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ABSTRACT

Spatiotemporal movement trajectory (SMT) representation is essential to under-
standing the motor skill learning and adaptation strategies that inform neurore-
habilitation practices. Movement performance metrics (i.e., speed, accuracy) are
insufficient to characterize motor control strategies and learning patterns, partic-
ularly in individuals with disordered movement. Motor skill learning patterns
require an interpretable sequential SMT representation that preserves spatial, tem-
poral, and performance variables. We present a novel SMT-Learner with trans-
former autoencoders that optimize performance-aware contrastive and adaptive
transfer losses, combining cross-task and cross-subject transfer paradigms. SMT-
Learner encodes trajectories into a high-dimensional latent space and enables motor
performance-aware learning. We introduce an Exploration-Exploitation (E-E) an-
alytical framework that quantifies motor skill learning and control strategies to
balance different movement patterns and micro-adaptation. We tested and vali-
dated the SMT-Learner with two visuomotor reaching datasets: (1) a prospectively
obtained cohort of term and preterm children’s motor learning and performance
of unimanual and bimanual tasks, and (2) extensively overtrained non-human pri-
mates performing target-directed reaching movements. Our ablation and baseline
comparison across geometric, statistical, and clustering metrics demonstrated that
SMT-Learner outperformed with the lowest reconstruction error (0.086) and op-
timized clinical correlation with motor performance variables. Investigated E-E
patterns significantly correlated with the early and late stages of motor learning and
speed-accuracy trade-offs principles. The SMT-Learner framework provides an
efficient computational approach to quantify motor learning strategies; potential ad-
vanced downstream applications in developmental assessment, neurorehabilitation
monitoring, and movement optimization in robotics or brain-computer interfacing.

1 INTRODUCTION

Recent research in developing analytic tools for motion and kinematic data has applied ML/AI
methods to understand motor recovery patterns and prognosis in individuals undergoing neurorehabil-
itation (i.e., children with cerebral palsy Rapuc et al. (2024), traumatic brain injury Uparela-Reyes
et al. (2024); Balaji et al. (2023), post stroke survivors Campagnini et al. (2022)) Choo & Chang
(2022); Butepage et al. (2017); Song et al. (2017); Reinkensmeyer et al. (2016). Spatiotemporal
movement analysis has created new opportunities to study human motor behavior Wulff et al. (2019);
Renso et al. (2013), specifically in movement patterns Viviani & Terzuolo (1982); Kalayeh et al.
(2015); Wulff et al. (2019); Long & Nelson (2013), motor rehabilitation Kitago & Krakauer (2013);
Levin et al. (2010); van Andel et al. (2008); Murphy et al. (2011), and its underlying neural correlates
Svoboda & Li (2018); Gallego et al. (2018). For example, ML-based kinematic analysis using
spatial van Andel et al. (2008) or temporal Murphy et al. (2011) parameters of upper extremity
tasks can predict movement smoothness and track movement quality. How different motor control
strategies are related to upper extremity performance over long-term practice of a motor rehabilitation
task is still challenging to decode. Understanding the motor behavior and learning processes from
high-repetition and high-density spatiotemporal movement data necessitates new representation learn-
ing to decode the patterns. Research in motor learning and development involving spatiotemporal
movement trajectories (SMT) utilizes diverse data capture and measurement technologies, includ-
ing marker and markerless 3D motion capture systems Menolotto et al. (2020), wearable inertial
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measurement units (IMUs) Zhou & Hu (2008), that provide high spatial-temporal resolution for
precise movement tracking. Digital tablets (e.g., iPads) have recently emerged as powerful tools to
capture spatiotemporal aspects of movement, particularly in handwriting, individual finger movement,
bimanual coordination, and fine motor skills Palmis et al. (2019); Mia et al. (2024). Importantly, these
devices can capture high-resolution temporal and spatial data, including position coordinates, time,
velocity, and acceleration during movement execution, needed for motor learning analyses. There are
several ML/DL models extensively applied to spatiotemporal trajectory and motion analysis, such as
motor recovery prediction Campagnini et al. (2022); Vu et al. (2018) or gait recovery Prakash et al.
(2018); Hor et al. (2023), robotics Finn et al. (2016); Saveriano et al. (2023), pedestrian movement
analysis Alahi et al. (2016); Rudenko et al. (2020), and autonomous vehicles Schwarting et al. (2018);
Maqueda et al. (2018); Kuutti et al. (2020). However, SMT analysis in motor learning studies requires
different approaches to decode motor control strategies, micro-adaptation, and learning progress,
which potentially impact clinical intervention.

In our recent investigation on motor skill learning and performance using an iPad-based gami-
fied visuomotor task among term and preterm school-aged children (N=72, Ages 5-8 years), a
new computational problem was identified while interpreting control strategies, due to the na-
ture of non-linear movement dynamics. Compared to term-born children, preterm children have
a significantly higher risk of motor delays, which affects their ability to learn and perform mo-
tor skills compared to term-born peers Foulder-Hughes & Cooke (2003); Uusitalo et al. (2020);
Patel (2016); Allotey et al. (2018); Carter & Msall (2018); Spittle et al. (2016). In addition to
lower motor performance, preterm children’s ability to learn new motor skills may be impacted
due to maladaptive developmental patterns Ortinau & Neil (2015) and differences in brain struc-
tures important for sensorimotor function Liu et al. (2010); Adams et al. (2010); Shimony et al.
(2016). However, the underlying motor learning strategies used by preterm and term children
are difficult to interpret from conventional motor performance parameters. Indeed, there is a dis-
tinction in movement variation and adaptation between these two groups. Figure 1 exemplifies
an individual’s motor learning, where low (during practice) and high (retention) cumulative suc-
cess rates, the probability of reaching the target at least once over a series of independent trials,
had nearly similar movement path lengths. Therefore, a research gap exists in understanding
motor learning progress and control strategies from movement data and performance variables.

(a) Participant 030 had a very low success
rate (red curve) relative to a moderate level
of accuracy (4 times ideal path length)

(b) After training, success rate increased to
greater than 70% but the accuracy remained
at a similar (and perhaps greater) level

Figure 1: Example of a participant’s motor skills learning from Day 1 to Day
7, while a traditional parameter (i.e., movement path length) could not capture
learning or overall performance on a task. In this task, participants moved a
joystick up and down to map movement on a 2D game scene to achieve a target-
directed destination from a source.

