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S U M M A R Y
Acoustic emission (AE) is a widely used technology to study source mechanisms and material
properties during high-pressure rock failure experiments. It is important to understand the
physical quantities that acoustic emission sensors measure, as well as the response of these
sensors as a function of frequency. This study calibrates the newly built AE system in the MIT
Rock Physics Laboratory using a ball-bouncing system. Full waveforms of multibounce events
due to ball drops are used to infer the transfer function of lead zirconate titanate (PZT) sensors
in high pressure environments. Uncertainty in the sensor transfer functions is quantified using
a waveform-based Bayesian approach. The quantification of in situ sensor transfer functions
makes it possible to apply full waveform analysis for acoustic emissions at high pressures.

Key words: High-pressure behaviour; Inverse theory; Joint inversion; Waveform inversion;
Acoustic properties.

1 I N T RO D U C T I O N

The history of acoustic emission (AE) dates back to the middle
of the 20th century, before the term was coined in the work of
Schofield (1961). Obert & Duvall (1942) first detected subaudible
noises emitted from rock under compression and attributed these
signals to microfractures in the rock. Kaiser (1950) recorded sig-
nals from the tensile specimens of metallic materials. Since the
1960s, much subsequent work has contributed to the development
of AE techniques, which have been applied to diverse engineering
and scientific problems (Drouillard 1987, 1996; Grosse & Ohtsu
2008).

AE is a useful tool to study the source mechanisms of ‘labquakes’
and the three-dimensional structure of samples under diverse frac-
turing experimental conditions (Schofield 1961; Pettitt 1998; Ojala
et al. 2004; Graham et al. 2010; Stanchits et al. 2011; Goebel
et al. 2013; Fu et al. 2015; Goodfellow et al. 2015; Hampton
et al. 2015; Li & Einstein 2017; Brantut 2018). However, it is
very difficult to use full waveforms of AE to infer AE source
physics and sample structures, because AE amplitudes are af-
fected by many factors (e.g. sensor coupling, frequency response
of sensors, or incidence angle of ray paths) not related to the
AE source or path effects. To determine the real physical mean-
ings of the recorded AEs, careful calibration of their amplitudes is
needed.

McLaskey & Glaser (2012) performed AE sensor calibration
tests on a thick plate with two calibration sources (ball impact
and glass capillary fracture) to estimate instrument response func-
tions. Ono (2016) demonstrated detailed sensor calibration meth-
ods, including face-to-face, laser interferometry, Hill-Adams equa-
tion and tri-transducer methods. Yoshimitsu et al. (2016) combined
laser interferometry observations and a finite difference modelling
method to characterize full waveforms from a circular-shaped trans-
ducer source through a cylindrical sample. However, these cal-
ibration methods only work under ambient conditions, and not
within a pressure vessel where rock physics experiments are some-
times carried out. To calibrate the AE amplitudes under high-
pressure conditions, Kwiatek et al. (2014b) proposed an in situ
ultrasonic transmission calibration (UTC) method to correct rela-
tive amplitudes under high pressure. McLaskey et al. (2015) de-
veloped a technique to calibrate a high-pressure AE system us-
ing in situ ball impact as a reference source. This design enabled
the determination of absolute source parameters with an in situ
accelerometer.

This study aims to advance these calibration methodologies
by quantifying the uncertainty of sensor transfer functions using a
waveform-based Bayesian approach. Instead of using the waveform
of a single ball bounce, our approach is able to use the waveforms of
multibounce events. Inferring an in situ sensor transfer function, and
its associated uncertainty, makes it possible to apply full waveform
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Figure 1. (a) Photo of sample assembly before closing the pressure vessel. (b) Schematic of cross-section of the ball drop apparatus and the instrumented
sample.

analysis for acoustic emissions under high-pressure conditions. The
method is tested using the newly built AE system of the MIT Rock
Physics Laboratory.

2 M E T H O D O L O G Y

2.1 Experimental setup and AE data

The ball drop apparatus to conduct the in situ ball drop experiment
is shown in Fig. 1. A steel ball (radius R1 = 3.18 mm) placed in
a tube is lifted to the top by air blown into the tube. After the air
is cut off, the ball drops and hits the surface of a titanium cylinder
(marked as ‘sample’ in Fig. 1), bouncing a few times. The diameter
of the titanium cylinder is 46.1 mm and the length is 73.7 mm.
Sixteen lead zirconate titanate (PZT) sensors are attached to the
surface of the titanium cylinder (Fig. 2). We stack a non-polarized
PZT piezoceramic disk, a polarized PZT piezoceramic disk, and
a titanium disk adapter together to make one sensor. The diame-
ters of the polarized and non-polarized PZT piezoceramic disks are
5.00 mm and the thicknesses are 5.08 mm. The resonance frequency
is 1 MHz. The titanium disk adapter has a diameter of 5.00 mm and
a thickness of 4.00 mm. The side of the titanium disk adapter con-
tacting the polarized PZT piezoceramic disk is machined to be flat,
and the other side contacting the cylindrical sample is machined
to be concave, to better fit the curved cylindrical side surface. We
increase the confining pressures (cp) and differential stresses (ds)
gradually to improve the coupling between the PZT sensors and
the sample. The in situ ball drop experiments are conducted at var-
ied cp and ds. High-quality AE data are observed at: (1) cp = 10
MPa, ds = 6 MPa; (2) cp = 20 MPa, ds = 10 MPa; (3) cp =
30 MPa, ds = 10 MPa. Then we decrease both cp an ds to ambi-
ent conditions and conduct one more ball drop experiment as the
baseline measurements.The ball drop experiment is conducted at

a confining pressure of 30 MPa and a differential pressure of 10
MPa.

