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Abstract

The development of machine learning for cardiac care is severely hampered by
privacy restrictions on sharing real patient electrocardiogram (ECG) data. While
generative Al offers a promising solution, synthesized ECGs produced by existing
models often lack the morphological fidelity required for clinical utility due to
their reliance on simplistic and general training objectives such as MSE loss. In
this work, we address this critical gap by introducing MIST-ECG (Mel spectro-
gram Informed Synthetic Training), a novel training paradigm that supervises
the conditional diffusion-based Structured State Space Model (SSSD-ECG) with
time—frequency domain objective to enforce structural realism. We train and rigor-
ously evaluate our framework on the PTB-XL dataset, assessing the synthesized
ECG signals on trustworthiness, fidelity, privacy preservation, and downstream
task utility. MIST-ECG achieves substantial gains: it improves morphological co-
herence, preserves strong privacy guarantees with all metrics evaluated exceeding
the baseline by 4%-8%, and notably reduces the interlead correlation error by an
average of 74%. In critical low-data regimes, a classifier trained on datasets supple-
mented with our synthetic ECGs achieves performance comparable to a classifier
trained solely on real data. This work demonstrates that ECG synthesizers, trained
with the proposed time—frequency structural regularization scheme, can serve as
high-fidelity, privacy-preserving surrogates when real data are scarce.

1 Introduction

Cardiovascular disease remains the leading cause of death worldwide, creating a staggering health
and economic burden [9]]. The electrocardiogram (ECG) is the cornerstone of cardiac diagnostics, and
applying machine learning to these signals promises earlier and more accurate diagnoses [7]]. However,
this promise is constrained by a fundamental data access bottleneck. ECGs are not merely medical
records; they are sensitive biometric data that reveal extensive personal health information [11].
Consequently, privacy regulations limit the sharing of large, diverse datasets needed to train robust
and generalizable Al models. High-fidelity synthetic data generation has emerged as the most
promising solution, offering a pathway to democratize research and accelerate innovation [2, [1].

As the field moves from feasibility to clinical application, it faces a critical challenge: morphological
fidelity. The clinical utility of an ECG depends on the precise shape, duration, and interplay of its
components (P-waves, QRS complexes, T-waves) and spatio-temporal coherence across all 12 leads.
Signals that are statistically similar but morphologically flawed are not ready for clinical use. They
risk biased algorithms, failed validation studies, and a loss of trust in Al-driven diagnostics. Current
generative models [1] perpetuate this gap, relying on generic time-series losses such as Mean Squared
Error. These metrics are structurally agnostic, treating each time point independently, and fail to
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impose a physiologically grounded prior. As a result, signals that appear plausible may lack the subtle
morphological integrity and inter-lead correlations essential for safe clinical use.

This paper argues that closing the morphological fidelity gap is essential for deploying generative ECG
models responsibly. We introduce MIST-ECG (Mel-Spectrogram Informed Synthetic Training
for ECGs), a training paradigm designed to address this problem. By supervising the generative
process in the time-frequency domain with the mel-spectrogram difference between real and synthetic
12-lead ECGs, MIST-ECG imposes a clinically relevant structural prior on generated waveforms.
Our goal is not incremental improvements in point-wise error but a fundamental enhancement of
physiological plausibility. We demonstrate the efficacy of our approach through a comprehensive
evaluation, showing a 4%-8% improvements of all fidelity and morphological Metrics, an average
74% reduction in inter-lead correlation error and, critically, that downstream 71 disease label ECG
classifier model trained on synthetic supplemented data can match and sometimes outperform solely
real training data in diagnostic performance under low-data regimes. This establishes a scalable,
privacy-conscious foundation for advancing cardiac research with synthetic ECGs.