Existing DL-
based trajectory
autoencoder
and embedding
methods, such
as STTraj2Vec
Zhu et al. (2024),
Variational
Auto-Encoders
(VAEs) Ivanovic
et al. (2020),
Sequence-
to-Sequence
Auto-Encoders
Sarkar & Ghose
(2018); Wang
et al. (2022),
while effective
in movement
prediction and
classification yet
challenging to interpret complex non-linear relationships in movement patterns. Transformer
architectures with self-attention mechanisms Shaw et al. (2018) and self-supervised pre-training
approaches (i.e., TimeContrast Guo et al. (2022), MovementContrast Shah et al. (2023)) are capable
of capturing sequence dependencies and temporal relationships. However, the repetitive task-based
motor training and therapy in rehabilitation practices require more sophisticated methods, which will
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preserve trial-to-trial performance variables along with temporal and spatial patterns. This problem
motivated the design of a new SMT representation learning framework.

We propose a novel SMT-Learner that combines joint learning with movement performance-aware
multi-contrastive loss and adaptive transfer learning. A new human SMT dataset (D1) was created
from prior motor skill learning and performance investigation to train and evaluate the model. To
cross-validate the generalized applicability of SMT-Learner, evaluate with another hand reaching
trajectory dataset (D2) of highly trained non-human primates Scott et al. (2001); Scott & Kalaska
(1997). Moreover, we introduce an exploration-exploitation (E-E) analytical framework to quantify
motor control strategies and micro-adaptation from the representation, categorized as i) exploratory
strategy Svoboda & Li (2018) – where current movement does not correlate with previous movement
attempts, and ii) exploitative strategy Gallego et al. (2018) – where prior movements predict current
movement. We assessed how movement exploration and exploitation differed between: a) two types of
hand movements (unimanual and bimanual), b) term and preterm children, and c) early and late motor
learning phases. To provide further SMT-Learner interpretability, we conducted a case study analysis
showing two distinct optimal strategies captured by the framework: (1) Curvature optimization to
near-straight paths, and (2) Stepwise rectilinear movements with right-angle directional changes.

Neuroscientific Foundation of E-E Framework: Exploitation/exploration are well-established
concepts to study human and other species’ cognitive and motor learning evaluation. E-E frameworks
Wyatt et al. (2024) found useful for studying how humans make decisions with known outcomes versus
acquiring new information and new outcomes with less certainty. For example, children tend to use
more explorative strategies early in development to gather more information, even when this approach
may be less rewarded Blanco & Sloutsky (2024). Human visual exploration studies demonstrated
Bayesian optimal foraging models Cain et al. (2012) and uncertainty reduction mechanisms Mirza
et al. (2018) that are parallel to movement exploration/exploitation. Established principles of motor
learning through adaptive combination of motor primitives Thoroughman & Shadmehr (2000) and
complementary roles of neural circuits Doya (2000) support E-E mechanisms in biological motor
systems. In non-human motor learning studies, E-E concepts are significantly applied to understand
motor learning behaviours and neural dynamics. One rodent exploratory behavior study Mumby et al.
(2002) demonstrated corticostriatal dynamics that reinforce the reduction of movement variability in
repetitive motor skill learning Dhawale et al. (2017) and refinement of muscle synergies Santos et al.
(2015), supporting distinction in early exploration and late exploitation strategies. Moreover, this
principle also explained how young songbirds produce highly variable vocalizations and strategically
transition to stereotyped songs with vocal motor learning Ölveczky et al. (2005); Kojima et al. (2018).

We statistically validated the following hypotheses to demonstrate our framework’s effectiveness
and its clinical implications. Hypothesis 1a: Early learning will be more explorative and will shift
to an exploitative strategy in the late learning phase in all participants. Hypothesis 1b: Preterm
children will exhibit a higher exploration/exploitation (E-E) ratio than term children, particularly
for the bimanual skill learning task. Our cross-validation hypotheses are: Hypothesis 2a: As
monkeys were extensively overtrained (D2), their overall E-E ratio will be significantly lower than
that of a human learner on an untrained task. Hypothesis 2b: The E-E ratio will decrease over
sequential trials of the same motor learning task, even in well-trained non-human primates, reflecting
a micro-adaptation learning process. The methodological validation will also confirm a speed-
accuracy trade-off principle of motor skill development Plamondon & Alimi (1997); Spieser et al.
(2017); Molina et al. (2019) preserved by SMT-Learner representation. Hypothesis 3a: Movement
performance variables such as movement speed or accuracy will correlate negatively or positively,
respectively, with E-E ratio. This hypothesis will clinically validate our framework’s relationship to
conventional motor performance variables. Finally, we discuss the potential of the presented approach
for clinical translation with limitations and future directions.

2 PRELIMINARY

Movement path. A real movement path P is a continuous function of time mapping 2D spatial
coordinates. Movement path is a function defined as, P : [0, T ] → Rd, where T is the total time
duration of a movement path and for each time point t ∈ [0, T ] , P (t) = (xt, yt), return a 2D position
with x-coordinate and y-coordinate value in the movement space.
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Trajectory. A trajectory (T) of a moving object is a sequence of positions over time in the movement
space, define as T = { (x1, y1, t1) , (x2, y2, t2) , . . . (xn, yn, tn)}. Where (xi, yi) represents spatial
coordinates at time ti with 0 = t1 < t2 < . . . tn = T and n is the number of recorded positions.

Problem Formulation. Given a dataset of N spatiotemporal movement trajectories, D
= { T1,T2, . . . ,TN }, where each trajectory Ti defined as Ti = {(xj , yj , tj)| j =
1, 2, . . .m}. Each trajectory has associated temporal metadata Mi = {m1,m2,...,mk} ⊆
{pid, task, c_time, rmsd, is_success}. Here, c_time is the total completion time of the move-
ment from source to destination in seconds, task indicates experimental visuomotor/movement
task, rmsd is root mean square deviation of the original movement path from direct straight line
(source → destination), and is_success is a flag (0 or 1) that indicate the successfully reaching
the destination. We aim to train a trajectory autoencoder to learn a mapping function fθ : T →Rd

that transforms each variable-length trajectory into a d-dimensional vector, εi = fθ(Ti) ∈ Rd and
captures spatio-temporal patterns with preservation of movement performance metrics. We focus
on developing SMT-Learner, combining a self-attention encoder and self-supervised pre-training to
optimize trajectory reconstruction and movement performance-aware multi-contrastive loss, enabling
transfer learning. The goal is to achieve embedding Rd as a representation of SMT to conduct down-
stream experiments, specifically the motor learning behavior and the detection of control strategies
using E-E analysis.