The AE data are continuously recorded and streamed to a hard
drive at a sampling rate of 12.5 MHz, preprocessed by the STA/LTA
algorithm to detect events due to ball bounces (Swindell & Snell
1977; McEvilly & Majer 1982; Earle & Shearer 1994). The trun-
cated waveforms of the first and second bounces from 16 sensors
due to one ball drop experiment at cp = 30 MPa and ds = 10
MPa are shown in Fig. 2. We implement the Akaike information
criterion (AIC) algorithm to automatically pick the P arrival time
t j
1 for the truncated waveforms of the first bouncing event (Maeda

1985; Kurz et al. 2005). Then we align the waveforms from the
later bounces and the first bounce by cross-correlation. An exam-
ple of continuous waveforms containing the first three bouncing
events of sensor 16 at cp = 30 MPa and ds = 10 MPa is shown
in Fig. 3(a). The aligned waveforms of three bouncing events are
shown in Fig. 3(b). The absolute P arrival time t j

k of the kth bouncing
event at sensor j can be calculated by adding the time lag between
the waveforms of the first and the kth bouncing events to t j

1 . The time
intervals between all the bounces recorded by sensor j can thus be
collected as

δ t j =
[
t j
2 − t j

1 , t j
3 − t j

2 , . . . , t j
k+1 − t j

k , . . . , t j
n − t j

n−1

]
, (1)

where n is the total number of bounces.
The same pre-processing method has also been applied to the AE

data at other cp and ds. Under each conditions, we compared the
waveforms at sensor 16 due to the first bounce of the ball drop at: (1)
cp = 10 MPa, ds = 6 MPa; (2) cp = 20 MPa, ds = 10 MPa; (3) cp
= 30 MPa, ds = 10 MPa; and (4) cp = 0 MPa, ds = 0 MPa in Fig. 4.
Because higher confining pressures improve the coupling between
sensors and the sample, resulting in smaller noise and larger am-
plitude response of sensors, the waveforms at high pressures show
a smaller noise lever compared to those at ambient conditions. For
the same reason, the waveforms at cp = 20 MPa, ds = 10 MPa and
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Figure 2. (a) Locations of 16 PZT sensors. (b) Example waveforms from 16 sensors for the 1st ball bounce at cp = 30 MPa and ds = 10 MPa. (c) Example
waveforms from 16 sensors for the 2nd ball bounce at cp = 30 MPa and ds = 10 MPa. Black and red denote sensors and corresponding received signals on
two different boards.

cp = 30 MPa, ds = 10 MPa have larger amplitudes than those at cp
= 10 MPa, ds = 6 MPa. However, when the confining pressure in-
creases beyond a critical level, higher confining pressures do not af-
fect the noise level and sensor response, as is illustrated in the almost
identical waveforms at cp = 20 MPa, ds = 10 MPa and cp = 30 MPa,
ds = 10 MPa.

2.2 Bouncing time and waveform modelling

To model the time interval between bounces, we first assume that
after each bounce, the rebound velocity decreases to a fraction a
(the rebound coefficient) of the incident velocity; then the velocity
after the kth bounce is

vk = akv0. (2)
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Figure 3. (a) Continuous waveforms containing the first three bouncing events of sensor 16 at cp = 30 MPa and ds = 10 MPa. The grey shadow areas denote
time windows of bouncing events used for cross-correlation. (b) Aligned waveforms of three continuous bouncing events of sensor 16 at cp = 30 MPa and ds
= 10 MPa.

The time interval between the (k + 1)th and the kth bounce is then

t̃ j
k+1 − t̃ j

k = 2vk

g
= 2akv0

g
, (3)

where g is the acceleration of gravity. The theoretical bouncing time
intervals δ t j = [t̃ j

2 − t̃ j
1 , . . . , t̃ j

n − t̃ j
n−1] can then be modelled as

δ t j
m =

[
2av0

g
,

2a2v0

g
, . . . ,

2an−1v0

g

]
(4)

Now, modelling the mismatch between the modelled and measured
time intervals with additive noise e j

t , the bouncing time interval
data δ t j is represented as

δ t j = δ t j
m + e j

t . (5)

The waveform recorded at receiver j due to the kth ball bounce,
o j,k(t), can be written as

o j,k(t) = L[I [u j,k(r j , t)]] = L[I [ fk(t) ∗ G(r j , t)]], (6)

where u j,k(r j , t) is the input displacement at receiver j due to the
kth bounce of the ball, fk(t) is the loading function of the kth bounce
of the ball, G(r j , t) is the Green’s function representing the im-
pulse response of the sample at receiver j, t is the time, r j is the
vector directed from the bouncing ball source to receiver j, I is the
incident angle correction, and L is a linear operator, assuming that
the response function of the PZT transducer can be modelled as
a linear time-invariant (LTI) system. Based on previous studies of
ball collisions (McLaskey & Glaser 2012; McLaskey et al. 2015),
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Figure 4. Waveforms at sensor 16 due to the first bounce of the ball drop
at: (1) cp = 10 MPa, ds = 6 MPa; (2) cp = 20 MPa, ds = 10 MPa; (3) cp =
30 MPa, ds = 10 MPa; and (4) cp = 0 MPa, ds = 0 MPa. The waveforms
are normalized by the maximum amplitudes of all waveforms.

the loading function can be represented as

fk(t) = −Fmax,k sin

(
π t

tc

)3/2

, 0 ≤ |t | ≤ tc,

fk(t) = 0, otherwise,

(7)

where Fmax, k is the maximum loading force of the kth ball bounce
and tc is the total loading time, which is the entire contact time
between the ball and the top surface of the sample. The Fmax, k and
tc are modelled as

Fmax,k = 1.917ρ
3/5
1 (δ1 + δ2)−2/5 R2

1v
6/5
k−1, (8)

δq = 1 − μ2
q

π Eq
, q = 1, 2 (9)

tc = 1/ fc = 4.53(4ρ1π (δ1 + δ2)/3)2/5 R1v
−1/5
k−1 , (10)

where ρq, Eq, μq are the density, Young’s modulus, and Poisson’s
ratio of the qth material, respectively (q = 1 refers to the steel ball
and q = 2 refers to the titanium sample). In this experiment, ρ1 =
8050 kg m–3, E1 = 180.0 GPa, μ1 = 0.305, ρ2 = 4506 kg m–3, E2

= 113.8 GPa and μ2 = 0.32. vk − 1 is the incident velocity of the kth
bounce of the ball.

