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Abstract

The development of machine learning for cardiac care is severely hampered by1

privacy restrictions on sharing real patient electrocardiogram (ECG) data. While2

generative AI offers a promising solution, synthesized ECGs produced by existing3

models often lack the morphological fidelity required for clinical utility due to4

their reliance on simplistic and general training objectives such as MSE loss. In5

this work, we address this critical gap by introducing MIST-ECG (Mel spectro-6

gram Informed Synthetic Training), a novel training paradigm that supervises7

the conditional diffusion-based Structured State Space Model (SSSD-ECG) with8

time–frequency domain objective to enforce structural realism. We train and rigor-9

ously evaluate our framework on the PTB-XL dataset, assessing the synthesized10

ECG signals on trustworthiness, fidelity, privacy preservation, and downstream11

task utility. MIST-ECG achieves substantial gains: it improves morphological co-12

herence, preserves strong privacy guarantees with all metrics evaluated exceeding13

the baseline by 4%-8%, and notably reduces the interlead correlation error by an14

average of 74%. In critical low-data regimes, a classifier trained on datasets supple-15

mented with our synthetic ECGs achieves performance comparable to a classifier16

trained solely on real data. This work demonstrates that ECG synthesizers, trained17

with the proposed time–frequency structural regularization scheme, can serve as18

high-fidelity, privacy-preserving surrogates when real data are scarce.19

1 Introduction20

Cardiovascular disease remains the leading cause of death worldwide, creating a staggering health21

and economic burden [9]. The electrocardiogram (ECG) is the cornerstone of cardiac diagnostics, and22

applying machine learning to these signals promises earlier and more accurate diagnoses [7]. However,23

this promise is constrained by a fundamental data access bottleneck. ECGs are not merely medical24

records; they are sensitive biometric data that reveal extensive personal health information [11].25

Consequently, privacy regulations limit the sharing of large, diverse datasets needed to train robust26

and generalizable AI models. High-fidelity synthetic data generation has emerged as the most27

promising solution, offering a pathway to democratize research and accelerate innovation [2, 1].28

As the field moves from feasibility to clinical application, it faces a critical challenge: morphological29

fidelity. The clinical utility of an ECG depends on the precise shape, duration, and interplay of its30

components (P-waves, QRS complexes, T-waves) and spatio-temporal coherence across all 12 leads.31

Signals that are statistically similar but morphologically flawed are not ready for clinical use. They32

risk biased algorithms, failed validation studies, and a loss of trust in AI-driven diagnostics. Current33

generative models [1] perpetuate this gap, relying on generic time-series losses such as Mean Squared34

Error. These metrics are structurally agnostic, treating each time point independently, and fail to35
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impose a physiologically grounded prior. As a result, signals that appear plausible may lack the subtle36

morphological integrity and inter-lead correlations essential for safe clinical use.37

This paper argues that closing the morphological fidelity gap is essential for deploying generative ECG38

models responsibly. We introduce MIST-ECG (Mel-Spectrogram Informed Synthetic Training39

for ECGs), a training paradigm designed to address this problem. By supervising the generative40

process in the time-frequency domain with the mel-spectrogram difference between real and synthetic41

12-lead ECGs, MIST-ECG imposes a clinically relevant structural prior on generated waveforms.42

Our goal is not incremental improvements in point-wise error but a fundamental enhancement of43

physiological plausibility. We demonstrate the efficacy of our approach through a comprehensive44

evaluation, showing a 4%-8% improvements of all fidelity and morphological Metrics, an average45

74% reduction in inter-lead correlation error and, critically, that downstream 71 disease label ECG46

classifier model trained on synthetic supplemented data can match and sometimes outperform solely47

real training data in diagnostic performance under low-data regimes. This establishes a scalable,48

privacy-conscious foundation for advancing cardiac research with synthetic ECGs.49

2 Related Work50

Advances in Synthetic ECG Generation. The synthesis of ECG signals has evolved rapidly from51

early approaches with Generative Adversarial Networks (GANs) [2, 14] and Variational Autoencoders52

