_2 \mathcal{L}_{\text{regularization}} \quad (5)$$

$$\mathcal{L}_{\text{regularization}} = \frac{1}{N} \sum_{i=1}^N \sum_{j \neq i} \max(0, \text{margin} - \text{sim}(\varepsilon_i, \varepsilon_j)) \cdot \mathbb{I}[\text{factor}_i \neq \text{factor}_j] \quad (6)$$

305 However, motor learning is intrinsically individualized and context-dependent Shmuelof et al. (2012).  
 306 Inter-subject variability and task-specific complexity require different control strategies. Static weight  
 307 transfer may reduce individual differences Long et al. (2015); Kendall et al. (2018), necessitating  
 308 dynamic weight updates to capture motor signatures and knowledge transfer between participants and  
 309 tasks. We combined both paradigms with an adaptive transfer mechanism Cao et al. (2010), which  
 310 updates model parameters  $\theta^* \leftarrow \theta - \eta \nabla_{\theta}$  using Equation 7.  
 311

$$\mathcal{L}_{\text{adaptive}}^{(t)}(\theta) = \mathcal{L}_r + \lambda_1 \cdot \sum_{k=1}^5 \hat{\alpha}_k^{(t)} \cdot \mathcal{L}_k(\theta) + \lambda_2 \cdot \mathcal{L}_{\text{regularization}} \quad (7)$$

312 Performance-aware multi-contrastive loss components,  $\sum_{k=1}^5 \hat{\alpha}_k^{(t)} \cdot \mathcal{L}_k(\theta)$  represent the core adaptive  
 313 weighting mechanism dynamically balanced transfer context. During training, time-dependent  
 314 weights  $\hat{\alpha}_k^{(t)}$  adjust based on improvement rates from loss history windows. Transfer-specific  
 315 modulation factors emphasize different components based on whether knowledge is transferred  
 316 across subjects or tasks.  
 317

### 318 3.3 EXPLORATION-EXPLOITATION ANALYTICAL FRAMEWORK

319 We introduced a quantitative method, the Exploration-Exploitation (E-E) framework, to analyze the  
 320 decoded learning patterns and control strategies from the SMT-Learner representation. In the motor  
 321

324 Table 1: **Summary of SMT-Learner pretraining/fine-tuning results, all experiments conducted on  $D_1$**   
325

| 326 <b>Paradigm</b> | 327 <b>Pretrain</b>     | 328 <b>Evaluate (target)</b> | 329 <b>Zero-shot mean [95% CI]</b> | 330 <b>Fine-tuned mean [95% CI]</b> | 331 $\Delta\%$ |
|---------------------|-------------------------|------------------------------|------------------------------------|-------------------------------------|----------------|
| 332 Exp1            | 333 D1                  | 334 D1 test                  | 335 1.55 [1.525, 1.575]            | 336 1.00 [0.98, 1.02]               | 337 -35.5%     |
| 338 Exp2            | 339 D1 Unimanual        | 340 D1 Bimanual              | 341 1.10 [1.08, 1.12]              | 342 0.55 [0.541, 0.559]             | 343 -50.0%     |
| 344 Exp3            | 345 D1 Term             | 346 D1 Preterm               | 347 1.05 [1.041, 1.059]            | 348 0.45 [0.441, 0.459]             | 349 -57.1%     |
| 352 Exp4            | 353 D1 Unimanual + Term | 354 D1 Bimanual + Preterm    | 355 1.05 [1.041, 1.059]            | 356 0.12 [0.111, 0.129]             | 357 -88.6%     |

332 skill learning process, participants learn mastery of a task by repetition. Exploration scores measure  
333 movement diversity, and exploitation scores measure how prior movement predicts current movement.  
334  $\text{Exploration}(\varepsilon_i) = \min_{j < i} \text{Dist}(\varepsilon_i, \varepsilon_j) \times (\beta_1 + \beta_2 e^{-i\alpha})$ , where,  $\alpha$  is decay factor for trial sequence  
335 and  $\beta_1, \beta_2$  are weights for movement novelty and trial sequence. The exploitation score measures  
336 how prior movement is predicting current movement using a window size ( $W_i$ ) and a similarity  
337 matrix,  $\text{Exploitation}(\varepsilon_i) = \frac{1}{|W_i|} \sum_{j \in W_i} \text{Sim}(\varepsilon_i, \varepsilon_j)$ . Finally, E-E Ratio =  $\frac{\text{Exploration}(\varepsilon_i)}{\text{Exploitation}(\varepsilon_i)}$ , consider  
338 as a factor of sequential motor learning. We applied MIN distance (minimum Euclidean distance  
339 in embedding to any prior trial within a decayed window) and KNN algorithm with  $W = 120$ ,  
340  $\alpha = 0.05$ ,  $\beta_1 = 0.10$ , and  $\beta_2 = 0.90$ , validated via average distance and density-based novelty.  
341 Three consistent patterns supported the selection of the optimized hyperparameters to compute E-E  
342 metrics. Sensitivity and clustering analyses are detailed in Appendix A.3.

## 344 4 RESULTS & DISCUSSION

345 SMT-Learner optimized all loss components in the pretraining stage to  
346 learn generalizability from the domain data (Appendix Section A.1  
347 DATASETS). In the transfer stage, the  
348 SMT-Learner pre-trained model was  
349 fine-tuned using  $D_1$  to update parameters  
350 based on the transfer paradigms  
351 (cross-task, cross-subject, and adaptive  
352 transfer). The complete experimental  
353 setup and transfer experiments are  
354 detailed in Appendix Section A.2  
355 EXPERIMENTAL SETUP. We com-  
356 puted 5 seeds with mean  $\pm 95\%$  con-  
357 fidence intervals (t-based,  $df=4$ ) for  
358 all SMT-Learner transfer experiments  
359 (Exp1-Exp4), reported transfer loss  
360 ( $\mathcal{L}_{\text{transfer}}$ ) in Table 1. Adaptive transfer loss ( $\mathcal{L}_{\text{adaptive}}^{(t)}(\theta)$ ) with multi-temporal components dropped  
361 significantly (overall 25.4% performance improvement) compare to the SMT-Learner baseline model  
362 (Figure 3). Held-out evaluations were performed on  $D_2$  tasks/sessions never seen during training  
363 to confirm cross-dataset generalization.  $D_1 \rightarrow D_2$  zero-shot overall loss dropped 1.55 to 1.24 and  
364 1.28 on a single task held-out samples ( $D_2$  Experimental Task 1). Using the  $D_1$  Preterm finetuned  
365 checkpoint (no  $D_2$  pretraining/fine-tuning), the loss dropped to  $\sim 1.18$ . Finally, adaptive transfer  
366 fine-tune loss reaches 0.98, evidence that SMT-Learner captures transferable motor structure rather  
367 than dataset-specific regularities and provides a scale-stable E-E metric (Appendix A.5).

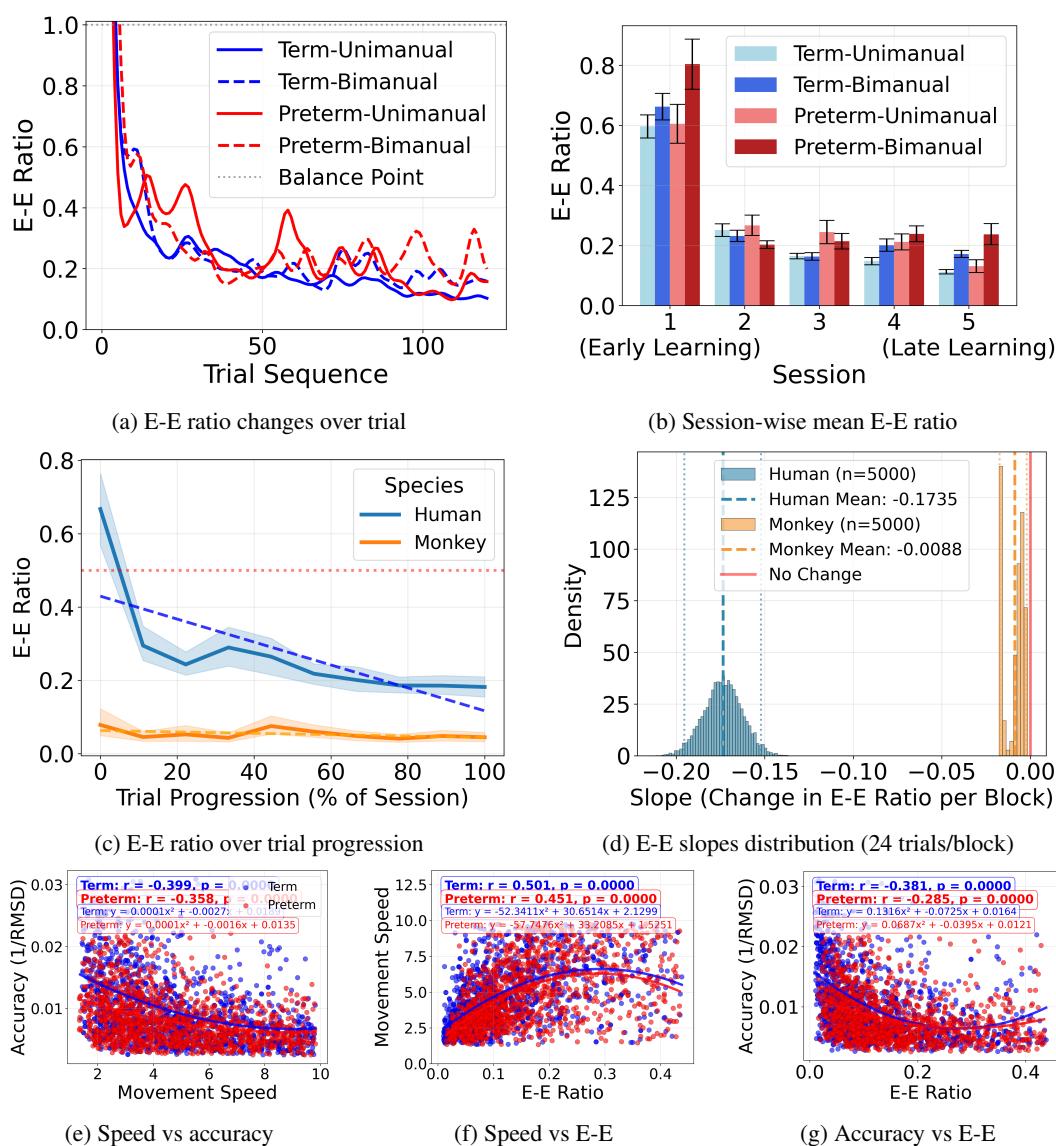
### 371 4.1 STATISTICAL TESTING & HYPOTHESIS VALIDATION

