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Abstract

One of the major bottlenecks for deploying popu-
lar first-order differentially private (DP) machine
learning algorithms (e.g., DP-SGD) lies in their
high computation and memory cost, despite the
existence of optimized implementations. Zeroth-
order methods have promise in mitigating the
overhead, as they leverage function evaluations
to approximate the gradients, hence significantly
easier to privatize. While recent works have ex-
plored zeroth-order approaches in both private
and non-private settings, they still suffer from
relatively low utilities compared with DP-SGD
and limited application domains. In this work,
we propose to leverage public information to
guide and improve gradient approximation of pri-
vate zeroth-order algorithms. We explore a suite
of public-data-assisted zeroth-order optimizers
(PAZO) with minimal overhead. We provide theo-
retical analyses of the PAZO framework under an
assumption of the similarity between public and
private data. Empirically, we demonstrate that
PAZO achieves stronger privacy/utility tradeoffs
across vision and text tasks in both pre-training
and fine-tuning regimes, outperforming the best
first-order baselines (with public gradients) espe-
cially in highly private regimes, while offering up
to 16× runtime speedup.

1. Introduction
Differentially private (DP) offers a widely-used framework
to protect sensitive information so that adversaries cannot
infer if any user/sample participates in the computation.
When applied to machine learning tasks, popular DP algo-
rithms based on privatizing first-order gradients (such as
DP-SGD (Abadi et al., 2016)) fundamentally rely on per-
sample gradient clipping, which can be computationally
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expensive and impractical in large-scale settings. While
there exist optimized implementations of DP-SGD, they are
limited in their generality to handle all model architectures
and often incur other overheads, such as trading memory
for computation (Subramani et al., 2021; Beltran et al.).

To tackle this, zeroth-order optimization offers an attrac-
tive alternative for DP training, as it leverages function
queries (one-dimensional scalar values) to approximate the
gradients and is hence inherently amenable to privatiza-
tion (Duchi et al., 2015; Kiefer & Wolfowitz, 1952). How-
ever, randomly searching in a potentially high-dimensional
space based on function query feedback can be rather inef-
ficient (Duchi et al., 2015). Prior work has demonstrated
competitive performance of (private) zeroth-order methods
only in the limited context of language model prompt tuning
(Malladi et al., 2023; Tang et al., 2024; Zhang et al., 2023;
Ma & Huang; Zhang et al., 2024b) or under extreme sparsity
(Chen et al., 2023). In addition, there is still a utility gap
between private zeroth-order and first-order approaches on
challenging tasks (Zhang et al., 2023).

In this work, we aim to narrow the gap between zeroth-order
and first-order methods in private training leveraging public
data. Zeroth-order outputs are high-variance estimators of
the first-order gradients and suffer from slow convergence
in terms of the total number of iterations. However, there
usually exists public data that is exempt from privatization,
whose batch gradient provides informative guidance and
introduces minimal computational overhead. We thus in-
troduce PAZO, a suite of zeroth-order DP optimizers that
leverage a small amount of public data with similar distribu-
tions as private data and their first-order gradients to guide
or augment the zeroth-order outputs. In particular, we ex-
plore (1) PAZO-M, a mix (convex combination) of private
zeroth-order estimates and public first-order gradients, (2)
PAZO-P, constraining the sampling of random directions in
the public gradient subspace, and (3) PAZO-S, selecting the
best public gradient based on function queries on private
data. When designing PAZO, we ensure that privatization
only operates on top of function evaluations to preserve the
efficiency of zeroth-order approaches, while still satisfying
desired privacy guarantees.

Unlike recent zeroth-order work that mostly focuses on lan-
guage model prompt tuning, we cover both image and text
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domains, and both pre-training and fine-tuning scenarios.
We show that without access to public data, DP zeroth-order
methods may underperform DP first-order approaches (e.g.,
DP-SGD), whereas even modest amounts of public data
can significantly close the gap, especially in highly private
regimes. In particular, the best zeroth-order with public data
method can match or even outperform the best first-order
method with public data, while being significantly faster to
train. Our results highlight the broader potential of zeroth-
order methods for DP training with public data: enabling
improved privacy/utility tradeoffs, applicability across di-
verse domains, and achieving up to 16× speedup compared
to traditional first-order methods. Our contributions are as
follows:

1. Algorithm design. We propose the first set of private
zeroth-order optimization algorithms (PAZO-{M,P,S})
augmented with public data (gradients) to construct bet-
ter gradient estimates in a more constrained space. PAZO
helps close the gap between zeroth- and first-order meth-
ods in the settings where zeroth-order approaches under-
perform first-order ones.

2. Theoretical analysis. We present the privacy and utility
guarantees for each method. We verify that our worst-
case convergence rate matches that of previous work, and
a proper choice of hyperparameter, which depends on the
quality of public data, gives us improved convergence.

3. Empirical validation. We evaluate our methods on both
image and text domains and in both pre-training and fine-
tuning scenarios. We find that zeroth-order methods are
robust across various privacy budgets whereas first-order
methods are sensitive. Our methods consistently have
superior privacy/utility tradeoffs and outperform the best
public-augmented first-order method in highly privacy
regimes, while achieving up to 16× speedup.

2. Preliminaries
Differential privacy. In this work, we focus on the classic
definition of sample-level DP (Abadi et al., 2016; Dwork
et al., 2006).

Definition 2.1 (Differential privacy (Dwork et al., 2006)).
A randomized algorithmM is (ε, δ)-differentially private if
for all neighboring datasets D,D′ differing by one element,
and every possible subset of outputs O,

Pr(M(D)∈O)≤eεPr(M(D′)∈O)+δ.

We follow the classic DP model where the neighboring
datasets D and D′ differ by adding/removing one training
sample. Typically, noise is added to ensure DP scales with
the model dimensions, resulting in degraded and unusable

model utilities (Chaudhuri et al., 2011). Extensive prior
research has been proposed to improve privacy/utility trade-
offs, including increasing the batch-size (McMahan et al.,
2017; Sander et al., 2024), using public or side informa-
tion (Li et al., 2022; Asi et al., 2021; Li et al., 2021), and
reducing the dimensionality of gradients (Zhou et al., 2020).
Another bottleneck of deploying DP algorithms at scale
lies in the computation (or memory) cost (Subramani et al.,
2021). In this work, we propose to mix zeroth-order (on
sensitive private data) and first-order oracles (on public data)
to mitigate these two challenges at once.

Zeroth-order optimization. Zeroth-order approaches use
(stochastic) function queries to estimate the true gradients.
They are particularly suitable for applications where gra-
dient information is difficult to obtain, such as adversarial
attacks and defenses (Chen et al., 2017; Ilyas et al., 2018;
Verma et al., 2023), hyperparameter tuning (Gu et al., 2021),
and data-driven science workloads (Hoffman et al., 2022).
One fundamental challenge of zeroth-order methods is their
need for a large number of function queries to reduce the
variance of the estimate (e.g., Duchi et al., 2015). Exist-
ing work has explored various techniques to improve the
estimate, such as incorporating the previous estimated gra-
dient directions (Meier et al., 2019) and sparsifying gra-
dients (Chen et al., 2023). This work focuses on private
training, and our proposed technique can be combined with
these prior methods. Given the current model parameter
x ∈ Rd and loss function f : Rd → R, the widely used two-
point zeroth-order gradient estimator (Duchi et al., 2015),
involves two evaluations of function values:

gλ(x;ξi):=
f(x+λu;ξi)−f(x−λu;ξi)

2λ
u, (1)

where ξi is a randomly sampled training data point, u∈Rd

is uniformly sampled from the Euclidean sphere
√
dSd−1,

and λ>0 is the smoothing parameter. Let v be uniformly
sampled from the Euclidean ball

√
dBd={x∈Rd|∥x∥≤

√
d}.