3 METHODOLOGY

SMT-Learner builds upon transformer-based sequential processing Vaswani et al. (2017) and self-
supervised contrastive learning Chen et al. (2020), which includes movement performance meta-
criterions as contrastive loss for representing trajectories into the embedded space and enables transfer
learning Zhang & Gao (2022). SMT-Learner is driven by motor learning principles, designed to
learn domain-agnostic representations of planar reaching tasks to decode motor learning and control
strategies—measured through speed, accuracy, and success.

3.1 TRAJECTORY PROCESSING

Normalization. A normalized trajectory T
′

is a standardized representation of spatial curve that
resolves the variable-lengths and geometric constraints of randomize start and target of a moving
object. A trajectory transformation process N applied to normalize a trajectory, T

′
= N (T) =

{(Pj , tj)| j = 1, 2, 3 . . . ,m}, where T
′

origin-centered at T
′

1 =
(
P(0,0), t1

)
, target-aligned at

T
′

m =
(
P(0,0), tm

)
. transformation process N involves:

(i) Translate position P of the trajectory to center: P
′

i = Pi − P1 = {xi − x1,yi − y1},

(ii) Rotation by θ angles to align with target position: R(θ) =
∣∣∣∣xi cos θ − yi sin θxi sin θ + yi cos θ

∣∣∣∣, and

(iii) Trajectory is scaled by factor s to finalize position into a specific magnitude: s =

∥∥∥−→V target

∥∥∥∥∥∥−→V end

∥∥∥ ,

where
−→
V target = P(0,1)−P(0,0) and

−→
V end = Pn−P1. Finally, positional normalization of trajectory

is transformed by Tnorm = P
′

i x R (θ)x s.

The rotating/scaling trajectories to a canonical frame removes absolute direction and can obscure
biomechanical/cognitive asymmetries. We kept this normalization to simplify trajectory learning
while preserving spatial and temporal structure, but we have incorporated directional semantics by
adding the target direction angle, θi = atan2(Pn − Pi) to each timestep input and optionally the
rotation angle used in normalization as auxiliary inputs.

Resampling. For each normalized trajectory sequence with a given length n, we applied a parame-
terized approach to get fixed m points that preserve spatial and temporal characteristics. A uniform
space parameter, u

′

j =
j−1
m−1 , forj = 1, 2, 3, . . . ,m is defined to obtain exactly m resampled points

by identifying segments in the original trajectory where ui ≤ u
′

j < ui+1, where ui = i−1
n−1 , for

4
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Figure 2: Architecture of SMT-Learner with transfer paradigm

i = 1, 2, 3, . . . , n. An interpolation weight, αj =
u
′
j−ui

ui+1−ui
is used to calculate each dimension of the

trajectory using the following equations: x
′

j = (1− αj)xi + αjxi+1, y
′

j = (1− αj) yi + αjy, and
t
′

j = (1− αj) ti + αjti+1.

3.2 SMT-LEARNER AND ADAPTIVE TRANSFER

The SMT-Learner consists of five layers (Figure 2): i) dual-stream spatial and temporal embedding, ii)
transformer encoder with multi-head self-attention and feed-forward network, iii) dual-headed output
with projection and decoder, iv) a movement performance-aware contrastive learning with transfer
paradigm, and v) a joint optimization with contrastive and reconstruction loss. The spatial (xi, yi)
and temporal (ti) components of each point in the normalized trajectory T are projected into a D-
dimensional space using Xspatial and Xtemporal linear transformer with a positional encoder. Spatial
& temporal embedding results a tensorX of shape (b×m×D), where b is the batch size and m is the
number of points in a trajectory, which is the input of the Transformer encoder. Two parallel branches
processed the output of the transformer encoder to generate the final embedded representation and
reconstructed trajectory using a Projection Head and Decoder, respectively. Embedded output of the
non-linear Projection Head He et al. (2020) is E = ReLU

(
wproj1 .Zglobal + bproj1

)
wproj2 + bproj2 ,

with shape (b× d) contains E ⊂ (ε1, ε2, ..εb) embeddings where each εi∈ Rd. Embeddings εi
was used for constative loss calculation. The Decoder reconstructed the original trajectory as T̂ =
Reshape

(
wdec.Zglobal + bdec

)
. The reconstructed trajectory used to calculate the reconstruction

loss (Lr) using Equation 1.

Lr =
1

b×m

b∑
i=1

m∑
j=1

∥∥∥Ti,j − T̂i,j

∥∥∥2
2

(1)

3.2.1 PERFORMANCE-AWARE CONTRASTIVE LEARNING

The model learns the representation in embedded space ε ∈ Rd from the motor performance meta
criterion (Mi) using “pull" and “push" operations, where pull similar trajectories or push dissimilar
ones based on the multi-contrastive loss function (Lm) as calculated using Equation 2 and 3.

Lm =

5∑
k=1

αklk (2)

lk =

∑
i

∑
j ̸=i ψk (i, j) log

eεi.εj/τ∑
l̸=i e

εi.εl/τ∑
i

∑
j ̸=i ψk(i, j) + ∁

(3)
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Where lk is loss components for corresponding meta criterion mk and weight factor αk as∑k
k=1 αk = 1. ∁ = e−6 to avoid numerical instability. For each batch of embedded trajecto-

ries, E, contrastive loss components lk are computed based on the similarity matrix (ψk) for meta
criterion k with a temperature parameter τ Wang & Isola (2020). Trajectory meta criterion completion
time (c_time), root mean square deviation (rmsd) and successfully reaching the destination (success)
have been used as specialized similarity measures. Let’s define the rmsd distance as d, while the
similarity between two trajectories εi and εj from batch E is computed by Equation 4.

ψrmsd(i, j) = 1− |di − dj |
maxk,l |dk − dl|+ ∁

(4)

Here, maxk,l |dk − dl| find the max difference in sequential paired samples of E. Completion
time contrastive loss captured comparable timeframe patterns to pull or push embeddings based on
the similarity calculation. Other two similarity matrices, ψc_time(i, j) and ψsuccess(i, j) capture
movement speed and efficiency to learn representation. Finally, the participant ID (pid) and movement
tasks (task) information were used as cross-subject and cross-task knowledge transfer to balance
learning with specific and generalized patterns.