Gi3(r j , t) is the ith (i = 1, 2, 3, corresponding to three axes) com-
ponent of displacement at a generic (r j , t), for an impulsive point
force source in the x3 direction, that is, the vertical direction. The
ith component of displacement due to the kth bounce, u j,k

i (r j , t), is

represented as (Aki & Richards 2002)

u j,k
i (r j , t) = fk(t) ∗ Gi3(r j , t),

= 1

4πρ2
(3γ

j
i γ

j
3 − δi3)

1

(r j )3

∫ r j /VS

r j /VP

τ fk(t − τ )dτ

+ 1

4πρ2V 2
P

γ
j

i γ
j

3

1

r j
fk

(
t − r j

VP

)

− 1

4πρ2V 2
S

(γ j
i γ

j
3 − δi3)

1

r j
fk

(
t − r j

VS

)
, (11)

where VP = 6011.6 m s–1 and VS = 3093.0 m s–1 are the P- and
S-wave velocity of the titanium sample, respectively; rj is the norm
of the vector from the source to sensor j; γ

j
i is the directional

cosine between this vector and the ith coordinate axis; and δi3 is
the Kronecker delta. This Green’s function is for a homogeneous,
isotropic, unbounded medium. We use this approximation is be-
cause we do not observe coherent signals due to possible reflections
from boundaries in the data. Secondly, the finite difference mod-
elling in Appendix C shows that for our calibration system with a
Titanium sample, this homogeneous, isotropic, unbounded medium
approximation produces almost identical waveforms compared to
the system with a Titanium–Steel boundary on the top. The ball
drop apparatus is made of Steel.

The incidence angle dependence of the sensor is assumed to be a
cosine function, that is,

I [u j,k(r j , t)] = u j,k
⊥ (r j , t) =

3∑
i=1

u j,k
i (r j , t)ξ j

i , (12)

where ξ
j

i is the directional cosine of the normal vector of sensor
j, that is, [r j

1 , r j
2 , 0]. This cosine approximation is justified in Ap-

pendix B.
The frequency response function of sensor j is modelled by

R j (ω) = −Cω2

ω2 + 2iε jω − (ω j
s )2

, (13)

where ω j
s is the resonance frequency, εj is the damping coefficient

of sensor j and C is the conversion constant with units count m–1.
This simple frequency response function of a damped oscillator can
fully describe the resonance and damping effects of PZT sensors
according to the full waveform matching, so we do not include
high-fidelity PZT sensor modelling method in our model (Bæk et al.
2010). Eq. (13) has also been used to model the frequency-response
of an inertial seismometer (Aki & Richards 2002).

Then the noise-free signal at sensor j due to the kth bounce can
be represented as

O j,k(ω) = R j (ω)U j,k
⊥ (ω) (14)

in the frequency domain, and

o j,k(t) = r j (t) ∗ u j,k
⊥ (t) (15)

in the time domain, where ∗ represents the convolution operator.
In (14), U j,k

⊥ (ω) is simply the Fourier transform of u j,k
⊥ (t) (12).

Similarly, r j (t) is the inverse Fourier transform of R j (ω) (13).
Concatenating waveforms from all the bounces, along with their
corresponding noise perturbations ej, k(t), the data at receiver j can
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Figure 5. Schematic of MCMC procedure. (a) The hierarchical model; (b) the decoupled model.

Table 1. Posterior mean and standard deviation (SD) of (σ j
t )2, v

j
0 , aj, ω

j
s and εj for 16 sensors at cp = 10 MPa and ds = 6 MPa.

ID αj (σ j
t )2 (10−10s2) v

j
0 (m s–1) aj ω

j
s (kHz) εj (kHz)

Mean SD Mean SD Mean SD Mean SD Mean SD

1 0.144 0.918 0.074 1.02E+00 4.82E-05 6.74E-01 2.29E-05 341.63 0.19 17.44 0.12
2 0.027 0.918 0.074 1.02E+00 4.79E-05 6.74E-01 2.28E-05 321.97 0.05 19.55 0.05
3 0.007 0.919 0.075 1.02E+00 4.80E-05 6.74E-01 2.28E-05 327.47 0.01 10.88 0.02
4 0.019 0.915 0.073 1.02E+00 4.81E-05 6.74E-01 2.28E-05 362.52 0.05 17.66 0.04
5 0.128 0.918 0.074 1.02E+00 4.79E-05 6.74E-01 2.28E-05 339.19 0.27 23.63 0.18
6 0.059 0.918 0.074 1.02E+00 4.80E-05 6.74E-01 2.29E-05 316.82 0.15 37.85 0.17
7 0.012 0.916 0.074 1.02E+00 4.78E-05 6.74E-01 2.27E-05 338.36 0.03 15.83 0.03
8 0.019 0.917 0.074 1.02E+00 4.77E-05 6.74E-01 2.27E-05 354.41 0.08 35.49 0.10
9 0.137 0.918 0.074 1.02E+00 4.79E-05 6.74E-01 2.28E-05 332.08 0.18 16.80 0.16
10 0.015 0.918 0.074 1.02E+00 4.80E-05 6.74E-01 2.28E-05 327.44 0.03 15.03 0.03
11 0.028 0.918 0.074 1.02E+00 4.82E-05 6.74E-01 2.30E-05 315.49 0.10 43.12 0.14
12 0.025 0.917 0.074 1.02E+00 4.78E-05 6.74E-01 2.28E-05 343.71 0.09 29.54 0.09
13 – – – – – – – – – – –
14 0.044 0.918 0.074 1.02E+00 4.81E-05 6.74E-01 2.29E-05 310.41 0.07 23.17 0.08
15 0.023 0.918 0.075 1.02E+00 4.81E-05 6.74E-01 2.30E-05 337.57 0.08 34.43 0.10
16 0.006 0.922 0.073 1.02E+00 4.87E-05 6.74E-01 2.35E-05 348.49 0.02 14.93 0.02
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Table 2. Posterior mean and standard deviation (SD) of (σ j
t )2, v