Define the smoothed version of f(·) as fλ(x):=Ev[f(x+
λv)]. We have that (i) fλ(x) is differentiable and (ii)
Eu[gλ(x;ξi)]=∇fλ(x). It indicates that by using the zeroth-
order gradient estimator, we are asymptotically optimizing
a smoothed version of the original objective f(x), where
the smoother is a ball with radius λ

√
d.

Differentially private zeroth-order optimization. The
desired (private) gradients are expensive to obtain in DP
training, because gradients have to be generated and priva-
tized at a granularity of each sample as opposed to each
mini-batch. Therefore, recent work has considered privatiz-
ing zeroth-order algorithms (Zhang et al., 2023; Tang et al.,
2024; Liu et al., 2024; Zhang et al., 2024a) by first clipping
the function queries and then adding proper Gaussian noise.
Specifically, based on the non-private two-point estimator
on one sample (Eq. (1)), prior work uses the privatized
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Figure 1: Results of CIFAR-10 with NFResNet18 trained from scratch. Left: Zeroth-order methods demonstrate consistent accuracies
under various privacy budgets compared with the best first-order method with public data. Right: Proposed zeroth-order approaches are
more accurate than vanilla DPZero, and significantly more efficient than all the public data augmented first-order baselines. The results
are under the privacy budget ε = 3.

update rule g̃λ(x;B) defined by1

b

∑
ξi∈B

clipC

(
f(x+λu;ξi)−f(x−λu;ξi)

2λ

)
+z

u, (2)

where b=|B| is batch-size, z∼ 1
bN (0,C2σ2) is privacy

noise, and u is sampled uniformly from the sphere
√
dSd−1.

It is possible to query the raw data multiple times per it-
eration by sampling multiple u’s with more noise added
(Section 3). However, prior work mostly focuses on lan-
guage model prompt tuning, and there still exists a big
performance gap between zeroth- and first-order methods.
In PAZO, we use public information to guide the gradient
estimate on private data, as discussed in the next section.

3. PAZO: Public-Data-Assisted Zeroth-Order
Optimization

Given zeroth-order oracles on private data and first-order
oracles on public data, we aim to blend public gradients
as inductive bias into the private zeroth-order framework
to improve privacy/utility tradeoffs, while retaining the ef-
ficiency benefits of vanilla zeroth-order updates. In this
section, we propose three approaches for using this pub-
lic prior, which significantly outperform baselines without
public data and result in competitive/superior performance
relative to DP-SGD with public data. We analyze the con-
vergence properties in Section 4.

3.1. PAZO-M: Mixing Zeroth-Order Estimates and
First-Order Gradients

PAZO-M linearly combines the public gradient with the
private two-point estimator (Eq. (2)), summarized in Algo-
rithm 1 below. At each iteration t, we sample a public batch,

obtain its batch gradient, and mix it with the private two-
point gradient estimate. We run private two-point estimation
q times to reduce its variance. Since we query the same raw
private mini-batch q times, we need to add more privacy
noise (q times more variance) to ensure the same DP as if
querying once.

Since the norm of two-point gradient estimates is approx-
imately d times that of the true private gradient, it is im-
portant to align their norm so that the tuning of the mixing
coefficient is independent of the problem. To achieve this,
we sample u uniformly from the sphere rSd−1 with radius
r=d

1
4 so that Eut

[∥gλ(x)∥2]≈∥∇f(x)∥2, whose proof de-
tailed in Appendix A.

One can adjust the mixing coefficient α to adjust the weight
put on the public gradient. Although α is an additional
hyperparameter, as we show in our experiments (Section 5),
PAZO-M is robust to a wide range of α∈(0,1) and public
batch-size b′, as long as the L2 norms of gpub and g̃/q are
at the same scale.

Despite its simplicity, PAZO-M demonstrates competitive
performance among all three PAZO variants (Section 5).
While prior work has explored mixing gradients and zeroth-
order estimates for memory efficiency in non-private set-
tings (Li et al., 2024), PAZO-M differs from this work in
terms of the effective optimization objectives, bias-variance
tradeoffs, the analysis, and application settings.

3.2. PAZO-P: Sampling in Public Gradient Subspace

Recall that the two-point estimator samples perturbations u
in the sphere

√
dSd−1, while such random exploration along

the directions λu and −λu offers limited signal in terms of
the real gradients. Rather, the true gradient likely lies close
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Algorithm 1 PAZO-M

1: Input: T , noise multiplier σ, clipping threshold C,
stepsize η, smoothing parameter λ, mixing coefficient
α, initialization x0∈Rd, number of queries q, private
and public batch-size b and b′.

2: for t=0,···,T−1 do
3: Sample a batch B of private training data {ξ1,...,ξb}
4: Sample a batch B′ of public data and obtain its gra-

dient gpub
5: g̃←0d

6: for each of the q queries do
7: Sample u uniformly from the sphere d

1
4 Sd−1

8: Sample z∼ 1
bN (0,qC2σ2)

9: f+←f(xt+λu;ξi)
10: f−←f(xt−λu;ξi)
11: g̃←g̃+

(
1
b

∑b
i=1clipC

(
f+−f−

2λ

)
+z
)
u

12: end for
13: xt+1←xt−η(αgpub+(1−α)g̃/q)
14: end for

to the space of public gradients. Based on this hypothesis,
we constrain the private gradient estimates in the subspace
spanned by the public gradients, and use function queries to
learn the coefficients associated with the components of the
public gradient subspace (named PAZO-P), which results in
a much lower-dimensional optimization problem.

Formally, suppose we have access to k (k≪d) mini-batch
stochastic gradients obtained on public data and denote a
concatenation of them as a matrix G∈Rd×k. Let u∈Rk be
a random vector that is uniformly sampled from the sphere√
kSk−1, and we propose the following updating rule based

on one sample in the non-private case:

gGλ (x;ξi):=
f(x+λGu;ξi)−f(x−λGu;ξi)

2λ
Gu,

which can be interpreted as learning the coefficient u∈Rk

to linearly combine the public gradients. Further, if we
orthonormalize the columns of G, gGλ (x;ξi) estimates the
orthogonal projection of the true gradient onto the public
gradient subspace when λ→0, i.e.,

Eu[g
G
λ (x;ξi)]=Eu[∇f(x)⊤GuGu]=ProjG(∇f(x)).

We compare the visualization of sampling in the full-
dimensional space and public gradient subspace in Figure 7
in the appendix. For private training, we privatize the esti-
mates using the standard subsampled Gaussian mechanism,
described in Algorithm 2.

PAZO-P is conceptually related to the idea of model soup,
where extensive research has shown that a simple convex
combination of the model parameters can result in a souped

Algorithm 2 PAZO-P

1: Input: Same as Algorithm 1, and number of public
batches k≪d

2: for t=0,···,T−1 do
3: Sample a batch B of private training data {ξ1,...,ξb}
4: Sample k batches of public data and obtain their

(ortho)normalized gradients {g1,...,gk}
5: G←[g1,...,gk], g̃←0d

6: for each of the q queries do
7: Sample u uniformly from the sphere

√
kSk−1

8: Sample z∼ 1
bN (0,qC2σ2)

9: f+←f(xt+λGu;ξi)
10: f−←f(xt−λGu;ξi)

11: g̃←g̃+
(

1
b

∑b
i=1clipC

(
f+−f−

2λ

)
+z
)
Gu

12: end for
13: xt+1←xt−ηg̃/q
14: end for

model that generalizes well even in out-of-distribution
tasks (Wortsman et al., 2022; Croce et al., 2023). When
G is not orthonormalized, PAZO-P learns the optimal con-
vex combination via function queries privately.

