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Abstract—In this paper, we propose 1-bit weighted Σ∆ quanti-
zation schemes of mixed order as a technique for digital halfton-
ing. These schemes combine weighted Σ∆ schemes of different
orders for two-dimensional signals so one can profit both from the
better stability properties of low order schemes and the better
accuracy properties of higher order schemes. We demonstrate
that the resulting mixed-order Σ∆ schemes in combination with a
padding strategy yield improved representation quality in digital
halftoning as measured in the Feature Similarity Index.

These empirical results are complemented by mathematical
error bounds for the model of two-dimensional bandlimited
signals as motivated by a mathematical model of human visual
perception.

Key words: digital halftoning, error diffusion, 1-bit quantiza-
tion, weighted Sigma-Delta

I. Motivation and Previous Works
Digital halftoning is an image reproduction technique that

simulates continuous-tone imagery using binary pixel values.
That is, for each pixel, each RGB channel can either be active
at full intensity or inactive in that location. The human visual
system is then smoothing out the sharp changes in the color
channel, so that ideally the halftoned image is perceived as
similar to the original.

An example is given in Figure 1: the picture on the left
is an RGB image while its three counterparts on the right
are composed of binary pixels in each of the R, G, and B
components, arranged to visually resemble the former as a
continuous range RGB image. The key observation that makes
this possible is the fact that the human eye can be modeled
as a low-pass filter when perceiving visual information from
a sufficient distance, blending fine details and recording the
average intensity.

There are various competitve methods for digital halftoning
such as approaches based on optimization [12], approaches
based on neural network design [15, 5], and error diffusion
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techniques [3, 7, 6, 14, 11] that apply a reccurence relation to
compute the halftoned representation.

The latter are often preferred in practice as they are simpler
to implement yet competitive in terms of performance; error
diffusion will also be the method of choice in this paper.
Recently, in [8, 10], the performance of error diffusion tech-
niques has been theoretically analyzed from the perspective of
classical 1-bit Σ∆ quantization [1, 4]. It has been shown that
weighted higher-order Σ∆ schemes produce halftoned images
with higher similarity to the originals [8].

At the same time, the applicability of results available in
the Σ∆ literature is limited. Namely, while it has been shown
that Σ∆ quantization can be designed to exhibit exponential
error decay [2], these results require a significantly smaller
amplitude than what is used in the quantized representation.
In image representation, these results would hence only be
applicable if the intensities all lie close to the average intensity
and no very light or very dark spots are present, which is too
much of a restriction to be of interest in practice. As shown in
[9], this limitation is inherent in the representation and cannot
be overcome by an improved quantization scheme.

To address this, a minimal re-scaling of the image has been
shown to allow the application of second order schemes with
feedback filters that are very spread out and consequently
allow for somewhat larger intensities [8]. Due to the very
spread-out nature of these filters, however, one needs an
initialization strategy: to represent pixels near the upper and
left boundary one needs values outside of the image, which
need to be set appropriately. In this note, we explore a number
of initialization strategies and how they best combine with Σ∆
modulation.

We find that the best performance is observed for an initial-
ization based on mirror images of the image under considera-
tion combined with a mixed order Σ∆ scheme that combines
a second and a third order component. The advantage of
this scheme is due to its adaption to the smoothness of the
initialization – for other strategies such as zero initialization
or random initialization, it does not lead to a comparable gain.



Fig. 1: Digital halftoning using weighted Σ∆ scheme of mixed 3rd and 2nd order with different initial states.
From left to right: ground truth — halftoned with padding — random initial state — zero initial state.
To compare the details, we add zooms of the boxed sections.

120 60 100 120 250 105 107
100 30 30 60 90 100 30
60 30 30 60 90 100 30
120 100 100 120 250 105 107
180 120 120 180 150 150 140
150 33 33 150 150 20 30

TABLE I: The diagram shows the pattern of symmetric
padding of the pixels outside the original image. The pixels of
the original image are marked in green and the padded pixels
are in blue, and the axes of the image edges are denoted by
bold lines.

II. Image Models, Quantization and Digital
Halftoning

In this section, we introduce the problem and model setting
following the notation and assumptions from [8], and relying
on the key observation that human visual perception involves
a smoothing step that can be modeled as a low-pass filter.
This characteristic of the human eye makes the class of
bandlimited functions of two variables suitable for modelling
visual perception.

More precisely, we assume that a visually perceived image
can be (at least approximately) represented by a function
from the class of functions BSΩ

bandlimited to a square
SΩ := [−Ω

2 ,
Ω
2 ]× [−Ω

2 ,
Ω
2 ] ⊂ R2 in the frequency domain

for Ω > 0 large enough. Without loss of generality, we will
normalize Ω = 1 for the remainder of this paper. Moreover,
for halftoning or quantization, we need is not only bandlimit-
edness of signals but also boundedness, which motivates the
definition of the following class of bandlimited functions with
bounded amplitude

Bµ := {f ∈ BS1
: ∥f∥∞ ≤ µ} for some µ > 0. (II.1)

Consequently, the process of visual perception can be mod-
eled as a low-pass filter applied to the image of the continuous
scene (or a pixeled representation).