j
0 , aj, ω

j
s and εj for 16 sensors at cp = 20 MPa and ds = 10 MPa.

ID αj (σ j
t )2 (10−10s2) v

j
0 (m s–1) aj ω

j
s (kHz) εj (kHz)

Mean SD Mean SD Mean SD Mean SD Mean SD

1 0.082 0.918 0.074 1.13E+00 4.89E-05 6.64E-01 2.08E-05 343.14 0.29 21.87 0.12
2 0.011 0.917 0.074 1.13E+00 4.90E-05 6.64E-01 2.09E-05 337.33 0.04 18.80 0.03
3 0.007 0.918 0.074 1.13E+00 4.88E-05 6.63E-01 2.08E-05 332.10 0.02 18.01 0.03
4 0.010 0.917 0.074 1.13E+00 4.92E-05 6.64E-01 2.08E-05 354.77 0.04 24.08 0.04
5 0.070 0.918 0.074 1.13E+00 4.91E-05 6.64E-01 2.08E-05 339.54 0.18 27.82 0.16
6 0.026 0.918 0.075 1.13E+00 4.89E-05 6.64E-01 2.08E-05 315.00 0.09 35.76 0.11
7 0.006 0.918 0.074 1.13E+00 4.92E-05 6.64E-01 2.09E-05 334.67 0.02 16.98 0.02
8 0.012 0.918 0.074 1.13E+00 4.89E-05 6.64E-01 2.08E-05 335.91 0.07 42.97 0.08
9 0.061 0.918 0.074 1.13E+00 4.88E-05 6.64E-01 2.08E-05 341.97 0.19 15.30 0.13
10 0.010 0.917 0.074 1.13E+00 4.93E-05 6.63E-01 2.09E-05 340.14 0.04 17.14 0.03
11 0.026 0.918 0.075 1.13E+00 4.92E-05 6.64E-01 2.09E-05 338.87 0.11 39.78 0.13
12 0.011 0.918 0.074 1.13E+00 4.91E-05 6.64E-01 2.08E-05 341.11 0.06 31.49 0.07
13 – – – – – – – – – – –
14 0.029 0.917 0.074 1.13E+00 4.94E-05 6.64E-01 2.09E-05 320.88 0.06 20.32 0.06
15 0.011 0.918 0.074 1.13E+00 4.89E-05 6.64E-01 2.07E-05 340.89 0.05 31.11 0.06
16 0.003 0.917 0.073 1.13E+00 4.93E-05 6.64E-01 2.08E-05 350.82 0.01 16.76 0.01

Table 3. Posterior mean and standard deviation (SD) of (σ j
t )2, v

j
0 , aj, ω

j
s and εj for 16 sensors at cp = 30 MPa and ds = 10 MPa.

ID αj (σ j
t )2 (10−10s2) v

j
0 (m s–1) aj ω

j
s (kHz) εj (kHz)

Mean SD Mean SD Mean SD Mean SD Mean SD

1 0.103 0.917 0.074 1.31100 5.42E-05 0.61152 1.88E-05 321.48 0.15 12.93 0.11
2 0.013 0.918 0.074 1.31115 5.42E-05 0.61147 1.87E-05 330.47 0.03 18.26 0.03
3 0.005 0.917 0.074 1.31130 5.47E-05 0.61144 1.89E-05 338.42 0.02 22.00 0.03
4 0.012 0.916 0.074 1.31102 5.48E-05 0.61152 1.90E-05 364.67 0.04 22.77 0.04
5 0.074 0.917 0.074 1.31103 5.44E-05 0.61151 1.89E-05 323.93 0.17 34.76 0.17
6 0.030 0.918 0.074 1.31104 5.46E-05 0.61151 1.90E-05 311.61 0.08 31.06 0.10
7 0.006 0.918 0.075 1.31122 5.53E-05 0.61146 1.91E-05 339.36 0.02 15.50 0.02
8 0.014 0.918 0.074 1.31102 5.45E-05 0.61152 1.89E-05 356.53 0.08 40.51 0.09
9 0.085 0.918 0.074 1.31103 5.48E-05 0.61151 1.90E-05 333.22 0.11 23.96 0.14
10 0.012 0.918 0.074 1.31128 5.44E-05 0.61143 1.88E-05 335.74 0.03 17.36 0.03
11 0.016 0.918 0.074 1.31111 5.45E-05 0.61149 1.89E-05 347.06 0.07 34.66 0.08
12 0.013 0.917 0.074 1.31116 5.47E-05 0.61147 1.90E-05 347.68 0.06 26.62 0.06
13 – – – – – – – – – – –
14 0.021 0.919 0.074 1.31110 5.49E-05 0.61149 1.91E-05 319.47 0.05 19.52 0.05
15 0.012 0.918 0.074 1.31101 5.43E-05 0.61152 1.88E-05 335.04 0.05 30.65 0.05
16 0.004 0.917 0.073 1.31064 5.46E-05 0.61167 1.87E-05 358.74 0.01 17.55 0.02

be modelled as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d j,1(t)
d j,2(t)