372 We tested Hypotheses 1a/1b on  $D_1$  using a three-way ANOVA (cohort, phase, task) with E-E ratio as  
373 the dependent variable. Early → late learning showed a robust shift from exploration to exploitation  
374 ( $F=343.1$ ,  $p < 0.001$ ,  $\eta^2=0.050$ ), with E-E decreasing from  $0.667 \pm 0.056$  to  $0.163 \pm 0.020$  (Fig. 4a, 4b).  
375 Preterm children exhibited higher E-E than term ( $0.444 \pm 0.059$  vs.  $0.386 \pm 0.030$ ; Cohort:  $F=3.72$ ,  
376  $p=0.054$ ), partially supporting 1b. Task effects were significant: bimanual > unimanual in both term  
377 ( $0.286 \pm 0.022$  vs.  $0.255 \pm 0.019$ ;  $p=0.033$ ) and overall ( $0.469 \pm 0.049$  vs.  $0.361 \pm 0.040$ ;  $F=10.43$ ,

378 p=0.001), consistent with delayed bimanual coordination in preterm Cooke & Foulder-Hughes (2003);  
 379 Schneider et al. (2008).

380 For Hypotheses 2a/2b, we compared human  $D_1$  E-E ratio to overtrained monkey  $D_2$  reach trajectories:  
 381 human E-E  $0.2823 \pm 0.0128$  vs. monkey  $0.0542 \pm 0.0046$  ( $t=39.957$ ,  $p < 10^{-4}$ ,  $d=0.354$ ), strongly  
 382 supporting 2a (Fig. 4c). Block-wise slopes (120 trials; bootstrap  $N=5000$ ) yielded near-linear  
 383 refinement with  $R^2 = 1.00$  in both species and distinct learning rates: human  $-0.17 [-0.19, -0.15]$   
 384 vs. monkey  $-0.008 [-0.017, -0.001]$ , confirming 2b (Fig. 4d). These results align with literature  
 385 on motor variability and expertise Spieser et al. (2017) and are summarized in Table 2.

386 Speed-accuracy trade-offs, widely accepted mathematical concepts in target-directed human move-  
 387 ment, are described as neuromuscular synergy during motor execution Plamondon & Alimi (1997);  
 388 Smyrnis et al. (2000); Spieser et al. (2017). Speed-accuracy trade-offs and statistical correlation  
 389 between E-E ratio and performance variables (movement speed and accuracy) are illustrated in Figure  
 390 4e, 4f, and 4g. We found negative correlations between speed and accuracy in both term ( $r=-0.40$ ,  
 391  $p < 0.0001$ ) and preterm ( $r=-0.36$ ,  $p < 0.0001$ ) groups. We also found the E-E ratio positively correlated  
 392 (Term,  $r=0.5$  and Preterm,  $r=0.45$ ) with the movement speed and negatively correlated (Term,  $r=-$   
 393



431 Figure 4: Statistical analysis of E-E ratio in different cases: (a-b) E-E ratio changes over trial and session  
 432 progression, (c-d) E-E dynamics between human learners and monkey, and (e-g) Speed-accuracy trade-offs and  
 433 correlation between speed/accuracy and E-E ratio

432 Table 2: Evidence-based cross-matches of SMT-Learner’s E–E findings with prior literature  
433

| Hyp. | Prior findings                                                                                                   | E–E result (mean $\pm$ 95% CI)                               | Effect size | Test (t/p)                      | Interpretation                                              |
|------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------|---------------------------------|-------------------------------------------------------------|
| 1a   | Early→late stabilization in motor learning<br>Smyrnis et al. (2000)                                              | $0.667 \pm 0.056 \rightarrow 0.163 \pm 0.020$                | $d = 0.35$  | $t = 39.957$ ;<br>$p < 10^{-4}$ | E–E declines with practice;<br>stabilization phase reached. |
| 1b   | Term vs preterm adaptability differs<br>Hadders-Algra (2010); Dusing & Harbourne (2010)<br>Ferrari et al. (2012) | Term: $0.386 \pm 0.030$ ;<br>Preterm: $0.444 \pm 0.059$      | $d = 0.28$  | $p < 0.01$                      | Typical children show lower<br>E–E (more exploitation).     |
| 2a   | Practice reduces variability (human vs non-human)<br>Mandelblat-Cerf et al. (2009); Dhawale et al. (2017)        | Human: $0.2823 \pm 0.0128$ ;<br>Monkey: $0.0542 \pm 0.0046$  | $d = 0.35$  | $p < 10^{-4}$                   | Both species exhibit reduced<br>variability with training.  |
| 2b   | Skill refinement continues post stabilization<br>Smits-Engelsman et al. (2020); Churchland et al. (2006)         | Slope: $-0.17 (R^2 = 1.0)$ ;<br>Monkey: $-0.008 (R^2 = 1.0)$ | —           | $p < 0.05$                      | Slow shift toward exploitation;<br>continued refinement.    |

442 Table 3: Performance of SMT-Learner: Ablation study with contrastive and transfer configurations  
443

| Configuration                 | Performance Metrics |              |              |              |              |              |              |              |              |
|-------------------------------|---------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                               | rMSE ↓              | Ep-Err ↓     | Curve-Err ↓  | T-Corr ↑     | R-Corr ↑     | S-Corr ↑     | Traj-C ↑     | Task-C ↑     | Sub-C ↑      |
| <b>Adaptive Transfer</b>      | <b>0.086</b>        | <b>0.072</b> | <b>1.577</b> | <b>0.893</b> | <b>0.539</b> | <b>0.970</b> | <b>0.720</b> | <b>0.550</b> | <b>0.038</b> |
| No Transfer                   | 0.145               | 0.089        | 1.634        | 0.756        | 0.423        | 0.912        | 0.685        | 0.487        | 0.025        |
| Cross-Task Only               | 0.098               | 0.078        | 1.592        | 0.834        | 0.501        | 0.945        | 0.702        | 0.523        | 0.031        |
| Cross-Subject Only            | 0.102               | 0.081        | 1.588        | 0.817        | 0.487        | 0.938        | 0.695        | 0.541        | 0.034        |
| No Contrastive                | 0.197               | 0.022        | 1.891        | 0.123        | 0.001        | -0.020       | 0.412        | 0.298        | 0.018        |
| $\psi_{c\_time}$ only         | 0.086               | 0.093        | 1.568        | 0.479        | 0.289        | 0.191        | 0.713        | 0.548        | 0.037        |
| $\psi_{rmsd}$ only            | 0.098               | 0.137        | 1.646        | -0.005       | 0.002        | 0.111        | 0.720        | 0.550        | 0.037        |
| $\psi_{success}$ only         | 0.087               | 0.127        | 1.691        | 0.191        | 0.111        | <b>0.993</b> | 0.720        | 0.548        | 0.038        |
| + $\theta$ (target direction) | 0.151               | 0.019        | 1.787        | <b>0.980</b> | 0.539        | 0.910        | 0.720        | 0.548        | 0.038        |
| + $\theta$ +rotation angle    | 0.111               | 0.015        | 1.903        | 0.929        | <b>0.652</b> | 0.940        | 0.720        | 0.548        | 0.038        |

454  
455 0.38 and Preterm,  $r = -0.29$ ) with the movement accuracy. These findings validate our framework’s  
456 relationship to the clinical assessment of motor performance and captured speed-accuracy trade-offs.457 A case study is presented in Appendix Section A.4, where we demonstrate the E–E metric capable of  
458 detecting two optimal control strategies (Curvature and Stepwise).

## 460 4.2 SMT-LEARNER PERFORMANCE EVALUATION

462 We applied geometric, statistical, and clustering neighborhood analysis to evaluate the quality and  
463 characteristics of SMT-Learner representation. Assessment metrics are as follows: (i) Trajectory  
464 reconstruction quality: Reconstruction Mean Squared Error (rMSE), Mean Endpoint Error (Ep-Err),  
465 and Mean Curvature Error (Curve-Err); (ii) *Statistical correlation with movement performance*  
466 *variables*: Completion time (considered as movement speed) correlation (T-Corr), correlation with  
467 the root mean square deviation of movement (considered as accuracy) from the optimal path (R-Corr),  
468 and correlation with successfully reaching the target (S-Corr); and (iii) *Clustering neighborhood*  
469 *consistency*: trajectory shape consistency (Traj-C), cross-task consistency (Task-C), and cross-subject  
470 consistency (Sub-C).

