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ABSTRACT

Federated learning emerges as a powerful method to learn from decentralized het-
erogeneous data while protecting data privacy. Federated semi-supervised learn-
ing (FSSL) is even more practical and challenging, where only a fraction of data
can be labeled due to high annotation costs. Existing FSSL methods, however, as-
sume independent and identically distributed (IID) labeled data across clients and
consistent class distribution between labeled and unlabeled data within a client.
In this work, we propose a novel FSSL framework with dual regulator, FedDure,
to optimize and customize model training according to specific data distributions
of clients. FedDure lifts the previous assumption with a coarse-grained regula-
tor (C-reg) and a fine-grained regulator (F-reg): C-reg regularizes the updating
of the local model by tracking the learning effect on labeled data distribution; F-
reg learns an adaptive weighting scheme tailored for unlabeled instances in each
client. We further formulate the client model training as bi-level optimization that
adaptively optimize the model in the client with two regulators. Theoretically, we
show the convergence guarantee of the dual regulator. Empirically, we demon-
strate that FedDure is superior to the existing methods across a wide range of
settings, notably by more than 12% on CIFAR-10 and CINIC-10 datasets.

1 INTRODUCTION

Federated learning (FL) is an emerging privacy-preserving machine-learning technique (McMahan
et al., 2017), where multiple clients collaboratively learn a model under the coordination of a central
server without exchanging private data. Edge devices like mobile phones have generated and stored
a large amount of private data. Centralizing these data could lead to data privacy issues (Voigt
& Von dem Bussche, 2017). Federated learning is a decentralized learning paradigm to leverage
these data and has empowered a wide range of applications in many industries, including healthcare
(Kaissis et al., 2020; Li et al., 2019), consumer products (Hard et al., 2018; Niu et al., 2020), and
public security (Zhuang et al., 2022).

The majority of existing FL works (McMahan et al., 2017; Wang et al., 2020; Li et al., 2021a) assume
that the private data in clients are fully labeled, but the assumption is unrealistic in real-world feder-
ated applications as annotating data is time-consuming, laborious, and expensive. To remedy these
issues, federated semi-supervised learning (FSSL) is proposed to improve model performance with
a large amount of unlabeled data on each client. In particular, priors work (Jeong et al., 2021) has
achieved competitive performance by exploring the inter-client mutual knowledge, i.e., inter-client
consistency loss Jeong et al. (2021). However, they usually focus on mitigating inter-client hetero-
geneous data distribution across clients (External Imbalance) and assume that the class distribution
between the labeled and unlabeled data is consistent. These assumptions enforce strict requirements
of data annotation and would not be practical in many real-world applications. A general case is that
labeled data and unlabeled data have different data distribution (Internal Imbalance). For example,
photo gallery in mobile phones contains much more unlabeled images and irrelevant samples than
the ones that can be labeled manually for image classification task Yang et al. (2011).

Besides, these existing methods require sharing of additional information among clients, which
could impose potential privacy risks. Specifically, they transmit models among clients to provide
consistency regularization. However, inter-client interactions might open a loophole to unauthorized
infringement for privacy risks Chen et al. (2019); many reverse-engineering techniques Yin et al.

1



Under review as a conference paper at ICLR 2023

(2020) can even recover the client data from the mutual models, threatening the users’ data privacy
and security (Yonetani et al., 2017; Wu et al., 2018).

In this paper, we propose a flexible federated semi-supervised learning framework with dual
regulator, termed FedDure, to handle the internal and external imbalance problems while account-
ing for privacy. FedDure explores the adaptive regulators to flexibly update the model parameters in
clients; it dynamically adjusts dual regulators to optimize the model training in each client accord-
ing to the learning process and outcome of the client’s specific data distribution. Our framework
includes two novel components: Coarse-grained regulator (C-reg) and Fine-grained regulator (F-
reg). On the one hand, C-reg regularizes the updating of the local model by tracking the learning
effect on labeled data distribution. It mitigates the distribution mismatching between labeled and
unlabeled data to prevent corrupted pseudo labels and maintain generalization ability. On the other
hand, F-reg learns an adaptive weighting scheme tailored for each client; it automatically equips
a soft weight for each unlabeled instance to measure its contribution to the training. This scheme
automatically adjusts the instance-level weights to strengthen (or weaken) its confidence according
to the feedback of F-reg on the labeled data. FedDure utilizes the bi-level optimization strategy to
alternately update the local model and dual regulators in clients. We theoretically show that C-reg
and F-reg converge with guarantee and empirically demonstrate that FedDure outperforms other
methods on various benchmarks.

The main contributions of this work are three-fold. (1) We address a more practical scenario of
FSSL, where data distribution is different not only across clients (external imbalance) but also be-
tween labeled and unlabeled data within a client (internal imbalance). (2) We propose a flexible
FSSL framework with dual regulator, (FedDure), which designs adaptive regulators to flexibly up-
date the local model according to the learning processes and outcomes on specific data distributions
of each client. It does not require sharing of additional information among clients. (3) We theoret-
ically analyze and present the convergence of the dual regulator and empirically demonstrate that
FedDure is superior to the state-of-the-art FSSL approaches across multiple benchmarks.

2 RELATED WORK

Federated Learning (FL) is an emerging distributed training technique that trains models on de-
centralized clients and aggregates model updates in a central server (Yang et al., 2019). It protects
data privacy as raw data are always kept locally. FedAvg (McMahan et al., 2017) is a pioneer-
ing work that aggregates model updates by weighted averaging. Statistical heterogeneity is an im-
portant challenge of FL in real-world scenarios, where the data distribution is inconsistent among
clients (Li et al., 2020a). A plethora of works have been proposed to address this challenge with
approaches like extra data sharing, regularization, new aggregation mechanisms, and personaliza-
tion (Zhao et al., 2018; Li et al., 2020b; Zhuang et al., 2020; Li et al., 2021b; Gao et al., 2022).
However, these approaches commonly consider only supervised learning settings and may not be
simply applied to scenarios where only a small portion of data is labeled. Numerous studies fo-
cus on purely unsupervised federated learning, but they are either application-specific or only learn
generic visual representations (Zhuang et al., 2021a;b); they do not effectively leverage the small
fraction of labeled data that could exist in real-world applications. Our work primarily focuses on
federated semi-supervised learning, where a small fraction of data has labels in each client.

Semi-Supervised Learning aims to utilize unlabeled data for performance improvements and is
usually divided into two popular branches pseudo labeling and consistency regularization. Pseudo-
labeling methods (Lee et al., 2013; Zou et al., 2022; Pham et al., 2021) usually generate artificial
labels of unlabeled data from the model trained by labeled data and apply the filtered high-confidence
labels as supervised signals for unlabeled data training. MPL Pham et al. (2021) extends the knowl-
edge distillation and meta-learning to SSL by optimizing the teacher model with feedback from the
student model. Consistency regularization (Lee et al., 2022; Tarvainen & Valpola, 2017) regularizes
the outputs of different perturbed versions of the same input to be consistent. Many works (Sohn
et al., 2020; Zhang et al., 2021a; Lee et al., 2022) apply data augmentation as a perturbed strategy
for pursuing outcome consistency. FixMatch Sohn et al. (2020) follows the UDA and brings the idea
of pseudo-label to model training with unlabeled samples filtered by fixed threshold.

Federated Semi-Supervised Learning (FSSL) considers learning models from decentralized
clients where a small amount of labeled data resides on either clients or the server Jin et al. (2020).
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Figure 1: Illustration of Federated Semi-Supervised Learning Framework with Dual Regulator
(FedDure). FedDure updates the coarse-grained regulator (C-reg) and the fine-grained regulator (F-
reg) to adaptively regularize the model training in each client: C-reg dynamically regulates the
importance of local training on the unlabeled data by reflecting the overall learning effect on labeled
data; F-reg regulates the performance contribution of each unlabeled sample.

