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Abstract

The paper focuses on improving the inter-001
pretability of Grammatical Error Correction002
(GEC) metrics, which receives little attention in003
previous studies. To bridge the gap, we propose004
CLEME2.0, a reference-based evaluation strat-005
egy that can describe four elementary dimen-006
sions of GEC systems, namely hit-correction,007
error-correction, under-correction, and over-008
correction. They collectively contribute to re-009
vealing the critical characteristics and locating010
drawbacks of GEC systems. Evaluating sys-011
tems by Combining these dimensions leads to012
high human consistency over other reference-013
based and reference-less metrics. Extensive014
experiments on 2 human judgement datasets015
and 6 reference datasets demonstrate the effec-016
tiveness and robustness of our method.1017

1 Introduction018

Grammatical Error Correction (GEC) is the task019

of automatically detecting and correcting all gram-020

matical errors in a given text (Bryant et al., 2023;021

Ma et al., 2022; Ye et al., 2022). A core component022

of any NLP tasks is the development of automatic023

metrics that can objectively measure model per-024

formance (Bryant et al., 2023). However, propos-025

ing appropriate evaluation of GEC has long been026

a challenging task (Madnani et al., 2011), due to027

the subjectivity (Bryant and Ng, 2015), complex-028

ity (Mita et al., 2019) and subtlety (Choshen and029

Abend, 2018) of GEC (Napoles et al., 2015).030

Recent studies have been trying to develop GEC031

metrics that can achieve high correlations with hu-032

man judgements (Yoshimura et al., 2020a), with033

less attention paid to the interpretability of the034

automatic metrics. We define the interpretability035

of metrics as their ability to reveal the concerned036

characteristics of systems, which is vital in locat-037

ing the drawbacks of a certain system. It is well-038

acknowledged that excellent GEC systems, which039

1All the codes will be released after the peer review.
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Figure 1: An example of edit disentanglement. We
highlight TP, FPne, FPun, and FN in different colors.

usually conform to the principle of minimal edit- 040

ing, should adhere to two gold principles, namely 041

grammaticality and faithfulness. Grammaticality 042

necessitates that all grammatical errors should be 043

accurately corrected, while faithfulness requires 044

that the corrections maintain the original textual 045

meaning and syntactic structure. However, the 046

widely-adopted mainstream GEC metrics (Bryant 047

et al., 2017; Ye et al., 2023) indicate the GEC per- 048

formance by precision, recall, and F scores, which 049

can hardly characterize these critical dimensions of 050

GEC systems, thus hindering the development. 051

Therefore, we propose CLEME2.0, a more in- 052

terpretable reference-based evaluation strategy that 053

can describe four fundamental aspects of GEC 054

systems: hit-correction, error-correction, under- 055

correction, and over-correction. The first three 056

aspects are responsible for describing grammatical- 057

ity, while the last one is for faithfulness since the 058

over-correction edits tend to change the original se- 059

mantics, especially for LLMs (Coyne et al., 2023). 060

To achieve this, CLEME2.0 distinguishes between 061

necessary and unnecessary corrections and disen- 062

tangles edits into four main types: true positive 063

(TP), necessary false positive (FPne), unnecessary 064

false positive (FPun), false negative (FN) edits.2 For 065

example in Figure 1, the Hyp.1 makes three neces- 066

sary edits on the right positions, where [the → ϵ] is 067

a TP edit but two of others ([were → was] and [for 068

→ in]) are FPne edits since they are not covered in 069

the reference. So Hyp.1 tends to mistakenly correct 070

grammatically errors. On the other hand, Hyp.2 071

2True negative edits are not considered in our method.
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makes extra two FPun edits ([ϵ→ of ] and ([century072

→ centuries]) since the reference does not correct073

the right positions, indicating the occurrence of two074

under-correction phenomena. Additionally, [for075

→ for] of the Hyp.2 is considered as an FN edit,076

which means the occurrence of an under-correction077

phenomenon. Since the edit disentanglement is078

based on the chunk partition technique proposed079

by CLEME, so we dub this strategy as CLEME2.0.080

Disentangling edits enables us to investigate con-081

crete dimensions of GEC systems by computing082

upon an evaluation dataset four disentangled scores:083

hit-correction, error-correction, under-correction,084

and over-correction scores. In contrast to main-085

stream GEC metrics like ERRANT (Bryant et al.,086

2017) and MaxMatch (Dahlmeier and Ng, 2012a)087

that reveal the system performance by P/R/F0.5,088

this disentanglement can provide an interpretable089

insight into fine-grained dimensions responsible for090

describing critical characteristics of GEC systems.091

Then, we integrate these disentangled scores into092

a comprehensive score using linear weighted sum-093

mation, placing different emphases on disentan-094

gled scores. We leverage the comprehensive score095

to indicate the system performance from a global096

perspective. Similar to CLEME (Ye et al., 2023),097

CLEME2.0 also supports the evaluation based on098

either correction dependence or correction indepen-099

dence assumptions, providing a flexible option.100

Besides, we assume that edits with various ex-101

tents of modification should affect distinctively the102

evaluation results. Therefore, we incorporate two103

edit weighting techniques into CLEME2.0, namely104

similarity-based weighting (Gong et al., 2022) and105

LLM-based weighting. Specifically, the techniques106

compute an important weight for each edit using107

a language model rather than treating each edit108

equally, thus equipping CLEME2.0 with abilities109

to capture context semantics and overcome the de-110

fect of traditional measures relying on superficial111

form similarity (Kobayashi et al., 2024a).112

To verify the effectiveness of CLEME2.0, we113

conduct extensive experiments on 2 human judg-114

ment datasets (GJG15 (Grundkiewicz et al., 2015)115

and SEEDA (Kobayashi et al., 2024b)), where our116

method consistently achieves high correlations. We117

also demonstrate the robustness of CLEME2.0 by118

computing the evaluation results based on 6 refer-119

ence datasets with disparate annotation styles. In120

summary, our contributions are three folds:121

(1) We propose CLEME2.0, a more interpretable122

evaluation strategy, which is beneficial to re- 123

veal crucial characteristics of GEC systems. 124

(2) We boost CLEME2.0 with two edit weight- 125

ing techniques, including similarity-based and 126

LLM-based weighting, to overcome the inabil- 127

ity of traditional reference-based metrics. 128

(3) Extensive experiments and analyses are con- 129

ducted to confirm the effectiveness and robust- 130

ness of our proposed method. 131

2 Related Work 132

Reference-based metrics. Reference-based met- 133

rics evaluate GEC systems by referencing manu- 134

ally written materials. The M2 scorer (Dahlmeier 135

and Ng, 2012b) identifies optimal edit sequences 136

between source sentences and system hypothe- 137

ses, using the F0.5 score. However, this method 138

can inflate scores by manipulating edit bound- 139

aries. Bryant et al. (2017) proposed ERRANT, 140

which improves edit extraction with a linguistically- 141

informed alignment algorithm, but it remains 142

language-dependent and biased in multi-reference 143

evaluation. Napoles et al. (2015) introduced 144

GLEU, an n-gram-based metric inspired by BLEU 145

for GEC evaluation. Ye et al. (2023) proposed 146

CLEME to eliminate bias in multi-reference evalu- 147

ation by transforming the source, hypothesis, and 148

references into chunk sequences with consistent 149

boundaries, providing unbiased F0.5 scores. Gong 150

et al. (2022) introduce PT-M2, focusing on scoring 151

changed words extracted by the M2 metric. 152

Reference-less metrics. To overcome the limi- 153

tations of reference-based metrics, recent research 154

focus on reference-less scoring. Inspired by quality 155

estimation in NMT, Napoles et al. (2016a) propose 156

Grammaticality-Based Metrics (GBMs) using an 157

existing GEC system or a pre-trained ridge regres- 158

sion model. Asano et al. (2017) enhance GBMs 159

by adding criteria like grammaticality, fluency, and 160

meaning preservation. Yoshimura et al. (2020b) in- 161

troduce SOME, which uses sub-metrics optimized 162

for manual assessment with regression models. 163

Scribendi Score (Islam and Magnani, 2021) com- 164

bines language perplexity and token/Levenshtein 165

distance ratios. IMPARA (Maeda et al., 2022) in- 166

corporates a Quality Estimator and a Semantic Es- 167

timator based on BERT to evaluate GEC output 168

quality and semantic similarity. While reference- 169

less metrics align well with human judgments, they 170
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lack interpretability due to the heavy dependence171