## 471 4.2.1 ABLATION STUDY

473 Our ablation studies validate the necessity and contribution of performance-aware contrastive learning  
474 and transfer paradigms. Ablation results in Table 3 show that removing contrastive learning causes  
475 an 86% drop in temporal correlation performance, dropping T-Corr from 0.893 to 0.123, and R-Corr  
476 from 0.539 to near-zero (0.001). Adaptive transfer significantly improves performance correlations  
477 and clustering consistency compared to other transfer paradigms or no transfer. Moreover, adding  $\theta$   
478 improves timing and path-accuracy correlations and substantially reduces endpoint error (0.072 →  
479 0.019 with  $\theta$  and 0.015 with  $\theta$ +rotation angle), but rMSE goes down. Such as,  $\theta$  components increase  
480 T-Corr +0.087 and R-Corr +0.121; S-Corr remains strong ( $> 0.90$ ). These results indicate that adding  
481 target direction as an auxiliary input, along with normalized trajectory, restores asymmetry-related  
482 cues and improves performance.

## 483 4.2.2 BASELINE COMPARISON

485 Existing trajectory analysis methods lack downstream applicability for motor control and rehabili-  
486 tation practices Hu et al. (2023); Chen et al. (2024). We selected four methods for comparison

486 that closely matched study objectives: (1) STTraj2Vec Zhu et al. (2024), (2) Variational Auto-  
 487 Encoders (VAEs) Ivanovic et al. (2020), (3) Sequence-to-Sequence Auto-Encoders (Seq2Seq) Sarkar  
 488 & Ghose (2018); Wang et al. (2022), and (4) Trajectory Masked Autoencoders (Taj-MAE) Chen  
 489 et al. (2023). We found that SMT-Learner outperformed with the best rMSE, Ep-Err, Curve-Err,  
 490 and S-Corr, in both tests with  $D_1$  (training and finetuned) and  $D_2$  held-out evaluation (Table 4).

491 However, STTraj2Vec optimized temporal/spatial continuity without incorporating outcome constraints (success/failure), yielding extremely high  
 492 T/R-Corr ( $L_2$  norm of embedding grows with time or deviation). In  
 493 motor tasks, failures or inefficient trials are longer and more deviant. If  
 494 embedding magnitude amplifies only temporal/spatial characteristics, the  
 495 same feature that boosts T/R-Corr inversely relates to success, yielding negative S-Corr. SMT-Learner balanced temporal/spatial fidelity  
 496 with performance-relevant structure. As a result, it maintains very high positive S-Corr while keeping  
 497 competitive T/R-Corr. Baseline comparison with Traj-MAE reflected that the similar studies (i.e.,  
 498 Forecast-mae Cheng et al. (2023), SEPT Lan et al. (2023)) would also fail to perform better in the  
 499 investigated metrics as they lack performance-aware representation.

500

## 501 5 LIMITATIONS & FUTURE DIRECTION

502

503 SMT-Learner, while effective in capturing spatiotemporal dynamics of trajectory, has several constraints, including datasets, dimensionality, and generalizability. Embedding dimension, similarity  
 504 thresholds, and sequential window sizes require systematic investigation for different movement  
 505 trajectories across species, clinical conditions, and learning tasks. Moreover, the behavioral ex-  
 506 periments were conducted in 2D space, which can be extended to 3D trajectories with minimal  
 507 modification. We can simply modify input layer from  $\mathcal{T} = \{(x, y, t) \mid \text{spatial coordinates} + \text{time}\}$   
 508 to  $\mathcal{T} = \{(x, y, z, t) \mid \text{3D coordinates} + \text{time}\}$  and normalizing 3D vector operations for position,  
 509 rotation, and scaling. E-E analysis depends on embedded spaces and temporal continuity, and may  
 510 be less sensitive when a learner suddenly shifts strategy, leading to discontinuous skill acquisition  
 511 Newell (2014). Another limitation is that the findings on the unimanual vs bimanual visuomotor  
 512 tasks represent a subset of motor skills, as the scope of this study only focused on repetitive motor  
 513 tasks to understand learning behavior and micro-adaptation. However, other domains, such as gross  
 514 motor skills, manual dexterity, or force production tasks, may require SMT-Learner fine-tuning using  
 515 cross-task/cross-subject transfer to analyze E-E dynamics, which will be explored in the future.

516

517

## 518 6 CONCLUSIONS

519

520 Existing approaches to analyzing SMT data typically reduce complex motor trajectories to sin-  
 521 gular spatiotemporal parameters, such as movement accuracy or velocity. While important, this  
 522 approach loses information about the dynamic nature of the action. Instead SMT-Learner, com-  
 523 bined with an exploration-exploitation (E-E) metric to quantify fundamental aspects of motor skill  
 524 learning across developmental contexts. Our computational & analytical approach bridges AI into  
 525 neuromotor control, developmental psychology, and neurorehabilitation insights that could inform  
 526 therapeutic and intervention planning by identifying learning strategy deficits to guide optimal therapy  
 527 for populations with developmental disorders. Extensive experiments with two real datasets and  
 528 hypothesis cross-validation revealed fundamental characteristics of skill acquisition, shifting from  
 529 exploration-dominant to exploitation-dominant strategies over practice. In the future, adaptive transfer  
 530 learning with data from different motor learning tasks and conditions would improve the capability  
 531 for personalized therapy and modulate E-E balancing for individual learning profiles.

532

533

534

535

536

537

538

539

Table 4: Baseline comparison results

| Method                                     | rMSE         | Ep-Err       | Curve-Err    | T-Corr       | R-Corr       | S-Corr       |
|--------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|
| STTraj2Vec                                 | 0.386        | 0.095        | 3.666        | <b>0.982</b> | <b>0.647</b> | -0.797       |
| VAE                                        | 0.412        | 0.089        | 4.758        | 0.136        | 0.096        | -0.135       |
| Seq2Seq [48,49]                            | 0.190        | 0.215        | 3.619        | -0.996       | -0.653       | 0.819        |
| Traj-MAE                                   | 0.111        | 0.290        | 28.304       | -0.960       | -0.638       | 0.779        |
| <b>SMT-Learner<sub>D<sub>2</sub></sub></b> | 0.089        | 0.0944       | 1.867        | 0.735        | 0.522        | 0.9358       |
| <b>SMT-Learner<sub>D<sub>1</sub></sub></b> | <b>0.086</b> | <b>0.072</b> | <b>1.577</b> | 0.893        | 0.539        | <b>0.970</b> |

## 540 ETHICS STATEMENT

541

542 *Human Subjects Protection.* This study involves human subject data. We collected data of term and  
 543 preterm-born children ( $D_1$ ) to investigate motor skills learning and control strategies based on the  
 544 IRB-approved experimental protocol. The parents or guardians of the child (as participants aged 5-8  
 545 years old) signed an informed consent form to share non-identifiable data for research purposes. We  
 546 ensured HIPAA-compliant data storage and removed all identifiable information (e.g., name, date of  
 547 birth, phone number) from the dataset. We used anonymous identifiers (e.g., MRTLRN###) only.

## 548 REPRODUCIBILITY STATEMENT

549

550 We supply all requisite materials and documentation to assure the reproducibility of the SMT-Learner  
 551 framework. The source code implementation of the SMT-Learner architecture, encompassing the  
 552 adaptive loss weighting mechanism, cross-task and cross-subject transfer learning modules, together  
 553 with all experimental configurations, is accessible via an anonymous 4open.science repository  
 554 Anonymous (2025). Furthermore, we have included a supplementary zip file comprising: (1) the  
 555 complete codebase with README guidelines for environment configuration, data preprocessing,  
 556 model training, and evaluation methodologies; (2) evaluation scripts that replicate all documented  
 557 results; and (3) generated results, figures, and graphs.

558

## 559 REFERENCES

560

561 Elysia Adams, Vann Chau, Kenneth J Poskitt, Ruth E Grunau, Anne Synnes, and Steven P Miller.  
 562 Tractography-based quantitation of corticospinal tract development in premature newborns. *The  
 563 Journal of pediatrics*, 156(6):882–888, 2010.

564

565 Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, and Silvio  
 566 Savarese. Social lstm: Human trajectory prediction in crowded spaces. In *Proceedings of the IEEE  
 567 conference on computer vision and pattern recognition*, pp. 961–971, 2016.

568

569 John Allotey, Javier Zamora, Fiona Cheong-See, Madhavi Kalidindi, David Arroyo-Manzano, Eliza-  
 570 beth Asztalos, Joris AM van der Post, BW Mol, Derek Moore, Deidre Birtles, et al. Cognitive,  
 571 motor, behavioural and academic performances of children born preterm: a meta-analysis and  
 572 systematic review involving 64 061 children. *BJOG: An International Journal of Obstetrics &  
 573 Gynaecology*, 125(1):16–25, 2018.

574

575 Anonymous. Smt-learner:movement trajectory learning to decode motor control strategies. <https:///anonymous.4open.science/r/SMT-Learner-0D32/README.md>, 2025. Anony-  
 576 mous repository for review.

577

578 Nitin Nikamanth Appiah Balaji, Cynthia L Beaulieu, Jennifer Bogner, and Xia Ning. Traumatic  
 579 brain injury rehabilitation outcome prediction using machine learning methods. *Archives of  
 580 Rehabilitation Research and Clinical Translation*, 5(4):100295, 2023.