FSSL scenarios can be classified into three categories: (1) Labels-at-Server assumes that clients
have purely unlabeled data and the server contains some labeled data (Lin et al., 2021; He et al.,
2021; Zhang et al., 2021b; Diao et al., 2021); (2) Labels-at-Clients considers each client has mostly
unlabeled data and a small amount of labeled data (Jeong et al., 2021); (3) Labels-at-Partial-Clients
assumes that the majority of clients contain fully unlabeled data while numerous clients have fully
labeled data (Zhang et al., 2021b; Lin et al., 2021; Liang et al., 2022). Labels-at-Clients has been
largely overlooked; the prior work (Jeong et al., 2021) proposes inter-client consistency loss, but it
shares extra information among clients and bypasses the internal class imbalance issue. This work
introduces the dual regulator to address the issue, with no extra information shared among clients.

Class Imbalance Methods are concerned with dataset resampling (Chawla et al., 2002; Buda et al.,
2018) or loss reweighting (Ling & Sheng, 2008; Sun et al., 2007; Cui et al., 2019) for gradient cal-
culation. In the centralized learning setting, many methods (Chawla et al., 2002; Liu et al., 2008)
focus on resampling from the minority class for balanced class-wise distribution. Important exam-
ples receive more attention and align larger weights than others for accelerating the optimization of
networks. The important examples are quantified by their loss Zhao & Zhang (2015) or the uncer-
tainty Chang et al. (2017). Besides, the loss reweighting methods usually formulate the sampling
scheme on certain prior knowledge. Typical methods include the AdaBoost Freund & Schapire
(1997) and focal loss Lin et al. (2017), which focus on those hard examples and align larger weights
for them.

3 METHOD

This section first defines the problem and introduces a novel framework with dual regulators (Fed-
Dure). Using the dual regulator, we then build a bi-level optimization strategy for federated semi-
supervised learning.

3.1 PROBLEM DEFINITION

We focus on Federated Semi-Supervised Learning (FSSL) with external and internal class imbalance
problems, where each client data is partially labeled. We assume that there are K clients, denoted
as {C1, ..., CK}. Federated learning aims to train a generalized global model fg with parameter θg .
It coordinates decentralized clients to train their local models Fl = {fl,1, ..., fl,K} with parameters
{θl,1, ..., θl,K}, where each client is only allowed to access its own local private dataset. In the stan-
dard semi-supervised setting, the dataset contains a labeled set Ds = {xi, yi}N

s

i=1 and an unlabeled
set Du = {ui}N

u

i=1, where Ns ≪ Nu. Under FSSL, the private dataset Dk of each client Ck contains
Ns

k labeled instances Ds
k = {xi,k, yi,k}

Ns
k

i=1 and Nu
k unlabeled instances Du

k = {ui,k}
Nu

k
i=1.
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In this work, we primarily focus on image datasets. For an unlabeled image uk in client Ck, we
compute the corresponding pseudo label ŷk with the following equation:

ŷk = argmax(fl,k(Tw(uk);θθθl,k)), (1)

where Tw(uk) is the weakly-augmented version of uk and the pseudo labeling dataset in the client
Ck is denoted as Du

k = {ui,k, ŷi,k}
Nu

k
i=1. For simplicity of notation, we omit the symbol k in the

parameters later.

3.2 DUAL REGULATOR

In this section, we present federated semi-supervised learning with dual regulator, termed FedDure.
FedDure adaptively adjusts gradient updates in each client according to the class distribution charac-
teristics with two regulators, a coarse-grained regulator (C-reg) and a fine-grained regulator (F-reg).
Figure 1 depicts the optimization process with these two regulators. We first introduce the regulators
in this section and present the optimization process in Section 3.3.

Coarse-grained Regulator (C-reg). C-reg dynamically regulates the importance of local training
on the unlabeled data by quantifying the learning effect using labeled data. We define C-reg as
fd with parameters ϕϕϕ. Intuitively, C-reg and local models are collaboratively optimized during the
local training process in each client. On the one hand, C-reg is trained using pseudo labels generated
by the local model in a supervised manner. On the other hand, the parameters of the local model
are further rectified according to the feedback from C-reg. Specifically, at training iteration t, the
coarse-grained regulator searches its optimal parameter ϕϕϕ∗ by minimizing the cross-entropy loss on
unlabeled data with pseudo labels. We formulate it as:

ϕϕϕ∗ = argmin
ϕϕϕ

Eu

[
Lce

(
ŷ, fd(Ts(u);ϕϕϕ(t))

)]
, w.r.t ŷ = argmax(fl(Tw(u);θθθl)), (2)

where Ts(u) is the strongly-augmented unlabeled image u. The optimal parameter ϕϕϕ∗ is related
to the local model’s parameter θθθl via the generated pseudo label, where we denote the relationship
as ϕϕϕ∗(θθθl). In practice, it requires heavy computational costs to explore the optimal parameter by
training the coarse-grained regulator, so we design a strategy to approximate ϕϕϕ∗.

Conceptually, we approximateϕϕϕ∗ by performing one gradient step based on the parameter at training
iteration t (i.e., ϕϕϕ(t)). We establish the meta learning process between ϕϕϕ and θθθ as followed:

ϕϕϕ∗(θθθ
(t)
l ) ≈ ϕϕϕ(t+1)(θθθ

(t)
l ) = ϕϕϕ(t) − ηs∇ϕϕϕ(t)EuLce

(
ŷ, fd

(
Ts(u);θθθ(t)l ;ϕϕϕ(t)

))
. (3)

Practically, we update C-reg by utilizing the updated fine-grained regulator to measure the adaptive
weight for each unlabeled instance, where the updated fine-grained regulator is obtained based on
one gradient step of C-reg (ϕϕϕ− in Eqn. 6). The formulation to optimize C-reg is as followed:

ϕϕϕ(t+1) = ϕϕϕ(t) − ηsH(www(t+1);ϕϕϕ(t))∇ϕϕϕEuuu Lce

(
ŷ, fd

(
Ts(u);ϕϕϕ(t)

))∣∣∣
ϕϕϕ(t)

, (4)

where H(www(t+1);ϕϕϕ(t)) = fw
(
fd
(
Ts(u);ϕϕϕ(t)

)
;www(t+1)

)
, fw is the fine-grained regulator (F-reg),

andwww(t+1) is the parameters of F-reg updated by Eqn. 7 that we present in the following subsection.

Next, we quantify the learning effect of the local model with the C-reg using labeled samples by
computing the entropy difference d(t+1) of C-reg between training iterations t and t+ 1:

d(t+1) = Ex,y

[(
Lce

(
y, fd(x;ϕϕϕ(t)

)
− Lce

(
y, fd(x;ϕϕϕ(t+1)

))]
. (5)

The learning effect is further used as reward information to optimize the local model by regulating
the importance of local training on unlabeled data. In particular, the cross-entropy differences signify
the generalization gap for the C-reg updated by the pseudo labels from the local model. We provide
detailed derivation in Appendix A.4 for the optimization of the local model with C-reg.

Fine-grained Regulator (F-reg). F-reg regulates the importance of each unlabeled instance in
local training. It addresses the challenge that the fd is substantially hindered by corrupted labels
or class imbalance, especially in the early period of training rounds. This challenge could further
negatively impact the optimization of local model fl. Furthermore, previous methods usually utilize
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a fixed threshold to filter noisy pseudo labels in all clients. It is infeasible for clients with heteroge-
neous data when the skewed data distribution across clients is unknown.