on trained models, thus posing latent risks.172

3 Method173

Our CLEME2.0 can be generally divided into174

three main steps, with the overview shown in Fig-175

ure 2. Additionally, we incorporate two distinct176

edit weighting techniques to enhance performance.177

3.1 Edit Extraction178

The first step is edit extraction. Given a source179

sentence X and a target (either hypothesis or ref-180

erence) sentence Y , this step is to extract the181

edits describing the modification from X to Y .182

Here, we utilize the chunk partition technique183

from CLEME (Ye et al., 2023) to execute the pro-184

cess of edit extraction. Unlike the traditional met-185

rics like ERRANT (Bryant et al., 2017) and Max-186

Match (Dahlmeier and Ng, 2012a), CLEME con-187

currently aligns all sentences, including the source,188

the hypothesis, and all the references. This facili-189

tates segmentation of them all into chunk sequences190

with an equal number of chunks, irrespective of the191

varying token counts in different sentences, as de-192

lineated in Figure 2. It is worth noting that a chunk193

is a basic edit unit, which can be unchanged, cor-194

rected, or dummy (empty) (Ye et al., 2023).195

3.2 Disentangled Scores196

For the purpose of computing disentangled scores,197

we initially disentangle edits into four core types.198

1) TP edits refer to the corrected/dummy hypoth-199

esis chunks that share the same tokens as the cor-200

responding reference chunks. 2) FPne edits are201

the corrected/dummy hypothesis chunks that have202

different tokens from those in the corresponding203

reference chunks wherein the reference chunks are204

also corrected/dummy ones. 3) FPun edits are the205

corrected hypothesis chunks but their correspond-206

ing reference chunks remain unchanged. 4) FN207

edits indicate the unchanged hypothesis chunks208

but the corresponding reference chunks are cor-209

rected/dummy. It is highlighted that traditional210

metrics (Dahlmeier and Ng, 2012a; Bryant et al.,211

2017) do not distinguish between FPne and FPun,212

treating both as FP, thereby resulting in confusion213

between error-correction and over-correction. Ac-214

tually, we have FP = FPne + FPun.215

Furthermore, we can differentiate between nec-216

essary and unnecessary edits. TP, FPne, and FN217

edits are all necessary edits, since their correspond-218

ing reference chunks are also corrected/dummy,219

implying the existence of grammatical errors in 220

the related parts of X . On the contrary, FPun edit 221

are unnecessary edits because the systems propose 222

corrections not represented in references. Conse- 223

quently, we can define four disentangled scores. 224

Hit-correction score. This paper defines the hit- 225

correction score as the ratio of TP edits to all neces- 226

sary reference edits. Its purpose is to quantify the 227

accuracy with which systems offer correct correc- 228

tions. The formula is as follows: 229

Hit =
TP

necessity
=

TP

TP + FPne + FN
(1) 230

Error-correction score. Conversely, the error- 231

correction score is defined as the ratio of FPne edits 232

to all necessary reference edits. This score seeks 233

to evaluate the degree to which systems generate 234

erroneous corrections for grammatical errors. The 235

formula for this score is as follows: 236

Error =
FPne

necessity
=

FPne

TP + FPne + FN
(2) 237

Under-correction score. Similarly, the under- 238

correction score is proposed to measure the degree 239

to which systems omit to correct grammatical er- 240

rors, which is computed as follow: 241

Under =
FN

necessity
=

FN

TP + FPne + FN
(3) 242

Over-correction score. The score is introduced 243

in response to frequent observations that LLMs are 244

prone to over-correcting texts. This score is deter- 245

mined by the proportion of FPun edits to all hypoth- 246

esis corrected/dummy edits, aiming to gauge the 247

level to which systems offer excessive corrections: 248

Over =
FPun

TP + FP
(4) 249

3.3 Comprehensive Score 250

Once the four disentangled scores have been com- 251

puted, they need to be merged into a comprehensive 252

score that encapsulates the global performance of 253

the systems. We employ a weighted summation 254

approach to organize these four scores for inter- 255

pretability and simplification. By definition, sys- 256

tems with higher hit-correction scores are usually 257

preferable, a tendency that inversely applies to the 258
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Figure 2: Overview of our approach CLEME2.0. First, we extract the hypothesis edits and reference edits and
divide them into TP, FPne, FPun, and FN edits. Second, we calculate four disentangled scores. Third, we combine
them into a comprehensive score. Additionally, we leverage two edit weighting techniques.

remaining scores. Thus, the comprehensive score259

can be calculated using the following formula:260

Score = α1 ·Hit+ α2 · (1− Error)

+ α3 · (1− Under) + α4 · (1−Over)
(5)261

where αi is the trade-off factor for each disentan-262

gled score, and we constrain that 0 < αi < 1 and263

α1 + α2 + α3 + α4 = 1.264

3.4 Edit Weighting265

Existing reference-based metrics, such as ER-266

RANT and CLEME, depend heavily on superficial267

literal similarity. This means that, regardless of268

length or modification, all types of edits have equal269

weighting in the evaluation scores. This aspect270

fails to acknowledge that human evaluators might271

semantically consider the edits’ varying importance272

levels. Therefore, we introduce two distinct edit273

weighting techniques to compute the importance274

weights of edits. These weights are then incorpo-275

rated into the calculation of the aforementioned276

disentangled scores as depicted in Equation (1) ∼277

(4). Take the hit-correction score as a typical exam-278

ple, we reformulate the Equation (1) as follow:279

Hit =
wTP

wTP + wFPne + wFN
(6) 280

Similarity-based weighting. We use PTScore 281

from Gong et al. (2022) to provide edit weights. 282

Through simulating a partially accurate version 283

X ′ of the source sentence X , PTScore can assign 284

individual weights to edits, in spite of multiple 285

edits in a sentence. Since it performs based on 286

BERTScore (Zhang et al., 2019) designed to com- 287

pute similarity scores for text generation, we call 288

this technique as similarity-based weighting. The 289

computation process is as follows: 290

X ′ = replace(X, ehyp) (7) 291
292

w = |PTScore(X ′, R)− PTScore(X,R)| (8) 293

where the function replace() is intended to replace 294

a specific chunk of the source X with the cor- 295

rected/dummy hypothesis chunk ehyp. Here, R 296

denotes the reference sentence. Comprehensive 297

details can be found in Gong et al. (2022). 298

LLM-based weighting. In light of the impres- 299

sive semantic understanding capabilities of LLMs, 300

4



Metric CoNLL-2014 BN-10GEC E-Minimal E-Fluency NE-Minimal NE-Fluency Avg.
EW TS EW TS EW TS EW TS EW TS EW TS