3.2.2 ADAPTIVE LEARNING WITH CROSS-TASK AND CROSS-SUBJECT TRANSFER

The characteristics of movement trajectory in rehabilitation or robotics space depend on the task
executed, which impacts the trajectory shape, such as opening a door or moving an object from source
to destination using only up-down, left-right actions. Cross-task knowledge transfer is important
to preserve task-specific information and movement patterns in the representation space Shi et al.
(2023). Whereas, the cross-subject transfer paradigm allows flexible control on subject-specific
knowledge learned across all other subjects, for a target subject to generalize the learning in offline
mode. Our transfer process simultaneously optimized joint losses Ltotal= Lr +Lm. For a transfer
paradigm (i.e., cross-task, cross-subject), two hyperparameters (λ1 and λ2) with a transfer-specific
regularization are applied to optimize loss and appropriate separation between different subjects and
tasks. Equations 5 and 6 update weights for a specific transfer type, where sim(εi, εj) =

εi·εj
∥εi∥∥εj∥

represents cosine similarity between embeddings and I[factori ̸= factorj ] is an indicator function for
different tasks or subjects, respectively.

Ltransfer = Lr + λ1Lm + λ2Lregularization (5)

Lregularization =
1

N

N∑
i=1

∑
j ̸=i

max(0,margin− sim(εi, εj)) · I[factori ̸= factorj ] (6)

However, motor learning is intrinsically individualized and context-dependent Shmuelof et al. (2012).
Inter-subject variability and task-specific complexity require different control strategies. Static weight
transfer may reduce individual differences Long et al. (2015); Kendall et al. (2018), necessitating
dynamic weight updates to capture motor signatures and knowledge transfer between participants and
tasks. We combined both paradigms with an adaptive transfer mechanism Cao et al. (2010), which
updates model parameters θ∗ ← θ − η∇θ using Equation 7.

L
(t)
adaptive(θ) = Lr + λ1 ·

5∑
k=1

α̂
(t)
k ·Lk(θ) + λ2 ·Lregularization (7)

Performance-aware multi-contrastive loss components,
∑5
k=1 α̂

(t)
k ·Lk(θ) represent the core adaptive

weighting mechanism dynamically balanced transfer context. During training, time-dependent
weights α̂(t)

k adjust based on improvement rates from loss history windows. Transfer-specific
modulation factors emphasize different components based on whether knowledge is transferred
across subjects or tasks.

3.3 EXPLORATION-EXPLOITATION ANALYTICAL FRAMEWORK

We introduced a quantitative method, the Exploration-Exploitation (E-E) framework, to analyze the
decoded learning patterns and control strategies from the SMT-Learner representation. In the motor

6
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Table 1: Summary of SMT-Learner pretraining/finetuning results, all experiments conducted on D1

Paradigm Pretrain Evaluate (target) Zero-shot mean [95% CI] Fine-tuned mean [95% CI] ∆%

Exp1 D1 D1 test 1.55 [1.525, 1.575] 1.00 [0.98, 1.02] −35.5%
Exp2 D1 Unimanual D1 Bimanual 1.10 [1.08, 1.12] 0.55 [0.541, 0.559] −50.0%
Exp3 D1 Term D1 Preterm 1.05 [1.041, 1.059] 0.45 [0.441, 0.459] −57.1%
Exp4 D1 Unimanual + Term D1 Bimanual + Preterm 1.05 [1.041, 1.059] 0.12 [0.111, 0.129] −88.6%

skill learning process, participants learn mastery of a task by repetition. Exploration scores measure
movement diversity, and exploitation scores measure how prior movement predicts current movement.
Exploration(εi) = minj<i Dist(εi, εj)× (β1 + β2e

−iα), where, α is decay factor for trial sequence
and β1, β2 are weights for movement novelty and trial sequence. The exploitation score measures
how prior movement is predicting current movement using a window size (Wi) and a similarity
matrix, Exploitation(εi) = 1

|Wi|
∑
j∈Wi

Sim(εi, εj). Finally, E-E Ratio = Exploration(εi)
Exploitation(εi)

, consider
as a factor of sequential motor learning. We applied MIN distance (minimum Euclidean distance
in embedding to any prior trial within a decayed window) and KNN algorithm with W = 120,
α = 0.05, β1 = 0.10, and β2 = 0.90, validated via average distance and density-based novelty.
Three consistent patterns supported the selection of the optimized hyperparameters to compute E–E
metrics. Sensitivity and clustering analyses are detailed in Appendix A.3.

4 RESULTS & DISCUSSION

Figure 3: Comparison of adaptive transfer learning with the
SMT-Learner baseline and other paradigms

SMT-Learner optimized all loss com-
ponents in the pretraining stage to
learn generalizability from the do-
main data (Appendix Section A.1
DATASETS). In the transfer stage, the
SMT-Learner pre-trained model was
fine-tuned using D1 to update param-
eters based on the transfer paradigms
(cross-task, cross-subject, and adap-
tive transfer). The complete experi-
mental setup and transfer experiments
are detailed in Appendix Section A.2
EXPERIMENTAL SETUP. We com-
puted 5 seeds with mean ±95% con-
fidence intervals (t-based, df=4) for
all SMT-Learner transfer experiments
(Exp1-Exp4), reported transfer loss
(Ltransfer) in Table 1. Adaptive transfer loss (L(t)

adaptive(θ) with multi-temporal components dropped
significantly (overall 25.4% performance improvement) compare to the SMT-Learner baseline model
(Figure 3). Held-out evaluations were performed on D2 tasks/sessions never seen during training
to confirm cross-dataset generalization. D1 → D2 zero-shot overall loss dropped 1.55 to 1.24 and
1.28 on a single task held-out samples (D2 Experimental Task 1). Using the D1 Preterm finetuned
checkpoint (no D2 pretraining/finetuning), the loss dropped to ∼1.18. Finally, adaptive transfer
fine-tune loss reaches 0.98, evidence that SMT-Learner captures transferable motor structure rather
than dataset-specific regularities and provides a scale-stable E–E metric (Appendix A.5).

4.1 STATISTICAL TESTING & HYPOTHESIS VALIDATION

We tested Hypotheses 1a/1b on D1 using a three-way ANOVA (cohort, phase, task) with E–E ratio as
the dependent variable. Early→late learning showed a robust shift from exploration to exploitation
(F=343.1, p<0.001, η2=0.050), with E–E decreasing from 0.667±0.056 to 0.163±0.020 (Fig. 4a, 4b).
Preterm children exhibited higher E–E than term (0.444±0.059 vs. 0.386±0.030; Cohort: F=3.72,
p=0.054), partially supporting 1b. Task effects were significant: bimanual > unimanual in both term
(0.286±0.022 vs. 0.255±0.019; p=0.033) and overall (0.469±0.049 vs. 0.361±0.040; F=10.43,
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p=0.001), consistent with delayed bimanual coordination in preterm Cooke & Foulder-Hughes (2003);
Schneider et al. (2008).