(VAEs) [10, 5] to the current state-of-the-art: diffusion models [4]. Architectures like SSSD-ECG [1]53

have demonstrated superior sample quality and training stability. However, the success of these models54

has been primarily driven by architectural innovations, while the training objective has remained55

relatively simple, typically relying on point-wise losses that do not explicitly enforce morphological56

realism. Ensuring Fidelity in Medical Time Series Generation. A common challenge across57

generative modeling for private medical data, from electroencephalography (EEG) signals [13] to58

electronic health records (EHR) [3], is ensuring the structural integrity of the generated time series.59

The predominant training paradigm relies on time-domain losses like Mean Squared Error, which are60

often insufficient to enforce the morphological coherence essential for clinical realism. Concurrent61

work, such as ECG-DPM [6], has also recently explored using spectrogram-based diffusion models,62

based on UNet backbone and is not conditional. Building upon this principle, our work introduces63

MIST-ECG, a framework that not only systematically applies a mel-spectrogram-informed training64

paradigm but also provides the first rigorous evaluation of its impact on physiological coherence and65

its ability to serve as a surrogate for real data in data-scarce settings. This bridges a methodological66

gap by imposing a stronger, clinically relevant structural prior on the generated waveforms, addressing67

the morphological fidelity and inter-lead correlation gap left by previous methods.68

3 Methods69

Our methodology introduces a novel paradigm, MIST-ECG, leverages the 12-lead Mel Spectrogram70

representation of ECGs to supervise the generative model training. We selected SSSD-ECG [1] as71

our foundational architecture due to its proven success in generating high-fidelity 12-lead ECGs. The72

model leverages a score-based diffusion process to transform random noise into structured signals73

iteratively. Its core strength lies in its use of Structured State-Space Model (SSSM) layers, which74

are highly effective at capturing the long-range temporal dependencies crucial for modeling the75

physiological structure of an entire heartbeat and rhythm.76

SSSD-ECG: Diffusion-based Conditional ECG Generation with Structured State Space Models77

In its original implementation, SSSD-ECG conditioned on a 71 length onehot vector representing78

diagnostic labels, which is projected into a continuous representation via a learnable weight matrix.79

Despite its strong performance, this framework has two primary limitations. First, its reliance on80

a mean squared error (MSE) loss treats each time step independently, failing to impose a global81

structural prior on the waveform’s morphology. Second, its conditioning is limited to a monolithic82

vector of disease labels, which prevents the generation of personalized ECGs. Although both are83

important areas for improvement, our work focuses on resolving the morphological fidelity gap.84

MIST-ECG: Mel-Spectrogram Informed Synthetic Training for ECGs. To address the limita-85

tion of standard diffusion training for physiological time-series generation—its reliance on point-wise86

losses like MSE that ignore spatiotemporal structure—we propose a paradigm that adds spatiotempo-87
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ral supervision to better capture ECG waveform morphology and duration. Our approach is inspired88

by Mel Spectrogram used as a higher fidelity of continuous representation other than vector quantiza-89

tion in audio synthesis [8] but is specifically adapted to the unique physiological characteristics of the90

ECG. The process begins by computing a multi-resolution Short-Time Fourier Transform (STFT)91

of the ECG signals, using window sizes wl ∈ {256, 512} to capture both high-frequency, transient92

events (like the sharp QRS complex) and low-frequency, evolving waveforms (like the T-wave). We93

then warp the frequency axis of these spectrograms onto the perceptually-motivated Mel scale, using94

64 and 128 Mel bands for each resolution. The Mel scale’s non-linear compression of frequencies is95

uniquely suited for ECG analysis, as it naturally places greater emphasis on the diagnostically-rich96

low-frequency bands where information about ST segments and T-wave morphology resides. This97

imposes a strong inductive bias, forcing the model to prioritize the most clinically relevant spectral98

components. The MIST loss is defined as the summed L1 distance between the multi-resolution99

mel-spectrograms of the generated (ŷ) and ground-truth (y) signals:100

LMIST(ŷ, y) =
∑
wl

∑
bands

∥Mwl,bands(ŷ)−Mwl,bands(y)∥1 (1)