581

582 Nathaniel J Blanco and Vladimir M Sloutsky. Exploration, exploitation, and development: Develop-  
 583 mental shifts in decision-making. *Child Development*, 95(4):1287–1298, 2024.

584

585 Judith Butepage, Michael J Black, Danica Kragic, and Hedvig Kjellstrom. Deep representation  
 586 learning for human motion prediction and classification. In *Proceedings of the IEEE conference  
 587 on computer vision and pattern recognition*, pp. 6158–6166, 2017.

588

589 Matthew S Cain, Edward Vul, Kait Clark, and Stephen R Mitroff. A bayesian optimal foraging model  
 590 of human visual search. *Psychological science*, 23(9):1047–1054, 2012.

591

592 Silvia Campagnini, Chiara Arienti, Michele Patrini, Piergiuseppe Liuzzi, Andrea Mannini, and  
 593 Maria Chiara Carrozza. Machine learning methods for functional recovery prediction and prognosis  
 594 in post-stroke rehabilitation: a systematic review. *Journal of NeuroEngineering and Rehabilitation*,  
 595 19(1):54, 2022.

596

597 Bin Cao, Sinno Jialin Pan, Yu Zhang, Dit-Yan Yeung, and Qiang Yang. Adaptive transfer learning.  
 598 In *proceedings of the AAAI Conference on Artificial Intelligence*, volume 24, pp. 407–412, 2010.

594 Frances A Carter and Michael E Msall. Long term functioning and participation across the life course  
 595 for preterm nicu graduates. *Clinics in perinatology*, 45(3):501, 2018.  
 596

597 Hao Chen, Jiaze Wang, Kun Shao, Furui Liu, Jianye Hao, Chenyong Guan, Guangyong Chen, and  
 598 Pheng-Ann Heng. Traj-mae: Masked autoencoders for trajectory prediction. In *Proceedings of the*  
 599 *IEEE/CVF International Conference on Computer Vision*, pp. 8351–8362, 2023.

600 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for  
 601 contrastive learning of visual representations. In *International conference on machine learning*, pp.  
 602 1597–1607. PMLR, 2020.  
 603

604 Wei Chen, Yuxuan Liang, Yuanshao Zhu, Yanchuan Chang, Kang Luo, Haomin Wen, Lei Li, Yanwei  
 605 Yu, Qingsong Wen, Chao Chen, et al. Deep learning for trajectory data management and mining:  
 606 A survey and beyond. *arXiv preprint arXiv:2403.14151*, 2024.

607 Jie Cheng, Xiaodong Mei, and Ming Liu. Forecast-mae: Self-supervised pre-training for motion  
 608 forecasting with masked autoencoders. In *Proceedings of the IEEE/CVF International Conference*  
 609 *on Computer Vision*, pp. 8679–8689, 2023.  
 610

611 Yoo Jin Choo and Min Cheol Chang. Use of machine learning in stroke rehabilitation: a narrative  
 612 review. *Brain & Neurorehabilitation*, 15(3):e26, 2022.

613 Mark M Churchland, Afsheen Afshar, and Krishna V Shenoy. A central source of movement  
 614 variability. *Neuron*, 52(6):1085–1096, 2006.  
 615

616 RWI Cooke and L Foulder-Hughes. Growth impairment in the very preterm and cognitive and motor  
 617 performance at 7 years. *Archives of disease in childhood*, 88(6):482–487, 2003.

618 Ashesh K Dhawale, Maurice A Smith, and Bence P Ölveczky. The role of variability in motor  
 619 learning. *Annual review of neuroscience*, 40(1):479–498, 2017.  
 620

621 Kenji Doya. Complementary roles of basal ganglia and cerebellum in learning and motor control.  
 622 *Current opinion in neurobiology*, 10(6):732–739, 2000.

623 Stacey C Dusing and Regina T Harbourne. Variability in postural control during infancy: implications  
 624 for development, assessment, and intervention. *Physical therapy*, 90(12):1838–1849, 2010.  
 625

626 Fabrizio Ferrari, Claudio Gallo, Marisa Pugliese, Isotta Guidotti, Sara Gavioli, Elena Cocolini,  
 627 Paola Zagni, Elisa Della Casa, Cecilia Rossi, Licia Lugli, et al. Preterm birth and developmental  
 628 problems in the preschool age. part i: minor motor problems. *The journal of maternal-fetal &*  
 629 *neonatal medicine*, 25(11):2154–2159, 2012.

630 Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel. Deep spatial  
 631 autoencoders for visuomotor learning. In *2016 IEEE International Conference on Robotics and*  
 632 *Automation (ICRA)*, pp. 512–519. IEEE, 2016.  
 633

634 LA Foulder-Hughes and RWI Cooke. Motor, cognitive, and behavioural disorders in children born  
 635 very preterm. *Developmental medicine and child neurology*, 45(2):97–103, 2003.

636 Juan A Gallego, Matthew G Perich, Stephanie N Naufel, Christian Ethier, Sara A Solla, and Lee E  
 637 Miller. Cortical population activity within a preserved neural manifold underlies multiple motor  
 638 behaviors. *Nature communications*, 9(1):4233, 2018.  
 639

640 Tianyu Guo, Hong Liu, Zhan Chen, Mengyuan Liu, Tao Wang, and Runwei Ding. Contrastive  
 641 learning from extremely augmented skeleton sequences for self-supervised action recognition. In  
 642 *Proceedings of the AAAI conference on artificial intelligence*, volume 36, pp. 762–770, 2022.

643 Mijna Hadders-Algra. Variation and variability: key words in human motor development. *Physical*  
 644 *therapy*, 90(12):1823–1837, 2010.  
 645

646 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for  
 647 unsupervised visual representation learning. In *Proceedings of the IEEE/CVF conference on*  
 648 *computer vision and pattern recognition*, pp. 9729–9738, 2020.

648 Soheil Hor, Shubo Yang, Jaeho Choi, and Amin Arbabian. Mvdoppler: unleashing the power of  
 649 multi-view doppler for micromotion-based gait classification. *Advances in Neural Information  
 650 Processing Systems*, 36:58064–58074, 2023.

651

652 Danlei Hu, Lu Chen, Hanxi Fang, Ziquan Fang, Tianyi Li, and Yunjun Gao. Spatio-temporal  
 653 trajectory similarity measures: A comprehensive survey and quantitative study. *IEEE Transactions  
 654 on Knowledge and Data Engineering*, 36(5):2191–2212, 2023.

655

656 Boris Ivanovic, Karen Leung, Edward Schmerling, and Marco Pavone. Multimodal deep generative  
 657 models for trajectory prediction: A conditional variational autoencoder approach. *IEEE Robotics  
 658 and Automation Letters*, 6(2):295–302, 2020.

659

660 Mahdi M Kalayeh, Stephen Mussmann, Alla Petrakova, Niels da Vitoria Lobo, and Mubarak Shah.  
 661 Understanding trajectory behavior: A motion pattern approach. *arXiv preprint arXiv:1501.00614*,  
 662 2015.

663

664 Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses  
 665 for scene geometry and semantics. In *Proceedings of the IEEE conference on computer vision and  
 666 pattern recognition*, pp. 7482–7491, 2018.

667

668 TOMOKO Kitago and John W Krakauer. Motor learning principles for neurorehabilitation. *Handbook  
 669 of clinical neurology*, 110:93–103, 2013.

670

671 Satoshi Kojima, Mimi H Kao, Allison J Doupe, and Michael S Brainard. The avian basal ganglia are a  
 672 source of rapid behavioral variation that enables vocal motor exploration. *Journal of Neuroscience*,  
 673 38(45):9635–9647, 2018.

674

675 Sampo Kuutti, Richard Bowden, Yaochu Jin, Phil Barber, and Saber Fallah. A survey of deep learning  
 676 applications to autonomous vehicle control. *IEEE Transactions on Intelligent Transportation  
 677 Systems*, 22(2):712–733, 2020.

678

679 Zhiqian Lan, Yuxuan Jiang, Yao Mu, Chen Chen, and Shengbo Eben Li. Sept: Towards efficient  
 680 scene representation learning for motion prediction. *arXiv preprint arXiv:2309.15289*, 2023.

681

682 Mindy F Levin, Heidi Sveistrup, and S Subramanian. Feedback and virtual environments for motor  
 683 learning and rehabilitation. *Schedae*, 1:19–36, 2010.

684

685 Yan Liu, Danielle Balériaux, Martin Kavec, Thierry Metens, Julie Absil, Vincent Denolin, Anne  
 686 Pardou, Freddy Avni, Patrick Van Bogaert, and Alec Aeby. Structural asymmetries in motor and  
 687 language networks in a population of healthy preterm neonates at term equivalent age: a diffusion  
 688 tensor imaging and probabilistic tractography study. *Neuroimage*, 51(2):783–788, 2010.

689

690 Jed A Long and Trisalyn A Nelson. A review of quantitative methods for movement data. *International  
 691 Journal of Geographical Information Science*, 27(2):292–318, 2013.

692

693 Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with  
 694 deep adaptation networks. In *International conference on machine learning*, pp. 97–105. PMLR,  
 695 2015.

696

697 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint  
 698 arXiv:1711.05101*, 2017.

699

700 Yael Mandelblat-Cerf, Rony Paz, and Eilon Vaadia. Trial-to-trial variability of single cells in motor  
 701 cortices is dynamically modified during visuomotor adaptation. *Journal of Neuroscience*, 29(48):  
 15053–15062, 2009.