...
d j,k(t)

...
d j,n(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

o j,1(t)
o j,2(t)

...
o j,k(t)

...
o j,n(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

e j,1(t)
e j,2(t)

...
e j,k(t)

...
e j,n(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (16)

which can be written more compactly as

d j (t) = o j (t) + e j (t), (17)

and, after time discretization, as

d j = o j + e j . (18)

2.3 Bayesian formulation and posterior sampling

In principle, one could use a Bayesian hierarchical model to repre-
sent the entire ball drop system, given bouncing time interval data
δ t := {δ t j }16

j=1 and waveform data {d j }16
j=1 from all 16 sensors. The

resulting posterior density is:

P
(
{v j

0 , a j , ω j
s , ε

j }16
j=1, v0, a, σ 2

t |{d j }16
j=1, δ t

)

∝ P(δ t|v0, a, σ 2
t )P(v0)P(a)P(σ 2

t )

×
⎛
⎝ 16∏

j=1

P(d j |v j
0 , a j , ω j

s , ε
j )

⎞
⎠

⎛
⎝ 16∏

j=1

P(v j
0 , a j |v0, a)

⎞
⎠

×
⎛
⎝ 16∏

j=1

P(v j
0 )P(a j )P(ω j

s )P(ε j )

⎞
⎠ , (19)

We explain this model, and the terms above, as follows. First, there
is in principle a single true value of the ball’s initial incident velocity
and rebound coefficient, represented by the ‘master’ parameters v0
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Bayesian waveform-based calibration 27

Figure 6. MCMC chains and posterior distribution of four parameters for sensor 16. The first 6 × 105 iterations of MCMC chains are discarded as burn-in.
(a) MCMC chains for initial velocity v

j
0 , rebound coefficient aj, resonance frequency ω

j
s , and damping coefficient εj. (b) Scatter plots of four parameters

corresponding to MCMC chains. (c) Mean posterior predicted trajectory of ball bouncing. (d) Waveform comparison between observed (red) and mean posterior
predicted waveforms (black).

and a. All of the bouncing time intervals δ t should depend on these
values; this relationship is encoded in the conditional probability
density P(δ t|v0, a, σ 2

t ). Here σ 2
t is the variance of the noise e j

t in
(5), which we also wish to infer. The full waveforms d j at each
receiver j also depend on the ball velocity and rebound coefficient,
however, as these are needed to determine the loading function for
each individual bounce k = 1, . . . , n. Due to noise and unmodelled
dynamics, these waveforms may be better represented by slightly
different local bouncing parameters, v

j
0 and aj, at each receiver j.

To relate the local bouncing parameters v
j
0 and aj with the master

parameters v0 and a, as is typical in Bayesian hierarchical modelling
(Gelman et al. 2013), the model above uses the conditional distribu-
tions P(v j

0 , a j |v0, a). The relationship between the local bouncing
parameters and the full waveforms is encoded in the likelihood
P(d j |v j

0 , a j , ω j
s , ε

j ).
To simplify and decouple this inference problem, however, we can

ignore the relationship between the master (v0, a) and (v j
0 , a j ), that

is, we can assume P(v j
0 , a j |v0, a) ≈ P(v j

0 , a j ). Then the master
parameters become irrelevant and we can infer parameters X =
[v j

0 , a j , ω j
s , ε

j ] and a variance (σ j
t )2 for each sensor separately. This

assumption is reasonable because there is a considerable amount of

data/information at each sensor; thus, there is little to be gained by
‘sharing strength’ via the common parameters (v0, a). For sensor
j, the posterior probability density P(v j

0 , a j , ω j
s , ε

j , (σ j
t )2|d j , δ t) is

then written as

P(v j
0 , a j , ω j

s , ε
j , (σ j

t )2|d j , δ t) ∝ P(δ t|v j
0 , a j , (σ j

t )2)

× P(d j |v j
0 , a j , ω j

s , ε
j )

× P(v j
0 )P(a j )

× P(ω j
s )P(ε j )P((σ j

t )2). (20)

Fig. 5 represents the hierarchical Bayesian model and
the simplified Bayesian model graphically, as Bayesian
networks.

Now we define the specific prior and likelihood terms in the
posterior probability density function (20). We use uniform prior
distributions for v

j
0 , aj, ω j

s , and εj, that is,

v
j
0 ∼ U(1.0, 1.5) m/s, a j ∼ U(0.5, 0.9),

ω j
s ∼ U(100, 500) kHz, ε j ∼ U(10, 50) kHz,

(21)
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Figure 7. Results at cp = 10 MPa, ds = 6 MPa: (a) Comparison between observed (red) and mean posterior predicted (blue) bouncing time intervals. The error
bars indicate the 1σ and 2σ regions. (b) Waveform comparison between observed (red) and mean posterior predicted (black) waveforms of three bouncing
events for 16 PZT sensors. Blue and light blue shading areas show the 1σ and 2σ regions of posterior predicted waveforms after the burn-in. The title of each
subplot denotes sensor ID. Subplots are arranged in the order of sensor locations shown in Fig. 2. Sensor 13 did not work, so we put the legend in the position
of sensor 13.

and a normal distribution for (σ j
t )2,

(σ j
t )2 ∼ N (10−10, 10−22) s2. (22)

The likelihood functions P(δ t|v j
0 , a j ) and P(d j |v j

0 , a j , ω j
s , ε

j )
depend on the probability distributions of et = δ t − δ tm (5) and
e j = d j − o j (17), respectively. In this paper, we assume that both

errors are Gaussian, with zero mean and diagonal covariance ma-
trices �t and � j , respectively. The diagonal entries of �t are