M2 γ 0.623 0.672 0.547 0.610 0.597 0.650 0.590 0.659 0.575 0.634 0.582 0.649 0.616
ρ 0.687 0.720 0.648 0.692 0.654 0.703 0.654 0.709 0.577 0.648 0.648 0.703 0.670

GLEU γ 0.701 0.750 0.678 0.761 0.533 0.513 0.693 0.771 -0.044 -0.113 0.674 0.767 0.557
ρ 0.467 0.555 0.754 0.806 0.577 0.511 0.710 0.757 -0.005 -0.055 0.725 0.819 0.551

ERRANT γ 0.642 0.688 0.586 0.644 0.578 0.631 0.594 0.663 0.585 0.637 0.597 0.659 0.625
ρ 0.659 0.698 0.637 0.698 0.742 0.786 0.720 0.775 0.747 0.797 0.753 0.797 0.734

PT-M2 γ 0.693 0.737 0.650 0.706 0.626 0.667 0.621 0.681 0.630 0.675 0.620 0.682 0.666
ρ 0.758 0.769 0.690 0.824 0.709 0.736 0.758 0.802 0.736 0.758 0.758 0.802 0.758

CLEME-dep γ 0.648 0.691 0.602 0.656 0.594 0.644 0.589 0.654 0.595 0.643 0.612 0.673 0.633
ρ 0.709 0.742 0.692 0.747 0.797 0.813 0.714 0.775 0.786 0.835 0.720 0.791 0.760

CLEME-ind γ 0.649 0.691 0.609 0.659 0.593 0.643 0.587 0.653 0.601 0.647 0.611 0.672 0.635
ρ 0.709 0.731 0.692 0.747 0.791 0.802 0.731 0.791 0.797 0.841 0.714 0.786 0.761

CLEME2.0-dep (Ours)
γ 0.700 0.765 0.675 0.745 0.690 0.768 0.695 0.788 0.702 0.778 0.704 0.800 0.734
ρ 0.665 0.736 0.626 0.692 0.736 0.808 0.742 0.830 0.775 0.846 0.599 0.714 0.730

CLEME2.0-ind (Ours)
γ 0.718 0.777 0.731 0.793 0.708 0.784 0.736 0.824 0.757 0.826 0.801 0.848 0.775
ρ 0.665 0.736 0.698 0.758 0.736 0.808 0.742 0.830 0.775 0.846 0.670 0.769 0.753

CLEME2.0-sim-dep (Ours)
γ 0.783 0.853 0.721 0.801 0.765 0.834 0.737 0.827 0.761 0.824 0.741 0.834 0.790
ρ 0.819 0.890 0.802 0.863 0.791 0.868 0.758 0.852 0.830 0.896 0.786 0.857 0.834

CLEME2.0-sim-ind (Ours)
γ 0.806 0.871 0.772 0.839 0.780 0.841 0.761 0.844 0.782 0.834 0.798 0.877 0.817
ρ 0.846 0.901 0.835 0.885 0.819 0.885 0.758 0.852 0.846 0.896 0.863 0.923 0.859

SentM2 γ 0.871 0.864 0.567 0.646 0.805♣ 0.836♣ 0.655 0.732 0.729♣ 0.785♣ 0.621 0.699 0.734
ρ 0.731 0.758 0.593 0.648 0.806♣ 0.845♣ 0.731 0.764 0.797♣ 0.846♣ 0.632 0.687 0.737

SentGLEU γ 0.784 0.828 0.756 0.826 0.742♣ 0.773♣ 0.785 0.846 0.723♣ 0.762♣ 0.778 0.848 0.788
ρ 0.720 0.775 0.769 0.824 0.764♣ 0.797♣ 0.791 0.846 0.764♣ 0.830♣ 0.768 0.846 0.791

SentERRANT γ 0.870 0.846 0.885 0.896 0.768♣ 0.803♣ 0.806 0.732 0.710♣ 0.765♣ 0.793 0.847 0.810
ρ 0.742 0.747 0.786 0.830 0.775♣ 0.819♣ 0.813 0.764 0.780♣ 0.841♣ 0.830 0.857 0.799

SentPT-M2 γ 0.949 0.938 0.602♣ 0.682♣ 0.831♣ 0.855♣ 0.689 0.763 0.770♣ 0.822♣ 0.648 0.725 0.772
ρ 0.907 0.874 0.626♣ 0.670♣ 0.808♣ 0.819♣ 0.797 0.841 0.813♣ 0.857♣ 0.742 0.786 0.795

SentCLEME-dep γ 0.876 0.844 0.915 0.913 0.806♣ 0.838♣ 0.849 0.886 0.742♣ 0.795♣ 0.876 0.921 0.855
ρ 0.824 0.808 0.835 0.874 0.775♣ 0.819♣ 0.824 0.863 0.797♣ 0.846♣ 0.791 0.846 0.825

SentCLEME-ind γ 0.868 0.857 0.855♣ 0.876♣ 0.821♣ 0.856♣ 0.841 0.877 0.782♣ 0.831♣ 0.852 0.896 0.851
ρ 0.725 0.758 0.659♣ 0.714♣ 0.775♣ 0.819♣ 0.808 0.846 0.819♣ 0.874♣ 0.762 0.825 0.782

SentCLEME2.0-dep (Ours)
γ 0.870 0.881 0.766 0.830 0.941♣ 0.954♣ 0.892 0.938 0.913♣ 0.918♣ 0.916 0.949 0.897
ρ 0.714 0.725 0.681 0.747 0.857♣ 0.885♣ 0.824 0.901 0.857♣ 0.912♣ 0.720 0.791 0.801

SentCLEME2.0-ind (Ours)
γ 0.866 0.881 0.799 0.853 0.941♣ 0.956♣ 0.915 0.952 0.915♣ 0.917♣ 0.883 0.904 0.899
ρ 0.709 0.720 0.681 0.747 0.879♣ 0.912♣ 0.857 0.923 0.824♣ 0.885♣ 0.654 0.720 0.793

SentCLEME2.0-sim-dep (Ours)
γ 0.926 0.937 0.797 0.861 0.939♣ 0.948♣ 0.908 0.952 0.871♣ 0.872♣ 0.918 0.947 0.906
ρ 0.907 0.912 0.808 0.863 0.852♣ 0.879♣ 0.885 0.945 0.753♣ 0.780♣ 0.896 0.940 0.868

SentCLEME2.0-sim-ind (Ours)
γ 0.915 0.936 0.808 0.866 0.945♣ 0.956♣ 0.923 0.963 0.885♣ 0.887♣ 0.931 0.961 0.915
ρ 0.868 0.879 0.753 0.824 0.863♣ 0.901♣ 0.879 0.956 0.775♣ 0.802♣ 0.835 0.923 0.855

Table 1: Correlation results on GJG15 Ranking. We highlight the highest score in bold and the second-highest
score with underlines. ♣ We remove unchanged reference sentences for higher correlations due to low-quality
annotations. Otherwise, negative correlations are possible.