702

703 Ana I Maqueda, Antonio Loquercio, Guillermo Gallego, Narciso García, and Davide Scaramuzza.  
 704 Event-based vision meets deep learning on steering prediction for self-driving cars. In *Proceedings  
 705 of the IEEE conference on computer vision and pattern recognition*, pp. 5419–5427, 2018.

706

707 Matteo Menolotto, Dimitrios-Sokratis Komaris, Salvatore Tedesco, Brendan O’Flynn, and Michael  
 708 Walsh. Motion capture technology in industrial applications: A systematic review. *Sensors*, 20  
 709 (19):5687, 2020.

702 Md Raihan Mia, Sheikh Iqbal Ahamed, Alissa Fial, and Samuel Nemanich. A scoping review on  
 703 mobile health technology for assessment and intervention of upper limb motor function in children  
 704 with motor impairments. *Games for Health Journal*, 13(3):135–148, 2024.

705

706 M Berk Mirza, Rick A Adams, Christoph Mathys, and Karl J Friston. Human visual exploration  
 707 reduces uncertainty about the sensed world. *PloS one*, 13(1):e0190429, 2018.

708

709 Sergio L Molina, Tim S Bott, and David F Stodden. Applications of the speed–accuracy trade-off and  
 710 impulse-variability theory for teaching ballistic motor skills. *Journal of Motor Behavior*, 2019.

711

712 Dave G Mumby, Stephane Gaskin, Melissa J Glenn, Tania E Schramek, and Hugo Lehmann. Hippo-  
 713 campal damage and exploratory preferences in rats: memory for objects, places, and contexts.  
 714 *Learning & memory*, 9(2):49–57, 2002.

715

716 Margit Alt Murphy, Carin Willén, and Katharina S Sunnerhagen. Kinematic variables quantifying  
 717 upper-extremity performance after stroke during reaching and drinking from a glass. *Neurorehabilitation  
 718 and neural repair*, 25(1):71–80, 2011.

719

720 Karl M Newell. Change in movement and skill: Learning, retention, and transfer. In *Dexterity and its  
 721 development*, pp. 393–429. Psychology Press, 2014.

722

723 Bence P Ölveczky, Aaron S Andalman, and Michale S Fee. Vocal experimentation in the juvenile  
 724 songbird requires a basal ganglia circuit. *PLoS biology*, 3(5):e153, 2005.

725

726 Cynthia Ortinau and Jeffrey Neil. The neuroanatomy of prematurity: normal brain development and  
 727 the impact of preterm birth. *Clinical Anatomy*, 28(2):168–183, 2015.

728

729 Sarah Palmis, Jeremy Danna, Jean-Luc Velay, and Marieke Longcamp. Motor control of handwriting  
 730 in the developing brain: A review. *Developmental Dysgraphia*, pp. 123–140, 2019.

731

732 Ravi Mangal Patel. Short-and long-term outcomes for extremely preterm infants. *American journal  
 733 of perinatology*, 33(03):318–328, 2016.

734

735 Réjean Plamondon and Adel M Alimi. Speed/accuracy trade-offs in target-directed movements.  
 736 *Behavioral and brain sciences*, 20(2):279–303, 1997.

737

738 Chandra Prakash, Rajesh Kumar, and Namita Mittal. Recent developments in human gait research: pa-  
 739 rameters, approaches, applications, machine learning techniques, datasets and challenges. *Artificial  
 740 Intelligence Review*, 49:1–40, 2018.

741

742 Sara Rapuc, Blaž Stres, Ivan Verdenik, Miha Lučovnik, and Damjan Osredkar. Uncovering early  
 743 predictors of cerebral palsy through the application of machine learning: a case–control study.  
 744 *BMJ Paediatrics Open*, 8(1):e002800, 2024.

745

746 David J Reinkensmeyer, Etienne Burdet, Maura Casadio, John W Krakauer, Gert Kwakkel, Catherine  
 747 E Lang, Stephan P Swinnen, Nick S Ward, and Nicolas Schweighofer. Computational neurore-  
 748 habilitation: modeling plasticity and learning to predict recovery. *Journal of neuroengineering and  
 749 rehabilitation*, 13:1–25, 2016.

750

751 Chiara Renso, Miriam Baglioni, Jose Antonio F de Macedo, Roberto Trasarti, and Monica Wachowicz.  
 752 How you move reveals who you are: understanding human behavior by analyzing trajectory data.  
 753 *Knowledge and information systems*, 37:331–362, 2013.

754

755 Andrey Rudenko, Luigi Palmieri, Michael Herman, Kris M Kitani, Dariu M Gavrila, and Kai O Arras.  
 756 Human motion trajectory prediction: A survey. *The International Journal of Robotics Research*,  
 757 39(8):895–935, 2020.

758

759 Fernando J Santos, Rodrigo F Oliveira, Xin Jin, and Rui M Costa. Corticostriatal dynamics encode  
 760 the refinement of specific behavioral variability during skill learning. *Elife*, 4:e09423, 2015.

761

762 Meenakshi Sarkar and Debasish Ghose. Sequential learning of movement prediction in dynamic  
 763 environments using lstm autoencoder. *arXiv preprint arXiv:1810.05394*, 2018.

756 Matteo Saveriano, Fares J Abu-Dakka, Aljaž Kramberger, and Luka Peternel. Dynamic movement  
 757 primitives in robotics: A tutorial survey. *The International Journal of Robotics Research*, 42(13):  
 758 1133–1184, 2023.

759 Cyril Schneider, Line Nadeau, Chantal Bard, Julie Lambert, Annette Majnemer, Francine Malouin,  
 760 Philippe Robaey, Pascale St-Amand, and Rejean Tessier. Visuo-motor coordination in 8-year-old  
 761 children born pre-term before and after 28 weeks of gestation. *Developmental neurorehabilitation*,  
 762 11(3):215–224, 2008.

763 Wilko Schwarting, Javier Alonso-Mora, and Daniela Rus. Planning and decision-making for au-  
 764 tonomous vehicles. *Annual Review of Control, Robotics, and Autonomous Systems*, 1(1):187–210,  
 765 2018.

766 Stephen H Scott and John F Kalaska. Reaching movements with similar hand paths but different  
 767 arm orientations. i. activity of individual cells in motor cortex. *Journal of neurophysiology*, 77(2):  
 768 826–852, 1997.

769 Stephen H Scott, Paul L Gribble, Kirsten M Graham, and D William Cabel. Dissociation between  
 770 hand motion and population vectors from neural activity in motor cortex. *Nature*, 413(6852):  
 771 161–165, 2001.

772 Ketul Shah, Anshul Shah, Chun Pong Lau, Celso M de Melo, and Rama Chellappa. Multi-view  
 773 action recognition using contrastive learning. In *Proceedings of the ieee/cvpr winter conference on*  
 774 *applications of computer vision*, pp. 3381–3391, 2023.

775 Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.  
 776 *arXiv preprint arXiv:1803.02155*, 2018.

777 Xiaodan Shi, Haoran Zhang, Wei Yuan, and Ryosuke Shibasaki. Metatraj: meta-learning for cross-  
 778 scene cross-object trajectory prediction. *IEEE Transactions on Intelligent Transportation Systems*,  
 779 24(12):14000–14009, 2023.

780 Joshua S Shimony, Christopher D Smyser, Graham Wideman, Dimitrios Alexopoulos, Jason Hill,  
 781 John Harwell, Donna Dierker, David C Van Essen, Terrie E Inder, and Jeffrey J Neil. Comparison  
 782 of cortical folding measures for evaluation of developing human brain. *Neuroimage*, 125:780–790,  
 783 2016.

784 Lior Shmuelof, John W Krakauer, and Pietro Mazzoni. How is a motor skill learned? change and  
 785 invariance at the levels of task success and trajectory control. *Journal of neurophysiology*, 108(2):  
 786 578–594, 2012.

787 Bouwien Smits-Engelsman, Emmanuel Bonney, and Gillian Ferguson. Motor skill learning in  
 788 children with and without developmental coordination disorder. *Human Movement Science*, 74:  
 789 102687, 2020.

790 N Smyrnis, I Evdokimidis, TS Constantinidis, and G Kastrinakis. Speed-accuracy trade-off in the  
 791 performance of pointing movements in different directions in two-dimensional space. *Experimental*  
 792 *Brain Research*, 134:21–31, 2000.

793 Sijie Song, Cuiling Lan, Junliang Xing, Wenjun Zeng, and Jiaying Liu. An end-to-end spatio-temporal  
 794 attention model for human action recognition from skeleton data. In *Proceedings of the AAAI*  
 795 *conference on artificial intelligence*, volume 31, 2017.

796 Laure Spieser, Mathieu Servant, Thierry Hasbroucq, and Borís Burle. Beyond decision! motor  
 797 contribution to speed–accuracy trade-off in decision-making. *Psychonomic Bulletin & Review*, 24  
 798 (3):950–956, 2017.

799 Alicia J Spittle, Jennifer L McGinley, Deanne Thompson, Ross Clark, Tara L FitzGerald, Benjamin F  
 800 Mentiplay, Katherine J Lee, Joy E Olsen, Alice Burnett, Karli Treyvaud, et al. Motor trajectories  
 801 from birth to 5 years of children born at less than 30 weeks’ gestation: early predictors and  
 802 functional implications. protocol for a prospective cohort study. *Journal of physiotherapy*, 62(4):  
 803 222–223, 2016.

810 Karel Svoboda and Nuo Li. Neural mechanisms of movement planning: motor cortex and beyond.  
 811 *Current opinion in neurobiology*, 49:33–41, 2018.  
 812

813 Kurt A Thoroughman and Reza Shadmehr. Learning of action through adaptive combination of motor  
 814 primitives. *Nature*, 407(6805):742–747, 2000.