Due to the Shannon sampling theorem [13], a low-pass-
filter applied to samples of a bandlimited function f ∈Bµ on

the lattice L := 1
λ Z2 ⊂ R2 with an oversampling rate λ > 1

returns the function, that is,

f(x) =
1

λ2

∑
n∈Z2

f
(
n
λ

)
Φ
(
x− n

λ

)
, (II.2)

where the kernel Φ is a Schwartz function with the low-pass
property FΦ(ξ) = 1, if ξ ∈ Sλ and FΦ(ξ) = 0, if ξ /∈ Sλ.

The goal of digital halftoning of RBG images is to find
binary pixels in each of the R, G, and B components whose
low-pass representation approximates this signal. That is,
fixing the quantization alphabet to be A = {−1, 1}, we aim
to find a sequence qn ∈ A, n ∈ N2 such that f ∈ Bµ is
approximated by

fq(x) =
1

λ2

∑
n∈N2

qnΦ
(
x− n

λ

)
, x ∈ R2

+. (II.3)

We will call the function fq a 1-bit representative of the
original function f , and the array q = {qn}n∈N2 is referred
to as a 1-bit sample sequence of f . We aim to construct a
1-bit sequence {qn}n∈N2 in such that, in a suitable sense,
fq → f, λ → ∞. We focus, in our mathematical analysis, on
the infinity error metric ∥e∥L∞(R2

+), where e is the error signal
(or error function) given by e(x) := f(x)− fq(x), x ∈ R2

+.
As indicated in [4, 8], introducing the auxiliary function

fλ(x) =
1

λ2

∑
n∈N2

f
(
n
λ

)
Φ
(
x− n

λ

)
, x ∈ R2

+, (II.4)

the error signal e can be decomposed into the sum of two error
therms e = ef + eq such that

ef (x) := f(x)− fλ(x), eq(x) := fλ(x)− fq(x). (II.5)

Since the first term ef is independent of the quantization
process, it is natural to focus on the second term eq , which
will be referred to as quantization error. At the same time, ef
is of relevance and can lead to artifacts, especially near the
boundary. See Fig 1 for the illustration of one of the typical
artifacts.

One of the main goals of this paper is to reduce this effect
by considering suitable initialization strategies. To mitigate
the boundary artifacts, we propose to use symmetric image
padding [16]. Namely, given an image of a particular size, we
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TABLE II: Weighted Σ∆ schemes of mixed 2nd and 3rd order used for for digital halftoning in Sec. IV. The element w0,0 is
denoted in bold.

pad the edges of the image with extra pixels such that the
added pixels mirror the edge of the image, see the diagram
in Table I. The padded pixels are used only for the internal
calculation of 1-bit pixels where the corresponding padding
size will be determined by the type weighted Σ∆ schemes
used in the halftoning process. The padded pixels and the true
image will then be considered as a single image input to the
halftoning algorithm. The halftoned output image will have
the same dimensions as the original RGB image by cutting the
padded pixels at the output, however, we believe that the image
padding procedure will allow to eliminate the contribution of
ef to quantization error due to a smooth transition at the edges
of the true image.

III. Weighted Σ∆ Schemes of Mixed Orders
In this section, we will introduce the weighted Σ∆ schemes

of mixed orders with symmetric padding. We begin with
recalling some important concepts related to directional con-
volutions in two dimensions, and feedback filters, following
the notation in [4, 8].

For a positive integer r and a sequence g ∈ ℓ1 with gn = 0
for n < 0, the feedback filter h is called of order r as soon as
h satisfies the identity δ0 − h = ∆rg, where δa denotes the
Kronecker delta sequence situated at the integer a, and ∆ is
the backward difference sequence given by ∆0 = 1, ∆1 = −1,
∆k = 0, for all k ∈ Z \ {0, 1}. We define the filter constant
for the rth-order filter h as

Ch :=

L∑
j=1

hjj
r. (III.1)

Definition III.1. Given a feedback filter h = {hj}j∈Z with
its support on the first L elements and a two-index sequence
v = {vn}n∈Z2 , we denote by h ∗d v the convolution of v and
h in the direction d = (d1, d2) ∈ L and define it as

(h ∗d v)n =

L∑
j=1

hjvn−jd (III.2)

Besides, let us denote by yn := f(nλ ), n ∈ N2 the elements
of sample sequence y with the oversampling rate λ > 1 of a
function f ∈ Bµ . Additionally, consider some set of orders
Ξ := {r1, . . . , rN} with rj ≥ 1 for all j = 1, . . . , N . For
each r ∈ Ξ, we will fix a batch of direction sets dr

i,j with
i ∈ {0, . . . , pr} and j ∈ {−sr, . . . , ℓr} for some ℓr, sr, pr ∈

Fig. 2: Averaged FSIM over 50 images and their halftoned counter-
parts generated by different weighted Σ∆ schemes.