Previous work proposes constraining the random search
to the principal components of surrogate gradients (Mah-
eswaranathan et al., 2019), while PAZO-P differs from theirs
in the option of using non-orthonormalized G. Section 5
presents the performance of PAZO-P with orthonormaliza-
tion, and the complete Table 1-4 presents the almost equally
competitive performance of PAZO-P without orthonormal-
ization.

3.3. PAZO-S: Select the Best Public Gradient

PAZO-P offers ways to better combine public gradients via
zeroth-order function evaluations, while in this section, we
take an alternative approach by optimizing an approxima-
tion of the problem. Note that for a convex function f ,
for any probability distribution α∈∆k, k public gradients
{g1,...,gk}, and any model parameter x∈Rd, we have that

min
α∈∆k

f

x−η
k∑

j=1

αjgj

≤min
α∈∆k

k∑
j=1

αjf(x−ηgj)

=min
j∈[k]

f(x−ηgj), (3)

where the upper bound minj∈[k]f(x−ηgj) can be easily op-
timized and privatized (as long as k is small) with access to
queries of f(·) evaluated on private data. We propose PAZO-
S, a method that selects the best public gradients based on
loss values on private data, i.e., solving minj∈[k]f(x−ηgj)
(Line 6-11 in Algorithm 3). Considering the residual error
between the public and private subspace, we create an ad-
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ditional noise vector z′ (Line 12), add it to the best public
gradient (indexed with ĵ), and perform another compari-
son between private f(x−ηgĵ) and private f(x−η(gĵ+z′))
(Line 14). While PAZO-S is motivated by the arguments
under a convex f (Eq. (3)), we apply it to all the tasks and
models that are non-convex.

3.4. Privacy guarantees of PAZO

The privacy guarantees of all three methods can be analyzed
in the same way. At each iteration, we guarantee the L2

sensitivity of the sum of the function queries by C, and
we add Gaussian noise with variance qC2σ2 where q is the
number of queries on the sampled data. Therefore, the pri-
vacy bound per iteration is the same for any q, following
the n-fold composition corollary of the Gaussian mecha-
nism (Dong et al., 2022). Applying standard Renyi DP
accounting (Mironov, 2017) to compose across T rounds
with sampling ratio b/n, we have that there exist constants
c1 and c2 such that for any ε<c1b

2T/n2, all three Algo-
rithms 1-3 are (ε,δ)-differentially private for any δ>0 if

σ≥c2 b
√

T log(1/δ)

nε .

4. Convergence Analysis
In this section, we study the convergence properties of three
PAZO algorithms. We first define the similarity between
public and private data through the distance between the full
gradients as follows.

Definition 4.1 (γ-similarity). Denote ∇f ′(xt) and ∇f(xt)
as the gradient for model xt at time step t under the full
public and private data, respectively. We call public and
private data γ-similar if ∥∇f ′(xt)−∇f(xt)∥≤γ for all t.

Algorithm 3 PAZO-S

1: Input: Same as Algorithm 2, and perturbation scale ϵ
2: for t=0,···,T−1 do
3: Sample a batch B of private training data {ξ1,...,ξb}
4: Sample k batches of public data and obtain their

gradients {g1,...,gk}
5: g̃←0d

6: for j=1,...,k do
7: Sample z∼ 1

bN (0,(k+1)C2σ2)

8: fj← 1
b

∑b
i=1clipC(f(xt−ηgj ;ξi))+z

9: end for
10: ĵ←argminj∈[k]fj
11: gk+1←gĵ+z′ where z′∼N (0,ϵ2Id)

12: Sample z∼ 1
bN (0,(k+1)C2σ2)

13: fk+1← 1
b

∑b
i=1clipC(f(xt−ηgk+1;ξi))+z

14: j∗←argminj∈[k+1]fj
15: xt+1←xt−ηgj∗
16: end for

We note that such similarity is defined on top of the full gra-
dients, a weaker requirement than defining on the stochastic
gradients. There are previous similarity metrics based on
coordinate-wise gradient norm alignment (Li et al., 2022).
Together with their assumption on the bounded gradient
norm, their similarity condition implies ours and is thus a
stronger condition than ours.
Assumption 1. The objective f evaluated on all private
training data satisfies ∥f(x)−f(y)∥≤M∥x−y∥,∀x, y∈Rd.
Assumption 2. f(x;ξ) is L-smooth for any x∈Rd and any
subset data ξ.
Assumption 3. The variance of private stochastic gradients
is bounded, i.e., E[∥∇f(xt;ξi)−∇f(xt)∥2]≤σ2

1 for any pri-
vate sample ξi and any t.
Assumption 4. The variance of public stochastic gradients
is bounded, i.e., E[∥∇f ′(xt;ξ

′
i)−∇f ′(xt)∥2]≤σ2

2 for any
public sample ξ′i and any t.
Theorem 4.1 (Convergence of PAZO-M). Assume public
and private data are γ-similar. Let Assumptions 1-4 hold.
For possibly non-convex f(·), running Algorithm 1 under a
fixed learning rate for T rounds gives

1

T

T−1∑
t=0

E[∥∇f(xt)∥2]≤O
(
1

T

)
+O
(
(1−α)λ+αγ2

)
+O
(
(1−α)λ2+α(γ+λ+λγ)

)
+O

(
(1−α)2

(
σ2
1

b
+
σ2

b2

)
+α2σ

2
2

b′

)
. (4)

We present several discussions on the results. First, the
error reduces when γ is small. When α=0, PAZP-M re-
duces to vanilla DPZero (Zhang et al., 2023) and our upper
bound matches that of the full-rank and stochastic version of
DPZero. We further analyze in Appendix B.2 that there ex-
ists an optimal α∈(0,1) that results in the best upper bound
when γ does not exceed a threshold. Second, here we as-
sume fixed λ, while the terms involving λ on RHS would
vanish if we use decaying λ. Third, there are terms related
to the variance of the stochastic gradients, which is stan-
dard when a constant learning rate (Zaheer et al., 2018) is
assumed and would reduce as batch-size b and b′ increase.
Theorem 4.2 (Convergence of PAZO-P). Let assumptions
in Theorem 4.1 hold. For possibly non-convex f(·), running
Algorithm 2 under a fixed learning rate for T rounds gives

1

T

T−1∑
t=0

E[∥∇f(xt)∥2]

≤O
(
1

T

)
+O

(√
σ2
2

b
+γ2+λ+λ2+

σ2
1

b
+
σ2

b2

)
. (5)

Similar to Theorem 4.1, choosing a decaying λ makes the
terms related to λ+λ2 vanish to zero. Other terms are due
to γ-similarity and variance of stochastic gradients.
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Figure 2: Performance of PAZO and the baselines on four settings. It shows that (1) all three PAZO variants outperform
DPZero across all datasets, (2) all of the first-order methods (DP-SGD, DPMD, DOPE-SGD, and GEP), with or without
public data, are more sensitive to smaller ε’s than zeroth-order ones, and (3) when ε’s are small, PAZO is superior to
first-order baselines. “Fail” indicates failure to converge; the detailed accuracy numbers are in Tables 1-4 in the appendix.
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Figure 3: We compare the best private zeroth-order (ZO) methods with the best private first-order (FO) methods, with public
data (+PUB) or without. Note that ZO+PUB is PAZO. It shows that (1) with or without public data, the performance gap
between ZO and FO decreases as ε decreases, (2) using public data expands the range of ε’s where ZO methods outperform
FO ones, and (3) ZO+PUB (PAZO) achieves better privacy/utility tradeoff than FO+PUB when ε’s are small.

Theorem 4.3 (Convergence of PAZO-S). Let assumptions
in Theorem 4.1 hold. For possibly non-convex f(·), running
Algorithm 3 under a fixed learning rate for T rounds gives

1

T

T−1∑
t=0

E[∥∇f(xt)∥2]≤O
(
1

T

)
+O

(
γ+γ2+

σ2√
b′
+
σ2
2

b′

)
.