815 Maria José Uparela-Reyes, Lina María Villegas-Trujillo, Jorge Cespedes, Miguel Velásquez-Vera, and  
 816 Andrés M Rubiano. Usefulness of artificial intelligence in traumatic brain injury: A bibliometric  
 817 analysis and minireview. *World Neurosurgery*, 2024.

818

819 Karoliina Uusitalo, Leena Haataja, Anna Nyman, Liisi Ripatti, Mira Huhtala, Päivi Rautava, Liisa  
 820 Lehtonen, Riitta Parkkola, Katri Lahti, Mari Koivisto, et al. Preterm children’s developmental  
 821 coordination disorder, cognition and quality of life: a prospective cohort study. *BMJ Paediatrics  
 822 Open*, 4(1):e000633, 2020.

823 Carolien J van Andel, Nienke Wolterbeek, Caroline AM Doorenbosch, DirkJan HEJ Veeger, and  
 824 Jaap Harlaar. Complete 3d kinematics of upper extremity functional tasks. *Gait & posture*, 27(1):  
 825 120–127, 2008.

826 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz  
 827 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing  
 828 systems*, 30, 2017.

829

830 Paolo Viviani and Carlo Terzuolo. Trajectory determines movement dynamics. *Neuroscience*, 7(2):  
 831 431–437, 1982.

832 Mai-Anh T Vu, Tülay Adalı, Demba Ba, György Buzsáki, David Carlson, Katherine Heller, Conor  
 833 Liston, Cynthia Rudin, Vikaas S Sohal, Alik S Widge, et al. A shared vision for machine learning  
 834 in neuroscience. *Journal of Neuroscience*, 38(7):1601–1607, 2018.

835

836 Chao Wang, Fangzheng Lyu, Sensen Wu, Yuanyuan Wang, Liuchang Xu, Feng Zhang, Shaowen  
 837 Wang, Yongheng Wang, and Zhenhong Du. A deep trajectory clustering method based on sequence-  
 838 to-sequence autoencoder model. *Transactions in GIS*, 26(4):1801–1820, 2022.

839

840 Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-  
 841 ment and uniformity on the hypersphere. In *International conference on machine learning*, pp.  
 9929–9939. PMLR, 2020.

842

843 Dirk U Wulff, Jonas MB Haslbeck, Pascal J Kieslich, Felix Henninger, and Michael Schulte-  
 844 Mecklenbeck. Mouse-tracking: Detecting types in movement trajectories. In *A handbook of  
 845 process tracing methods*, pp. 131–145. Routledge, 2019.

846

847 Lindsay E Wyatt, Patrick A Hewan, Jeremy Hogeweene, R Nathan Spreng, and Gary R Turner.  
 848 Exploration versus exploitation decisions in the human brain: A systematic review of functional  
 849 neuroimaging and neuropsychological studies. *Neuropsychologia*, 192:108740, 2024.

850

851 Lei Zhang and Xinbo Gao. Transfer adaptation learning: A decade survey. *IEEE Transactions on  
 852 Neural Networks and Learning Systems*, 35(1):23–44, 2022.

853

854 Huiyu Zhou and Huosheng Hu. Human motion tracking for rehabilitation—a survey. *Biomedical  
 855 signal processing and control*, 3(1):1–18, 2008.

856

857 Jiahui Zhu, Xinzheng Niu, Fan Li, Yixuan Wang, Philippe Fournier-Viger, and Kun She. Sttraj2vec:  
 858 A spatio-temporal trajectory representation learning approach. *Knowledge-Based Systems*, 300:  
 859 112207, 2024.

860

861

862

863

864  
865  
866  
867  
868  
869  

## A APPENDIX

870  
871  
872  
873  
874  
875  
876  
877  
878  

### A.1 DATASETS

879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902  

#### A.1.1 $D_1$ : HUMAN MOVEMENT DATA.

$D_1$  contains 16320 trajectories of term (73.5%) and preterm (26.5%) born children. Data was collected using an iPad-based visuomotor game, designed for unimanual and bimanual motor learning using controlled psychophysical tasks. We conducted a cross-sectional multi-visitation observation study to assess motor skills learning and performance in term and preterm children aged 5-8 years. This study aimed to measure a child’s development and overall abilities to learn new motor tasks and establish causal links between motor learning and performance. We explored the relationship between motor planning and execution networks for completing functional tasks and identified primary contributors to overall motor development. The university’s Institutional Review Board (IRB) approved study protocol.

**Study Protocol:** We examined unimanual and bimanual motor learning using controlled psychophysical tasks. We created a straightforward yet challenging visuomotor task that tested how participants learned a new mapping between joystick and cursor movement. The experimental tasks (Figure 5) involve moving a cursor on an iPad 12.9-inch screen (cartoon bee) to a visual target (flower) using a joystick. The mapping of joystick direction to cursor movement systematically varied.

For the unimanual task, a single two-dimensional joystick was used with the direction map inverted (e.g., moving the joystick upward moves the cursor downward, and moving the joystick rightward moves the cursor leftward). For the bimanual task, two one-dimensional (vertical movement only) joysticks were controlled with each hand, with the left joystick controlling the cursor vertically and the right joystick controlling the cursor horizontally. The unimanual learning task was a mirror reversal task. Furthermore, the bimanual task involved the non-intuitive 90° rotation of the directionality of one joystick, which was even more challenging. These adaptations, while easy for adults to learn, were challenging for young children. Thus, we propose that the tasks were appropriately complex for the age (5-8 years old) of the participants performing them.

**Task Parameters:** For each trial, the cursor starts in the center of the screen. Six targets within each of the four quadrants of the 2D screen were selected randomly; thus, the participant moved to 24 targets during each practice block. The variability in the initial location of the target should enhance motor learning based on the effects of a variable practice schedule.

The participant has 10 seconds to complete the trial and reach the target. A new trial begins if the cursor does not reach the target in under 10 seconds. Visual feedback on trial success (smiley face) or failure (“Try again” message) was provided. To prevent participants from moving in a unidirectional manner during the bimanual task (i.e., moving only the left joystick to move vertically, then the

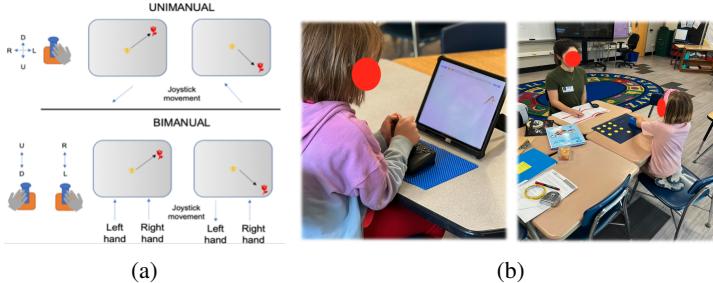


Figure 5: Study protocols and data collection (a) Experimental design of the tasks in an iPad game (unimanual and bimanual tasks, and (b) A session of participants’ data collection using the mHealth system in an elementary school networks

903  
904  
905  
906  
907  
908  
909  
910  
911  
912  
913  
914  
915  
916  
917  
Table 5: Participant characteristics

| Characteristics                           | Term                                   | Preterm                 |
|-------------------------------------------|----------------------------------------|-------------------------|
| # of Participant (N)                      | 50                                     | 18                      |
| Age Group (N, %)                          | 19 (38.0%)<br>5-6<br>31 (62.0%)<br>7-8 | 7 (38.8%)<br>11 (61.1%) |
| Gestational Age (weeks),<br>mean $\pm$ SD | 39 $\pm$ 2                             | 31 $\pm$ 3              |
| MABC-2 percentile,<br>mean $\pm$ 95%CI    | 39.91 $\pm$ 0.75                       | 23.61 $\pm$ 0.87        |

918 right joystick to move horizontally), cursor movement was programmed to advance only when both  
 919 joysticks are moved. In each trial, we recorded source and target destinations, (x,y) coordinates as  
 920 continuous movement paths with time dimension at 120 Hz sampling rate.

921 **Participants & Data Collection:** We collected data from 72 participants, 68 of whom completed all  
 922 blocks of tasks successfully on Day-1, Day-2, and Day-7. Table 5 shows a summary of the participants'  
 923 characteristics. Along with the game data, we tested participants' standard battery assessment (MABC-  
 924 2: Movement Assessment Battery for Children). Among term and preterm children, we found a  
 925 significant difference in MABC-2 percentiles ( $23.61 \pm 0.87$  vs.  $39.91 \pm 0.75$ ,  $p < 0.001$ ), demonstrating  
 926 substantial clinical and neurodevelopmental validation. Each of the participants practiced 6 blocks  
 927 of 24 trials each, completed on Day 1, with 1-2 minutes of rest between each block. To examine  
 928 retention, a single block of 24 trials was repeated on Days 2 and 7 (retention blocks). A total of 680  
 929 blocks/sessions of data was collected with 680x24 trials. This dataset contains 16320 trajectories of  
 930 term (73.5%) and preterm (26.5%) children, where each task contains 50% the trajectories.