some recent work has sought their use in evalu-301

ating assorted NLP tasks (Pavlovic and Poesio,302

2024; Chen et al., 2024), GEC evaluations in-303

cluded (Sottana et al., 2023). Drawing inspiration304

from this trend, we employ Llama-2-7B (Touvron305

et al., 2023) as a scorer to acquire the importance306

score for each edit. These scores range from 1 to 5,307

with higher scores indicating increased edit impor-308

tance. We provide the implementation details and309

the prompting template in Appendix D.310

4 Experiments311

4.1 Experimental Settings312

Human ranking datasets. We conduct compre-313

hensive experiments across two human judgment314

datasets with disparate annotation protocols. 315

• GJG15 (Grundkiewicz et al., 2015) is con- 316

structed to manually evaluate classical sys- 317

tems (Junczys-Dowmunt and Grundkiewicz, 318

2014; Rozovskaya et al., 2014) in the CoNLL- 319

2014 shared task (Ng et al., 2014). 320

• SEEDA. Kobayashi et al. (2024b) reveal sev- 321

eral shortcomings in GJS15 and subsequently 322

propose SEEDA, an alternative dataset fea- 323

turing human judgments across two levels of 324

granularity. To align with the contemporary 325

trend in GEC, SEEDA is primarily focused on 326

mainstream neural-based systems. 327

Both of human judgment datasets derive the over- 328

all human rankings for all GEC systems by employ- 329
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ing Expected Wins (EW) (Bojar et al., 2013) and330

TrueSkill (TS) (Sakaguchi et al., 2014) methods.331

Following the previous approaches (Ye et al., 2023;332

Kobayashi et al., 2024b), we compute the Pearson333

(γ) and Spearman (ρ) correlations between metrics334

and human judgments, in order to ascertain the ef-335

fectiveness and robustness of GEC metrics within336

the context of system-level ranking.337

Reference datasets. Reference-based metrics338

rely on a reference set to establish a system rank-339

ing list, the properties of which may significantly340

influence the performance of the metrics. To inves-341

tigate the impact of variable reference sets, we as-342

sess human consistency across 6 reference datasets.343

These datasets encompass a range of annotation344

styles, and a number of human annotators, includ-345

ing CoNLL-2014 (Grundkiewicz et al., 2015), BN-346

10GEC (Bryant and Ng, 2015) and SN-8GEC (Sak-347

aguchi et al., 2016). Notably, SN-8GEC is par-348

titioned into 4 sub-sets, namely E-Minimal, E-349

Fluency, NE-Minimal, and NE-Fluency. A more350

thorough breakdown of these datasets and the statis-351

tics are provided in Appendix A.352

Corpus and sentence levels. GEC evaluation353

metrics can compute an overall system-level score354

for a given system in two settings (Gong et al.,355

2022). Given the metric M , source sentences S,356

hypothesis sentences H and reference sentences357

R, 1) corpus-level metrics compute the system358

score based on the whole corpus M(S,H,R), and359

2) sentence-level metrics use the average of the360

sentence-level scores
∑I

iM(Si,Hi,Ri)/I .361

Trade-off factors. We employ a cross-evaluation362

approach to determine two optimal configura-363

tions for trade-off factors applicable at the corpus364

and sentence levels, respectively. At the corpus365

level, we assign the factors as α1, α2, α3, α4 =366

0.45, 0.35, 0.15, 0.05. Conversely, at the sen-367

tence level, these are adjusted to α1, α2, α3, α4 =368

0.35, 0.25, 0.20, 0.20. Additionally, CLEME2.0369

metrics named with “sim” are based on similarity-370

based edit weighting, and we leave the analysis of371

LLM-based edit weighting to Section 5.2.372

Evaluation Assumptions. Ye et al. (2023) pro-373

pose evaluating systems based on one of two as-374

sumptions, namely correction dependence and cor-375

rection independence. In short, the correction376

independence assumption offers a more relaxed377

edit matching process, implying that systems are378

more inclined to yield higher scores when multiple379

Metric SEEDA-S SEEDA-E Avg.
γ ρ γ ρ

M2 0.658 0.487 0.791 0.764 0.675
PT-M2 0.845 0.769 0.896 0.909 0.855
ERRANT 0.557 0.406 0.697 0.671 0.583
PT-ERRANT 0.818 0.720 0.888 0.888 0.829
GoToScorer 0.929 0.881 0.901 0.937 0.912
GLEU 0.847 0.886 0.911 0.897 0.885
Scribendi Score 0.631 0.641 0.830 0.848 0.738
SOME 0.892 0.867 0.901 0.951 0.903
IMPARA 0.911 0.874 0.889 0.944 0.903
CLEME-dep 0.633 0.501 0.755 0.757 0.662
CLEME-ind 0.616 0.466 0.736 0.708 0.632
CLEME2.0-dep (Ours) 0.937 0.865 0.945 0.939 0.922
CLEME2.0-ind (Ours) 0.908 0.844 0.961 0.946 0.915
CLEME2.0-sim-dep (Ours) 0.923 0.914 0.948 0.974 0.940
CLEME2.0-sim-ind (Ours) 0.921 0.907 0.953 0.981 0.941

Sent-M2 0.802 0.692 0.887 0.846 0.807
SentERRANT 0.758 0.643 0.860 0.825 0.772
SentCLEME-dep 0.866 0.809 0.944 0.939 0.890
SentCLEME-ind 0.864 0.858 0.935 0.911 0.892
SentCLEME2.0-dep (Ours) 0.905 0.844 0.955 0.946 0.913
SentCLEME2.0-ind (Ours) 0.875 0.837 0.953 0.953 0.905
SentCLEME2.0-sim-dep (Ours) 0.924 0.858 0.923 0.953 0.915
SentCLEME2.0-sim-ind (Ours) 0.921 0.886 0.957 0.960 0.931

Table 2: Results of human correlations on SEEDA
Ranking based on TrueSkill (TS).

Metric EW TS Avg.
γ ρ γ ρ

CLEME2.0-dep-Hit 0.599 0.593 0.673 0.648 0.628
CLEME2.0-dep-Error -0.444 -0.533 -0.526 -0.593 -0.524
CLEME2.0-dep-Under 0.496 0.599 0.576 0.659 0.583
CLEME2.0-dep-Over 0.118 0.269 0.073 0.275 0.253

SentCLEME2.0-dep-Hit 0.594 0.593 0.672 0.648 0.627
SentCLEME2.0-dep-Error -0.405 -0.429 -0.489 -0.500 -0.456
SentCLEME2.0-dep-Under 0.489 0.511 0.572 0.582 0.539
SentCLEME2.0-dep-Over -0.247 -0.363 -0.346 -0.440 -0.349

Table 3: Correlation results of each disentangled score
on GJG15 Ranking.

references are accessible. Inspired by this work, 380

CLEME2.0 also supports both assumptions, and 381

we will study their impact on our method. 382

4.2 Results of GJG15 Ranking 383

The correlations between the GEC metrics and hu- 384

man judgments on the GJG15 rankings are shown 385

in Table 1, and we have the following insights. 386

CLEME2.0 outperforms other metrics at both 387

corpus and sentence levels. For corpus-level, 388

CLEME2.0-sim-ind achieves the highest average 389

correlations, closely followed by CLEME2.0-sim- 390

dep. CLEME2.0-ind and CLEME2.0-dep can also 391

gain comparable correlations with other metrics, 392

in spite of the fact that they do not utilize any 393

6



Metric EW TS Avg.
γ ρ γ ρ

CLEME2.0-dep 0.461 0.423 0.483 0.457 0.456
CLEME2.0-ind 0.468 0.421 0.489 0.453 0.458
CLEME2.0-sim-dep 0.559 0.592 0.581 0.624 0.589
CLEME2.0-sim-ind 0.566 0.593 0.588 0.622 0.592

SentCLEME2.0-dep 0.374 0.305 0.362 0.290 0.333
SentCLEME2.0-ind 0.372 0.302 0.356 0.283 0.328
SentCLEME2.0-sim-dep 0.410 0.361 0.400 0.345 0.379
SentCLEME2.0-sim-ind 0.412 0.360 0.399 0.338 0.377

Table 4: Average correlations of (Sent)CLEME2.0 and
(Sent)CLEME2.0-sim on CoNLL-2014.