(6)

Similarly, when γ approaches zero, the remaining term
σ2/
√
b′+σ2

2/b
′ is due to stochastic public data sampling.

We give complete statements and proofs in Appendix B.

5. Empirical Evaluation
In this section, we present the empirical performance of
PAZO-{M,P,S} on both the vision and language domains,
across pre-training, fine-tuning, and prompt tuning tasks.
In Section 5.1, we introduce experiment setups including
datasets and models. In Section 5.2, we present the priva-
cy/utility tradeoffs of PAZO, showing that PAZO performs
comparably to public data augmented first-order methods
over a number of tasks in moderate privacy regimes and
outperforms them in highly private regimes. In Section
5.3, we highlight the time efficiency of PAZO. In Sec-
tion 5.4, we present the sensitivity study of the hyper-
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parameters, showing that PAZO is non-sensitive to intro-
duced hyperparameters. Our code is publicly available at
github.com/xuchengong/pazo.

5.1. Experimental Setups

The settings of our experiments cover and closely follow
the experiments in the existing DP literature, including (1)
Training NFResNet18 on CIFAR-10 (Krizhevsky et al.)
from scratch, (2) fine-tuning Places365 pre-trained ViT-S
on Tiny-ImageNet (mnmoustafa & Ali, 2017), (3) training
LSTM on IMDB (Maas et al., 2011) from scratch, and (4)
prompt-tuning RoBERTa-base on MNLI (Williams et al.,
2017). We introduce distribution shifts between private and
public data, such as class imbalance and context shifts. The
details of public data generation and the distribution shifts
between public and private data are in Appendix C.1.

5.2. Improved Privacy/Utility Tradeoffs

First, we compare PAZO with vanilla zeroth-order meth-
ods and various strong first-order baselines with public data
under various privacy budgets ε={0.1,0.5,1,2,3}. In Fig-
ure 2, we compare with 1) DP-SGD, the plain first-order
method without public data, 2) DPZero, the plain zeroth-
order method without public data, and 3) the state-of-the-art
first-order algorithms with public data, including DPMD
(Amid et al., 2022), GEP (Yu et al., 2021), and DOPE-SGD
(Nasr et al., 2023).

We observe that all three PAZO variants outperform DPZero
across the four datasets, though there is not a single PAZO
algorithm that dominates other PAZO instances in all set-
tings. In addition, all of the first-order methods (DP-SGD,
DPMD, DOPE-SGD, and GEP), with or without public data,
are much more sensitive to more strict privacy requirements
(smaller ε’s) than zeroth-order ones. This suggests that
PAZO (and zeroth-order methods in general) possess more
robust privacy/utility tradeoffs than the first-order methods
across model types, training types, and task domains. Under
small ε’, PAZO is superior to first-order baselines by a large
margin. We provide concrete accuracy numbers in Tables
1−4 in the appendix.

Furthermore, we report the performance of the best PAZO
algorithm among three variants (denoted as ‘ZO+PUB’) and
the performance of the best public data augmented first-
order method (denoted as ‘FO+PUB’) under different ε’s
in Figure 3. The results indicate that although zeroth-order
(ZO) may underperform first-order (FO) variants, if we
augment both with public data, PAZO performs comparably
or is superior to the best first-order approach with public
data (FO+PUB), while being more efficient.

5.3. Time Efficiency

In this section, we present the time efficiency of PAZO. It is
faster than first-order methods (with or without public data)
due to exemption from per-sample gradient computation,
and it converges faster than zeroth-order baselines.

0 50 100 150
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0.55

0.60

0.65

550 600

Ac
cu

ra
cy

 (%
)

Steps (×4)

ZO+PUB
ZO

Figure 4: PAZO converges faster than DPZero on MNLI.
The reported results are the smoothed test accuracy of
PAZO-S with privacy budget ε=1.

#Iterations to converge. MeZO and DPZero present re-
sults with zeroth-order methods running 100× and 10×
more steps than the first-order methods, but PAZO does
not because of the assistance from public data. Figure 4
illustrates that public information significantly accelerates
the convergence of zeroth-order methods. This is particu-
larly favorable to differentially private training since smaller
noise will be added due to smaller privacy consumption.

Runtime per iteration. Theoretically, we compare the
number of different operations in each method in Table 6.
Since the number of forward and backward passes in first-
order methods depends on the size of the private batch-size,
first-order methods can be dramatically slow since large-
batch training is favorable in DP (McMahan et al., 2017;
Yu et al., 2023). Empirically, we compare the speed of
each method in terms of training time per iteration. Each
experiment is conducted on one 48GB L40S GPU. For fair
comparison, we maximally leverage the methods to speed
up first-order DP, especially vectorization, just-in-time com-
pilation, and static graph optimization (Subramani et al.,
2021). In practice, due to the memory burden of paral-
lelization and compilation overhead, a hybrid of vmap and
sequential processing is often faster. We choose the fastest
implementation for each first- and zeroth-order method un-
der memory constraints. By comparing the utility/speed
tradeoff (Figure 5), we observe that PAZO is comparable to
or more performant than the baselines, while being 2∼16×
faster in each training iteration.
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Figure 5: The utility/speed tradeoffs of different methods. It shows that PAZO is up to 16× faster in each training iteration
than FO and FO+PUB while being comparably performant. The reported results are under privacy budget ε=1, and the
detailed numbers are in Table 5.

5.4. Robustness to Hyperparameters
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Figure 6: All PAZO methods are robust to different values
of their introduced hyperparameters. Each number repre-
sents the best accuracy after the standard hyperparameters
for zeroth-order private optimization (C and η) are tuned.
Blue cells indicate PAZO-S performance without a noisy
candidate.

Each method has its hyperparameters tuned using grid
search, whose grid values are in Appendix C.3. Zeroth-order
methods can sample q directions to reduce variance in each
iteration, so we perform preliminary studies on q∈{1,5}
for each setting and choose q=1 if the performance gap is
negligible. As presented in Appendix C.3, PAZO reduces
the reliance on increased q compared to DPZero due to the
guidance from public information.

Additionally, compared to the vanilla zeroth-order methods,

PAZO has additional hyperparameters due to public data
sampling, including the public batch-size b′ and potentially
the mixing coefficient α, number of candidates k, and per-
turbation scale ϵ. However, as in Figure 6 and Figure 8, we
show that the performance of PAZO-{M,P,S} is robust to
the values of these hyperparameters. In fact, a wide range of
combinations of the introduced hyperparameter values can
yield performance close to the best performance we report.

6. Conclusion and Future Work
We propose PAZO, a suite of public-data-assisted zeroth-
order optimization methods for differentially private train-
ing. By leveraging modest amounts of public data and their
gradients to guide zeroth-order updates, PAZO significantly
improves the privacy/utility tradeoff over prior zeroth-order
approaches while preserving their computational efficien-
cies. Through theoretical analysis and experiments across
vision and language tasks, we demonstrate that PAZO closes
the gap between zeroth- and first-order methods in moderate
privacy regimes and even surpasses the best first-order base-
lines with public data under high privacy constraints. Our re-
sults position public-data-assisted zeroth-order optimization
as a practical and scalable alternative for private training,
especially in settings where private first-order methods are
costly or infeasible. Future work could include sharpen-
ing the current convergence bounds by considering other
similarity metrics and exploring a broader set of public and
private dataset pairs in practical DP training applications.
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A. Algorithm Details
A.1. PAZO-M norm alignment

To jusify why we sample the perturbation u from the sphere with radius d
1
4 , we present the following analysis. For a random

direction sampled uniformly from a sphere of radius r, the two-point estimator gλ(x) has the squared norm

∥gλ(x)∥2=
(
f(x+λu)−f(x−λu)

2λ

)2

r2.