The final training objective is a weighted sum: LTotal = LMSE + βLMIST. We empirically selected101

β = 0.02, which stabilizing training and leading to consistent loss reduction. The mechanism of102

MIST-ECG and the visualization of 12-lead Mel-spectrogram of real data and MIST-ECG can be103

found in Appendix B 5.104

4 Experiments and Results105

To rigorously validate our proposed methods, we designed a multi-faceted evaluation framework106

on the public PTB-XL dataset [12]. Our investigation is structured as a direct comparative analysis107

between the baseline SSSD-ECG model and our proposed MIST-ECG framework. This allows us108

to systematically quantify the impact of our mel-spectrogram informed training paradigm on three109

critical dimensions: trustworthiness, privacy preservation, utility, and robustness.110

Signal Fidelity and Privacy Preservation. We first quantify the quality and trustworthiness of111

the synthesized signals. Table 1 shows that MIST-ECG outperforms SSSD-ECG across all fidelity112

and morphology metrics while also strengthening privacy. Specifically, MIST-ECG reduces RMSE113

by 4.68% and MSE by 4.39%; increases SNR by +0.58,dB; lowers Fourier distance by 4.68%114

and Hausdorff distance by 8.51%; and raises SSIM by +0.0309 (+5.15%). Privacy also improves:115

Membership Inference Risk (MIR) drops by 18.18%, and Nearest Neighbor Adversarial Accuracy116

(NNAA) decreases by 0.0056, crossing below zero (0.0047 → -0.0009), indicating attack performance117

worse than chance. Collectively, these gains highlight higher morphological realism and fidelity with118

enhanced privacy guarantees.119

Table 1: Comprehensive comparison of signal fidelity, morphology, and privacy. The MIST-ECG
framework excels in morphological realism and offers the strongest privacy guarantees.

Fidelity & Morphology Metrics Privacy Metrics
Training Objective RMSE ↓ MSE ↓ SNR (dB) ↑ Fourier ↓ Hausdorff ↓ SSIM ↑ MIR ↓ NNAA ↓
SSSD-ECG 0.2114 0.0524 -3.086 0.2115 1.187 0.6004 0.0099 0.0047
MIST-ECG 0.2015 0.0501 -2.508 0.2016 1.086 0.6313 0.0081 -0.0009

Interlead Correlation Matrix.120

Table 2: Average and maximum absolute inter-lead
correlation error relative to real data.

Model Avg. Corr. Error Max Corr. Error
SSSD-ECG (Baseline) 0.140 0.491
MIST-ECG (Ours) 0.042 0.108

To further assess physiological coherence, we121

analyzed the interlead correlations, a critical122

property of realistic ECGs. The results are123

shown in Table 2. The MIST-ECG framework124

demonstrates a 70% and 78% reduction in the125

average absolute interlead correlation error and126

max absolute interlead correlation error com-127

pared to the baseline. This confirms its superior128

ability to capture the complex spatio-temporal129

dependencies between leads, a key of clinical realism.130
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Validating Synthetic Data as a Surrogate for Real Data. The ultimate test of synthetic data131

is its ability to serve as a surrogate for real data when it is most needed in low-data regimes. To132

evaluate this, we started with training 71 disease ECG classifier model on a full corpus of synthetic133

data (8 folds) and measured performance as we incrementally added folds of real data for training.134

The results are summarized in Table 3. In the most extreme case (0 folds of real data), a classifier135

trained exclusively on synthetic data from our MIST-ECG framework achieves an AUROC of 0.640,136

significantly outperforming the baseline SSSD-ECG (0.541). This proves that our training paradigm is137

critical for generating diagnostically useful signals from scratch. Even more remarkably, in low-data138

regimes (1–3 folds), hybrid datasets with MIST-ECG data consistently match or outperform the139

real-data-only baseline. This provides strong evidence that our high-fidelity synthetic data can serve140

as a viable surrogate for real data in critical, data-limited scenarios.141

Table 3: Downstream AUROC when augmenting a full synthetic dataset with real data folds. In
low-data regimes (0-3 folds), synthetic data from the MIST-ECG framework matches or exceeds
the real-data baseline. Bold indicates the best performance in each column. An asterisk (*) denotes
performance statistically significantly lower than the best in that column (p < 0.05).