Dataset Corpus-EW Corpus-TS Sentence-EW Sentence-TS

γ ρ γ ρ γ ρ γ ρ

CoNLL-2014 0.697 0.659 0.759 0.720 0.626 0.654 0.696 0.698
BN-10GEC 0.732 0.764 0.796 0.813 0.638 0.637 0.708 0.698
E-Minimal 0.709 0.786 0.779 0.819 0.642 0.692 0.715 0.747
E-Fluency 0.760 0.786 0.831 0.841 0.642 0.665 0.720 0.714
NE-Minimal 0.777 0.823 0.839 0.861 0.654 0.747 0.723 0.791
NE-Fluency 0.823 0.692 0.849 0.709 0.664 0.791 0.742 0.830

Table 5: Correlation results of LLM-based weighting
on GJG15 Ranking.

edit weighting techniques. On the other hand,394

sentence-level metrics exhibit a similar pattern.395

SentCLEME2.0-sim-dep and SentCLEME2.0-sim-396

ind achieve the highest Pearson and Spearson cor-397

relations, respectively. These results significantly398

demonstrate the effectiveness and robustness of our399

proposed method across different settings.400

Sentence-level metrics outperform their corpus-401

level counterparts. This observation aligns with402

recent studies (Gong et al., 2022; Ye et al., 2023).403

This is because system-level rankings treat each404

sample equally, which is consistent with the eval-405

uation process of sentence-level metrics. In con-406

trast, corpus-level metrics allow samples with more407

edits to significantly influence the results. SentPT-408

M2 exhibits the best performance on CoNLL-2014,409

but its results on BN-10GEC, E-Minimal, and NE-410

Fluency are inferior compared to our method.411

In general, our method aligns more consistently412

with human judgments than existing mainstream413

metrics. Particularly, most weighted outcomes out-414

shine the unweighted ones, attributable to the incor-415

poration of semantic considerations. However, on416

E-Minimal and NE-Minimal, the unweighted and417

weighted results exhibit comparability. We con-418

jecture that this could be due to the annotations in419

these datasets being minimal yet decisive, reducing420

the possibility of generating diverse weights.421

4.3 Results of SEEDA Ranking 422

We conduct a supplementary experiment on the 423

SEEDA-Sentence and SEEDA-Edit datasets, com- 424

paring our method with a wide range of GEC 425

metrics. Table 2 demonstrates again that our ap- 426

proach obtains the optimal results on both datasets. 427

Kobayashi et al. (2024b) claim that the correlations 428

of most metrics tend to decline when shifting from 429

classical to neural systems in evaluation. This sug- 430

gests that traditional metrics may struggle when 431

assessing more extensively edited and fluent cor- 432

rections generated by neural systems. However, our 433

method is still able to address these challenges and 434

obtain even better results. The results on SEEDA- 435

Edit surpass those on SEEDA-Sentence due to the 436

finer granularity of SEED-Edit, which is more con- 437

sistent with the functioning of CLEME2.0. 438

It is crucial to mention that reference-less met- 439

rics such as SOME and IMPARA yield high out- 440

comes, in part, because these are fine-tuned on 441

GEC data. Although fine-tuned metrics generally 442

perform better, they are not without their limi- 443

tations. Firstly, the incorporation of fine-tuning 444

in SOME and IMPARA makes these reference- 445

less metrics more costly. Second, these reference- 446

less metrics may suffer from poor robustness 447

since the assessment process is not guided by 448

human-annotated references. For example, the au- 449

thors of Scribendi Score claim that it can achieve 450

high correlations on the human judgment dataset 451

from Napoles et al. (2016b). However, only moder- 452

ate correlations are observable on SEEDA-Edit. 453

5 Analysis 454

5.1 Ablation Studies 455

Isolated effect of each disentangled score. We 456

perform ablation experiments on (Sent)CLEME2.0- 457

dep to observe how each disentangled score per- 458

forms. Since a system exhibiting lower error- 459

correction, under-correction, and over-correction 460

is more desirable, these scores are subtracted from 461

1. The results are presented in Table 3. Both 462

hit-correction and under-correction scores display 463

moderate correlations. Over-correction scores ex- 464

hibit slight positive correlations at the corpus-level, 465

but negligible negative correlations at the sentence 466

level. Interestingly, error-correction scores mani- 467

fest negative correlations. However, this does not 468

imply that error-correction scores have no influence 469

on the comprehensive score. In fact, the trade-off 470

factor of error-correction scores is relatively sig- 471
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Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 5 Chunk 6 Chunk 7 Chunk 8 Chunk 9
Source When we are diagonosed out with certain genetic disease , are we suppose to disclose this result to our relatives ?
Ref. When we are diagnosed with certain genetic diseases , are we suppose to disclose this result to our relatives ?
Hyp. When we are diagnosed out (0.056) with certain genetic diseases (0.006) , are we suppose to disclose the results (0.019) to their (0.021) relatives ?

Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 5 Chunk 6
Source Do one who suffered from this disease keep it a secret of infrom their relatives ?
Ref Does one who suffers from this disease keep it a secret or inform their relatives ?
Hyp. Do one (0.028) who suffer (0.011) from this disease keep it a secret to inform (0.094) their relatives ?

Table 6: Cases of CLEME2.0. We highlight TP chunks, FPne chunks, FPun chunks, and FN chunks in different
colors. Fractions in brackets in Hyp. are similarity-based weighting scores.