To tackle the challenge, we construct F-reg fw parameterized bywww. 1 It learns an adaptive weighting
scheme tailored for each client according to the unlabeled data distribution characteristics. A unique
weight is generated for each unlabeled image to measure the contribution of the image to the overall
performance. We first perform one gradient step update of C-regϕϕϕ to associate F-reg and C-reg with
the following formula:

ϕϕϕ−(www(t)) = ϕϕϕ(t) − ηsH(www(t);ϕϕϕ(t))∇ϕϕϕEuuu Lce

(
ŷ, fd

(
Ts(u);ϕϕϕ(t)

))∣∣∣
ϕϕϕ(t)

, (6)

where one gradient step of C-reg ϕ− depends on the F-reg www(t). Next, we optimize F-reg in local
training iteration t as follows:

www∗ ≈ www(t+1) = www(t) − ηw∇www(t)Ex,yLce

(
y, fd(x;ϕ−ϕ−ϕ−(www(t))

)
, (7)

where fd(x;ϕϕϕ−(www(t))) is the output of fd on labeled data. We then introduce a re-weighting scheme
that calculates a unique weight mmmi for i-th unlabeled sample:

mmmi = fw(fl(Ts(ui), θθθ
(t)
l ),www(t+1)). (8)

Note that mi is a scalar to re-weight the importance of the corresponding unlabeled image.

3.3 BI-LEVEL OPTIMIZATION

In this section, we present optimization processes for the dual regulator and local model θ. We alter-
natively train two regulators, which approximate a gradient-based bi-level optimization procedure
(Finn et al., 2017; Liu et al., 2018). Then, we update the local model with fixed C-reg and F-reg.

Update F-reg. Firstly, we obtain one gradient step update of C-reg ϕ− using Eqn. 6. After that, the
supervised loss Lce

(
y, fd(x;ϕϕϕ(−)(www(t))

)
guides the update of the F-reg with Eqn. 7.

Update C-reg. After updating the parameters of F-reg, we update C-reg by Eqn. 4, regarding local
model θlθlθl(t) and the updated F-reg www(t+1) as fixed parameters.

Update Local Model with F-reg. We use the updated F-regwww(t+1) to calculate a unique weightmmmi

for i-th unlabeled sample with Eqn. 8. The gradient optimization is formulated as:

ggg(t)u = Eu

[
mmm · ∇

θθθ
(t)
l

Lce

(
ŷ, fl

(
Ts(u);θθθ(t)l

))]
. (9)

Update Local Model with C-reg. We then use C-reg to calculate entropy difference d(t+1) using
Eqn. 5. The entropy difference d(t+1) is adopted as a reward coefficient to adjust the gradient update
of local model on unlabeled data. The formulation is as followed:

ggg
(t)
d = d(t+1) · ∇

θθθ
(t)
l

EuLce

(
ŷ, fl

(
Ts(u);θθθ(t)l

))
, (10)

where the learning process can be derived by meta-learning strategy shown in Appendix A.4.

Update Local Model with Supervised Loss. Besides, we compute the gradient local model on
labeled data as followed:

ggg(t)s = ∇
θθθ
(t)
l

Ex,yLce

(
y, fl

(
x;θθθ(t)l

))
. (11)

On this basis, we update the local model’s parameter with the above gradient computation in Eqn.
9, 10 and 11, which is defined as:

θθθ
(t+1)
l = θθθ

(t)
l − η

(
ggg(t)s + ggg(t)u + ggg

(t)
d

)
, (12)

where η denotes the learning rate of the local model. Finally, after T local epochs, the local model is
returned to the central server. The server updates the global model θgθgθgr+1 by weighted averaging the
parameters from these received local models in the current round, and the r + 1 round is conducted
by sending θgθgθg

r+1 to the randomly selected clients as initialization. Alg. 1 presents the pipeline of
the overall optimization process.

1F-reg is a MLP architecture with one fully connected layer with 128 filters and a Sigmoid function.
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Algorithm 1 Federated Semi-supervised Learning with Dual Regulator (FedDure)
Require: K: number of clients; S: number of selected clients in each round; R: number of training rounds;

T : number of local iterations;
1: RunServer
2: Initialize θg and w for each client
3: for each round r from 0 to R− 1 do
4: Randomly select {Ck}Sk=1 from K clients;
5: for each k ∈ [1, S] in parallel do
6: θ

(r+1)
l,k ← RunClient(θrg)

7: end for
8: θ

(r+1)
g ← 1∑S

k=1
(|Ds

k
|+|Du

k
|)

∑S
k=1(|D

s
k|+ |Du

k |) · θ
(r+1)
l,k ▷ Aggregation

9: end for
10: return θRg ;
11: RunClient(θrg)
12: θ

(0)
l ← θrg ; ϕ(0)← θrg

13: for each local iteration t from 0 to T − 1 do
14: for minibatch D̃u

k ∈ Du
k and D̃s

k ∈ Ds
k do

15: ŷi,k ← Generate pseudo labels for unlabeled data D̃u
k with Eqn. 1; D̃u

k ← {ui,k, ŷi,k}
Nu

k
i=1

16: Update the fine-grained regulator w with Eqn. 7
17: Compute the instance weight mi with Eqn. 8
18: Update the coarse-grained regulator ϕ with Eqn. 4
19: Compute the entropy difference d with Eqn. 5
20: Compute local model’s gradient ggg(t)u , ggg(t)d , ggg(t)s following Eqn. 9, 10, and 11
21: Update local model θl with Eqn. 12
22: end for
23: end for
24: return θTl

3.4 CONVERGENCE OF OPTIMIZATION PROCESS

In this section, we further analyze the convergence of the coarse-grained and the fine-grained regu-
lators and derive the following theorems. The proofs are provided in Appendix A.5.

Theorem 1 Suppose supervised loss Lce(y, fd(x;ϕϕϕ(t+1)(θθθ
(t)
l )) is L-Lipschitz and has ρ-bounded

gradients. The Lce

(
ŷ, fd

(
Ts(u);ϕϕϕ(t)

))
has ρ-bounded gradients and twice differential with Hessian

bounded by B. Let the learning rate ηs = min{1, e
T } for constant e > 0, and η = min{ 1

L ,
c√
T
}

for some c > 0, such that
√
T
c ≥ L. Thus, the optimization of the local model using coarse-grained

regulator can achieve:

min
0≤t≤T

E[∥∇θlLce(y, fd(x;ϕϕϕ(t+1)(θθθ
(t)
l ))∥22] ≤ O(

c√
T
). (13)

Theorem 2 Suppose supervised and unsupervised loss functions are Lipschitz-smooth with constant
L, and have ρ-bounded gradient. The H(·) is differential with a ϵ-bounded gradient and twice
differential with its Hessian bounded by B. Let learning rate ηs satisfies ηs = min{1, k

T } for

constant k > 0, such that k
T < 1. ηw = min{ 1

L ,
c√
T
} for constant c > 0 such that

√
T
c ≥ L. The

optimization of the coarse-grained regulator can achieve:

lim
t→∞

E[∥H(www(t+1);ϕϕϕ(t))∇ϕEuuu Lce

(
ŷ, fd

(
Ts(u);ϕϕϕ(t)

))∣∣∣
ϕϕϕ(t)

∥22] = 0. (14)

4 EXPERIMENTS

In this section, we demonstrate the effectiveness and robustness of our method through comprehen-
sive experiments in three benchmark datasets with multiple data settings. More details and additional
experiments can be found in the supplementary material.

6



Under review as a conference paper at ICLR 2023

Table 1: Performance comparison of our proposed FedDure with state-of-the-art methods on three
different data heterogeneity settings. FedDure outperforms all other methods in all settings.