N. For these ℓr, sr, pr ∈ N, we average all Σ∆ schemes of
order r along these directions with the weight matrix Wr ∈
R(ℓr+sr+1)×(pr+1) given by

Wr =


0 · · · 0 wr

0,1 · · · wr
0,ℓ

wr
1,−s · · · wr

1,0 wr
1,1 · · · wr

1,ℓ
...

. . .
...

...
. . .

...
wr

p,−s · · · wr
p,0 wr

p,1 · · · wr
p,ℓ

 , (III.3)

such that
p∑

i=0

ℓ∑
j=−s

wr
i,j = 1. For the global average over

different orders from Ξ, we will use the weight θr1 , . . . , θrN
and assume that θrj ≥ 0 and

θr1 + . . .+ θrN = 1. (III.4)

Now, we will now introduce weighted Σ∆ quantization
schemes of mixed orders.

Definition III.2. For a given sample sequence y = {yn}n∈N2 ,
the weighted Σ∆-quantizer of mixed order with the weight
matrices Wr and global weights θr1 , . . . , θrN is given by

vn −
∑
r∈Ξ

θr
∑
i j

wr
i,j

(
hr
i,j ∗dr

i,j
v
)
n
= yn − qn (III.5)

qn = sign
(∑
r∈Ξ

θr
∑
i j

wr
i,j

(
hr
i,j ∗dr

i,j
v
)
n
+ yn

)
, (III.6)



where, for each order r ∈ Ξ, single-index filter
hr
i,j =

{
(hr

i,j)n
}
n∈Z ∈ ℓ1(Z) is a feedback filter of order r,

e.i. it fulfills the condition δ0 − hr
i,j = ∆rgri,j for sequences

gri,j ∈ ℓ1(Z) with gri,jn = 0 for n < 0.

Corollary III.1. Consider a bandlimited function f ∈ Bµ

sampled on the lattice 1
λ N2 with λ > 1. If we use a

weighted Σ∆ scheme (III.5)-(III.6) for construction of f ’s 1-
bit samples q ∈ {−1, 1}N2

, then the corresponding quantized
representative fq satisfies

∥fλ − fq∥∞ ≤ ∥v∥∞
(∑

r∈Ξ

θr
λr

(
CWr ·C·∥∇rΦ∥1,2+O(λ−1)

))
,

where C > 0 is a constant independent of Wr, Φ is a
Schwartz function of the suitable low-pass type, and

(CWr )
2 :=

r∑
m=0

( pr∑
i=0

ℓr∑
j=−sr

wr
i,j · Chr

i,j
· ir−mjm

)2

, (III.7)

are weight constants of order r with filter constants Chr
i,j

as
in (III.1), and (∥∇rΦ∥1,2)2 :=

∑
|α|=r

1
α! ∥∂

αΦ∥21 .

Proof of Cor III.1. Using the definition of scheme (III.5)-
(III.6) and the error term eq in (II.5) we can represent eq(x) as

fλ(x)− fq(x) =
∑
r∈Ξ

θr
(

1
λ2

∑
n∈N2

vn
(
Φ
(
x− n

λ

)
−
∑
i j

wr
i,j

L∑
s=1

(hr
i,j)sΦ

(
x− n+sdr

i,j

λ

)))
since all θr sum up to one. Bounding the factors near each
θr as in [8] for weighted Σ∆ schemes of order r, gives the
stated result.

As the weighted Σ∆ schemes [8], the mixed order
schemes (III.5)-(III.6) enjoy stability, i.e. the accumulated
error recorded in v is bounded, with ∥v∥∞ ≤ 1, if the sample
sequence y and the involved feedback filters have not too large
norms, in the sense

∑
r∈Ξ θr

∑
i j

wr
i,j

∥∥hr
i,j

∥∥
1
+ ∥y∥∞ ≤ 2.

We propose to use mixed order Σ∆ schemes together
with symmetric padding described in Sec. II for the digital
halftoning of images. This combination, on the one hand, can
benefit from a good balance between the stability of lower-
order feedback filters and a better halftoning performance fur-
nished by higher-order filters. On the other hand, the padding
strategy of the correct size allows for mitigating the halftoning
boundary artifacts. The size of the padding process can be
determined as follows. Suppose that all feedback filters hr

i,j

used in the mixed order scheme (III.5)-(III.6) are supported on
at most the first L ∈ N entries. Then, to have all filter elements
active in (III.5)-(III.6) when quantizing the first samples of
yn, we pad the image symmetrically as illustrated in Tab I
with L extra pixels, initialize the state variable v to zero, and
then we use this extended image for obtaining the halftone
representative of the original.