�t,i i = (σ j
t )2, i = 1, 2, . . . , Nδt , (23)

where Nδt is the total number of bouncing time intervals, collected
over all the sensors. The diagonal entries of � j are

�
j
i i = (σ j )2, i = 1, 2, . . . , N , (24)
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Figure 8. Results at cp = 20 MPa, ds = 10 MPa: (a) Comparison between observed (red) and mean posterior predicted (blue) bouncing time intervals. The
error bars indicate the 1σ and 2σ regions. (b) Waveform comparison between observed (red) and mean posterior predicted (black) waveforms of three bouncing
events for 16 PZT sensors. Blue and light blue shading areas show the 1σ and 2σ regions of posterior predicted waveforms after the burn-in. The title of each
subplot denotes sensor ID. Subplots are arranged in the order of sensor locations shown in Fig. 2. Sensor 13 did not work, so we put the legend in the position
of sensor 13.

where N is the total number of data samples (time discretization
points) for the waveforms d j . Then the likelihood functions can be
written as

P(δ t|v j
0 , a j , (σ j

t )2) = 1√
(2π )Nδt det �t

× exp

[
−1

2
(δ t − δ tm)T �t

−1(δ t − δ tm)

]
, (25)

P(d j |v j
0 , a j , ω j

s , ε
j ) = 1√

(2π )N det � j

× exp

[
−1

2
(d j− o j)T (� j)−1(d j− o j)

]
. (26)

The variance parameter (σ j
t )2 represents a trade-off between the

influence of the bouncing time interval data and the waveform data.
As encoded in the posterior distribution (20), it is inferred from
both sets of data, for each sensor j. The variance parameter (σ j)2,
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30 C. Gu et al.

Figure 9. Results at cp = 30 MPa, ds = 10 MPa: (a) Comparison between observed (red) and mean posterior predicted (blue) bouncing time intervals. The
error bars indicate the 1σ and 2σ regions. (b) Waveform comparison between observed (red) and mean posterior predicted (black) waveforms of three bouncing
events for 16 PZT sensors. Blue and light blue shading areas show the 1σ and 2σ regions of posterior predicted waveforms after the burn-in. The title of each
subplot denotes sensor ID. Subplots are arranged in the order of sensor locations shown in Fig. 2. Sensor 13 did not work, so we put the legend in the position
of sensor 13.

on the other hand, is not inferred within the Bayesian model, but
is determined based on the noise level of the waveform data. In
particular, we set it to be a fraction αj ∈ (0, 1) of the power of the
waveform data d j , that is,

(σ j )2 = α j 1

T

T∫
0

(d j (t))2 dt ≈ α j 1

T

N∑
i=1


t(d j
i )2

= α j 1

N

N∑
i=1

(d j
i )2, (27)

where T is the total time length of waveform data, N = T/
t is the
number of time discretization points and d j

i = d j (ti ). We estimate
αj, the ratio of noise and waveform data power for sensor j, as

α j =
1

Tb

Tb∫
0

b2(t)dt

1
T

T∫
0

d2(t)dt

≈
1

Tb

Nb∑
i=1


t(b j
i )2

1
T

N∑
i=1


t(d j
i )2

=
N

Nb∑
i=1

(b j
i )2

Nb

Nb∑
i=1

(d j
i )2

, (28)
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Figure 10. Transfer functions at different cp and ds. (a) Mean posterior predicted amplitude response (blue) and phase delay (red). The amplitude response
tends to a constant at high frequencies, and is proportional to ω2 at low frequencies. The title of each subplot denotes sensor ID. Subplots are arranged in the
order of sensor locations shown in Fig. 2. Sensor 13 did not work, so we put the legend in the position of sensor 13. (b) ω

j
s and εj as a function of source–receiver

distance.

where b(t) is the recorded noise before the first P arrival of the first
bouncing event, Tb is the time length of the noise window and Nb =
Tb/
t is the number of noise samples. Substituting (28) into (27),
we obtain

(
σ j

)2 = 1

Nb

Nb∑
i=1

(b j
i )2. (29)

For each sensor j, we use Markov chain Monte Carlo (MCMC)
sampling to characterize the posterior distribution given by (20).
We use an independence proposal from the prior to update (σ j

t )2

and a Gaussian random-walk proposal with adaptive covariance to
update X . The 5-D vector of proposed values for (X, (σ j

t )2) is then
accepted or rejected according to the standard Metropolis-Hastings
criterion (Metropolis et al. 1953; Hastings 1970). The proposal
for X follows the adaptive Metropolis (AM) approach of Haario
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et al. (2001), adjusting the proposal covariance matrix based on all
previous samples of X :

C∗
� = sd Cov(X0, . . . , X�) + sdε0 Id . (30)

Here C∗
� is the proposal covariance matrix at step �, Id is the d-

dimensional identity matrix, ε0 > 0 is a small constant to make C∗
�

positive definite, d = 4 is the dimension of X , and sd = 2.42/d.
The value of the scaling parameter sd is a standard choice to opti-
mize the mixing properties of the Metropolis search (Gelman et al.
1996). This value might affect the efficiency of MCMC, but not the
posterior distribution itself.

3 R E S U LT S A N D D I S C U S S I O N

We apply the Bayesian method to all 16 sensors at (1) cp = 10
MPa, ds = 6 MPa; (2) cp = 20 MPa, ds = 10 MPa and (3) cp = 30
MPa, ds = 10 MPa. (sensor 13 did not work during the experiment).
For each sensor, we first calculate the parameter αj using (28). The
values of αj for the 16 sensors are shown in Tables 1–3. The sensors
at the top half of the cylinder sample (sensors 16, 4, 12, 8, 15, 3,
11, 7), which are closer to the ball bouncing source, generally have
lower αj than sensors at the bottom half of the cylinder sample, for
example, sensors 6, 14, 2, 10, 5, 13, 1, 9. This is because the sensors
close to the source have better signal-to-noise ratio than sensors
away from the source; in other words, αj is an indicator of signal
quality.