Methods CIFAR10 Fashion-MNIST CINIC-10
(IID, IID) (IID, DIR) (DIR, DIR) (IID, IID) (IID, DIR) (DIR, DIR) (IID, IID) (IID, DIR) (DIR, DIR)

FedAvg* 45.68 ± 1.14 43.83 ± 0.36 40.34 ± 0.46 85.56 ± 0.09 84.84 ± 0.09 82.24 ± 0.07 40.73 ± 0.50 39.00 ± 0.31 28.09 ± 0.53
FedAvg-SL 75.47 ± 0.41 66.70 ± 0.86 58.38 ± 0.41 89.87 ± 0.23 88.60 ± 0.25 86.95 ± 1.12 67.97 ± 0.50 57.72 ± 1.67 46.21 ± 1.06
FedProx-SL 74.67 ± 0.55 66.78 ± 0.87 59.55 ± 0.61 89.53 ± 0.23 88.35 ± 0.02 87.32 ± 0.84 68.13 ± 0.96 58.67 ± 1.04 52.09 ± 0.20

FedAvg+UDA 47.47 ± 0.67 43.89 ± 0.15 35.52 ± 0.52 86.20 ± 0.75 85.35 ± 0.62 81.07 ± 0.56 42.25 ± 0.31 39.93 ± 0.57 29/27± 0.09
FedProx+UDA 46.49 ± 0.74 42.82 ± 0.79 37.38 ± 0.52 84.78 ± 0.43 84.50 ± 0.34 82.94 ± 0.39 41.81 ± 0.94 39.40 ± 0.18 33.26 ± 0.98

FedAvg+Fixmatch 46.71 ± 2.49 46.67 ± 0.56 39.95 ± 1.85 86.46 ± 0.39 85.42 ± 0.19 81.07 ± 0.56 40.40 ± 0.61 39.66 ± 1.01 31.99 ± 0.31
FedProx+Fixmatch 47.60 ± 1.05 43,39 ± 0.71 41.85 ± 1.32 86.31 ± 0.28 85.18 ± 0.79 83.68 ± 0.78 41.46 ± 0.35 40.02 ± 0.61 32.21 ± 1.03

FedMatch 51.52 ± 0.50 51.59 ± 0.32 45.56 ± 0.91 85.71 ± 0.21 85.55 ± 0.09 85.13 ± 0.15 43.73 ± 1.15 41.82 ± 0.23 35.27 ± 0.35
FedDure (Ours) 67.69 ± 0.23 66.85 ± 0.65 57.73 ± 0.31 88.69 ± 0.16 88.21 ± 0.07 86.96 ± 0.12 56.36 ± 0.29 55.10 ± 0.25 46.43 ± 0.13
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Figure 2: Comparison of data distribution between FedMatch (Jeong et al., 2021) and our (DIR,
DIR) setting: (a) and (b) are labeled and unlabeled data distribution used in FedMatch, respectively;
our data distribution in (c) and (d) present external imbalance across clients and internal imbalance
between labeled and unlabeled data inside a client.

4.1 EXPERIMENTAL SETUP

Datasets. We conduct comprehensive experiments on three image classification datasets, including
CIFAR-10 (Krizhevsky et al., 2009), Fashion-MNIST (Xiao et al., 2017) and CINIC-10 (Darlow
et al., 2018). We provide the simulation of different data heterogeneity for external and internal
imbalance below and present more details of these datasets in the Appendix A.1.

Data Heterogeneity. We construct three data heterogeneity settings with different data distribu-
tions. We denote each setting as (A, B), where A and B are data distribution of labeled and unlabeled
data, respectively. The settings are as follows: (1) (IID, IID) means both labeled and unlabeled data
are IID. By default, we use 5 instances per class to build the labeled dataset for each client. The
remaining instances of each class are divided into K clients evenly to build an unlabeled dataset.
(2) (IID, DIR) means labeled data is the same as (IID, IID), but the unlabeled data is constructed
with Dirichlet distribution to simulate data heterogeneity, where each client only contains a subset
of classes. (3) (DIR, DIR) constructs both labeled and unlabeled data with Dirichlet distribution.
It simulates external and internal class imbalance, where the class distributions across clients and
within a client are different. Specifically, we allocate 500 labeled data per class to 100 clients us-
ing the Dirichlet process; The rest of the instances are also divided into each client with another
Dirichlet distribution. Figure 3 compares the data distribution of FedMatch (Batch NonIID) (Jeong
et al., 2021) and ours. Our (DIR, DIR) setting presents class imbalance both across clients (external
imbalance) and between labeled and unlabeled data within a client (internal imbalance).

Implementation Detail. We use the Adam optimizer with momentum = 0.9, batch size = 10 and
learning rates = 0.0005 for ηs, η and ηw. If there is no specified description, our default settings also
include local iterations T = 1, the selected clients in each round S = 5, and the number of clients
K = 100. For the DIR data configuration, we use a Dirichlet distribution Dir(γ) to generate the
DIR data for all clients, where γ = 0.5 for all three datasets. We adopt the ResNet-9 network as the
backbone architecture for local models and the coarse-grained regulator, while an MLP is utilized
for the fine-grained regulator. More details refer to Appendix A.2.
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Figure 3: Analysis of the impact of the number of labeled data and the impact of the number of
selected clients. (a) and (b) illustrate that FedDure consistently outperforms FedMatch and Baseline
(FedAvg-Fixmatch) on different percentages of labeled data. (c) and (d) show that FedDure scales
with increasing numbers of selected clients on CIFAR-10 and Fashion-MNIST datasets.
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Figure 4: Impact of dif-
ferent Dirichlet coefficients
under (DIR, DIR).

Table 2: Quantitative analysis of components of FedDure on
CIFAR-10 and Fashion-MNIST datasets.

Methods CIFAR-10 Fashion-MNIST
(DIR, DIR) (IID, DIR) (DIR, DIR) (IID, DIR)

Baseline 39.95 ± 1.85 46.67 ± 0.56 81.07 ± 0.56 85.42 ± 0.19
w/o C-reg 54.79 ± 0.59 64.98 ± 0.58 86.18 ± 0.13 87.45 ± 0.23
w/o F-reg 56.79 ± 0.63 66.75 ± 0.23 86.79 ± 0.17 88.14 ± 0.12
FedDure 57.73 ± 0.31 66.85 ± 0.65 86.96 ± 0.12 88.21 ± 0.07

Baselines. We compare our FedDure with the following state-of-the-art methods. FedAvg-SL
(McMahan et al., 2017) and FedProx-SL (Li et al., 2020b) denote the supervised algorithms
with corresponding FL methods and have fully labeled data in each client. FedAvg+UDA, Fed-
Prox+UDA, FedAvg+Fixmatch, and FedProx+Fixmatch: a naive combination between semi-
supervised method (Sohn et al., 2020; Xie et al., 2020) and FL. Although both labeled and unlabeled
data are utilized in these methods, they need to specify a predefined threshold on pseudo labels across
decentralized clients. FedMatch (Zhang et al., 2021b) adopts inter-consistency loss and disjoint loss
for model training, which can reflect state-of-the-art performance in FSSL. Note that, we set equal
hyper-parameters for FedDure and other state-of-the-art methods in all experiments.