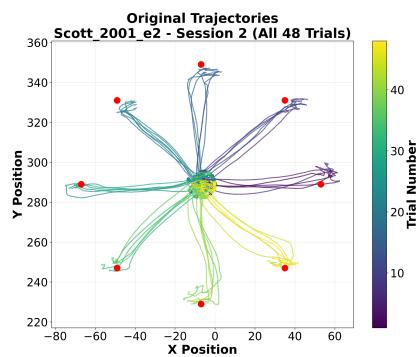
### 931 A.1.2 $D_2$ : NON-HUMAN REACHING MOVEMENT

932  $D_2$  contains non-human primates' arm reaching trajectories Scott et al. (2001); Scott & Kalaska (1997), a ground-  
 933 breaking study investigated the neural basis of motor control and hand movement kinematics. Three rhesus monkeys  
 934 were highly trained to perform horizontal planar reaching movements wearing mechanical exoskeletons.  
 935 The task was centered on reaching a target arranged in a circle with five experimental conditions (e) and collected  
 936 spatiotemporal positions, velocity, and joint angles with neural recordings. Each hand trajectory contains (x, y, t)  
 937 coordinates, matching the expected input format for SMT-Learner. An example of experiment reaching trajectories  
 938 to uniformly distributed targets at 0, 45, 90, 135, 180, 225, 270, and 315 degrees are illustrated in Figure 6. This  
 939 dataset includes 16 unique reaching directions with standardized durations ( $\sim 576$ ms). We used a total of 23639  
 940 trajectories from a total of 587 sessions, where 75% of the  
 941 sessions contained 48 trials in four experimental tasks.  
 942

## 943 A.2 EXPERIMENTAL SETUP

944 Experiments were conducted using NVIDIA GH200 Superchips (H100 configured with 80 GB SXM5,  
 945 26 vCPUS, 225 GiB RAM and 2.8 TiB SSD). We followed a two-phase training and evaluation  
 946 approach with two datasets  $D_1$  and  $D_2$ . In our first phase, SMT-Learner was pre-trained using  $D_1$   
 947 with a 90:10 split ratio for the train and validation partitions, and 32 SMT as the input batch size.  
 948 The total joint loss combines reconstruction and multi-contrastive objectives as  $\mathcal{L}_{total} = \mathcal{L}_r + \mathcal{L}_m$ .  
 949 The model was trained for each component of contrastive loss separately, as well as multi-contrastive  
 950 loss by combining a weighted function of loss components. With 50 epochs, early stopping was  
 951 imposed based on validation loss, and the AdamW optimizer was used with a learning rate of 0.0001  
 952 Loshchilov & Hutter (2017). **We evaluated four experimental conditions in pretraining/finetuning**  
 953 **paradigms to separate the cross-task and cross-subject transfer effects on adaptive transfer, as follows.**

- 954 1. Exp1: Pretrain on  $D_1$  → test on  $D_1$  → zero-shot on  $D_2$  (held-out)
- 955 2. Exp2: Cross-Task transfer: Pretrain on  $D_1$  Unimanual → Test on  $D_1$  Bimanual → Zero-shot  
 956 on  $D_2$  (Experimental task 1: Scott\_2001\_e1)
- 957 3. Exp3: Cross-Subject transfer: Pretrain on  $D_1$  (Cohort==Term) → test on  $D_1$  (Cohort ==  
 958 Preterm) → Zero-shot on  $D_2$
- 959 4. Exp4: Adaptive transfer: Combine Exp2 and Exp3 → test on  $D_1$  → zero-shot on  $D_2$



960 Figure 6: Examples of monkey's hand  
 961 movement trajectories of e2 experiment

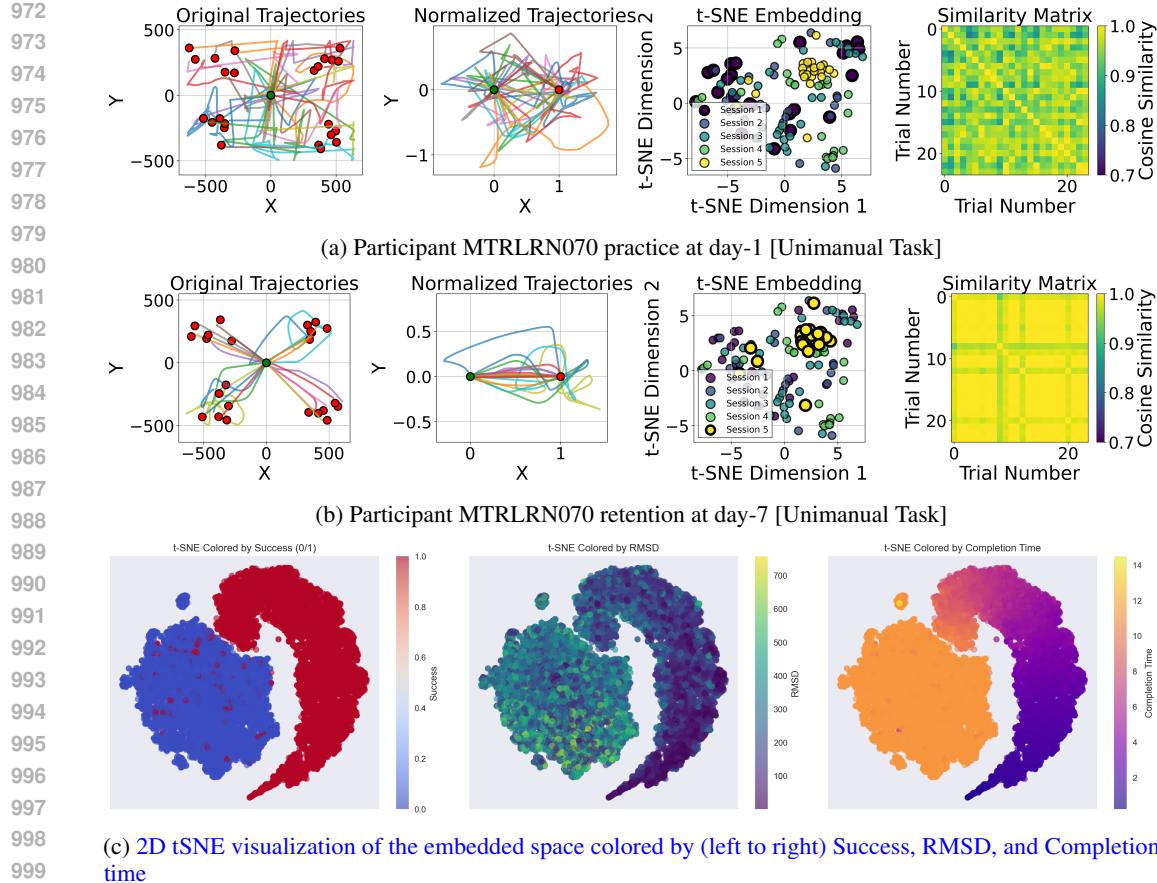


Figure 7: Trajectory representations in embedding space. (a–b) Embedded layout and trial-by-trial trajectory similarity for a Unimanual participant. (c) t-SNE shows tighter clusters for higher-skill learners (moon shape); unsuccessful trials form a compact ‘ball’ cluster and are associated with longer durations and greater path deviation.

### A.3 SENSITIVITY AND CLUSTERING ANALYSIS

Figures 7a and 7b compare a participant’s embedded trial-by-trial trajectory similarity on the first practice day versus Day-7 retention. At Day 7, embeddings exhibit closer, more stable neighborhoods and reduced dispersion, indicating learning adaptivity and a shift toward exploitative control. The 2D t-SNE projection (Fig. 7c) separates the  $D_1$  latent space by motor performance, where higher motor performance trials form close clusters near the task manifold, whereas lower-performing trials cluster in diffuse regions associated with longer competition time and larger path deviations (RMSD).

We conducted a sensitivity analysis on  $D_1$  over window  $W \in \{5, 10, 25, 50, 75, 100, 150, 225, 300, 450\}$ , decay  $\alpha \in \{0.05, 0.1, 0.2, 0.3, 0.5\}$ , and  $(\beta_1, \beta_2) \in \{0.1, 0.3, 0.5, 0.7, 0.9\}^2$  to identify stable parameters for the E–E metric calculation. Three convergent patterns founded in the chosen configuration:

- S-/R-/T-Corr curves rise sharply and plateaued near  $W \approx 120$  aligning with a participant’s full trial count (Figure 8);
- Normalized E–E varies  $< 6\%$  (CV) across  $\alpha \in [0.05, 0.3]$ ,  $\beta_1 \in [0.05, 0.2]$ ,  $\beta_2 \in [0.3, 0.9]$ . The setting  $\alpha = 0.05$ ,  $\beta_1 = 0.10$ ,  $\beta_2 = 0.90$  balances strong early exploration ( $\beta_2 \gg \beta_1$ ) with a smooth decay to a modest baseline ( $\beta_1$ );
- The MIN distance (minimum Euclidean distance in embedding to any prior trial within the decayed window) consistently outperformed KNN averaging on ranking quality, indicating sharper novelty discrimination (Table 6a).

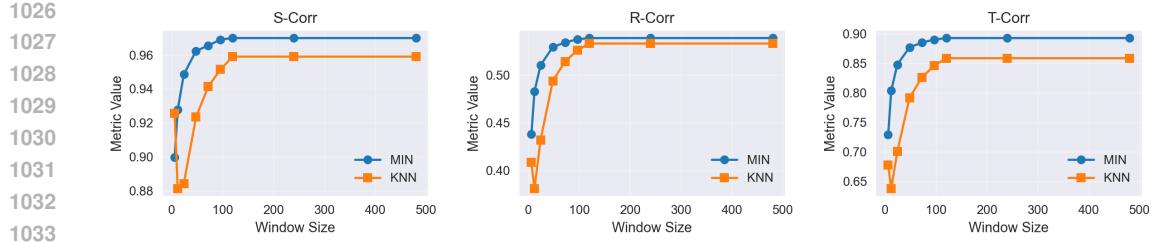


Figure 8: Sensitivity curves comparing MIN vs. KNN. Curves plateau near  $W \approx 120$ ; MIN consistently dominates KNN across decay settings.