nificant. It is hypothesized that evaluations based472

solely on error-correction scores could unduly en-473

courage systems that produce only highly confident474

edits, resulting in potential evaluation bias.475

Average correlations. To further compare differ-476

ent metrics from a global perspective, we report477

the average correlations obtained through the ex-478

haustive enumeration of various parameter config-479

urations. Specifically, all possible parameter com-480

binations are attempted, with a step increment of481

0.05. From Table 4, we observe that all the corre-482

lations are positive, regardless of the applied cor-483

rection assumptions, evaluation levels, and weight-484

ing techniques. Comparing the unweighted and485

similarity-based weighted results, we conclude that486

similarity-based weighting significantly promotes487

human correlations, even on a global scale. Further-488

more, corpus-level metrics tend to attain higher av-489

erage results than sentence-level metrics; nonethe-490

less, sentence-level metrics with optimal parame-491

ters surpass their corpus-level counterparts. This492

suggests that corpus-level metrics may exhibit en-493

hanced robustness concerning parameter selection.494

5.2 Exploration of LLM495

The results of LLM-based edit weighting are shown496

in Table 5. The corpus-level results are quite sat-497

isfying and are comparable to those of most met-498

rics such as PT-M2 and CLEME. However, the499

sentence-level outcomes are less satisfactory. This500

could be due to the fact that LLM assigns error-501

editing scores on a scale of 1 to 5, which is notably502

coarser when contrasted with the 0 to 1 continuous503

scoring scale. Sentence-level scores depend on the504

mean of the editing scores within a particular sen-505

tence. Consequently, even the slightest bias in the506

scores assigned by the LLM might lead to signifi-507

cant deviations in the sentence-level outcomes.508

Although the LLM has had some success, its509

performance still falls short when compared to the510

similarity-based weighting. This might be due to511

the scoring granularity of the 1 to 5 scale provided 512

by the LLM not being sufficiently fine-tuned. In ad- 513

dition, the score heavily relies on the functionality 514

of the LLM, which proves rather unstable. 515

5.3 Case Study 516

Table 6 presents examples of CLEME2.0. In the top 517

group, chunk 2 achieves the highest score (0.056), 518

highlighting its significant impact on the sentence. 519

Although "diagnosed" was correctly amended, the 520

omission of "out" persists, rendering the sentence 521

still incorrect. Chunk 4 represents a hit-correction 522

relating to the singular and plural forms in the 523

source sentence and its low score indicates a min- 524

imal impact. Chunks 6 and 8 are types of over- 525

correction. Chunk 6 does not change the original 526

meaning, whereas chunk 8 introduces a more se- 527

vere error due to an incorrect personal pronoun. 528

In the second group, both chunks 3 and 5 exhibit 529

error-corrections, with chunk 5 scoring higher than 530

chunk 3. Chunk 3 involves issues of tense and 531

singular-plural, while chunk 5 presents a more seri- 532

ous error that completely alters the meaning of the 533

sentence. The weighting scores reflect the superi- 534

ority of the method. For metrics that do not apply 535

weightings, sorts of edits are uniformly assigned, 536

which does not reflect the actual semantics. 537

6 Conclusion 538

This paper proposes CLEME2.0, an interpretable 539

evaluation strategy, which are beneficial to reveal 540

crucial characteristics of GEC systems. To ad- 541

dress the limitations of traditional reference-based 542

metrics in capturing semantic nuances, we en- 543

hance CLEME2.0 using two innovative edit weight- 544

ing techniques: similarity-based and LLM-based 545

weighting. Through comprehensive experiments 546

and analyses, we validate the efficacy and relia- 547

bility of our approach. We believe CLEME2.0 548

will provide a promising perspective on the task of 549

grammatical error correction. 550
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Limitation551

Although CLEME2.0 can be extended to other lan-552

guages, its effectiveness has not been tested in any553

language other than English. Furthermore, all ref-554

erence sets utilized in our experiments are derived555

from the CoNLL-2014 shared task, which is a sec-556

ond language dataset. To demonstrate the robust-557

ness of our approaches, further experiments on eval-558

uation datasets encompassing multiple languages559

and text domains are required. Finally, we strongly560

advocate for the construction of new GEC evalua-561

tion datasets to advance the development of NLP.562

Ethics Statement563

In this paper, we validate the effectiveness and564

robustness of our proposed approach using the565

CoNLL-2014, BN-10GEC, and SN-8GEC refer-566

ence datasets. These datasets are sourced from567

publicly available resources on legitimate websites568

and do not contain any sensitive data. Additionally,569

all the baselines employed in our experiments are570

publicly accessible GEC metrics, and we have duly571

cited the respective authors. We confirm that all572

datasets and baselines utilized in our experiments573

are consistent with their intended purposes.574
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A Details about GEC Meta-Evaluation783

A.1 Human Rankings784

GJG15 ranking. Grundkiewicz et al. (2015) pro-785

pose the first large-scale human judgement dataset786

towards 12 participating systems of the CoNLL-787

2014 shared task. In this assessment, 8 native788

speaker are asked to rank the outputs of all the789

systems from best to worst. Two system ranking790

lists are generated using Expected Wins (EW) and791

TrueSkill (TS) respectively. Since all the involved792

systems are mostly classical systems such as sta-793

tistical machine translation approaches (Junczys-794

Dowmunt and Grundkiewicz, 2014) and classifier-795

based approaches (Rozovskaya et al., 2014), the796

dataset may not be a ideal test bed for meta-797

evaluation in the current time.798

SEEDA ranking. Kobayashi et al. (2024b) iden-799

tify several limitations of GJG15 ranking dataset,800

and propose a new human ranking dataset called801

SEEDA. SEEDA consists of corrections with hu-802

man ratings along two different granularities: edit-803

based and sentence-based, covering 12 state-of-804

the-art systems including large language models805

(LLMs), and two human corrections with different806

focuses. Three native English speakers participate807

in the annotation process. Similar to Grundkiewicz808

et al. (2015), the overall human rankings are de-809

rived from TrueSkill (TS) and Expected Wins (EW)810

based on pairwise judgments.811

B Statistics of Reference Datasets812

Table 7 presents the statistics of all the reference813

sets involved in our experiments.814

B.1 Baseline Metrics 815

In our evaluation, we compare our method with the 816

following reference-based baseline metrics, includ- 817

ing corpus and sentence-level variants: 818

• M2 and SentM2 (Dahlmeier and Ng, 2012a) 819

dynamically extract the hypothesis edits with 820

the maximum overlap of gold annotations by 821

utilizing the Levenshtein algorithm. 822

• GLEU and SentGLEU (Napoles et al., 2015) 823

are BLEU-like GEC metrics based on n-gram 824

matching, rewarding hypothesis n-grams that 825

align with the reference but not the source, 826

while penalizing those aligning solely with 827

the source. GLEU is the main metric in JF- 828

LEG, an English GEC dataset that highlights 829

holistic fluency edits. 830

• ERRANT and SentERRANT (Bryant et al., 831

2017) are the most mainstream GEC metrics, 832

which are based on edit matching. They are 833

able to extract edits more accurately, by uti- 834

lizing the linguistically enhanced Damerau- 835

Levenshtein algorithm. 836

• PT-M2 and SentPT-M2 (Gong et al., 2022) 837

leverage pre-trained language model (PLM) to 838

evaluate GEC systems. The main idea is simi- 839

lar to M2 and ERRANT, but they can leverage 840

the knowledge of pre-trained language models 841

to score edits effectively. 842

• CLEME and SentCLEME (Ye et al., 2023) 843

are proposed to provide unbiased scores for 844

multi-reference evaluation. Besides, the au- 845

thors introduce the correction independence 846

assumption, so CLEME can perform based 847

on either traditional correction dependence or 848

correction independence assumptions. 849

In addition, for the evaluation of SEEDA, we 850

have additionally added the following evaluation 851

methods in accordance with the evaluation methods 852

reported in Kobayashi et al. (2024b): 853

• GoToScorer (Gotou et al., 2020): takes into 854

account the difficulty of error correction when 855

calculating the evaluation score. The difficulty 856

is calculated based on the number of systems 857

that can correct errors. 858

• Scribendi Score (Islam and Magnani, 2021): 859

evaluates in conjunction with the complexity 860
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Item CoNLL-2014 BN-10GEC E-Minimal E-Fluency NE-Minimal NE-Fluency

# Sents (Length) 1,312 (23.0) 1,312 (23.0) 1,312 (23.0) 1,312 (23.0) 1,312 (23.0) 1,312 (23.0)
# Refs (Length) 2,624 (22.8) 13,120 (22.9) 2,624 (23.2) 2,624 (22.8) 2,624 (23.0) 2,624 (22.2)
# Edits (Length) 5,937 (1.0) 36,677 (1.0) 4,500 (1.0) 8,373 (1.1) 4,964 (0.9) 11,033 (1.2)
# Unchanged Chunks (Length) 11,174 (4.8) 93,496 (2.5) 8,887 (6.3) 12,823 (3.8) 10,748 (5.1) 14,086 (2.9)
# Corrected/Dummy Chunks (Length) 4,994 (1.3) 26,948 (2.4) 3,963 (1.2) 6,305 (1.7) 4,221 (1.2) 6,892 (2.6)

Table 7: Statistics of CoNLL-2014 (Ng et al., 2014), BN-10GEC (Bryant and Ng, 2015) and SN-8GEC (Sakaguchi
et al., 2016) reference sets. We leverage ERRANT (Bryant et al., 2017) for edit extraction, and CLEME (Ye et al.,
2023) for chunk extraction.