4.2 PERFORMANCE COMPARISON

Table 1 reports the overall results of FedDure and other state-of-the-art methods on the three datasets,
where all results are averaged over 3 independent random trails. Our FedDure achieves state-of-the-
art FSSL performances on all datasets and data settings. (IID, IID) setting: compared with naive
combination FSSL methods and FedMatch, our FedDure significantly outperforms them on all three
datasets. Specifically, when evaluated on CINIC-10, which is a more difficult dataset and may
encounter a larger amount of unlabeled samples, we observe that other methods suffer from the
performance bottleneck and are inferior to the evaluation on CIFAR-10 with fewer unlabeled sam-
ples. This phenomenon verifies that our FedDure alleviates the influence of mass unlabeled data and
prevents performance degradation when the imbalance between labeled and unlabeled data increase
rapidly. (IID, DIR) setting: our FedDure is slightly affected by weak class mismatch on unlabeled
data, but our FedDure makes a rapid performance boost by 16.17% compared to FedMatch on CI-
FAR10. Also, competitive performance is achieved compared to the supervised method FedAvg-SL
on Fashion-MNIST. (DIR, DIR) setting: to simulate the federated semi-supervised scenario in real-
world applications, we formulate a severe scenario where labeled data and unlabeled data come
from different data distributions and suffer from extreme data imbalance. Under this setting, our
FedDure significantly outperforms others by at least 10% on CIFAR-10 and CINIC-10. In partic-
ular, we observe that the performance of other approaches degrades sharply and is even inferior to
FedAvg* which is only trained on divided labeled data. That is to say, extra unlabeled data might

8



Under review as a conference paper at ICLR 2023

even have a negative effect on model performance due to the distribution mismatch between labeled
and unlabeled data. Therefore, these quantity results demonstrate that our method is well suited for
this real-world scenario since the dual regulator effectively and flexibly provides real-time feedback
for local model updating.

4.3 ABLATION STUDY

Effectiveness of Components. To measure the importance of proposed components in our Fed-
Dure, we conduct ablation studies with the following variants. (1) baseline: the naive combination
of FedAvg and Fixmatch. (2) Ours w/o C-reg: this variant removes the C-reg (i.e. gd in Eqn.12) and
updates F-reg with local model. (3) Ours w/o F-reg: this variant replaces the dynamic weight (i.e.
gu in Eqn.12) and utilizes the fixed threshold to filter low-confidence pseudo labels. Table 2 shows
that adopting the C-reg improves the performance from 54.79% to 57.73% under (DIR, DIR) setting
on CIFAR-10. The F-reg can further make a remarkable performance boost under almost all data
sets on CIFAR-10 and F-MNIST. These evaluations verify the effectiveness of our components. The
local model can flexibly optimize parameters according to the complementary feedback from coarse
and fine-grained regulators.

Number of Label Data per Client. We evaluate the performance of our method when tuning
the proportion of labeled instances in each client in {2%, 4%, 10%, 15%, 20%}. As illustrated in
Figure 3(a) and 3(b), we find that our framework gains steady performance improvements with the
number of labeled data increases both in two data settings. Interestingly, after the labeling ratio
reaches 10%, the performance of the baseline is basically unchanged in (IID, DIR), while we find
substantial performance fluctuations for FedMatch and baseline in (DIR, DIR). This phenomenon
proves that our regulators can more properly extract valuable knowledge from labeled instances with
imbalanced distribution to help local model optimization.

Number of Selected Clients per Round. We also investigated the performance impact of the
number of selected clients per epoch, which varies in {2, 5, 10, 20}. As illustrated in Figure 3(c)
and 3(d), significant improvements can be achieved by increasing the selected clients. However,
there would be a limited impact on performance when the selected clients reach a certain amount.
We argue that although the number of the selected clients has a positive correlation with overall
performance, our framework can fully explore the underlying knowledge of each client to promote
overall performance improvement in the central server. In this case, when there are enough clients,
our method has learned comprehensive knowledge such that the performance becomes saturated.

Impacts of Data Heterogeneity. As illustrated in Figure 4, our FedDure is the only method that
is robust against different levels of internal data imbalance characterized by Dirichlet distribution.
FedMatch and baseline (FedAvg-Fixmatch) suffer from the rapid performance degradation in the
higher data heterogeneous (small Dirichlet Coefficient). These results demonstrate that our FedDure
is more flexible and can alleviate diverse inductive bias across clients when accounting for severe
data heterogeneity in real-world applications.

5 CONCLUSION

In this paper, we introduce a new federated semi-supervised learning framework with dual regulator,
FedDure, to address the challenge of external and internal imbalance of data distribution. Particu-
larly, we propose a coarse-grained regulator to regularize the gradient update in client model training
and present a fine-grained regulator to learn an adaptive weighting scheme for unlabeled instances
for gradient update. Furthermore, we formulate the learning process in each client as bi-level op-
timization that optimizes the local model in the client adaptively and dynamically with these two
regulators. Theoretically, we show the convergence guarantee of the regulators. Empirically, ex-
tensive experiments demonstrate the significance and effectiveness of FedDure. In the future, we
consider designing and integrating other client selection strategies for FSSL. Future work also in-
volves extending our method from image classification to more computer vision tasks.
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6 REPRODUCIBILITY STATEMENT

We provide the datasets, experimental settings, and implementation details in Section 4.1. More
details of the experimental setup are provided in Appendix A.1 and A.2. Besides, we summarize our
proposed FedDure in Algorithm 1. The source code will be released in the future.
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A APPENDIX

A.1 DATASET

CIFAR-10 is a dataset containing 60,000 RGB images of 32 x 32 resolutions for image classification
tasks. We follow the official guidance and involve 50,000 training images and 10,000 test images.
The data set contains 10 categories: “airline”, “automobile”, “bird”, “cat”,“deer”, “dog”, “frog”,
“horse”, “ship”, “trunk”.

CINIC-10 is a drop-in replacement for CIFAR-10 and is an extension of CIFAR-10 via the addition
of downsampled ImageNet images. CINIC-10 contains 270,000 images and is equally split into
three subsets: train set, validation set, and test set. In each subset, there are 10 categories like
CIFAR-10 and each class involves 9,000 images. In our FedDure training, we apply the training
subset for training and allocate them to K clients for uniform or Dirichlet distributions while the
global model tests in the test subset.

Fashion-MINIST consists of 60,000 training examples and 10,000 test examples. Each example
is a 28 x 28 gray-scale image, associated with a label from 10 classes. We implement training in
divided training examples and test in test set.

A.2 IMPLEMENTATION DETAILS

Network architecture. Follow the conventional methods Jeong et al. (2021), we employ the official
ResNet-9 to local model on all these datasets, i.e, CIFAR-10, CINIC-10 and Fashion-MNIST. Our
coarse-grained regulator is a deep copy version of initial local model. Our fine-grained regulator
is an MLP architecture, which contains one fully connected layer with 128 filters and follows a
Sigmoid function to normalize the output.

Naive combination methods. For all reimplement SSL algorithms FixMatch Sohn et al. (2020) or
UDA Xie et al. (2020), we fix the confidence threshold 0.85 for all FixMatch and FedMatch methods
following their official implementation. To achieve federated semi-supervised methods, the plain
FedAvg and FedProx are separately equipped with these SSL methods. For data augmentation, we
apply the same strong (RandAugment Cubuk et al. (2020) ) and weak (flip-and-shift) augmentation
for unsupervised loss on unlabeled data.

A.3 ADDITIONAL ABLATION STUDIES
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Figure 5: Visualization analysis in terms of different local iterations, where the total number of local
iterations or training rounds is fixed.

Number of Local Iterations. Finally, to qualitatively analyze the impact of local iterations on
performance, we consider two different cases: (1) The total number of local iterations is fixed, where
we reduce training rounds with the increase of local iterations to maintain invariant computation
cost. For instance, we set local iteration 2, the number of training rounds is 100. As shown in the
part of Figure 5, our methods suffer from accuracy degeneration with increasing local iterations.
We analyze that while few clients could receive adequate training, many other clients with valuable
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information have no chance to be learned, especially with only 40 training rounds. (2) The total
number of rounds is fixed, which means we can increase local iterations regardless of computational
costs. It can be seen in the right part of Figure 5 that our method achieves steady performance gains
by increasing local iterations. These results indicate that enhancing the local model training in each
client can promote the overall performance improvements of the central server.