2 Related Work

Advances in Synthetic ECG Generation. The synthesis of ECG signals has evolved rapidly from
early approaches with Generative Adversarial Networks (GANs) [2,114] and Variational Autoencoders
(VAEs) [10, 5] to the current state-of-the-art: diffusion models [4]. Architectures like SSSD-ECG [1]]
have demonstrated superior sample quality and training stability. However, the success of these models
has been primarily driven by architectural innovations, while the training objective has remained
relatively simple, typically relying on point-wise losses that do not explicitly enforce morphological
realism. Ensuring Fidelity in Medical Time Series Generation. A common challenge across
generative modeling for private medical data, from electroencephalography (EEG) signals [13] to
electronic health records (EHR) [3]], is ensuring the structural integrity of the generated time series.
The predominant training paradigm relies on time-domain losses like Mean Squared Error, which are
often insufficient to enforce the morphological coherence essential for clinical realism. Concurrent
work, such as ECG-DPM 6], has also recently explored using spectrogram-based diffusion models,
based on UNet backbone and is not conditional. Building upon this principle, our work introduces
MIST-ECQG, a framework that not only systematically applies a mel-spectrogram-informed training
paradigm but also provides the first rigorous evaluation of its impact on physiological coherence and
its ability to serve as a surrogate for real data in data-scarce settings. This bridges a methodological
gap by imposing a stronger, clinically relevant structural prior on the generated waveforms, addressing
the morphological fidelity and inter-lead correlation gap left by previous methods.

3 Methods

Our methodology introduces a novel paradigm, MIST-ECG, leverages the 12-lead Mel Spectrogram
representation of ECGs to supervise the generative model training. We selected SSSD-ECG [1]] as
our foundational architecture due to its proven success in generating high-fidelity 12-lead ECGs. The
model leverages a score-based diffusion process to transform random noise into structured signals
iteratively. Its core strength lies in its use of Structured State-Space Model (SSSM) layers, which
are highly effective at capturing the long-range temporal dependencies crucial for modeling the
physiological structure of an entire heartbeat and rhythm.

SSSD-ECG: Diffusion-based Conditional ECG Generation with Structured State Space Models
In its original implementation, SSSD-ECG conditioned on a 71 length onehot vector representing
diagnostic labels, which is projected into a continuous representation via a learnable weight matrix.
Despite its strong performance, this framework has two primary limitations. First, its reliance on
a mean squared error (MSE) loss treats each time step independently, failing to impose a global
structural prior on the waveform’s morphology. Second, its conditioning is limited to a monolithic
vector of disease labels, which prevents the generation of personalized ECGs. Although both are
important areas for improvement, our work focuses on resolving the morphological fidelity gap.

MIST-ECG: Mel-Spectrogram Informed Synthetic Training for ECGs. To address the limita-
tion of standard diffusion training for physiological time-series generation—its reliance on point-wise
losses like MSE that ignore spatiotemporal structure—we propose a paradigm that adds spatiotempo-
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ral supervision to better capture ECG waveform morphology and duration. Our approach is inspired
by Mel Spectrogram used as a higher fidelity of continuous representation other than vector quantiza-
tion in audio synthesis [8] but is specifically adapted to the unique physiological characteristics of the
ECG. The process begins by computing a multi-resolution Short-Time Fourier Transform (STFT)
of the ECG signals, using window sizes wl € {256,512} to capture both high-frequency, transient
events (like the sharp QRS complex) and low-frequency, evolving waveforms (like the T-wave). We
then warp the frequency axis of these spectrograms onto the perceptually-motivated Mel scale, using
64 and 128 Mel bands for each resolution. The Mel scale’s non-linear compression of frequencies is
uniquely suited for ECG analysis, as it naturally places greater emphasis on the diagnostically-rich
low-frequency bands where information about ST segments and T-wave morphology resides. This
imposes a strong inductive bias, forcing the model to prioritize the most clinically relevant spectral
components. The MIST loss is defined as the summed L distance between the multi-resolution
mel-spectrograms of the generated () and ground-truth (y) signals:

EMIST(@y y) = Z Z ||Mwl,bands(:g) - Mwl,bands(y)”l (1)

wl bands

The final training objective is a weighted sum: Lpy = Lvse + SLmist- We empirically selected
B = 0.02, which stabilizing training and leading to consistent loss reduction. The mechanism of
MIST-ECG and the visualization of 12-lead Mel-spectrogram of real data and MIST-ECG can be
found in Appendix B [3

4 Experiments and Results

To rigorously validate our proposed methods, we designed a multi-faceted evaluation framework
on the public PTB-XL dataset [12]. Our investigation is structured as a direct comparative analysis
between the baseline SSSD-ECG model and our proposed MIST-ECG framework. This allows us
to systematically quantify the impact of our mel-spectrogram informed training paradigm on three
critical dimensions: trustworthiness, privacy preservation, utility, and robustness.