Table 6: Novelty metric comparison and clustering diagnostics on SMT-Learner embeddings.

| (a) Novelty metric comparison |               |               |               | (b) Clustering diagnostics |              |            |          |
|-------------------------------|---------------|---------------|---------------|----------------------------|--------------|------------|----------|
| Metric variant                | ROC AUC       | PR AUC        | F1            | Algo                       | $k/\epsilon$ | Silhouette | Purity   |
| min_dist (MIN)                | <b>0.5521</b> | <b>0.5403</b> | <b>0.6994</b> | KMeans                     | 3            | 0.478900   | 0.962428 |
| knn_avg (KNN)                 | 0.4962        | 0.5026        | 0.6927        | KMeans                     | 5            | 0.405406   | 0.982313 |

PR: Precision–Recall; AUC: Area Under the Curve.  
min\_dist: minimum distance to any prior trial within window  $W$   
knn\_avg: mean distance to the  $K$  nearest prior trials

Clustering diagnostics on SMT-Learner embeddings confirmed separability with density-based methods, results in Table 6b. DBSCAN at  $\epsilon = 1.0$  achieves the highest silhouette score with near-perfect purity, reinforcing that the latent geometry supports separable task–performance manifolds. These diagnostics substantiate the parameterization used for downstream E–E estimation.

#### A.4 CASE STUDY: OPTIMAL STRATEGY DETECTION

Our framework is capable to detect motor tasks with potentially multiple optimal strategies. We reasoned that the optimal solution to our experimental task was to move to the target in the most efficient path, thereby reducing uncertainty and physiological effort. Optimal solutions could also vary dependent on other environmental conditions (presence of reward, verbal instructions). To provide further clarification, we conducted a case study analysis showing two distinct optimal strategies: (1) Curvature optimization to near-straight paths (mostly used for unimanual), and (2) Stepwise optimal movement with directional changes (mostly used for bimanual). The Table 7 shows the case study results with participants MTRLRN070 and MTRLRN015 (Figure 9 illustrates original trajectories). The E–E framework successfully captured both strategies with a significant E–E ratio reduction (curvature:  $0.56 \rightarrow 0.04$ , and stepwise:  $0.57 \rightarrow 0.07$ ). Curvature optimization resulted in highly consistent smooth movements (lower final E–E), while stepwise control maintained inherent variability in segmented movements (higher final E–E). This case study demonstrates that SMT-Learner can

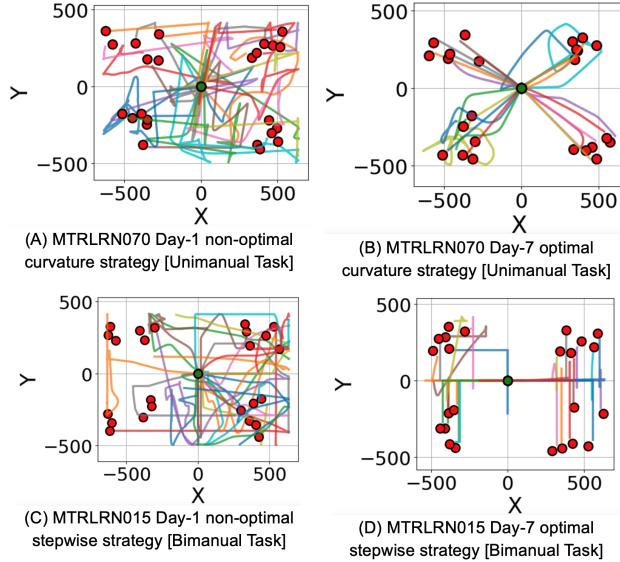


Figure 9: Case study: example of curvature and stepwise optimal movement strategies in motor skill learning

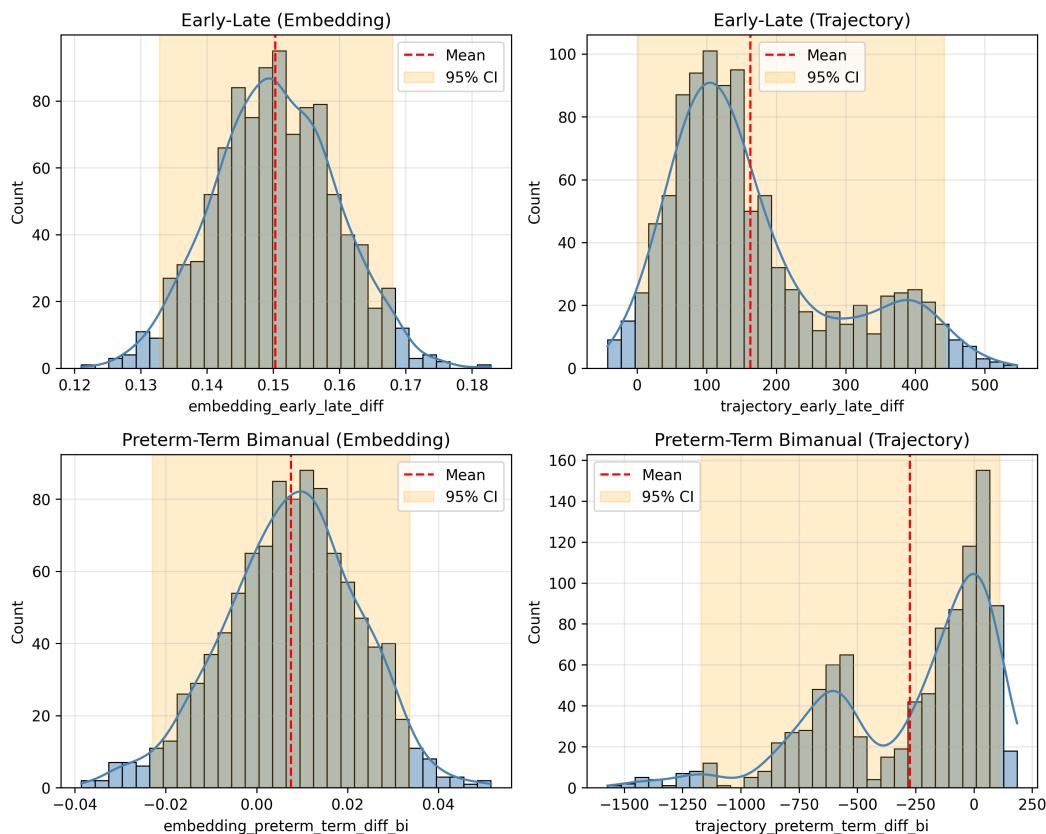
1080 handle multiple optimal strategies in the movement space, enabling quantitative differentiation of  
 1081 strategic signatures.  
 1082

1083 Table 7: Case study results showing difference between two distinct optimal strategies (participant  
 1084 MTRLRN070: Curvature and MTRLRN015: Stepwise)  
 1085

| Strategy  | E-E Ratio |               | Success Rate |             | Completion Time (s) |             | RMSD   |              |
|-----------|-----------|---------------|--------------|-------------|---------------------|-------------|--------|--------------|
|           | Day-1     | Day-7         | Day-1        | Day-7       | Day-1               | Day-7       | Day-1  | Day-7        |
| Curvature | 0.5579    | <b>0.0433</b> | 91.67%       | <b>100%</b> | 7.34                | <b>2.36</b> | 152.74 | <b>35.84</b> |
| Stepwise  | 0.5718    | 0.0681        | 20.83%       | <b>100%</b> | 10.19               | 5.10        | 270.91 | 152.85       |

1090  
 1091 **A.5 CAPTURING MOTOR CONTROL BEYOND GEOMETRY: SMT-LEARNER EMBEDDINGS**  
 1092

1093 We computed E-E ratios on normalized trajectories and in the learned embedding using  $N = 1000$   
 1094 random samples from  $D_1$  Term and Preterm cohorts. As shown in Figure 10, embedding-space  
 1095 E-E yields stable, interpretable effects with tight confidence intervals (CIs), whereas trajectory-  
 1096 space E-E exhibits large-magnitude, high-variance estimates driven by residual geometric/scale  
 1097 variability despite normalization. For early→late learning, the embedding difference is 0.1503 with  
 1098 a narrow 95% CI [0.1329, 0.1680], while the trajectory estimate is 162.71 with a very wide CI  
 1099 [1.79, 441.73]. For Preterm-Term (bimanual), the embedding difference is 0.0075 with CI [-0.0229,  
 1100 0.0337], whereas the trajectory-based mean difference is -274.75 with a wide CI [-1169.24, 112.60].  
 1101 These results indicate that SMT-Learner’s embeddings capture higher-order control structure beyond  
 1102 geometric variability and provide a scale-stable E-E metric.  
 1103  
 1104



1105  
 1106 Figure 10: Randomized sampling distributions of E-E differences in embedding space vs. normalized  
 1107 trajectory space ( $N = 1000$ ). Embedding E-E shows tight, stable CIs; trajectory E-E exhibits high  
 1108 variance due to residual geometric/scale effects.  
 1109  
 1110  
 1111  
 1112  
 1113  
 1114  
 1115  
 1116  
 1117  
 1118  
 1119  
 1120  
 1121  
 1122  
 1123  
 1124  
 1125  
 1126  
 1127  
 1128  
 1129  
 1130  
 1131  
 1132  
 1133