We perform 106 MCMC iterations to explore the posterior (20)
for each sensor at varied pressures. The first 6 × 105 iterations
of each MCMC chain are discarded as burn-in. We show MCMC
chains and posterior distributions of v

j
0 , aj, ω j

s and εj for sensor 16
at cp = 30 MPa, ds = 10 MPa in Figs 6(a) and (b). Fig. 6(c) shows
the mean posterior predicted trajectory of ball bouncing events.
The comparison between the observed AE data and mean posterior
predicted waveforms is shown in Fig. 6(d).

The marginal posterior distributions of (σ j
t )2, v

j
0 , aj, ω j

s and εj at
(1) cp = 10 MPa, ds = 6 MPa; (2) cp = 20 MPa, ds = 10 MPa and
(3) cp =30 MPa, ds = 10 MPa are summarized (via their means and
standard deviations) in Tables 1–3. The parameters ω j

s and εj for
sensors closer to the bouncing source have higher posterior standard
deviations than for sensors farther away from the bouncing source.

The posterior distributions of (σ j
t )2, v

j
0 and aj are relatively sim-

ilar across the sensors; this is expected, as the bouncing time data
sets are the same for all sensors. Note that the posterior variance
of (σ j

t )2 is roughly half of the prior variance, and that the mean of
(σ j

t )2 shifts slightly from its prior value.
Figs 7(a), 8(a) and 9(a) show the comparison between observed

and mean posterior predicted bouncing time intervals, t j
2 − t j

1 and
t j
3 − t j

2 , for all the sensors at (1) cp = 10 MPa, ds = 6 MPa; (2) cp =
20 MPa, ds = 10 MPa and (3) cp = 30 MPa, ds = 10 MPa. The bias
is smaller than 20 μs. Figs 7(b), 8(b) and 9(b) show the comparison
between observed and mean posterior predicted waveforms. The
observed waveforms are all well predicted. Blue and light blue
shaded areas show the 1σ and 2σ regions of the posterior predictive
waveforms (marginal intervals at each time step).

The 2σ region of the posterior predictive waveforms (light blue
shadow areas) almost covers the observed waveforms. The higher
the noise levels of the observations, the larger the light blue shadow
areas. In contrast, the sensors with high signal quality generally
show larger bias in bouncing time intervals. This is probably because
of the tradeoff between the likelihood functions P(δ t|v j

0 , a j ) and
P(d j |v j

0 , a j , ω j
s , ε

j ).

The mean posterior resonance frequency ω j
s for all the sensors

varies from 310 to 365 kHz, and the damping coefficient εj varies
from 11 to 43 kHz. The posterior standard deviations for ω j

s and
εj are all within 1 kHz. With the posterior distributions of ω j

s and
εj, we can obtain frequency-response functions of all sensors using
(13)(a). The standard deviation indicates how reliable the response
function of each sensor is. We show the mean posterior amplitude
response and phase delay of all response functions at varied cp
and ds in Fig. 10(a). The amplitude response tends to a constant
at high frequencies, and is proportional to ω2 at low frequencies.
The amplitude response at higher cp is larger than that at lower
cp, but the difference is not obvious. The phase delay is close to
zero at low frequencies and tends to π at high frequencies. The in
situ response functions can be used to calibrate real AE data, that
is, convert digital AE data into time series with physical units, for
fracturing experiments in rocks under high pressure conditions.

We plot ω j
s and εj as a function of source–receiver distance in

Fig. 10(b). ω j
s shows a clear trend of decay with the increasing

source–receiver distance, indicating that attenuation effects, which
are not included in our model, should be taken into account in (11)
to avoid mapping sample Q into instrument response functions. εj

does not show any distance-dependent properties.

4 C O N C LU S I O N

We develop a Bayesian waveform-based method to calibrate PZT
sensors of a newly designed in situ ball drop system in a sealed
pressure vessel. Taking full waveforms due to ball bounces as input
data, the Bayesian method successfully infers the model parameters
v

j
0 , aj, ω j

s and εj. Both the posterior distributions of in situ response
functions of PZT sensors and the trajectories of ball bounces are
recovered by this method.

With the in situ estimation of frequency-dependent sensor re-
sponse functions, we are able to convert the AE waveforms’ ampli-
tude and phase to real physical parameters (e.g. displacements or
accelerations) under high pressure conditions. The obtained uncer-
tainties of response functions indicate the reliability of each sensor.

Our proposed method was tested on a titanium cylinder with
a very homogeneous structure. For more complex (and realistic)
cases, additional work needs to be performed. A good estimate of
wave speeds is required, and, for example, attenuation in other rock
types can be significant (Lockner et al. 1977; Winkler et al. 1979).
As shown in Fig. 10(b), attenuation may be mapped into instru-
ment response if not accounted for. We believe that using multiple
bounces, as we have done here, will allow for a better constraint of
the attenuation of the sample as well as for estimating wave speeds
using relative arrival times and cross-correlation methods (Wald-
hauser & Ellsworth 2000; Zhang & Thurber 2003; Fuenzalida et al.
2013; Weemstra et al. 2013).
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A P P E N D I X A : WAV E F O R M S A F T E R T H E
3 R D B O U N C I N G E V E N T

In the main text, we only use waveform data for the first three
bounces. We show the complete continuous waveforms containing
waveforms after the third bounce event for 16 sensors in Fig. A1. The
expected fourth bouncing event, marked as a dashed triangle, does
not appear around the theoretical time, but around 0.2 s later. The
fourth bouncing event even presents higher amplitude than the third
bouncing event at sensor 4, 8, 12 and 16. This indicates that after
the third bounce, when the rebound vertical velocity becomes 21.6
per cent of the initial velocity v0 and the maximum rebound height
becomes 4.9 mm (comparable to the radius of the ball 3.18 mm),
the simple rebound model cannot predict the ball’s motion. The
inclusion of other forces neglected in the main text, for example,
the drag force due to air resistance, and the Magnus force due to
the ball’s spin, and the buoyant force, may help to improve the
simple rebound model and predict the ball’s trajectory after the
third bounce; however, that is beyond the scope of this paper.
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Figure A1. Complete continuous waveforms containing waveforms after the 3rd bounce event for 16 sensors. The first three bouncing events are denoted as
solid red triangles. The dashed triangle marks the theoretical arrival time of bounces based on eq. (4).