For Hypotheses 2a/2b, we compared humanD1 E-E ratio to overtrained monkeyD2 reach trajectories:
human E–E 0.2823±0.0128 vs. monkey 0.0542±0.0046 (t=39,957, p<10−4, d=0.354), strongly
supporting 2a (Fig. 4c). Block-wise slopes (120 trials; bootstrap N=5000) yielded near-linear
refinement with R2 = 1.00 in both species and distinct learning rates: human −0.17 [−0.19, −0.15]
vs. monkey −0.008 [−0.017, −0.001], confirming 2b (Fig. 4d). These results align with literature
on motor variability and expertise Spieser et al. (2017) and are summarized in Table 2.

Speed-accuracy trade-offs, widely accepted mathematical concepts in target-directed human move-
ment, are described as neuromuscular synergy during motor execution Plamondon & Alimi (1997);
Smyrnis et al. (2000); Spieser et al. (2017). Speed-accuracy trade-offs and statistical correlation
between E-E ratio and performance variables (movement speed and accuracy) are illustrated in Figure
4e, 4f, and 4g. We found negative correlations between speed and accuracy in both term (r=-0.40,
p<0.0001) and preterm (r=-0.36, p<0.0001) groups. We also found the E-E ratio positively correlated
(Term, r=0.5 and Preterm, r=0.45) with the movement speed and negatively correlated (Term, r=-

(a) E-E ratio changes over trial (b) Session-wise mean E-E ratio

(c) E-E ratio over trial progression (d) E-E slopes distribution (24 trials/block)

(e) Speed vs accuracy (f) Speed vs E-E (g) Accuracy vs E-E

Figure 4: Statistical analysis of E-E ratio in different cases: (a-b) E-E ratio changes over trial and session
progression, (c-d) E-E dynamics between human learners and monkey, and (e-g) Speed-accuracy trade-offs and
correlation between speed/accuracy and E-E ratio

8
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Table 2: Evidence-based cross-matches of SMT-Learner’s E–E findings with prior literature

Hyp. Prior findings E–E result (mean ± 95% CI) Effect size Test (t/p) Interpretation

1a
Early→late stabilization in motor learning
Smyrnis et al. (2000)

0.667± 0.056→ 0.163± 0.020 d = 0.35
t = 39,957;

p < 10−4

E–E declines with practice;
stabilization phase reached.

1b
Term vs preterm adaptability differs
Hadders-Algra (2010); Dusing & Harbourne (2010)
Ferrari et al. (2012)

Term: 0.386± 0.030;
Preterm: 0.444± 0.059

d = 0.28 p < 0.01
Typical children show lower
E–E (more exploitation).

2a
Practice reduces variability (human vs non-human)
Mandelblat-Cerf et al. (2009); Dhawale et al. (2017)

Human: 0.2823± 0.0128;
Monkey: 0.0542± 0.0046

d = 0.35 p < 10−4 Both species exhibit reduced
variability with training.

2b
Skill refinement continues post stabilization
Smits-Engelsman et al. (2020); Churchland et al. (2006)

Slope: −0.17 (R2 = 1.0);
Monkey: −0.008 (R2 = 1.0)

— p < 0.05
Slow shift toward exploitation;
continued refinement.

Table 3: Performance of SMT-Learner: Ablation study with contrastive and transfer configurations

Configuration Performance Metrics
rMSE ↓ Ep-Err ↓ Curve-Err ↓ T-Corr ↑ R-Corr ↑ S-Corr ↑ Traj-C ↑ Task-C ↑ Sub-C ↑

Adaptive Transfer 0.086 0.072 1.577 0.893 0.539 0.970 0.720 0.550 0.038
No Transfer 0.145 0.089 1.634 0.756 0.423 0.912 0.685 0.487 0.025
Cross-Task Only 0.098 0.078 1.592 0.834 0.501 0.945 0.702 0.523 0.031
Cross-Subject Only 0.102 0.081 1.588 0.817 0.487 0.938 0.695 0.541 0.034
No Contrastive 0.197 0.022 1.891 0.123 0.001 -0.020 0.412 0.298 0.018
ψc_time only 0.086 0.093 1.568 0.479 0.289 0.191 0.713 0.548 0.037
ψrmsd only 0.098 0.137 1.646 -0.005 0.002 0.111 0.720 0.550 0.037
ψsuccess only 0.087 0.127 1.691 0.191 0.111 0.993 0.720 0.548 0.038
+θ (target direction) 0.151 0.019 1.787 0.980 0.539 0.910 0.720 0.548 0.038
+θ+rotation angle 0.111 0.015 1.903 0.929 0.652 0.940 0.720 0.548 0.038

0.38 and Preterm, r=-0.29) with the movement accuracy. These findings validate our framework’s
relationship to the clinical assessment of motor performance and captured speed-accuracy trade-offs.

A case study is presented in Appendix Section A.4, where we demonstrate the E-E matric capable of
detecting two optimal control strategies (Curvature and Stepwise).

4.2 SMT-LEARNER PERFORMANCE EVALUATION

We applied geometric, statistical, and clustering neighborhood analysis to evaluate the quality and
characteristics of SMT-Learner representation. Assessment metrics are as follows: (i) Trajectory
reconstruction quality: Reconstruction Mean Squared Error (rMSE), Mean Endpoint Error (Ep-Err),
and Mean Curvature Error (Curve-Err); (ii) Statistical correlation with movement performance
variables: Completion time (considered as movement speed) correlation (T-Corr), correlation with
the root mean square deviation of movement (considered as accuracy) from the optimal path (R-Corr),
and correlation with successfully reaching the target (S-Corr); and (iii) Clustering neighborhood
consistency: trajectory shape consistency (Traj-C), cross-task consistency (Task-C), and cross-subject
consistency (Sub-C).

4.2.1 ABLATION STUDY

Our ablation studies validate the necessity and contribution of performance-aware contrastive learning
and transfer paradigms. Ablation results in Table 3 show that removing contrastive learning causes
an 86% drop in temporal correlation performance, dropping T-Corr from 0.893 to 0.123, and R-Corr
from 0.539 to near-zero (0.001). Adaptive transfer significantly improves performance correlations
and clustering consistency compared to other transfer paradigms or no transfer. Moreover, adding θ
improves timing and path-accuracy correlations and substantially reduces endpoint error (0.072→
0.019 with θ and 0.015 with θ+rotation angle), but rMSE goes down. Such as, θ components increase
T-Corr +0.087 and R-Corr +0.121; S-Corr remains strong (> 0.90). These results indicate that adding
target direction as an auxiliary input, along with normalized trajectory, restores asymmetry-related
cues and improves performance.