Using a Taylor expansion of f and ignoring O(λ2) terms, we have f(x±λu)≈f(x)±λ∇f(x)⊤u and thus

∥gλ(x)∥2≈(∇f(x)⊤u)2r2.

Since Eu[uu
⊤]= r2

d Id,

Eu[∥gλ(x)∥2]≈r2Eu[(∇f(x)⊤u)2]=r2∇f(x)⊤Eu[uu
⊤]∇f(x)=r4

d
∥∇f(x)∥2.

We thus have Eu[∥gλ(x)∥2]≈∥∇f(x)∥2 if r=d
1
4 .

A.2. PAZO-P perturbation sampling

We visualize the sampled perturbation set of the vanilla zeroth-order methods and PAZO-P as follows. We set d=3,k=2 and
generate G∈R3×2 with normalized columns to represent the public gradients. The vanilla zeroth-order method samples
the perturbations u in the full-dimensional sphere (R3), while PAZO-P samples in the column space of G. When G is
orthonormal, we sample fairly in every direction in the public gradient subspace; when G is not orthonormal, we have larger
effective learning rates in the directions in which the public gradients agree.
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Figure 7: Comparison of the sampled perturbations in full-dimensional space and the public gradient subspace. u1 and
u2 denote the top-2 left singular vectors of normalized G. Left: Vanilla zeroth-order perturbation sampling from

√
dSd−1.

Middle: Sampling from G(
√
kSk−1) where G has normalized columns, which is functionally the border of a sphere

elongated in the directions of top-k public gradient singular vectors. Right: Sampling from G(
√
kSk−1) where G is

orthonormalized.

B. Detailed Convergence Analysis
B.1. Lemmas

Lemma B.1. Let the private and public data be γ-similar and Assumption 3 and 4 hold. Denote b:=|B| and b′:=|B′| as the
private and public batch-size, respectively. Denote gt:=∇f(xt) and g′t:=∇f ′(xt) as the gradient under full private and
public data, respectively. Due to the stochasticity of sampling, the private and public batch gradients are
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∇f(xt;Bt)=
1

b

∑
i∈Bt

(gt+ζt,i) and ∇f ′(xt;B
′
t)=

1

b′

∑
i∈B′

t

(g′t+ζ ′t,i)

where ζt,i is independently sampled from some noise distribution D with zero mean and variance σ2
1; ζ ′t,i is independently

sampled from some noise distribution D′ with zero mean and variance σ2
2; Bt and B′

t are private and public batch at step t,
respectively; |B| and |B′| are private and public batch-size, respectively. So we have

E[∥∇f(xt;Bt)−∇f ′(xt;B
′
t)∥]2≤E[∥∇f(xt;Bt)−∇f ′(xt;B

′
t)∥

2
]

=E[∥gt−g′t∥
2
]+E

∥∥∥∥∥1b∑
i∈Bt

ζt,i

∥∥∥∥∥
2
+E


∥∥∥∥∥∥ 1b′

∑
i∈B′

t

ζ ′t,i

∥∥∥∥∥∥
2


≤γ2+
σ2
1

b
+
σ2
2

b′

where the first inequality is due to Jensen’s inequality. Additionally,

E[∥∇f(xt;Bt)∥2]=E

∥∥∥∥∥gt+1

b

∑
i∈Bt

ζt,i

∥∥∥∥∥
2
=E[∥gt∥2]+E

∥∥∥∥∥1b∑
i∈Bt

ζt,i

∥∥∥∥∥
2
≤M2+

σ2
1

b

Lemma B.2 (Zhang et al. (2023), Lemma C.1 and C.2). Let u be uniformly sampled from the Euclidean sphere
√
dSd−1 and

v be uniformly sampled from the Euclidean ball
√
dBd={x∈Rd|∥x∥≤

√
d}. Let a∈Rd be some fixed vector independent of

u. We have

1. Eu[u]=0 and Eu[uu
⊤]=Id.

2. Eu[u
⊤a]=0, Eu[(u

⊤a)2]=∥a∥2, and Eu[(u
⊤a)u]=a.

3. For any function f(x):Rd→R and λ>0, we define its zeroth-order gradient estimator as gλ(x)=
f(x+λu)−f(x−λu)

2λ u
and the smoothed function as fλ(x)=Eu[f(x+λu)]. Then the following properties hold

(a) fλ(x) is differentiable and Eu[gλ(x)]=∇fλ(x).
(b) If f(x) is L-smooth, then we have

∥∇f(x)−∇fλ(x)∥≤
L

2
λd3/2,

Eu[∥gλ(x)∥2]≤2d·∥∇f(x)∥2+
L2

2
λ2d3.

B.2. Convergence of PAZO-M

Theorem B.3 (Full statement of Theorem 4.1). Let the private and public data be γ-similar and Assumption 1, 2, 3, and 4
hold. For possibly non-convex f , running Algorithm 1 for T rounds using a fixed step size η= 1

4L(1−α)(d−dα+α) gives

1

T

T−1∑
t=0

E[∥∇f(xt)∥2]≤
16L(1−α)(d−dα+α)(f(x0)−f(x∗))

T
+
(1−α)L2λ2d3

2
+
L2λ2d2

4

+
σ2
1

b
+
σ2C2

2b2
+
α[γLλd

3
2 /2+(γ+Lλd

3
2 /2)M ]

(1−α)d +2αγ2+
α2σ2

2

2(1−α)2b′d .

Proof. Assume that clipping does not happen, then the update rule is xt+1−xt=−ηt((1−α)(∆(xt;ut;Bt)+zt/b)ut+
αg′(xt;B

′
t)) where

13
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∆(xt;ut;Bt)=
1

b

∑
ξi∈Bt

f(xt+λut;ξi)−f(xt−λut;ξi)

2λ
.

At a step t, let xt be a fixed parameter. We apply the update to the property of L-smooth objectives and take expectation
over all the randomness at this iteration, i.e., Et:=Eut,zt,Bt,B′

t
. We have

Et[f(xt+1)]

≤f(xt)+⟨∇f(xt),Et[xt+1−xt]⟩+
L

2
Et[∥xt+1−xt∥2]

=f(xt)−(1−α)ηt∇f(xt)
⊤Et[∆(xt;ut,Bt)ut]︸ ︷︷ ︸

T1

+
(1−α)2Lη2t

√
d

2
Et[∆(xt;ut,Bt)

2]︸ ︷︷ ︸
T2

+
α2Lη2t

2
Et[∥g′(xt;B

′
t)∥

2
]−αηt∇f(xt)

⊤g′t+α(1−α)Lη2tEt

[
∆(xt;ut,Bt)u

⊤
t g

′(xt;B
′
t)
]

︸ ︷︷ ︸
T3

+
(1−α)2Lη2t dσ2C2

2b2

For T1, note that Et[∆(xt;ut,Bt)ut]=Et[utu
⊤
t ∇f(xt)]=

1√
d
∇f(xt) for ut∼d

1
4 Sd−1. We thus apply Lemma B.2 (iii)(b)

to obtain

−∇f(xt)
⊤Et[∆(xt;ut,Bt)ut]=−∇f(xt)

⊤Eut [∆(xt;ut)ut]

=−⟨∇f(xt)
⊤,∇f(xt)+Eut [∆(xt;ut)ut]−∇f(xt)⟩

≤−∥∇f(xt)∥2+∥∇f(xt)∥∥Eut [∆(xt;ut)ut]−∇f(xt)∥

≤−∥∇f(xt)∥2+∥∇f(xt)∥


∥∥∥∥Eut

[∆(xt;ut)ut]−
1√
d
∇f(xt)