Number of Real Data Folds Added
Data Type 0 1 2 3 8 Avg Rank
Baseline

Real Data Only — 0.901 ± 0.009 0.912 ± 0.003 0.916 ± 0.003 0.927 ± 0.005 2.62

Synthetic Models
Synthetic (SSSD-ECG(Baseline)) 0.541 ± 0.074* 0.901 ± 0.007 0.914 ± 0.002 0.917 ± 0.004 0.927 ± 0.005 2.89
Synthetic (MIST-ECG(Ours)) 0.640 ± 0.094 0.902 ± 0.004 0.911 ± 0.002* 0.919 ± 0.004 0.928 ± 0.002 2.78

Robustness in Data-Rich Augmentation Scenarios. Having established its value in data-scarce142

settings, we next evaluated the robustness of the MIST-ECG framework in a data-rich environment.143

This experiment evaluates the marginal utility of synthetic data by starting with a complete real144

dataset (8 folds) and incrementally adding folds of synthetic data. The results, shown in Table 4,145

confirm that while performance gains naturally plateau when real data is abundant, the MIST-ECG146

framework is the clear winner. It consistently achieves the highest performance across nearly all147

augmentation levels, culminating in a superior Average Rank of 1.50 compared to the baseline’s 3.00.148

This demonstrates that even when data is plentiful, the high-quality signals from our model provide149

the most beneficial contribution, solidifying its standing as the most robust and effective generator.150

Table 4: Impact of augmenting a complete real dataset (8 folds) with synthetic data, measured by
AUROC.

Number of Synthetic Folds Added
Synthetic Models 1 2 3 4 5 6 7 8 Avg Rank

SSSD-ECG (Baseline) 0.928 ± 0.002 0.930 ± 0.002 0.929 ± 0.004 0.928 ± 0.003 0.928 ± 0.004 0.928 ± 0.003 0.926 ± 0.004 0.928 ± 0.002 3.00
MIST-ECG (Ours) 0.930 ± 0.001 0.931 ± 0.003 0.930 ± 0.004 0.929 ± 0.003 0.929 ± 0.005 0.928 ± 0.004 0.929 ± 0.004 0.931 ± 0.004 1.50

5 Conclusion151

In this work, we argue that closing the morphological fidelity gap is a prerequisite for the responsible152

use of synthetic ECGs in healthcare care. We addressed this foundational challenge by introducing153

MIST-ECG, a principled training paradigm that enhances a state-of-the-art diffusion model by154

imposing a strong, clinically relevant structural prior in the time-frequency domain. Our compre-155

hensive evaluation demonstrated the profound impact of this approach. The MIST-ECG framework156

proved instrumental, clearly improving physiological coherence (4%-8% gain) and an average of 74%157

reduction in interlead correlation error. We also show that classifiers trained on our supplemented158

synthetic data can achieve performance comparable to those trained on real data in low-data regimes,159

establishing our method’s ability to create a viable surrogate for real data. This research provides160

a robust and trustworthy methodology for generating high-fidelity medical time series and offers a161

scalable and privacy-conscious foundation for advancing ECG-based cardiac research on larger or162

different waveform public physiological datasets. (Code and evaluation scripts will be released upon163

paper acceptance.)164
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Appendix A: Experimental Setup Details206

Dataset and Cohort207

All experiments presented in the main paper were conducted on the PTB-XL dataset [12]. This208

public dataset contains 21,837 clinical 12-lead ECG recordings from 18,885 patients. Each 10-second209

recording was sampled at 100 Hz (1,000 time steps per lead, i.e. 10 second). We used the standard210

patient-level data splits to ensure no data leakage, resulting in 17,441 training, 2,193 validation, and211