Signal Fidelity and Privacy Preservation. We first quantify the quality and trustworthiness of
the synthesized signals. Table [T|shows that MIST-ECG outperforms SSSD-ECG across all fidelity
and morphology metrics while also strengthening privacy. Specifically, MIST-ECG reduces RMSE
by 4.68% and MSE by 4.39%; increases SNR by +0.58,dB; lowers Fourier distance by 4.68%
and Hausdorff distance by 8.51%; and raises SSIM by +0.0309 (+5.15%). Privacy also improves:
Membership Inference Risk (MIR) drops by 18.18%, and Nearest Neighbor Adversarial Accuracy
(NNAA) decreases by 0.0056, crossing below zero (0.0047 — -0.0009), indicating attack performance
worse than chance. Collectively, these gains highlight higher morphological realism and fidelity with
enhanced privacy guarantees.

Table 1: Comprehensive comparison of signal fidelity, morphology, and privacy. The MIST-ECG
framework excels in morphological realism and offers the strongest privacy guarantees.

Fidelity & Morphology Metrics Privacy Metrics
Training Objective RMSE| MSE| SNR(dB)1 Fourier| Hausdorff| SSIM{ MIR| NNAA|
SSSD-ECG 02114  0.0524 -3.086 0.2115 1.187 0.6004  0.0099  0.0047
MIST-ECG 0.2015  0.0501 -2.508 0.2016 1.086 0.6313  0.0081  -0.0009

Interlead Correlation Matrix.

To further assess physiological coherence, we
analyzed the interlead correlations, a critical
property of realistic ECGs. The results are
shown in Table 2} The MIST-ECG framework
demonstrates a 70% and 78% reduction in the jpogel
average absolute interlead correlation error and  gqprcG (Baseline) 0.140 0491
max absolute interlead correlation error com- MIST-ECG (Ours) 0.042 0.108
pared to the baseline. This confirms its superior
ability to capture the complex spatio-temporal
dependencies between leads, a key of clinical realism.

Table 2: Average and maximum absolute inter-lead
correlation error relative to real data.

Avg. Corr. Error Max Corr. Error
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Validating Synthetic Data as a Surrogate for Real Data. The ultimate test of synthetic data
is its ability to serve as a surrogate for real data when it is most needed in low-data regimes. To
evaluate this, we started with training 71 disease ECG classifier model on a full corpus of synthetic
data (8 folds) and measured performance as we incrementally added folds of real data for training.
The results are summarized in Table[3] In the most extreme case (0 folds of real data), a classifier
trained exclusively on synthetic data from our MIST-ECG framework achieves an AUROC of 0.640,
significantly outperforming the baseline SSSD-ECG (0.541). This proves that our training paradigm is
critical for generating diagnostically useful signals from scratch. Even more remarkably, in low-data
regimes (1-3 folds), hybrid datasets with MIST-ECG data consistently match or outperform the
real-data-only baseline. This provides strong evidence that our high-fidelity synthetic data can serve
as a viable surrogate for real data in critical, data-limited scenarios.

Table 3: Downstream AUROC when augmenting a full synthetic dataset with real data folds. In
low-data regimes (0-3 folds), synthetic data from the MIST-ECG framework matches or exceeds
the real-data baseline. Bold indicates the best performance in each column. An asterisk (*) denotes
performance statistically significantly lower than the best in that column (p < 0.05).

Number of Real Data Folds Added

Data Type 0 1 2 3 8 Avg Rank
Baseline

Real Data Only — 0.901 £0.009 0.912+0.003 0.916 £0.003 0.927 + 0.005 2.62
Synthetic Models

Synthetic (SSSD-ECG(Baseline)) 0.541 £ 0.074*  0.901 £0.007  0.914 £ 0.002 0917 £0.004 0.927 + 0.005 2.89

Synthetic (MIST-ECG(Ours)) 0.640 £ 0.094  0.902 £0.004 0.911+0.002* 0.919 +£0.004 0.928 + 0.002 2.78

Robustness in Data-Rich Augmentation Scenarios. Having established its value in data-scarce
settings, we next evaluated the robustness of the MIST-ECG framework in a data-rich environment.
This experiment evaluates the marginal utility of synthetic data by starting with a complete real
dataset (8 folds) and incrementally adding folds of synthetic data. The results, shown in Table {4}
confirm that while performance gains naturally plateau when real data is abundant, the MIST-ECG
framework is the clear winner. It consistently achieves the highest performance across nearly all
augmentation levels, culminating in a superior Average Rank of 1.50 compared to the baseline’s 3.00.
This demonstrates that even when data is plentiful, the high-quality signals from our model provide
the most beneficial contribution, solidifying its standing as the most robust and effective generator.