A.4 DERIVATION OF COARSE-GRAINED REGULATOR

Our C-reg tries to correct the pseudo labels generated by the local model and the local model tries to
update its parameters by the feedback from the coarse-grained regulator (C-reg). The cross-entropy
difference is applied to quantify the learning effect, it can be derived by gradient-based meta-learning
method. We now present the derivation, which theoretically verifies the effectiveness of our coarse-
grained regulator. We first formulate the one-step update of the regulator ϕϕϕ(t) using the sampled soft
pseudo label ŷ ∼ fl(Tw(u);θθθl) generated by local model as follows,

ϕϕϕ(t+1)(θθθ
(t)
l ) = Eŷ∼fl(Tw(u);θθθl)

[
ϕϕϕ(t) − ηs∇ϕϕϕ(t)Lce

(
ŷ, fd

(
Ts(u);ϕϕϕ(t)

))]
.

(15)

Then, CE loss on labeled samples Lce(y, fd(x;ϕϕϕ(t+1)(θθθ
(t)
l )) is utilized to characterize the quality of

pseudo labels from the local model. Since ϕϕϕ(t+1) has a dependency on θθθ
(t)
l , we can minimize the

CE loss to update the local model θθθ(t)l according to the real-time feedback of regulator.

∂L
∂θ

(t)
l

=
∂

∂θθθ
(t)
l

Lce

(
y, fd(x;ϕϕϕ(t+1)(θθθ

(t)
l )
)

=
∂ϕϕϕ(t+1)

∂θθθ
(t)
l

· ∂

∂ϕϕϕ(t+1)
Lce

(
y, fd(x;ϕϕϕ(t+1)

) (16)

We focus on the first term in Equation 16. Since the ϕϕϕ(t+1) has no dependency on θθθ
(t)
l while only ŷyy

depends on θθθ
(t)
l . Note that here ŷyy is the soft predictions of the local model fl. Therefore, we utilize

REINFORCE to achieve,
∂ϕϕϕ(t+1)
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=
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∂θθθ
(t)
l
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ŷ̂ŷy|uuu;θθθ(t)l

)]
(17)

Then Monte Carlo approximation is applied for the term in Equation 17. We approximate the ex-
pected value with the same using ŷ̂ŷy. Finally, we rewrite the Equation 16 according to the Equation
17 as follows,
∂L
∂θ

(t)
l

= −ηs
∂

∂ϕϕϕ(t+1)
Lce

(
yyy, fd(x;ϕϕϕ(t+1)

)
· ∂

∂ϕϕϕ(t)
Lce

(
ŷyy, fd

(
Ts(u);ϕϕϕ(t)

))
· ∂

∂θθθ
(t)
l

logP
(
ŷ̂ŷy|uuu;θθθ(t)l

)
(18)

Due to the heavy computation cost, we apply the first-order Taylor expansion to approximate the
first two factors. Given that ϕϕϕ(t+1) = ϕϕϕ(t) − ηs

∂
∂ϕϕϕ(t)Lce

(
ŷ, fd

(
Ts(u);ϕϕϕ(t)

))
, we achieve

Lce

(
y, fd(x;ϕϕϕ(t)

)
−Lce

(
y, fd(x;ϕϕϕ(t+1)

)
=

∂

∂ϕϕϕ(t+1)
Lce

(
y, fd(x;ϕϕϕ(t+1)

)
· (ϕϕϕ(t) −ϕϕϕ(t+1))

= ηs ·
∂

∂ϕϕϕ(t+1)
Lce

(
y, fd(x;ϕϕϕ(t+1)

)
· ∂

∂ϕϕϕ(t)
Lce

(
ŷ, fd

(
Ts(u);ϕϕϕ(t)

))
(19)
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Now, we rewrite the Equation 18 as follows,

∂L
∂θ

(t)
l

= −
(
Lce

(
y, fd(x;ϕϕϕ(t)

)
− Lce

(
y, fd(x;ϕϕϕ(t+1)

))
· ∂

∂θθθ
(t)
l

logP
(
ŷ̂ŷy|uuu;θθθ(t)l

)
=
(
Lce

(
y, fd(x;ϕϕϕ(t)

)
− Lce

(
y, fd(x;ϕϕϕ(t+1)

))
· ∂

∂θθθ
(t)
l

Lce

(
ŷ̂ŷy, fl

(
Ts(u);θθθ(t)l

)) (20)

The Equation 10 is equal to Equation 20 and the difference between the coarse-grained regulator
characterizes learning difficulty from the perspective of the feedback and learning process of the
regulator on labeled samples.

A.5 CONVERGENCE OF OPTIMIZATION PROCESS

Our FedDure involves a bi-level optimization, so we demonstrate the convergence of these objectives
theoretically.

Theorem 1 Suppose supervised loss Lce(y, fd(x;ϕϕϕ(t+1)(θθθ
(t)
l )) is L-Lipschitz and have ρ-bounded

gradients. The Lce

(
ŷ, fd

(
Ts(u);ϕϕϕ(t)

))
have ρ-bounded gradients and twice differential with Hes-

sian bounded by B. Let the learning rate ηs = min{1, e
T } for constant e > 0, and η = min{ 1

L ,
c√
T
}

for some c > 0, such that
√
T
c ≥ L. Thus, the optimization of the local model using a coarse-grained

regulator can achieve,

min
0≤t≤T

E[∥∇θlLce(y, fd(x;ϕϕϕ(t+1)(θθθ
(t)
l ))∥22] ≤ O(

c√
T
), (21)

The CE loss Lce(y, fd(x;ϕϕϕ(t+1)(θθθ
(t)
l )) is minimized to update the local model θθθ

(t)
l . Let

L̂(ϕϕϕ(t+1);θθθ(t)) = Lce(y, fd(x;ϕϕϕ(t+1)(θθθ
(t)
l )), so the update of θθθl in each step as follows,

θθθ(t+1) = θθθ(t) − η∇θL̂(ϕϕϕ
(t+1);θθθ(t)) (22)

In coarse-grained optimization process, the updating for θθθ(t) to θθθ(t+1) is,

L̂(ϕϕϕ(t+2);θθθ(t+1))− L̂(ϕϕϕ(t+1);θθθ(t))

= {L̂(ϕϕϕ(t+2);θθθ(t+1))− L̂(ϕϕϕ(t+1);θθθ(t+1))}+ {L̂(ϕϕϕ(t+1);θθθ(t+1))− L̂(ϕϕϕ(t+1);θθθ(t))}
(23)

For the first term, since we have ϕϕϕ(t+1) = ϕϕϕ(t) − ηs∇ϕϕϕ(t)EuLce

(
ŷ, fd

(
Ts(u);ϕϕϕ(t)

))
, let

Vcoarse
(
ϕϕϕ(t)

)
= EuLce

(
ŷ, fd

(
Ts(u);ϕϕϕ(t)

))
, we achieve,

L̂(ϕϕϕ(t+2);θθθ(t+1))− L̂(ϕϕϕ(t+1);θθθ(t+1))

≤ ⟨∇ϕ(t+1)Vcoarse(ϕϕϕ(t+1)),−ηs∇ϕ(t+1)Vcoarse(ϕϕϕ(t+1))⟩+ L

2
∥ϕϕϕ(t+2) −ϕϕϕ(t+1)∥22

= ⟨∇ϕ(t+1)Vcoarse(ϕϕϕ(t+1)),−ηs∇ϕ(t+1)Vcoarse(ϕϕϕ(t+1))⟩+ L

2
∥ − ηs∇ϕ(t+1)Vcoarse(ϕϕϕ(t+1))∥22

=

(
−ηs +

ηs
2L

2

)
∥∇ϕ(t+1)Vcoarse(ϕϕϕ(t+1))∥22

(24)
Since ∇ϕ(t+1)Vcoarse(ϕϕϕ(t+1)) ≤ ρ, so Equation 24 satisfies,

L̂(ϕϕϕ(t+2);θθθ(t+1))− L̂(ϕϕϕ(t+1);θθθ(t+1)) ≤
(
−ηs +

ηs
2L

2

)
ρ2 (25)
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For the second term, we have,