calculated by GPT-2 (Radford et al., 2019),861

the labeled ranking ratio and the Levenstein862

distance ratio.863

• SOME (Yoshimura et al., 2020b): optimizes864

human evaluation by fine-tuning BERT sepa-865

rately for criteria such as grammaticality, flu-866

ency, and meaning preservation.867

• IMPARA (Maeda et al., 2022): incorporates868

a quality assessment model fine-tuned using869

BERT parallel data and a similarity model that870

takes into account the effects of editing.871

C Detailed Results of Evaluation872

We list detailed evaluation results of CLEME2.0873

on CoNLL-2014 in Table 8.874

D Experimental Details of LLM-based875

Edit Weighting876

Due to the strong semantic understanding capa-877

bilities of large language models (LLMs), recent878

work (Sottana et al., 2023) has sparked interest in879

using LLMs for text evaluation, including the eval-880

uation of grammatical error correction. Inspried881

by this, we utilize LLMs as weighted scorers to882

assess the importance of each edit. The template883

for the LLM is shown in Figure 3. For each edit,884

the constructed sentence contains only one gram-885

matical error, while the other positions are correct.886

The second line shows the modification of that edit.887

The LLM is required to determine the necessity of888

the modified edit and output a score from 1 to 5.889

A higher score indicates a greater necessity for the890

edit modification. We do not inform the LLM of891

the specific types of edits; instead, we let the larger892

model evaluate the necessity of the modified edits.893

D.1 Hit-Correction Edits894

Scenario: The hypothesis and reference sentence895

are consistent.896

Focus: The significance of the transition from the897

source to the hypothesis sentence. 898

Scoring: A higher score indicates that the edit from 899

source to reference sentence carries substantial im- 900

portance. Conversely, a lower score suggests that 901

this transition is less crucial. 902

D.2 Error-Correction Edits 903

Scenario: The hypothesis and reference sentence 904

are inconsistent. 905

Focus: The significance of the transition from the 906

hypothesis to the reference sentence. 907

Scoring: A high score indicates a critical edit, sug- 908

gesting significant inaccuracies in the hypothesis 909

sentence. A low score implies that the modification 910

is of minimal importance, indicating the hypoth- 911

esis sentence is either correct or not substantially 912

incorrect. 913

D.3 Under-Correction Edits 914

Scenario: The source and hypothesis sentence re- 915

main unchanged. 916

Focus: The importance of modifications from the 917

source to the reference sentence. 918

Scoring: A high score implies a critical need 919

for the edit, pointing to a severe under-correction. 920

Conversely, a low score indicates that the edit 921

is of lesser importance, suggesting a mild under- 922

correction. 923

D.4 Over-Correction Edits 924

Scenario: The source is equivalent to the reference 925

sentence, leading to two distinct situations: 926

1. The reference is not an ideal sentence, and the 927

hypothesis sentence is corrected but deemed 928

overcorrected. 929

2. The reference is optimal, necessitating no 930

amendments, yet the hypothesis sentence in- 931

troduces corrections. 932

Evaluation: 933
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Prompt:
As a grammar correction evaluator, you are required to score the corrected editors for each grammati-
cal error. We will give three lines, the first line is the original sentence given, the second line is the
modification made to the editor, and the third line is the output form.
The scoring range is 1-5. The larger the score, the more important the editor’s correction is. Corre-
spondingly, the smaller the score, the less important the editor’s correction is.
1 point indicates that this editor’s modification has almost no impact on the original sentence and is
dispensable.
2 points indicates that this editorial change has a slight impact.
3 points indicates that this editor’s changes have a certain impact.
4 points indicates that this editorial change is necessary.
5 points indicates that this editing modification is very necessary and of high importance.
The output format is a score of 1 to 5 points.
Next, I will give you a sentence only with an edit. You need to rate each edit in sequence. The desired
output is just a score, without any redundant explanation.
Example Input:
Sentence: Nowadays the technologies were improved a lot compared to the last century.
Edit: were => have
Output (1-5):
Example Output:
5
Note that the output must be a number between 1 and 5. Here is the sample:

Figure 3: The prompting of LLM-based weighting.

• First Situation: Assess the importance (W1)934

of the edit from the source to the hypothesis935

sentence. A higher W1 score indicates that the936

edit is crucial, suggesting imperfections in the937

reference sentence. Conversely, a lower score938

suggests that the edit is of minimal impor-939

tance, rendering the hypothesis’s correction940

unnecessary.941

• Second Situation: Examine the significance942

(W2) of the edit from the hypothesis to the943

reference sentence. A higher score indicates944

that the edit is critical, denoting that the hy-945

pothesis’s correction was overly aggressive.946

A lower score implies the edit was unneeded,947

making the correction by the hypothesis irrel-948

evant.949

Formula: The computation of over-correction950

score is defined as follow:951

over-correction score = W2 −W1952

This score can be either positive or negative. A953

higher over-correction score signals a less effective954

performance by the correction system.955

By systematically assessing the necessity and956

importance of different types of edits, we can bet-957

ter understand and improve the performance of 958

grammatical error correction systems. 959
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Metric AMU CAMB CUUI IITB INPUT IPN NTHU PKU POST RAC SJTU UFC UMC

CLEME2.0-dependent

TP 380 584 471 22 0 39 330 246 412 254 85 32 260
sim 9.20 12.66 7.58 0.39 0.00 0.77 5.79 6.69 8.80 6.68 1.50 0.42 5.29

FP 817 1307 964 67 0 488 905 709 1145 782 272 18 789
sim 16.03 30.92 16.06 1.80 0.00 11.93 24.56 14.36 19.25 11.98 6.49 0.25 18.26

FPne 276 418 311 34 0 149 302 254 316 259 76 12 245
sim 4.08 6.55 3.68 0.75 0.00 4.61 5.89 4.06 4.60 3.80 2.30 0.17 3.83

FPun 541 889 653 33 0 339 603 455 829 523 196 6 544
sim 11.95 24.36 12.38 1.05 0.00 7.33 18.67 10.30 14.64 8.18 4.19 0.08 14.43

FN 1360 1150 1357 2057 1782 2886 1388 1454 1354 1487 1668 2087 1461
sim 34.25 28.45 36.21 78.39 48.24 83.10 46.53 36.15 34.48 38.00 56.28 51.27 39.60

TN 6298 6329 6224 6007 6308 5160 6274 6286 6428 6276 6313 5965 6355
sim 6237 6301 6190 5373 6226 5241 5973 6214 6382 6194 5902 6092 6273

Hit 0.188 0.271 0.220 0.010 0.00 0.013 0.163 0.126 0.198 0.127 0.046 0.015 0.132
sim 0.194 0.266 0.160 0.005 0.00 0.009 0.100 0.143 0.184 0.138 0.025 0.008 0.109

Error 0.137 0.194 0.145 0.016 0.00 0.048 0.150 0.130 0.152 0.130 0.042 0.006 0.125
sim 0.086 0.138 0.078 0.009 0.00 0.052 0.101 0.0866 0.096 0.078 0.038 0.003 0.079

Under 0.675 0.534 0.634 0.973 1.00 0.939 0.687 0.744 0.650 0.744 0.912 0.979 0.743
sim 0.721 0.597 0.763 0.986 1.00 0.939 0.799 0.771 0.720 0.784 0.937 0.989 0.813

Over 0.452 0.470 0.455 0.371 0.00 0.643 0.488 0.476 0.532 0.505 0.549 0.12 0.519
sim 0.474 0.559 0.524 0.478 0.00 0.577 0.615 0.490 0.522 0.438 0.524 0.116 0.613

Score 0.483 0.508 0.497 0.431 0.45 0.408 0.463 0.450 0.479 0.505 0.434 0.450 0.453
sim 0.503 0.520 0.484 0.425 0.45 0.408 0.439 0.474 0.491 0.438 0.424 0.448 0.452