4.2.2 BASELINE COMPARISON

Existing trajectory analysis methods lack downstream applicability for motor control and rehabil-
itation practices Hu et al. (2023); Chen et al. (2024). We selected four methods for comparison
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that closely matched study objectives: (1) STTraj2Vec Zhu et al. (2024), (2) Variational Auto-
Encoders (VAEs) Ivanovic et al. (2020), (3) Sequence-to-Sequence Auto-Encoders (Seq2Seq) Sarkar
& Ghose (2018); Wang et al. (2022), and (4) Trajectory Masked Autoencoders (Taj-MAE) Chen
et al. (2023). We found that SMT-Learner outperformed with the best rMSE, Ep-Err, Curve-Err,
and S-Corr, in both tests with D1 (training and finetuned) and D2 held-out evaluation (Table 4).

Table 4: Baseline comparison results

Method rMSE Ep-Err Curve-Err T-Corr R-Corr S-Corr

STTraj2Vec 0.386 0.095 3.666 0.982 0.647 -0.797
VAE 0.412 0.089 4.758 0.136 0.096 -0.135
Seq2Seq [48,49] 0.190 0.215 3.619 -0.996 -0.653 0.819
Traj-MAE 0.111 0.290 28.304 -0.960 -0.638 0.779
SMT-LearnerD2

0.089 0.0944 1.867 0.735 0.522 0.9358
SMT-LearnerD1

0.086 0.072 1.577 0.893 0.539 0.970

However, STTraj2Vec optimized tem-
poral/spatial continuity without in-
corporating outcome constraints (suc-
cess/failure), yielding extremely high
T-/R-Corr (L2 norm of embedding
grows with time or deviation). In
motor tasks, failures or inefficient tri-
als are longer and more deviant. If
embedding magnitude amplifies only
temporal/spatial characteristics, the
same feature that boosts T-/R-Corr in-
versely relates to success, yielding negative S-Corr. SMT-Learner balanced temporal/spatial fidelity
with performance-relevant structure. As a result, it maintains very high positive S-Corr while keeping
competitive T-/R-Corr. Baseline comparison with Traj-MAE reflected that the similar studies (i.e.,
Forecast-mae Cheng et al. (2023), SEPT Lan et al. (2023)) would also fail to perform better in the
investigated metrics as they lack performance-aware representation.

5 LIMITATIONS & FUTURE DIRECTION

SMT-Learner, while effective in capturing spatiotemporal dynamics of trajectory, has several con-
straints, including datasets, dimensionality, and generalizability. Embedding dimension, similarity
thresholds, and sequential window sizes require systematic investigation for different movement
trajectories across species, clinical conditions, and learning tasks. Moreover, the behavioral ex-
periments were conducted in 2D space, which can be extended to 3D trajectories with minimal
modification. We can simply modify input layer from T = {(x, y, t) | spatial coordinates + time}
to T = {(x, y, z, t) | 3D coordinates + time} and normalizing 3D vector operations for position,
rotation, and scaling. E-E analysis depends on embedded spaces and temporal continuity, and may
be less sensitive when a learner suddenly shifts strategy, leading to discontinuous skill acquisition
Newell (2014). Another limitation is that the findings on the unimanual vs bimanual visuomotor
tasks represent a subset of motor skills, as the scope of this study only focused on repetitive motor
tasks to understand learning behavior and micro-adaptation. However, other domains, such as gross
motor skills, manual dexterity, or force production tasks, may require SMT-Learner fine-tuning using
cross-task/cross-subject transfer to analyze E-E dynamics, which will be explored in the future.

6 CONCLUSIONS

Existing approaches to analyzing SMT data typically reduce complex motor trajectories to sin-
gular spatiotemporal parameters, such as movement accuracy or velocity. While important, this
approach loses information about the dynamic nature of the action. Instade SMT-Learner, com-
bined with an exploration-exploitation (E-E) metric to quantify fundamental aspects of motor skill
learning across developmental contexts. Our computational & analytical approach bridges AI into
neuromotor control, developmental psychology, and neurorehabilitation insights that could inform
therapeutic and intervention planning by identifying learning strategy deficits to guide optimal therapy
for populations with developmental disorders. Extensive experiments with two real datasets and
hypothesis cross-validation revealed fundamental characteristics of skill acquisition, shifting from
exploration-dominant to exploitation-dominant strategies over practice. In the future, adaptive transfer
learning with data from different motor learning tasks and conditions would improve the capability
for personalized therapy and modulate E-E balancing for individual learning profiles.
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ETHICS STATEMENT

Human Subjects Protection. This study involves human subject data. We collected data of term and
preterm-born children (D1) to investigate motor skills learning and control strategies based on the
IRB-approved experimental protocol. The parents or guardians of the child (as participants aged 5-8
years old) signed an informed consent form to share non-identifiable data for research purposes. We
ensured HIPAA-compliant data storage and removed all identifiable information (e.g., name, date of
birth, phone number) from the dataset. We used anonymous identifiers (e.g., MRTLRN###) only.

REPRODUCIBILITY STATEMENT

We supply all requisite materials and documentation to assure the reproducibility of the SMT-Learner
framework. The source code implementation of the SMT-Learner architecture, encompassing the
adaptive loss weighting mechanism, cross-task and cross-subject transfer learning modules, together
with all experimental configurations, is accessible via an anonymous 4open.science repository
Anonymous (2025). Furthermore, we have included a supplementary zip file comprising: (1) the
complete codebase with README guidelines for environment configuration, data preprocessing,
model training, and evaluation methodologies; (2) evaluation scripts that replicate all documented
results; and (3) generated results, figures, and graphs.
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A APPENDIX

A.1 DATASETS

A.1.1 D1: HUMAN MOVEMENT DATA.

D1 contains 16320 trajectories of term (73.5%) and preterm (26.5%) born children. Data
was collected using an iPad-based visuomotor game, designed for unimanual and biman-
ual motor learning using controlled psychophysical tasks. We conducted a cross-sectional
multi-visitation observation study to assess motor skills learning and performance in term
and preterm children aged 5-8 years. This study aimed to measure a child’s development
and overall abilities to learn new motor tasks and establish causal links between motor learn-
ing and performance. We explored the relationship between motor planning and execution
networks for completing functional tasks and identified primary contributors to overall mo-
tor development. The university’s Institutional Review Board (IRB) approved study protocol.