L̂(ϕϕϕ(t+1);θθθ(t+1))− L̂(ϕϕϕ(t+1);θθθ(t))

≤ ⟨∇θ(t)L̂(ϕϕϕ(t+1);θθθ(t)), θθθ(t+1) − θθθ(t)⟩+ L

2
∥θθθ(t+1) − θθθ(t)∥22

= ⟨∇θ(t)L̂(ϕϕϕ(t+1);θθθ(t)),−η∇θ(t)L̂(ϕϕϕ(t+1);θθθ(t))⟩+ L

2
∥ − η∇θ(t)L̂(ϕϕϕ(t+1);θθθ(t))∥22

=

(
−η +

η2L

2

)
∥∇θ(t)L̂(ϕϕϕ(t+1);θθθ(t))∥22

(26)

Combining these two terms we have,

L̂(ϕϕϕ(t+2);θθθ(t+1))− L̂(ϕϕϕ(t+1);θθθ(t)) ≤
(
−ηs +

ηs
2L

2

)
ρ2 +

(
−η +

η2L

2

)
∥∇θ(t)L̂(ϕϕϕ(t+1);θθθ(t))∥22

(27)
Summing up all iterations, we can obtain,

L̂(ϕϕϕ(T+2);θθθ(T+1))− L̂(ϕϕϕ(2);θθθ(1)) ≤
T∑

t=1

(
−ηs +

ηs
2L

2

)
ρ2 +

T∑
t=1

(
−η +

η2L

2

)
∥∇θ(t)L̂(ϕϕϕ(t+1);θθθ(t))∥22

T∑
t=1

(
η − η2L

2

)
∥∇θ(t)L̂(ϕϕϕ(t+1);θθθ(t))∥22 ≤

T∑
t=1

(
−ηs +

ηs
2L

2

)
ρ2 − L̂(ϕϕϕ(T+2);θθθ(T+1)) + L̂(ϕϕϕ(2);θθθ(1))

≤
T∑

t=1

(
−ηs +

ηs
2L

2

)
ρ2 + L̂(ϕϕϕ(2);θθθ(1))

(28)

Furthermore, we deduce that,

min
t

E[∥∇θ(t)L̂(ϕϕϕ(t+1);θθθ(t))∥22] ≤
1∑T

t=1

(
η − η2L

2

) ( T∑
t=1

(
−ηs +

ηs
2L

2

)
ρ2 + L̂(ϕϕϕ(2);θθθ(1))

)

≤ 1∑T
t=1 η

(
T∑

t=1

(
−2ηs + ηs

2L
)
ρ2 + 2L̂(ϕϕϕ(2);θθθ(1))

)

=

∑T
t=1

(
−2ηs + ηs

2L
)
ρ2∑T

t=1 η
+

2L̂(ϕϕϕ(2);θθθ(1))∑T
t=1 η

=

(
−2ηs + ηs

2L
)
ρ2

η
+

2L̂(ϕϕϕ(2);θθθ(1))

Tη

= (−2ηs + ηsL) ρ
2 max{L,

√
T

c
}+ 2L̂(ϕϕϕ(2);θθθ(1))

T
max{L,

√
T

c
}

= (L− 2) ρ2 min{1, e
T
}max{L,

√
T

c
}+ 2L̂(ϕϕϕ(2);θθθ(1))

T
max{L,

√
T

c
}

≤ e(L− 2)ρ2

c
√
T

+
2L̂(ϕϕϕ(2);θθθ(1))

c
√
T

= O
(

c√
T

)
(29)

The proof has been completed.

Let theϕϕϕ is optimized with the loss Lfine(ϕϕϕ(t);www(t+1)) = H(www(t+1);ϕϕϕ(t))Lce

(
ŷ, fd

(
Ts(u);ϕϕϕ(t)

))
,

where H(www(t+1);ϕϕϕ(t)) = fw

(
fd

(
Ts(u);ϕϕϕ(t)

l

)
;www(t+1)

)
indicates the adaptive weight for samples

uuu.

Theorem 2 Suppose supervised and unsupervised loss functions are Lipschitz-smooth with constant
L and have ρ-bounded gradient. The H(·) is differential with a ϵ-bounded gradient and twice dif-
ferential with its Hessian bounded by B. Let learning rate ηs satisfies ηs = min{1, k

T } for constant

17
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k > 0, such that k
T < 1. ηw = min{ 1

L ,
c√
T
} for constant c > 0 such that

√
T
c ≥ L. The method

can achieve
lim
t→∞

E[∥∇ϕ(t)Lfine(ϕϕϕt;www(t+1))∥22] = 0. (30)

The proof. The optimization from www(t) to www(t+1) is,

www(t+1) = www(t) − ηw∇www(t) Lce

(
y, fw

(
fd(x;ϕϕϕ(t));www(t)

))
︸ ︷︷ ︸

:=Ls(xxx;ϕϕϕ(t),www(t))

,

(31)

We know the updating of ϕϕϕ is,

ϕϕϕ(t+1) = ϕϕϕ(t) − ηs H(www(t+1);ϕϕϕ(t))∇ϕϕϕ Lce

(
ŷ, fd

(
Ts(u);ϕϕϕ(t)

))∣∣∣
ϕϕϕ(t)︸ ︷︷ ︸

:=∇ϕLu(uuu;ϕϕϕ(t),www(t+1))

.

(32)

Observe that,

Lfine(ϕϕϕ(t+1);www(t+2))− Lfine(ϕϕϕt;www(t+1))

= {Lfine(ϕϕϕ(t+1);www(t+2))− Lfine(ϕϕϕ(t+1);www(t+1))}+ {Lfine(ϕϕϕ(t+1);www(t+1))− Lfine(ϕϕϕt;www(t+1))}.
(33)

For the first term, we have

Lfine(ϕϕϕ(t+1);www(t+2))− Lfine(ϕϕϕ(t+1);www(t+1))

=
(
H(www(t+2);ϕϕϕ(t+1))−H(www(t+1);ϕϕϕ(t+1))

)
Lce

(
ŷ, fd

(
Ts(u);ϕϕϕ(t+1)

))
.

(34)

In the first factor, we achieve,

H(www(t+2);ϕϕϕ(t+1))−H(www(t+1);ϕϕϕ(t+1))

≤ ⟨∇w(t+1)H(www(t+1);ϕϕϕ(t+1)),www(t+2) −www(t+1)⟩+ L

2
∥www(t+2) −www(t+1)∥22

= ⟨∇w(t+1)H(www(t+1);ϕϕϕ(t+1)),−ηw∇www(t+1)Ls(xxx;ϕϕϕ(t+1),www(t+1))⟩+ L

2
∥ − ηw∇www(t)Ls(xxx;ϕϕϕ(t+1),www(t+1))∥22

= −ηw · ∇w(t+1)H(www(t+1);ϕϕϕ(t+1)) · ∇www(t+1)Ls(xxx;ϕϕϕ(t+1),www(t+1)) +
ηw

2L

2
∥∇www(t+1)Ls(xxx;ϕϕϕ(t+1),www(t+1))∥22.