∥∥∥∥︸ ︷︷ ︸
T5

+

(
1− 1√

d

)
∥∇f(xt)∥


(7)

where T5 has ∥∥∥∥ 1√
d
∇f(xt)−Eut [∆(xt;ut)ut]

∥∥∥∥≤Et

[∥∥∥∥(∇f(xt)
⊤ut−

f(xt+λut)−f(xt−λut)

2λ

)
ut

∥∥∥∥]
=
d

1
4

2λ
Et

[
|
(
f(xt+λut)−f(xt−λut)−2λ∇f(xt)

⊤ut

)
|
]

≤d
1
4

2λ
Et

[
|
(
f(xt+λut)−f(xt)−λ∇f(xt)

⊤ut

)
|
]

+
d

1
4

2λ
Et

[
|
(
f(xt)−f(xt−λut)−λ∇f(xt)

⊤ut

)
|
]

≤Lλd
3
4

2

due to L-smoothness applied to the last inequality. Therefore, −∇f(xt)
⊤Et[∆(xt;ut,Bt)ut]≤− 1√

d
∥∇f(xt)∥+Lλd

3
4

2 M .

For T2, note that per-sample L-smoothness implies batch L-smoothness. Therefore, we follow Zhang et al. (2023) by noting
that

14
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∆(xt;ut,Bt)
2=

(f(xt+λut;Bt)−f(xt−λut;Bt)−2λu⊤
t ∇f(xt;Bt)+2λu⊤

t ∇f(xt;Bt))
2

4λ2

(a)

≤ (f(xt+λut;Bt)−f(xt−λut;Bt)−2λu⊤
t ∇f(xt;Bt))

2+(2λu⊤
t ∇f(xt;Bt))

2

2λ2

(b)

≤ (f(xt+λut;Bt)−f(xt;Bt)−λu⊤
t ∇f(xt;Bt))

2

λ2

+
(f(xt;Bt)−f(xt−λut;Bt)−λu⊤

t ∇f(xt;Bt))
2

λ2
+2(u⊤

t ∇f(xt;Bt))
2

(c)

≤ L2λ2d

2
+2(u⊤

t ∇f(xt;Bt))
2

where (a) and (b) are implied by (a+b)2≤2(a2+b2) and (c) uses the facts |f(x+λu)−f(x)−λu⊤∇f(x)|≤Lλ2d/2 and
|f(x)−f(x−λu)−λu⊤∇f(x)|≤Lλ2d/2 due to L-smoothness. Therefore,

Eut
[∆(xt;ut,Bt)

2]
(a)
=

L2λ2d

2
+

2√
d
∥∇f(xt;Bt)∥2

≤L2λ2d

2
+

2√
d
∥∇f(xt)∥2+

2σ2
1

b
√
d

(8)

where (a) follows Lemma B.2 (ii).

For T3, applying the equalities

EB′
t
[∥g′(xt;B

′
t)∥

2
]=∥g′∥2+σ2

2

b′
,

∇f(xt)
⊤g′t=

1

2
(∥g′t∥

2
+∥∇f(xt)∥2−∥g′t−∇f(xt)∥2),

Eut,Bt,B′
t
[∆(xt;ut,Bt)u

⊤
t g

′(xt;B
′
t)]=∇fλ(xt)

⊤g′t

=
1

2
(∥g′t∥

2
+∥∇fλ(xt)∥2−∥g′t−∇fλ(xt)∥2)

gives us

T3=
αLη2t
2

[(
1− 1

Lηt

)
∥g′t∥

2
+(1−α)∥∇fλ(xt)∥2−(1−α)∥g′t−∇fλ(xt)∥2

]
+T4, (9)

where

T4=
αηt
2
∥g′t−∇f(xt)∥2+

α2Lη2t σ
2
2

2b′
−αηt

2
∥∇f(xt)∥2

≤αηt
2

γ2+
α2Lη2t σ

2
2

2b′
−αηt

2
∥∇f(xt)∥2 (10)

We take α and ηt so that αLηt<1, which implies 1− 1
Lηt

<1−α. We thus have

T3≤
α(1−α)Lη2t

2

[
∥g′t∥

2
+∥∇fλ(xt)∥2−∥g′t−∇fλ(xt)∥2

]
+T4

=α(1−α)⟨g′t,∇fλ(xt)⟩+T4

≤α(1−α)∥g′t∥∥∇fλ(xt)∥+T4

≤α(1−α)(∥g′t−∇f(xt)∥+∥∇f(xt)∥)(∥∇fλ(xt)−∇f(xt)∥+∥∇f(xt)∥)+T4

≤α(1−α)(γLλd 3
4 /2+(γ/

√
d+Lλd

3
4 /2)M+∥∇f(xt)∥2/

√
d)+T4 (11)
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Combining T1 (7), T2 (8), T3 (11), and T4 (10) yields[
ηt(1−α)√

d
+
ηtα

2
−Lη2t (1−α)2−

Lη2tα(1−α)√
d

]
∥∇f(xt)∥2

≤f(xt)−Et[f(xt+1)]+
(1−α)Lηtλd

3
4M

2
+
(1−α)2Lη2t σ2

1

b

+
(1−α)2L3η2t λ

2d
3
2

4
+
(1−α)2Lη2t σ2C2

√
d

2b2
+
αηtγ

2

2

+
α2Lη2t σ

2
2

2b′
+
α(1−α)L2η2t γλd

3
4

2
+α(1−α)Lη2tM

(
γ√
d
+
Lλd

3
4

2

)
.

Choosing ηt=
2(1−α)+α

√
d

4L(1−α)(4L((1−α)2
√
d+α(1−α))

, we have αLηt<1 if α<1− 3
√
d−3

3
√
d−2

. Denote E<t:=Eu<t,z<t,B<t,B′
<t

where
u<t is the set {u0,...,ut−1} and similarly for z<t, B<t, and B′

<t. Then we have

E<t[∥∇f(xt)∥2]≤16L(1−α)(d−dα+α)E<t+1[f(xt)−f(xt+1)]+
(1−α)L2λ2d3

2

+

(
L2λ2d3+

4σ2
1d

b

)
1−α

4(d−dα+α)
+

(1−α)dσ2C2

2b2(d−dα+α)
+

α[γLλd
3
2 /2+(γ+Lλd

3
2 /2)M ]

d−dα+α
+2αγ2+

α2σ2
2

2b′(1−α)(d−dα+α)
.

We sum up from t=0 to T−1, and divide both sides by T to obtain

1

T

T−1∑
t=0

E<t[∥∇f(xt)∥2]≤
16
√
dLE<t+1[f(x0)−f(x∗)]

T

(1−α)2
√
d+α(1−α)

(2(1−α)+α
√
d)2

+2Lλd
5
4M

1−α
2(1−α)+α

√
d

+2
√
dγ2 α

2(1−α)+α
√
d
+

[
L2λ2d2

4
+
σ2
1

√
d

b
+
dσ2C2

2b2

]
1−α

(1−α)
√
d+α

+

√
dσ2

2

2b′
α2

(1−α)2
√
d+α(1−α)

+

[
Lλd

5
4 γ

2
+

(
γ+

Lλd
5
4

2

)
M

]
α

(1−α)
√
d+α

(12)

To interpret this result, we discuss two scenarios of α. First, when the public data brings no helpful information to private
training, we can set α=0 to reduce our update rule to DPZero. If we made the same assumption as in Zhang et al. (2023),
including per-sample Lipchitz, effective low-rankness, and full private data sampling, our Eq. (13) becomes

O

(
1

T

)
+O(λ2)+O(σ2),

which is the same utility bound as theirs.