SentCLEME2.0-dependent

TP 376 580 467 22 0 39 327 244 409 251 84 32 259
sim 9.14 12.63 7.52 0.39 0.00 0.76 5.72 6.65 8.75 6.59 1.48 0.42 5.23

FP 821 1311 968 67 0 488 908 711 1148 785 273 18 790
sim 16.49 31.25 16.50 1.85 0.00 13.00 24.83 14.38 19.36 12.34 7.13 0.26 18.47

FPne 286 431 320 22 0 132 310 262 326 271 81 10 255
sim 4.60 7.51 4.27 0.44 0.00 2.62 6.58 4.58 5.06 4.02 1.28 0.15 4.39

FPun 535 880 648 45 0 356 598 449 822 514 192 8 535
sim 11.89 23.74 12.23 1.42 0.00 10.39 18.24 9.80 14.30 8.32 5.85 0.12 14.07

FN 1600 1374 1577 1972 1982 1940 1660 1712 1587 1744 1900 1980 1714
sim 43.65 35.92 45.22 57.46 58.31 54.69 46.92 46.02 43.09 46.05 55.32 58.35 48.02

TN 6058 6105 6004 6092 6108 6106 6002 6028 6195 6019 6081 6072 6102
sim 6052 6095 6009 6093 6106 6115 5995 6012 6203 6027 6079 6070 6115

Hit 0.136 0.210 0.163 0.008 0.00 0.013 0.119 0.088 0.142 0.089 0.032 0.012 0.091
sim 0.131 0.205 0.142 0.007 0.00 0.011 0.104 0.088 0.129 0.086 0.027 0.008 0.087

Error 0.080 0.129 0.090 0.005 0.00 0.038 0.095 0.076 0.088 0.071 0.023 0.002 0.070
sim 0.063 0.102 0.066 0.004 0.00 0.033 0.079 0.059 0.070 0.051 0.020 0.001 0.059

Under 0.500 0.392 0.479 0.675 0.687 0.639 0.496 0.538 0.486 0.551 0.637 0.678 0.546
sim 0.519 0.419 0.517 0.673 0.684 0.645 0.524 0.553 0.509 0.567 0.641 0.680 0.557

Over 0.248 0.419 0.293 0.031 0.00 0.242 0.304 0.235 0.342 0.232 0.121 0.006 0.267
sim 0.241 0.421 0.294 0.030 0.00 0.224 0.302 0.224 0.331 0.203 0.119 0.005 0.267

Score 0.498 0.513 0.507 0.467 0.466 0.447 0.481 0.475 0.495 0.477 0.469 0.471 0.476
sim 0.502 0.520 0.504 0.467 0.466 0.449 0.479 0.481 0.494 0.484 0.467 0.469 0.479

CLEME2.0-independent

TP 388 596 487 22 0 39 338 248 420 255 85 32 262
sim 9.47 13.11 7.99 0.40 0.00 0.81 6.13 6.80 9.07 6.91 1.54 0.47 5.49

FP 809 1295 948 67 0 488 897 707 1137 781 272 18 787
sim 14.74 28.11 14.42 1.91 0.00 11.82 22.93 13.03 17.62 11.23 6.46 0.25 16.99

FPne 408 627 449 34 0 234 447 388 487 406 134 12 366
sim 6.32 10.62 5.51 0.86 0.00 4.79 9.50 7.30 7.12 5.56 2.41 0.17 6.14

FPun 401 668 499 33 0 254 450 319 650 375 138 6 421
sim 8.42 17.49 8.91 1.05 0.00 7.03 13.43 5.73 10.50 5.67 4.05 0.08 10.85

FN 1029 778 984 1497 1530 1382 1045 1129 989 1135 1398 1506 1136
sim 26.88 20.31 27.94 53.23 41.31 50.21 36.83 28.40 26.59 29.30 40.63 41.49 31.88

TN 6629 6701 6597 6567 6560 6664 6617 6611 6793 6628 6583 6546 6680
Hit 0.213 0.298 0.254 0.014 0.000 0.024 0.185 0.141 0.222 0.142 0.053 0.021 0.149

sim 0.222 0.298 0.193 0.007 0.000 0.015 0.117 0.160 0.212 0.165 0.035 0.011 0.126
Error 0.224 0.313 0.234 0.022 0.000 0.141 0.244 0.220 0.257 0.226 0.083 0.008 0.207

sim 0.148 0.241 0.133 0.016 0.000 0.086 0.181 0.172 0.166 0.133 0.054 0.004 0.141
Under 0.564 0.389 0.513 0.964 1.000 0.835 0.571 0.640 0.522 0.632 0.865 0.972 0.644

sim 0.630 0.461 0.674 0.977 1.000 0.900 0.702 0.668 0.622 0.701 0.911 0.985 0.733
Over 0.335 0.353 0.348 0.371 0.000 0.482 0.364 0.334 0.417 0.362 0.387 0.12 0.401

sim 0.348 0.424 0.397 0.454 0.000 0.557 0.462 0.289 0.393 0.313 0.506 0.11 0.483
Score 0.472 0.486 0.490 0.432 0.450 0.389 0.448 0.434 0.461 0.431 0.431 0.453 0.439

sim 0.503 0.508 0.490 0.426 0.450 0.400 0.428 0.463 0.489 0.479 0.425 0.449 0.446

SentCLEME2.0-independent

TP-sim 9.16 12.59 7.73 0.40 0.00 0.75 5.93 6.67 8.77 6.67 1.50 0.47 5.21
FP-sim 15.83 29.93 15.62 1.76 0.00 12.58 24.30 14.17 18.94 12.00 6.84 0.27 17.76
FPne-sim 7.20 12.38 6.58 0.70 0.00 5.27 10.94 8.38 8.37 6.25 2.70 0.19 6.81
FPun-sim 8.63 17.54 9.03 1.07 0.00 7.31 13.36 5.80 10.57 5.75 4.14 0.08 10.95
FN-sim 31.54 22.55 32.06 47.73 48.90 43.66 33.43 33.87 30.37 33.61 45.12 48.29 36.24
Hit 0.155 0.239 0.189 0.010 0.000 0.016 0.137 0.100 0.165 0.106 0.036 0.015 0.105

sim 0.154 0.240 0.174 0.009 0.000 0.014 0.125 0.100 0.155 0.103 0.033 0.012 0.102
Error 0.159 0.261 0.178 0.015 0.000 0.110 0.192 0.165 0.192 0.162 0.059 0.005 0.147

sim 0.134 0.229 0.147 0.013 0.000 0.094 0.170 0.144 0.164 0.129 0.051 0.004 0.127
Under 0.403 0.268 0.373 0.627 0.647 0.563 0.390 0.447 0.375 0.450 0.574 0.635 0.449

sim 0.429 0.299 0.415 0.629 0.647 0.580 0.425 0.467 0.407 0.475 0.586 0.639 0.471
Over 0.183 0.315 0.227 0.023 0.000 0.171 0.224 0.163 0.266 0.165 0.086 0.004 0.206

sim 0.183 0.320 0.230 0.023 0.000 0.169 0.229 0.159 0.264 0.150 0.089 0.005 0.211
Score 0.485 0.486 0.493 0.466 0.468 0.428 0.461 0.453 0.474 0.458 0.461 0.474 0.461

sim 0.493 0.498 0.496 0.466 0.468 0.432 0.462 0.461 0.478 0.469 0.462 0.473 0.466

Table 8: Detailed evaluation results across 13 GEC systems on CoNLL-2014 on GJG15.
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