2,203 test samples. Patient demographic information (age, BMI: calculated by height, weight) was212

extracted from the metadata to enable personalized conditioning.213

Appendix B: Detailed Inter-lead Correlation Analysis214

A fundamental property of clinically valid 12-lead ECGs is the complex set of physiological correla-215

tions between different leads, which reflect the three-dimensional propagation of the heart’s electrical216

wavefront. A high-fidelity generative model must successfully capture these spatio-temporal rela-217

tionships. To visually and quantitatively assess this, we computed Pearson correlation matrices for218

real and synthetic data and visualized them as heatmaps. The following figures provide a detailed219

comparison.220

Figure 1a shows the ground-truth correlation matrix computed from real ECGs in the PTB-XL test221

set. It displays well-known clinical patterns, such as the strong positive correlation between adjacent222

precordial leads (e.g., V1-V2) and the characteristic negative correlation between limb leads I and III.223

This serves as the reference against which the synthetic models are compared.224

Figures 1b and 1c show the correlation matrices for the synthetic data generated by the baseline225

SSSD-ECG model and our proposed MIST-ECG framework, respectively. A visual inspection reveals226

that while the SSSD-ECG model captures the general structure, the MIST-ECG’s matrix is a much227

closer match to the ground truth in Figure 1a.228

The superiority of the MIST-ECG framework is confirmed by the difference heatmaps in Figures 1d229

and 1e. The difference matrix for the SSSD-ECG model (Figure 1d) shows large error patches (darker230

reds and blues), indicating a significant deviation from the real data’s physiological structure. In stark231

contrast, the difference matrix for the MIST-ECG framework (Figure 1e) is substantially more muted232

and closer to the neutral zero-centered color, indicating a much smaller error. This visual evidence233

provides a clear intuition for the quantitative results reported in the main paper, where the MIST-ECG234

framework reduced the average absolute correlation error by 70%. This analysis provides compelling235

evidence that the frequency-domain supervision of the mel-spectrogram loss is crucial for generating236

ECGs that are not only morphologically accurate but also physiologically coherent.237

Appendix C: Outlier and Failure Mode Analysis238

To better understand model limitations, we conducted an outlier analysis based on reconstruction239

error. We compared our MIST-ECG with demographically conditioned baselines.240

Conditioning Feature Encoding241

To enable multimodal conditioning, we structured the input features as follows:242

• Clinical Labels: The 71 SCP statement labels were decomposed into three clinically meaningful243

groups: Diagnostic (40 labels, e.g., MI), Form (19 labels, e.g., HVOLT), and Rhythm (12 labels, e.g.,244

AFIB). Each group was one-hot encoded separately.245

• Demographic Features: Continuous demographic variables were discretized into clinically rele-246

vant bins before being one-hot encoded:247

– Age: 6 bins derived from cutoffs [12, 17, 34, 54, 74].248

– BMI: 6 bins derived from standard clinical cutoffs [18.5, 25, 30, 35, 40].249

Each one-hot encoded vector was then projected into a 32-dimensional embedding space, as described250

in the Methods section.251
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While demographically conditioned variants produces more extreme outliers, disproportionately252

contributing to overall error, our proposed MSIT-ECG (mel) preserves low outlier rates as the baseline253

model. A clinical feature analysis of these outlier cases (Figures 2) revealed that the models struggle254

most with atypical physiological states, such as bradycardia (low heart rate) and low-voltage255

ECGs. These cases are often under-represented in the training data and represent a key challenge for256

generative models, highlighting the importance of evaluating models not just on average performance257

but also on their robustness to rare events.258

Appendix D: Additional Visualizations259

This section provides supplementary visualizations that offer qualitative support for our quantitative260

findings and illustrate key aspects of our methodology and its practical application.261

Qualitative Comparison of Real and Synthetic ECGs262

Figure 3 provides a qualitative, side-by-side comparison of a real 12-lead ECG from the PTB-XL test263

set and a synthetic counterpart generated by our MIST-ECG model for the same clinical condition264