Second, when public data are of good quality, we seek to find α∈[0,1− 3
√
d−3

3
√
d−2

) that minimizes the RHS of Eq. (13). We
analyze the existance of α in two scenarios: (1) Use constant λ (Zhang et al., 2023) and (2) use decaying λ=O(1/t) (Duchi
et al., 2015).

When λ is constant as in DPZero, we group all the terms dependent on α and denote

h(α)=A1
(1−α)2

√
d+α(1−α)

(2(1−α)+α
√
d)2

+A2
1−α

2(1−α)+α
√
d
+A3

α

2(1−α)+α
√
d

+A4
1−α

(1−α)
√
d+α

+A5
α2

(1−α)2
√
d+α(1−α)

+A6
α

(1−α)
√
d+α

(13)
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where

A1=
16
√
dLE<t+1[f(x0)−f(x∗)]

T
,A2=2Lλd

5
4M,A3=2

√
dγ2

A4=
L2λ2d2

4
+
σ2
1

√
d

b
+
dσ2C2

2b2
,A5=

√
dσ2

2

2b′
, and A6=

Lλd
5
4 γ

2
+

(
γ+

Lλd
5
4

2

)
M.

Denote D1=2(1−α)+α
√
d and D2=(1−α)

√
d+α. Its derivative is

h′(α)=A1
D1(−2

√
d+2α

√
d−2α+1)−2(1−α)[(1−α)

√
d+α](

√
d−2)

D3
1

−A2

√
d

D2
1

+A3
2

D2
1

−A4
1

D2
2

+A5
α(2−α)D2−α2(1−α)(1−

√
d)

(1−α)2D2
2

+A6

√
d

D2
2

and

h′(0)=A1
1−d
4
−A2

√
d

4
+A3

1

2
−A4

1

d
+A6

1√
d
.

Since h(α) is not monotonously increasing, there exists α>0 s.t. the error term is minimized and our bound is improved
upon the vanilla zeroth-order method. For example, since h is smooth on [0,1), we have

h(0) decreases near 0
⇔h′(0)<0

⇔
√
dγ2+

Lλd
5
4+2M

2
√
d

γ<
4
√
dL(d−1)(f(x0)−f(x∗))

T
+(d

7
4−d 3

4 )
LλM

2
+
L2λ2d

4
+

σ2
1

b
√
d
+
σ2C2

2b2
(14)

Note that the quadratic inequality (14) has solutions for γ>0 since the RHS of 14 is larger than 0. Denote its largest solution
as γmax and we have

γ<γmax⇔h(0) decreases near 0⇔∃α∈
(
0,1−3

√
d−3

3
√
d−2

)
s.t. h(α)<h(0).

Alternatively, when λ decays, we group the non-vanishing terms related to α and obtain

h′(α)=A1
D1(−2

√
d+2α

√
d−2α+1)−2(1−α)[(1−α)

√
d+α](

√
d−2)

D3
1

+A3
2

D2
1

−
(
σ2
1

√
d

b
+
dσ2C2

2b2

)
1

D2
2

+A5
α(2−α)D2−α2(1−α)(1−

√
d)

(1−α)2D2
2

+γM

√
d

D2
2

where

A1=
16
√
dLE<t+1[f(x0)−f(x∗)]

T
,A3=2

√
dγ2, and A5=

√
dσ2

2

2b′
.

Similarly, we have

h(0) decreases near 0
⇔h′(0)<0

⇔
√
dγ2+

M√
d
γ<

4
√
dL(d−1)(f(x0)−f(x∗))

T
+

σ2
1

b
√
d
+
σ2C2

2b2

which always has a largest solution γmax>0. The remaining conclusion is the same as above.

In conclusion, PAZO-M offers the opportunity to leverage public gradients if they are close to the private gradients. In the
worst case, we can recover the vanilla private zeroth-order utility guarantee by setting α=0.
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B.3. Convergence of PAZO-P

Theorem B.4 (Full statement of Theorem 4.2). Let the private and public data be γ-similar and Assumption 1, 2, 3, and 4
hold. For possibly non-convex f , running Algorithm 2 for T rounds using a fixed step size η= 1

2Lk gives

1

T

T−1∑
t=0

E[∥∇f(xt)∥2]≤
4Lk

T
E[f(x0)−f(x∗)]+2M

√
2

(
σ2
2

b′
+γ2

)
+Lλk

3
2+

L2λ2k2

4
+
σ2
1

b
+
σ2C2

2b2
.

Proof. Assume that clipping does not happen, then the update rule is xt+1−xt=−ηt(∆(xt;ut;Bt)+zt/b)Gtut where

∆(xt;ut;Bt)=
1

b

∑
ξi∈Bt

f(xt+λGtut;ξi)−f(xt−λGtut;ξi)

2λ
.

At a step t, let xt be a fixed parameter. We apply the update to the property of L-smooth objectives and take expectation
over all the randomness at this iteration, i.e., Et:=Eut,zt,Bt,B′

t
. We have

Et[f(xt+1)]

≤f(xt)+⟨∇f(xt),Et[xt+1−xt]⟩+
L

2
Et[∥xt+1−xt∥2]

=f(xt)−ηt⟨∇f(xt),Et[∆(xt;ut,Bt)Gtut]⟩+
Lη2t
2

Et[∥∆(xt;ut,Bt)Gtut∥2]+
Lη2t
2

Et

[∥∥∥zt
b
Gtut

∥∥∥2]
(a)
=f(xt)−ηt∥∇f(xt)∥2+ηt⟨∇f(xt),∇f(xt)−Et[∆(xt;ut,Bt)Gtut]⟩︸ ︷︷ ︸

T1

+
Lη2t k

2
Et[∥∆(xt;ut,Bt)∥2]︸ ︷︷ ︸

T2

+
Lη2t σ

2C2k

2b2
, (15)

where (a) is due to the orthonormality of Gt and ∥ut∥=
√
k.

For T1, we proceed by

⟨∇f(xt),∇f(xt)−Et[∆(xt;ut,Bt)Gtut]⟩
≤∥∇f(xt)∥∥∇f(xt)−Et[∆(xt;ut,Bt)Gtut]∥
≤∥∇f(xt)∥[

∥∥∇f(xt)−Et[GtG
⊤
t ∇f(xt)]

∥∥︸ ︷︷ ︸
T3

+
∥∥Et[GtG

⊤
t ∇f(xt)]−Et[∆(xt;ut,Bt)Gtut]

∥∥︸ ︷︷ ︸
T4

].

For a Gt, we denote its un-orthonormalized columns as {g′(xt;B
′
t,1),...,g

′(xt;B
′
t,k)}. Note that for any public candidate

index i∈[k], we have

(i) g′(xt;B
′
t,i)∈Col(Gt)

(ii) Et[
∥∥g(xt;B

′
t,i)−∇f(xt)

∥∥2]=Et[
∥∥g(xt;B

′
t,i)−g′t+g′t−∇f(xt)

∥∥2]
(a)

≤2Et[
∥∥g(xt;B

′
t,i)−g′t

∥∥2]+∥g′t−∇f(xt)∥2

(b)

≤2(σ2
2/b

′+γ2).

where (a) holds due to (a+b)2≤2(a2+b2) and (b) follows the γ-similar assumption. Therefore,(
Et[
∥∥∇f(xt)−GtG

⊤
t ∇f(xt)

∥∥])2(a)≤Et[
∥∥∇f(xt)−GtG

⊤
t ∇f(xt)

∥∥2]
(b)

≤Et[
∥∥∇f(xt)−g(xt;B

′
t,i)
∥∥2]

≤2(σ2
2/b

′+γ2),
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where (a) follows Jensen’s inequality and (b) is due to the fact that
∥∥∇f(xt)−GtG

⊤
t ∇f(xt)

∥∥≤∥∇f(xt)−x∥ for any
x∈Col(Gt).