(a) (b)

Figure 5: Study protocols and data collection (a) Experimental design
of the tasks in an iPad game (unimanual and bimanual tasks, and (b)
A session of participants’ data collection using the mHealth system
in an elementary school networks

Study Protocol: We exam-
ined unimanual and biman-
ual motor learning using con-
trolled psychophysical tasks.
We created a straightforward
yet challenging visuomotor
task that tested how partici-
pants learned a new mapping
between joystick and cursor
movement. The experimen-
tal tasks (Figure 5) involve
moving a cursor on an iPad
12.9-inch screen (cartoon bee)
to a visual target (flower) us-
ing a joystick. The mapping
of joystick direction to cursor
movement systematically var-
ied. For the unimanual task, a single two-dimensional joystick was used with the direction map
inverted (e.g., moving the joystick upward moves the cursor downward, and moving the joystick
rightward moves the cursor leftward). For the bimanual task, two one-dimensional (vertical move-
ment only) joysticks were controlled with each hand, with the left joystick controlling the cursor
vertically and the right joystick controlling the cursor horizontally. The unimanual learning task
was a mirror reversal task. Furthermore, the bimanual task involved the non-intuitive 90° rota-
tion of the directionality of one joystick, which was even more challenging. These adaptations,
while easy for adults to learn, were challenging for young children. Thus, we propose that the
tasks were appropriately complex for the age (5-8 years old) of the participants performing them.

Table 5: Participant characteristics

Characteristics Term Preterm
# of Participant (N) 50 18

Age Group (N, %)
5-6

7-8

19 (38.0%)
31 (62.0%)

7 (38.8%)
11 (61.1%)

Gestational Age (weeks),
mean ± SD

39 ± 2 31 ± 3

MABC-2 percentile,
mean ± 95%CI

39.91±0.75 23.61±0.87

Task Parameters: For each
trial, the cursor starts in the
center of the screen. Six tar-
gets within each of the four
quadrants of the 2D screen
were selected randomly; thus,
the participant moved to 24
targets during each practice
block. The variability in the
initial location of the target
should enhance motor learn-
ing based on the effects of
a variable practice schedule.
The participant has 10 seconds to complete the trial and reach the target. A new trial begins if the
cursor does not reach the target in under 10 seconds. Visual feedback on trial success (smiley face) or
failure (“Try again" message) was provided. To prevent participants from moving in a unidirectional
manner during the bimanual task (i.e., moving only the left joystick to move vertically, then the
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right joystick to move horizontally), cursor movement was programmed to advance only when both
joysticks are moved. In each trial, we recorded source and target destinations, (x,y) coordinates as
continuous movement paths with time dimension at 120 Hz sampling rate.

Participants & Data Collection: We collected data from 72 participants, 68 of whom completed all
blocks of tasks successfully on Day-1, Day-2, and Day-7. Table 5 shows a summary of the participants’
characteristics. Along with the game data, we tested participants’ standard battery assessment (MABC-
2: Movement Assessment Battery for Children). Among term and preterm children, we found a
significant difference in MABC-2 percentiles (23.61±0.87 vs. 39.91±0.75, p<0.001), demonstrating
substantial clinical and neurodevelopmental validation. Each of the participants practiced 6 blocks
of 24 trials each, completed on Day 1, with 1-2 minutes of rest between each block. To examine
retention, a single block of 24 trials was repeated on Days 2 and 7 (retention blocks). A total of 680
blocks/sessions of data was collected with 680x24 trials. This dataset contains 16320 trajectories of
term (73.5%) and preterm (26.5%) children, where each task contains 50% the trajectories.

A.1.2 D2: NON-HUMAN REACHING MOVEMENT

Figure 6: Examples of monkey’s hand
movement trajectories of e2 experiment

D2 contains non-human primates’ arm reaching trajecto-
ries Scott et al. (2001); Scott & Kalaska (1997), a ground-
breaking study investigated the neural basis of motor con-
trol and hand movement kinematics. Three rhesus mon-
keys were highly trained to perform horizontal planar
reaching movements wearing mechanical exoskeletons.
The task was centered on reaching a target arranged in a
circle with five experimental conditions (e) and collected
spatiotemporal positions, velocity, and joint angles with
neural recordings. Each hand trajectory contains (x, y, t)
coordinates, matching the expected input format for SMT-
Learner. An example of experiment reaching trajectories
to uniformly distributed targets at 0, 45, 90, 135, 180, 225,
270, and 315 degrees are illustrated in Figure 6. This
dataset includes 16 unique reaching directions with stan-
dardized durations (∼576ms). We used a total of 23639
trajectories from a total of 587 sessions, where 75% of the
sessions contained 48 trials in four experimental tasks.

A.2 EXPERIMENTAL SETUP

Experiments were conducted using NVIDIA GH200 Superchips (H100 configured with 80 GB SXM5,
26 vCPUS, 225 GiB RAM and 2.8 TiB SSD). We followed a two-phase training and evaluation
approach with two datasets D1 and D2. In our first phase, SMT-Learner was pre-trained using D1

with a 90:10 split ratio for the train and validation partitions, and 32 SMT as the input batch size.
The total joint loss combines reconstruction and multi-contrastive objectives as Ltotal= Lr +Lm.
The model was trained for each component of contrastive loss separately, as well as multi-contrastive
loss by combining a weighted function of loss components. With 50 epochs, early stopping was
imposed based on validation loss, and the AdamW optimizer was used with a learning rate of 0.0001
Loshchilov & Hutter (2017). We evaluated four experimental conditions in pretraining/finetuning
paradigms to separate the cross-task and cross-subject transfer effects on adaptive transfer, as follows.

1. Exp1: Pretrain on D1 → test on D1 → zero-shot on D2 (held-out)

2. Exp2: Cross-Task transfer: Pretrain onD1 Unimanual→ Test onD1 Bimanual→ Zero-shot
on D2 (Experimental task 1: Scott_2001_e1)

3. Exp3: Cross-Subject transfer: Pretrain on D1 (Cohort==Term)→ test on D1 (Cohort ==
Preterm)→ Zero-shot on D2

4. Exp4: Adaptive transfer: Combine Exp2 and Exp3→ test on D1→ zero-shot on D2
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(a) Participant MTRLRN070 practice at day-1 [Unimanual Task]

(b) Participant MTRLRN070 retention at day-7 [Unimanual Task]

(c) 2D tSNE visualization of the embedded space colored by (left to right) Success, RMSD, and Completion
time

Figure 7: Trajectory representations in embedding space. (a–b) Embedded layout and trial-by-trial
trajectory similarity for a Unimanual participant. (c) t-SNE shows tighter clusters for higher-skill
learners (moon shape); unsuccessful trials form a compact “ball” cluster and are associated with
longer durations and greater path deviation.