A P P E N D I X B : D I R E C T I O NA L
R E S P O N S E O F A S E N S O R

We justify the cosine approximation of the directional response of
a sensor in eq. (12) in this appendix. Tang et al. (1994) derived
the radiation patterns of an elastic wave field generated by circular
plane compressional and shear transducers. The amplitudes of gen-
erated compressional waves due to a compressional PZT sensor at a
distance of R away from the sensor and an angle θ with the normal
direction of the sensor surface is

u R = R2
s σzz

4πμ

exp(−ikα R)

R

[
J1(kα Rs sin θ)

kα Rs sin θ

]

× (VS/VP )2 cos θ[1−2(VS/VP )2 sin2 θ]

[1−2(VS/VP )2 sin2 θ]2+4(VS/VP )3 sin2 θ cos θ[1−(VS/VP )2 sin2 θ]1/2
,

(B1)

where Rs = 5 mm is the radius of the PZT sensor, σ zz is stress
uniformly distributed on the surface of the piston surface of the
PZT sensor, VP = 6011.6 m s–1 and VS = 3093.0 m s–1 are the com-

pressional wave velocity and shear wave velocity of the titanium
sample of the compressional waves, kα is the wave number of P
wave.

If we assume the directional response of a sensor as a transmitter
and receiver are equivalent, the theoretical radiation pattern in Tang
et al. (1994) can be used to model the received amplitude as a
function of incident angle. We compared the theoretical radiation
pattern of compressional waves and the received amplitude as a
function incident angle θ at frequencies of 100 kHz, 400 kHz,
700 kHz and 1 MHz in Figs B1 (a) and (b). The cosine dependence
used in our paper is close to the theoretical solution at low frequency
(f = 100 kHz). Kwiatek et al. (2014a) have used a bell-shaped
function h = exp( − aαb) to model the angular dependence, which is
close to the theoretical pattern at medium frequency (f = 700 kHz).
More complex multilobe patterns appear at high frequency (f =
1 MHz). Because the dominant frequency of waveforms due to ball
bounces is less than 100 kHz (Figs B1c and d), it is proper to use a
cosine approximation.
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Figure B1. (a) The radiation pattern of compressional waves of a compressional PZT sensor at frequencies of 100 kHz, 400 kHz, 700 kHz and 1 MHz. The
red line denotes the radiation pattern of the cosine approximation. (b) The received amplitude as a function of incident angle. The red line denotes the radiation
pattern of the cosine approximation. (c) The normalized compressional waveforms due to ball bounces at sensor 1. (d) The normalized spectra amplitude of
compressional waveforms due to ball bounces at sensor 1.

A P P E N D I X C : B O U N DA RY E F F E C T S O N
WAV E P RO PA G AT I O N M O D E L L I N G

The Green’s function in the main text is for an infinite unbounded
homogeneous medium. To show that this approximation is valid
for our experiment setup, we model the wave propagation in a
more realistic environment using finite difference (FD) method with
cylindrical coordinates. A cylindrical finite difference program is
used to model the wave propagation in this ball drop system (Chen
et al. 1998).

Fig. C1(a) shows the schematic of the FD model. A cross-section
of the cylinder is plotted in colour. The green region denotes material
1, which is the ball drop apparatus. The blue region denotes material
2, which is the sample. The four red circles show the locations of
sensors, which are the same locations relative to the loading force
as sensors in the experiment. The loading force function is set to be
a Ricker wavelet with a central frequency of 40 kHz.

To model the wave propagation for an infinite unbounded
homogeneous space, we set both material 1 and material 2

to be Titanium (V T i
P = 6011.6 m s−1, V T i

S = 3093.0 m s−1 and
ρTi = 4506.0 g cm–3) or Granite (V Gt

P = 5616.0 m s−1, V Gt
S =

3463.0 m s−1 and ρGt = 2.75 g cm–3), and add absorbing boundary
conditions outside (orange region). The black lines in Figs C1(b)
and (c) show the modelled waveforms for the baseline cases for
Titanium and Granite samples with the infinite unbounded homo-
geneous approximation.

Then we set material 1 to be Steel (V Steel
P = 5525.8 m s−1,

V Steel
S = 2927.0 m s−1 and ρSteel = 8050.0 g cm–3), which is the

same as for the real experimental setup with the ball drop apparatus
made of Steel. The received waveforms for the Titanium and Gran-
ite samples are shown in dashed red lines in Figs C1(b) and (c),
compared with the relative corresponding infinite unbounded ap-
proximation. The waveforms are almost identical for the Titanium
sample with or without the Steel–Titanium boundary. The wave-
form difference is more obvious for the Granite sample. This is
because the impedance contrast between Granite and Steel is bigger
than that between Titanium and Steel.
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Figure C1. (a) A schematic of the finite difference model. The waveform comparison between the experimental setup with the ball drop apparatus made of
Steel and the infinite unbounded homogeneous approximation at four receivers for (b) Titanium and (c) Granite samples.
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