Table 4: Impact of augmenting a complete real dataset (8 folds) with synthetic data, measured by
AUROC.

Number of Synthetic Folds Added

Synthetic Models 1 2 3 4 5 6 7 8 Avg Rank
SSSD-ECG (Baseline)  0.928 £0.002  0.930 £0.002 0.929 £0.004 0.928 £0.003 0.928 +0.004 0.928 +0.003 0.926 +0.004 0.928 + 0.002 3.00
MIST-ECG (Ours) 0.930 £0.001  0.931£0.003 0.930 £ 0.004 0.929 £ 0.003 0.929 £ 0.005 0.928 £ 0.004 0.929 £ 0.004 0.931 £ 0.004 1.50

5 Conclusion

In this work, we argue that closing the morphological fidelity gap is a prerequisite for the responsible
use of synthetic ECGs in healthcare care. We addressed this foundational challenge by introducing
MIST-ECG, a principled training paradigm that enhances a state-of-the-art diffusion model by
imposing a strong, clinically relevant structural prior in the time-frequency domain. Our compre-
hensive evaluation demonstrated the profound impact of this approach. The MIST-ECG framework
proved instrumental, clearly improving physiological coherence (4%-8% gain) and an average of 74%
reduction in interlead correlation error. We also show that classifiers trained on our supplemented
synthetic data can achieve performance comparable to those trained on real data in low-data regimes,
establishing our method’s ability to create a viable surrogate for real data. This research provides
a robust and trustworthy methodology for generating high-fidelity medical time series and offers a
scalable and privacy-conscious foundation for advancing ECG-based cardiac research on larger or
different waveform public physiological datasets. (Code and evaluation scripts will be released upon
paper acceptance.)
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Appendix A: Experimental Setup Details

Dataset and Cohort

All experiments presented in the main paper were conducted on the PTB-XL dataset [12]]. This
public dataset contains 21,837 clinical 12-lead ECG recordings from 18,885 patients. Each 10-second
recording was sampled at 100 Hz (1,000 time steps per lead, i.e. 10 second). We used the standard
patient-level data splits to ensure no data leakage, resulting in 17,441 training, 2,193 validation, and
2,203 test samples. Patient demographic information (age, BMI: calculated by height, weight) was
extracted from the metadata to enable personalized conditioning.

Appendix B: Detailed Inter-lead Correlation Analysis

A fundamental property of clinically valid 12-lead ECGs is the complex set of physiological correla-
tions between different leads, which reflect the three-dimensional propagation of the heart’s electrical
wavefront. A high-fidelity generative model must successfully capture these spatio-temporal rela-
tionships. To visually and quantitatively assess this, we computed Pearson correlation matrices for
real and synthetic data and visualized them as heatmaps. The following figures provide a detailed
comparison.

Figure [la|shows the ground-truth correlation matrix computed from real ECGs in the PTB-XL test
set. It displays well-known clinical patterns, such as the strong positive correlation between adjacent
precordial leads (e.g., V1-V2) and the characteristic negative correlation between limb leads I and III.
This serves as the reference against which the synthetic models are compared.

Figures [Ib] and [Ic| show the correlation matrices for the synthetic data generated by the baseline
SSSD-ECG model and our proposed MIST-ECG framework, respectively. A visual inspection reveals
that while the SSSD-ECG model captures the general structure, the MIST-ECG’s matrix is a much
closer match to the ground truth in Figure

The superiority of the MIST-ECG framework is confirmed by the difference heatmaps in Figures[Id]
and[Te] The difference matrix for the SSSD-ECG model (Figure[Id) shows large error patches (darker
reds and blues), indicating a significant deviation from the real data’s physiological structure. In stark
contrast, the difference matrix for the MIST-ECG framework (Figure [I¢) is substantially more muted
and closer to the neutral zero-centered color, indicating a much smaller error. This visual evidence
provides a clear intuition for the quantitative results reported in the main paper, where the MIST-ECG
framework reduced the average absolute correlation error by 70%. This analysis provides compelling
evidence that the frequency-domain supervision of the mel-spectrogram loss is crucial for generating
ECGs that are not only morphologically accurate but also physiologically coherent.

Appendix C: Outlier and Failure Mode Analysis

To better understand model limitations, we conducted an outlier analysis based on reconstruction
error. We compared our MIST-ECG with demographically conditioned baselines.