(’norm-sn’). This visualization serves as a visual Turing test, demonstrating the model’s ability to265

capture not only the fundamental P-QRS-T morphology and timing but also the subtle interlead266

relationships and overall rhythm characteristic of a real physiological signal. The high degree of267

visual similarity provides qualitative support for the strong quantitative performance reported in the268

main paper.269

Illustrating the Mel-Spectrogram Loss Mechanism270

Figures 4 and 5 illustrate the core mechanism behind our mel-spectrogram loss function. They display271

the time-frequency representations (mel-spectrograms) of the real and synthetic ECGs shown in272

Figure 3, respectively. The loss function works by minimizing the pixel-wise difference between these273

two representations during training. The visual congruence between the two spectrograms—in terms274

of energy distribution across frequency bands and consistent temporal patterns—highlights how this275

frequency-domain supervision guides the model to reproduce the complex structural characteristics of276

the original signal. This directly leads to the improved morphological fidelity reported in our results.277

Appendix E: Additional tables278

This section provides supplementary tables offer more quantitative evaluations of synthesized ECGs279

for downstream utility.280

Table 6: Full results for the data substitution experiment, measured by AUROC (mean ± 95% CI). *p
< 0.05 vs. best model in that column. Supplement to table 3 as it only highlight the low data scenario
(real-data folds 1-3)

Number of Real Data Folds Added
Data Type 0 1 2 3 4 5 6 7 8 Avg Rank
Real Data Only — 0.901 ± 0.009 0.912 ± 0.003 0.916 ± 0.003 0.922 ± 0.005 0.924 ± 0.003 0.927 ± 0.002 0.926 ± 0.003 0.927 ± 0.005 2.62
Synthetic (SSSG-ECG) 0.541 ± 0.074* 0.901 ± 0.007 0.914 ± 0.002 0.917 ± 0.004 0.920 ± 0.004 0.923 ± 0.005 0.926 ± 0.005 0.928 ± 0.003 0.927 ± 0.005 2.89
Synthetic (MIST-ECG) 0.640 ± 0.094 0.902 ± 0.004 0.911 ± 0.002* 0.919 ± 0.004 0.920 ± 0.005 0.923 ± 0.004 0.925 ± 0.002 0.926 ± 0.004 0.928 ± 0.002 2.78
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(a) The ground-truth inter-lead correlation matrix for real ECG data.

(b) Inter-lead correlation matrix for synthetic data
from the baseline SSSD-ECG model.

(c) Inter-lead correlation matrix for synthetic data from
our MIST-ECG framework.

(d) Difference matrix (Real - SSSG-ECG). Darker
colors indicate larger errors.

(e) Difference matrix (Real - MIST-ECG). The signif-
icantly paler colors demonstrate the superior perfor-
mance of our method.

Figure 1: Comparison of correlation difference matrices for the baseline and proposed models.
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Figure 2: Statistical and Morphological metric distribution across baseline SSSD-ECG (raw) and 4
variants: mel - MIST-ECG variant, multi - Disease + BMI + Age conditioned variant, bmi - Disease
+ BMI conditioned variant, da - Disease + Age conditioned variant. Boxplots show that while
demographic conditioning models achieve higher SNRs compared to baseline, they exhibit a larger
number of extreme outliers in error metrics (MSE, RMSE, Hausdorff distance, Fourier Transform
distance), indicating greater variability and consistent occasional failure cases. MIST-ECG variant
shows persisting lower outliers in error metrics.

Figure 3: Comparison of real and synthetic 12-lead ECG signals for disease code ’norm-sn’, with the
synthetic sample generated by the MSIT-ECG model described in Table 1.
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Figure 4: Mel-spectrogram visualization of the real 12-lead ECG signal (shown in Figure 3) after
applying the Short-Time Fourier Transform (STFT)

Figure 5: Mel-spectrogram visualization of the synthetic 12-lead ECG signal for disease code ’norm-
sn’ (shown in Figure 3) after applying the Short-Time Fourier Transform (STFT).
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