A.3 SENSITIVITY AND CLUSTERING ANALYSIS

Figures 7a and 7b compare a participant’s embedded trial-by-trial trajectory similarity on the first
practice day versus Day-7 retention. At Day 7, embeddings exhibit closer, more stable neighborhoods
and reduced dispersion, indicating learning adaptivity and a shift toward exploitative control. The 2D
t-SNE projection (Fig. 7c) separates the D1 latent space by motor performance, where higher motor
performance trials form close clusters near the task manifold, whereas lower-performing trials cluster
in diffuse regions associated with longer competition time and larger path deviations (RMSD).

We conducted a sensitivity analysis on D1 over window W ∈
{5, 10, 25, 50, 75, 100, 150, 225, 300, 450}, decay α ∈ {0.05, 0.1, 0.2, 0.3, 0.5}, and
(β1, β2) ∈ {0.1, 0.3, 0.5, 0.7, 0.9}2 to identify stable parameters for the E–E metric calcula-
tion. Three convergent patterns founded in the chosen configuration:

i. S-/R-/T-Corr curves rise sharply and plateaued near W ≈ 120 aligning with a participant’s
full trial count (Figure 8);

ii. Normalized E–E varies < 6% (CV) across α ∈ [0.05, 0.3], β1 ∈ [0.05, 0.2], β2 ∈ [0.3, 0.9].
The setting α = 0.05, β1 = 0.10, β2 = 0.90 balances strong early exploration (β2 ≫ β1)
with a smooth decay to a modest baseline (β1);

iii. The MIN distance (minimum Euclidean distance in embedding to any prior trial within the
decayed window) consistently outperformed KNN averaging on ranking quality, indicating
sharper novelty discrimination (Table 6a).
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Figure 8: Sensitivity curves comparing MIN vs. KNN. Curves plateau near W ≈ 120; MIN
consistently dominates KNN across decay settings.

Table 6: Novelty metric comparison and clustering diagnostics on SMT-Learner embeddings.

(a) Novelty metric comparison

Metric variant ROC AUC PR AUC F1

min_dist (MIN) 0.5521 0.5403 0.6994
knn_avg (KNN) 0.4962 0.5026 0.6927

PR: Precision–Recall; AUC: Area Under the Curve.
min_dist: minimum distance to any prior trial within window W
knn_avg: mean distance to the K nearest prior trials

(b) Clustering diagnostics

Algo k/ε Silhouette Purity

KMeans 3 0.478900 0.962428
KMeans 5 0.405406 0.982313
KMeans 7 0.290197 0.971298
DBSCAN 0.5 0.361061 1.000000
DBSCAN 1.0 0.670152 0.999547
DBSCAN 1.5 0.253241 0.998204

Clustering diagnostics on SMT-Learner embeddings confirmed separability with density-based
methods, results in Table 6b. DBSCAN at ε = 1.0 achieves the highest silhouette score with near-
perfect purity, reinforcing that the latent geometry supports separable task–performance manifolds.
These diagnostics substantiate the parameterization used for downstream E–E estimation.

A.4 CASE STUDY: OPTIMAL STRATEGY DETECTION

Our framework is capable to detect motor tasks with potentially multiple optimal strategies.

Figure 9: Case study: example of curvature and stepwise
optimal movement strategies in motor skill learning

We reasoned that the optimal solu-
tion to our experimental task was to
move to the target in the most effi-
cient path, thereby reducing uncer-
tainty and physiological effort. Op-
timal solutions could also vary depen-
dent on other environmental condi-
tions (presence of reward, verbal in-
structions). To provide further clari-
fication, we conducted a case study
analysis showing two distinct optimal
strategies: (1) Curvature optimiza-
tion to near-straight paths (mostly
used for unimanual), and (2) Stepwise
optimal movement with directional
changes (mostly used for bimanual).
The Table 7 shows the case study re-
sults with participants MRTLRN070
and MRTLRN015 (Figure 9 illus-
trates original trajectories). The E-E
framework successfully captured both
strategies with a significant E-E ratio
reduction (curvature: 0.56 → 0.04,
and stepwise: 0.57 → 0.07). Curva-
ture optimization resulted in highly
consistent smooth movements (lower final E-E), while stepwise control maintained inherent variabil-
ity in segmented movements (higher final E-E). This case study demonstrates that SMT-Learner can
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handle multiple optimal strategies in the movement space, enabling quantitative differentiation of
strategic signatures.

Table 7: Case study results showing difference between two distinct optimal strategies (participant
MTRLRN070: Curvature and MTRLRN015: Stepwise)

Strategy E-E Ratio Success Rate Completion Time (s) RMSD
Day-1 Day-7 Day-1 Day-7 Day-1 Day-7 Day-1 Day-7

Curvature 0.5579 0.0433 91.67% 100% 7.34 2.36 152.74 35.84
Stepwise 0.5718 0.0681 20.83% 100% 10.19 5.10 270.91 152.85

A.5 CAPTURING MOTOR CONTROL BEYOND GEOMETRY: SMT-LEARNER EMBEDDINGS

We computed E–E ratios on normalized trajectories and in the learned embedding using N = 1000
random samples from D1 Term and Preterm cohorts. As shown in Figure 10, embedding-space
E–E yields stable, interpretable effects with tight confidence intervals (CIs), whereas trajectory-
space E–E exhibits large-magnitude, high-variance estimates driven by residual geometric/scale
variability despite normalization. For early→late learning, the embedding difference is 0.1503 with
a narrow 95% CI [0.1329, 0.1680], while the trajectory estimate is 162.71 with a very wide CI
[1.79, 441.73]. For Preterm–Term (bimanual), the embedding difference is 0.0075 with CI [−0.0229,
0.0337], whereas the trajectory-based mean difference is−274.75 with a wide CI [−1169.24, 112.60].
These results indicate that SMT-Learner’s embeddings capture higher-order control structure beyond
geometric variability and provide a scale-stable E–E metric.

Figure 10: Randomized sampling distributions of E–E differences in embedding space vs. normalized
trajectory space (N = 1000). Embedding E–E shows tight, stable CIs; trajectory E–E exhibits high
variance due to residual geometric/scale effects.
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