Conditioning Feature Encoding
To enable multimodal conditioning, we structured the input features as follows:

* Clinical Labels: The 71 SCP statement labels were decomposed into three clinically meaningful
groups: Diagnostic (40 labels, e.g., MI), Form (19 labels, e.g., HVOLT), and Rhythm (12 labels, e.g.,
AFIB). Each group was one-hot encoded separately.

* Demographic Features: Continuous demographic variables were discretized into clinically rele-
vant bins before being one-hot encoded:
— Age: 6 bins derived from cutoffs [12, 17, 34, 54, 74].
— BMI: 6 bins derived from standard clinical cutoffs [18.5, 25, 30, 35, 40].

Each one-hot encoded vector was then projected into a 32-dimensional embedding space, as described
in the Methods section.
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While demographically conditioned variants produces more extreme outliers, disproportionately
contributing to overall error, our proposed MSIT-ECG (mel) preserves low outlier rates as the baseline
model. A clinical feature analysis of these outlier cases (Figures [2) revealed that the models struggle
most with atypical physiological states, such as bradycardia (low heart rate) and low-voltage
ECGs. These cases are often under-represented in the training data and represent a key challenge for
generative models, highlighting the importance of evaluating models not just on average performance
but also on their robustness to rare events.

Appendix D: Additional Visualizations

This section provides supplementary visualizations that offer qualitative support for our quantitative
findings and illustrate key aspects of our methodology and its practical application.

Qualitative Comparison of Real and Synthetic ECGs

Figure 3] provides a qualitative, side-by-side comparison of a real 12-lead ECG from the PTB-XL test
set and a synthetic counterpart generated by our MIST-ECG model for the same clinical condition
(’norm-sn’). This visualization serves as a visual Turing test, demonstrating the model’s ability to
capture not only the fundamental P-QRS-T morphology and timing but also the subtle interlead
relationships and overall rhythm characteristic of a real physiological signal. The high degree of
visual similarity provides qualitative support for the strong quantitative performance reported in the
main paper.

Ilustrating the Mel-Spectrogram Loss Mechanism

Figures | and[3]illustrate the core mechanism behind our mel-spectrogram loss function. They display
the time-frequency representations (mel-spectrograms) of the real and synthetic ECGs shown in
Figure[3] respectively. The loss function works by minimizing the pixel-wise difference between these
two representations during training. The visual congruence between the two spectrograms—in terms
of energy distribution across frequency bands and consistent temporal patterns—highlights how this
frequency-domain supervision guides the model to reproduce the complex structural characteristics of
the original signal. This directly leads to the improved morphological fidelity reported in our results.

Appendix E: Additional tables

This section provides supplementary tables offer more quantitative evaluations of synthesized ECGs
for downstream utility.

Table 6: Full results for the data substitution experiment, measured by AUROC (mean + 95% CI). *p

< 0.05 vs. best model in that column. Supplement to table [3]as it only highlight the low data scenario
(real-data folds 1-3)

Number of Real Data Folds Added
Data Type 0 1 2 3 4 5 6 7 8 Avg Rank

Real Data Only — 0.901 £0.009 0.912£0.003 0.916+0.003 0.922+0.005 0.924+0.003 0.927 £0.002 0.926 +0.003 0.927 +0.005 2.62
Synthetic (SSSG-ECG)  0.541 £0.074*  0.901 £0.007  0.914£0.002 0.917+0.004 0.920+0.004 0.923+0.005 0.926+0.005 0.928 +0.003 0.927 + 0.005 2.89
Synthetic (MIST-ECG) ~ 0.640 £0.094  0.902+0.004 0.911+0.002* 0.919+0.004 0.920+0.005 0.923+0.004 0.925+0.002 0.926+0.004 0.928 + 0.002 2.78
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demographic conditioning models achieve higher SNRs compared to baseline, they exhibit a larger
number of extreme outliers in error metrics (MSE, RMSE, Hausdorff distance, Fourier Transform
distance), indicating greater variability and consistent occasional failure cases. MIST-ECG variant
shows persisting lower outliers in error metrics.
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Figure 3: Comparison of real and synthetic 12-lead ECG signals for disease code 'norm-sn’, with the
synthetic sample generated by the MSIT-ECG model described in TablelIl
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Figure 4: Mel-spectrogram visualization of the real 12-lead ECG signal (shown in Figure after
applying the Short-Time Fourier Transform (STFT)
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Figure 5: Mel-spectrogram visualization of the synthetic 12-lead ECG signal for disease code *norm-
sn’ (shown in Figure [3) after applying the Short-Time Fourier Transform (STFT).
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