(35)

For the second term, we have

Lfine(ϕϕϕ(t+1);www(t+1))− Lfine(ϕϕϕ(t);www(t+1))

≤ ⟨∇ϕ(t)Lfine(ϕϕϕ(t);www(t+1)),ϕϕϕ(t+1) −ϕϕϕ(t)⟩+ L

2
∥ϕϕϕ(t+1) −ϕϕϕ(t)∥22

= ⟨∇ϕ(t)Lfine(ϕϕϕ(t);www(t+1)),−ηs∇ϕLu(uuu;ϕϕϕ(t),www(t+1))⟩+ L

2
∥ − ηs∇ϕLu(uuu;ϕϕϕ(t),www(t+1))∥22

= −ηs∥∇ϕ(t)Lu(uuu;ϕϕϕ(t),www(t+1))∥22 +
ηs

2L

2
∥∇ϕ(t)Lu(uuu;ϕϕϕ(t),www(t+1))∥22.

(36)

18
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Combining these two terms we have,

Lfine(ϕϕϕ(t+1);www(t+2))− Lfine(ϕϕϕ(t);www(t+1))

≤ −ηs∥∇ϕ(t)Lu(uuu;ϕϕϕ(t),www(t+1))∥22 +
ηs

2L

2
∥∇ϕ(t)Lu(uuu;ϕϕϕ(t),www(t+1))∥22

+ Lce

(
ŷ, fd

(
Ts(u);ϕϕϕ(t+1)

))
· {−ηw · ∇w(t+1)H(www(t+1);ϕϕϕ(t+1)) · ∇www(t+1)Ls(xxx;ϕϕϕ(t+1),www(t+1))

+
ηw

2L

2
∥∇www(t+1)Ls(xxx;ϕϕϕ(t+1),www(t+1))∥22}.

(37)
Rearranging the inequality, we obtain,

ηw · ∇w(t+1)H(www(t+1);ϕϕϕ(t+1)) · ∇www(t+1)Ls(xxx;ϕϕϕ(t+1),www(t+1)) · Lce

(
ŷ, fd

(
Ts(u);ϕϕϕ(t+1)

))
+ ηs∥∇ϕ(t)Lu(uuu;ϕϕϕ(t),www(t+1))∥22 ≤ ηs

2L

2
∥∇ϕ(t)Lu(uuu;ϕϕϕ(t),www(t+1))∥22

+
ηw

2L

2
∥∇www(t+1)Ls(xxx;ϕϕϕ(t+1),www(t+1))∥22 · Lce

(
ŷ, fd

(
Ts(u);ϕϕϕ(t+1)

))
+ Lfine(ϕϕϕ(t);www(t+1))− Lfine(ϕϕϕ(t+1);www(t+2))

(38)
Summing up the inequalities in T iterations on both sides, we achieve

T∑
t=1

ηw · ∇w(t+1)H(www(t+1);ϕϕϕ(t+1)) · ∇www(t+1)Ls(xxx;ϕϕϕ(t+1),www(t+1)) · Lce

(
ŷ, fd

(
Ts(u);ϕϕϕ(t+1)

))
+

T∑
t=1

ηs∥∇ϕ(t)Lu(uuu;ϕϕϕ(t),www(t+1))∥22 ≤ ηs
2L

2

T∑
t=1

∥∇ϕ(t)Lu(uuu;ϕϕϕ(t),www(t+1))∥22

+
ηw

2L

2

T∑
t=1

∥∇www(t+1)Ls(xxx;ϕϕϕ(t+1),www(t+1))∥22 · Lce

(
ŷ, fd

(
Ts(u);ϕϕϕ(t+1)

))
+ Lfine(ϕϕϕ(1);www(2))− Lfine(ϕϕϕ(T+1);www(T+2))

≤ ηs
2L

2

T∑
t=1

∥∇ϕ(t)Lu(uuu;ϕϕϕ(t),www(t+1))∥22

+
ηw

2L

2

T∑
t=1

∥∇www(t+1)Ls(xxx;ϕϕϕ(t+1),www(t+1))∥22 · Lce

(
ŷ, fd

(
Ts(u);ϕϕϕ(t+1)

))
+ Lfine(ϕϕϕ(1);www(2))

≤ ηs
2LTρ2

2
+

ηw
2LTρ2

2

T∑
t=1

Lce

(
ŷ, fd

(
Ts(u);ϕϕϕ(t+1)

))
+ Lfine(ϕϕϕ(1);www(2))

(39)
When T → ∞, we can obtain,

T∑
t=1

ηw · ∇w(t+1)H(www(t+1);ϕϕϕ(t+1)) · ∇www(t+1)Ls(xxx;ϕϕϕ(t+1),www(t+1)) · Lce

(
ŷ, fd

(
Ts(u);ϕϕϕ(t+1)

))
+

T∑
t=1

ηs∥∇ϕ(t)Lu(uuu;ϕϕϕ(t),www(t+1))∥22

≤ lim
T→∞

T∑
t=1

ηwϵρ · Lce

(
ŷ, fd

(
Ts(u);ϕϕϕ(t+1)

))
+ lim

T→∞

T∑
t=1

ηs∥∇ϕ(t)Lu(uuu;ϕϕϕ(t),www(t+1))∥22

≤ lim
T→∞

ηs
2LTρ2

2
+ lim

T→∞

ηw
2LTρ2

2

T∑
t=1

Lce

(
ŷ, fd

(
Ts(u);ϕϕϕ(t+1)

))
+ Lfine(ϕϕϕ(1);www(2)) ≤ ∞,

(40)
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since Lce

(
ŷ, fd

(
Ts(u);ϕϕϕ(t+1)

))
is bounded for a limited number of unlabeled samples, supervised

loss function have ρ-bounded gradient and the H() is differential with a ϵ-bounded gradient. There-
fore we deduce that

lim
T→∞

T∑
t=1

ηs∥∇ϕ(t)Lu(uuu;ϕϕϕ(t),www(t+1))∥22 < ∞. (41)

According to the Lemma A.5 Mairal (2013), to prove limt→∞ E[∥∇ϕ(t)Lu(uuu;ϕϕϕ(t),www(t+1))∥22] = 0,
we should prove∣∣∣E[∥∇ϕ(t)Lu(uuu;ϕϕϕ(t+1),www(t+2))∥22]− E[∥∇ϕ(t)Lu(uuu;ϕϕϕ(t),www(t+1))∥22]

∣∣∣ ≤ Qηs, (42)

where Q represents constant. Consider the Equation 41, we have∣∣∣E[∥∇ϕ(t+1)Lu(uuu;ϕϕϕ(t+1),www(t+2))∥22]− E[∥∇ϕ(t)Lu(uuu;ϕϕϕ(t),www(t+1))∥22]
∣∣∣

≤ E[(∥∇ϕ(t+1)Lu(uuu;ϕϕϕ(t+1),www(t+2))∥2 + ∥∇ϕ(t)Lu(uuu;ϕϕϕ(t),www(t+1))∥2)
· (∥∇ϕ(t+1)Lu(uuu;ϕϕϕ(t+1),www(t+2))∥2 − ∥∇ϕ(t)Lu(uuu;ϕϕϕ(t),www(t+1))∥2)]
≤ E[(∥∇ϕ(t+1)Lu(uuu;ϕϕϕ(t+1),www(t+2)) +∇ϕ(t)Lu(uuu;ϕϕϕ(t),www(t+1))∥2)
· (∥∇ϕ(t+1)Lu(uuu;ϕϕϕ(t+1),www(t+2))−∇ϕ(t)Lu(uuu;ϕϕϕ(t),www(t+1))∥2)]

≤ 2Lρηsηw

√
E[∥∇ϕ(t)Lu(uuu;ϕϕϕ(t),www(t+1))∥22] + E[∥∇w(t)Ls(xxx;ϕϕϕ(t),www(t))∥]

≤ 2
√
2Lρ2ηsηw

(43)

Thus, it has proved. Since Lfine(ϕϕϕt;www(t+1)) = Lu(uuu;ϕϕϕ(t),www(t+1)), therefore, the proof has com-
pleted.
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