IV. Mixed Order Schemes in Numerical Practice
for Halftoning

In this section, we illustrate that the usage of mixed order
weighted Σ∆ schemes for digital halftoning leads to a higher
visual similarity between the halftoned image and the origi-
nal measured by the state-of-the-art Feature Similarity Index
(FSIM) [17].

We explain our setup for color images, gray-scale images
are treated analogously. We represent color images as RGB
matrices, IRGB :=

{
IRGB
n1,n2

}N1,N2

n1,n2=0
, consisting of three color

channels, each given as a sample array. In order to construct
a halftoned counterpart of IRGB , we use Algorithm 1.

Here, we will work with the family of second-order and
third-order feedback filters with minimal support given by

h2
κ = [0, (h2

κ)1, . . . , 0, (h
2
κ)κ+1], (IV.1)

with non-zero elements (h2
κ)1 = κ+1

κ , (h2
κ)κ+1 = − 1

κ , and

h3
κ = [0, (h3

κ)1, . . . , 0, (h
3
κ)κ+1, . . . , 0, (h

3
κ)2κ+1], (IV.2)

with (h3
κ)1 = 2κ2+3κ+1

2κ2 , (h3
κ)κ+1 = − 2κ+1

κ2 , (h3
κ)2κ+1 = κ+1

2κ2 ,
respectively. The norms of such filters differ only slightly as∥∥h2

κ

∥∥
1
= 1 + 2

κ and
∥∥h2

κ

∥∥
1
= 1 + 4

κ + 2
κ2 .

Algorithm 1: Digital Halftoning of Images with
Weighted Σ∆ Schemes of Mixed Orders and Padding

Data:
• RGB image IRGB :=

{
IRGB
n1,n2

}N1,N2

n1,n2=0
∈ [−1, 1]N1×N2×3

Quantization setup:
• Define: Σ∆ orders Ξ={r1, . . . , rN}, weight matrices Wr

directions dr
i,j , feedback filters hr

i,j

begin
Padding I = 0.999 · padding(I, L)
for c = R,G,B and n = (n1, n2) with

n1 = 1, ..., N1 + L
n2 = 1, ..., N2 + L

vcn −
∑
r∈Ξ

θr
∑
i j

wr
i,j

(
hr
i,j ∗dr

i,j
vc
)
n
=Ic

n − qcn

qcn = sign
(∑
r∈Ξ

θr
∑
i j

wr
i,j

(
hr
i,j ∗dr

i,j
vc
)
n
+ Ic

n

)
Result:

• 1-bit image q =
{
qcn1,n2

}N1,N2

n1,n2=L
∈ {−1, 1}N1×N2×3

• bmp-image Iq ∈ {0, 255}N1×N2×3

• halftoning error FSIM(I, Iq)

In our numerical experiments, we use 50 distinct color im-
ages of the size 1920×1280 and their gray-scale counterparts.
We compare four different weighted Σ∆ of mixed orders with
three different initialization strategies. Namely, the setting for
the weighted Σ∆ of 2+3 order is described in Table II, with
weight matrices chosen to allow stability with minimal image
re-scaling. For the weighted Σ∆ of 2 + 1 order, we use the
weight matrices and 2nd-order filters as Table II, and we set
W1 : =W3 with the 1st-order filter. The weighted Σ∆ of 2+2
is built as the 3 + 2 scheme with h3

390 substituted by h2
390.

The scheme under the name "2 order" in Fig 2 is set as in



[8]. To measure the quality of the resulting halftoned images,
we compute the FSIM [17] for each image and its halftoned
version, and the more similar these images are, the higher the
corresponding FSIM is.

As it can be seen in Def. (III.5)-(III.6), the initialization of
the state variable v plays a key role in how active the feedback
filters are when quantizing pixels close to the image boundary.
If v is initialized as zero, see "Zero-State" in Fig 2, and used
with spread-out filters of higher orders, this leads to a good
performance only in image regions with all filters active and
may cause artifacts near boundary regions with almost constant
amplitude. To avoid such a problem, in [8] v was initialized
randomly, see "Random-state" in Fig 2. Here, we propose to
use symmetric padding as described in Sec II and III, which
is indicated accordingly in Fig 2 starting the zero state.

The results of numerical experiments are summarized in
Figure 2 as the average FSIM over 50 images for different
weighted Σ∆ halftoning techniques. Even though random
initialization eliminates boundary artifacts, it reduces the sim-
ilarity between images in general. The best performance in
this quality measure is achieved by the newly proposed mixed
order weighted Σ∆ schemes with second-order and third-order
building blocks as in Table II combined with padding.
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