For T3, we thus have

∥∥∇f(xt)−Et[GtG
⊤
t ∇f(xt)]

∥∥≤Et[
∥∥∇f(xt)−GtG

⊤
t ∇f(xt)]

∥∥
≤
√
2(σ2

2/b
′+γ2). (16)

For T4, we have

∥∥Et[GtG
⊤
t ∇f(xt)]−Et[∆(xt;ut,Bt)Gtut]

∥∥
=Et

[∥∥∥∥(∇f(xt)
⊤Gtut−

f(xt+λGtut;Bt)−f(xt−λGtut;Bt)

2λ

)
Gtut

∥∥∥∥]
=

√
k

2λ
Et

[
|
(
f(xt+λGtut;Bt)−f(xt−λGtut;Bt)−2λ∇f(xt)

⊤Gtut

)
|
]

≤
√
k

2λ
Et

[
|
(
f(xt+λGtut;Bt)−f(xt;Bt)−λ∇f(xt)

⊤Gtut

)
|
]

+

√
k

2λ
Et

[
|
(
f(xt;Bt)−f(xt−λGtut;Bt)−λ∇f(xt)

⊤Gtut

)
|
]

≤Lλk
3
2

2

where the last inequality is due to L-smoothness. Therefore,

T1≤M
(√

2(σ2
2/b

′+γ2)+
Lλk

3
2

2

)
(17)

For T2, note that

∆(xt;ut,Bt)
2

=
(f(xt+λGtut;Bt)−f(xt−λGtut;Bt)−2λu⊤

t G
⊤
t ∇f(xt;Bt)+2λu⊤

t G
⊤
t ∇f(xt;Bt))

2

4λ2

(a)

≤ (f(xt+λGtut;Bt)−f(xt−λGtut;Bt)−2λu⊤
t G

⊤
t ∇f(xt;Bt))

2+(2λu⊤
t G

⊤
t ∇f(xt;Bt))

2

2λ2

(b)

≤ (f(xt+λGtut;Bt)−f(xt;Bt)−λu⊤
t G

⊤
t ∇f(xt;Bt))

2

λ2

+
(f(xt;Bt)−f(xt−λGtut;Bt)−λu⊤

t ∇f(xt;Bt))
2

λ2
+2(u⊤

t G
⊤
t ∇f(xt;Bt))

2

(c)

≤ L2λ2k2

2
+2(u⊤

t G
⊤
t ∇f(xt;Bt))

2,

where (a) and (b) are implied by (a+b)2≤2(a2+b2) and (c) uses the facts |f(x+λu)−f(x)−λu⊤∇f(x)|≤Lλ2d/2 and
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|f(x)−f(x−λu)−λu⊤∇f(x)|≤Lλ2d/2 due to L-smoothness. Therefore, applying Lemma B.2 (iii) gives us

Et[∥∆(xt;ut,Bt)∥2]=
L2λ2k2

2
+2EBt,B′

t
Eut

[(u⊤
t G

⊤
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2
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(
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σ2
1

b

)
. (18)

Applying T1 (17) and T2 (18) to (15) yields

(ηt−Lη2t k)∥∇f(xt)∥2≤f(xt)−Et[f(xt+1)]+ηtM

(√
2(
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2
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3
2

2
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+
L3η2t λ

2k3

4
+
Lη2t kσ
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b
+
Lη2t σ

2C2k

2b2
.

We choose ηt= 1
2Lk so that ηt−Lη2t k=ηt

2 . Denote E<t:=Eu<t,z<t,B<t,B′
<t

where u<t is the set {u0,...,ut−1} and similarly
for z<t, B<t, and B′

<t. Then we have

E<t∥∇f(xt)∥2≤4LkE<t+1[f(xt)−f(xt+1)]+2M
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b
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2b2
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Summing up from t=0 to T−1 and dividing both sides by T yields

1

T

T−1∑
t=0

E<t[∥∇f(xt)∥2]≤
4Lk

T
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From the upper bound, we see that when γ=0, it reduces to O

(√
σ2
2

b′ +λ+λ2+
σ2
1

b +σ2

b2

)
. If we further set λ to decay, then

similar as the arguments around PAZO-M bounds in Appendix B.2, the error term vanishes into O

(√
σ2
2

b′ +
σ2
1

b +σ2

b2

)
, which

is standard for stochastic methods under a fixed learning rate, and decreases as the batch-size b, b′ increase.

B.4. Convergence of PAZO-S

Theorem B.5 (Full statement of Theorem 4.3). Let the private and public data be γ-similar and Assumption 1, 2, 3, and 4
hold. For possibly non-convex f , running Algorithm 3 for T rounds using a fixed step size η= 1

2L gives

1

T

T−1∑
t=0

E<t[∥∇f(xt)∥2]≤
4LE<t+1[f(x0)−f(x∗)]

T
+2M

(
γ+

σ2√
b′

)
+γ2+

σ2
2

b′
.

Proof. Our public data sampling process is equivalent to first sampling B′
t and then dividing it into k non-overlap

partitions. We denote each partition as B′
t,i,i∈[k]. Assume that clipping does not happen, then the update rule is
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xt+1−xt=−ηt(g′(xt;B
′
t,∗)+1(z

′)z′) where g′(xt;B
′
t,∗):=argmini∈[k+1]f(xt−ηtg(xt;B

′
t,i);Bt) is the best public gradi-

ents among the k candidates and 1(z′) is an indicator variable that denotes whether adding z′∼N (0,ϵ2Id) reduces the
function value.

At a step t, let xt be a fixed parameter. We apply the update to the property of L-smooth objectives and take expectation
over all the randomness at this iteration, i.e., Et:=Eut,zt,Bt,B′

t
. We have
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and thus
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For T1, we note that (Et[
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For T2, we have
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Denote E<t:=Eu<t,z<t,B<t,B′
<t

where u<t is the set {u0,...,ut−1} and similarly for z<t, B<t, and B′
<t. Then we have

(ηt−Lη2t )E<t∥∇f(xt)∥2≤E<t+1[f(xt)−f(xt+1)]+ηtM(γ+
σ2√
b′
)+Lη2t (γ

2+
σ2
2

b′
).

Choosing ηt=
1
2L so that Lη2t=ηt/2, summing up from t=0 to T−1, and dividing both sides by T yields
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T
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When γ=0, the non-vanishing error term becomes O
(

σ2√
b′
+

σ2
2

b′

)
, which is due to stochastic gradient noise.
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C. Experiment Details
C.1. Datasets

The four datasets and model pairs closely follow the experiments in the existing DP literature. We provide the details of
public data generation as follows.

CIFAR-10. We follow previous work (Nasr et al., 2023) that uses 4% of the training samples as public data and warm-start
on the public data by training on it for a small number of epochs. Additionally, we create class imbalances among the 10
classes for public data. We treat this imbalance as a mild distribution shift from the private data. To avoid information
leakage from the batchnorm layer, we start from a randomly initialized NFResNet18 (Brock et al., 2021).

Tiny-ImageNet. We follow Kurakin et al. (2022), which first pre-trains a ResNet18 on Places365 (Zhou et al., 2017) and
then fine-tunes the model on Tiny-ImageNet with differential privacy. We randomly sample 4% of the Tiny-ImageNet
training samples as public data, which thus comprises 20 samples per class. We use a small ViT model (10M) (Dosovitskiy
et al., 2020) with random initialization.

IMDB. We follow Li et al. (2022), which uses Amazon Polarity (Zhang et al., 2015) samples as out-of-distribution (OOD)
public data to guide the private learning on IMDB. We build the vocabulary based on the top 10K tokens in the IMDB
training set and construct the Amazon Polarity public dataset with a size 4% of the IMDB training size, which gives us
2,000 public samples.

MNLI. We follow the few-shot setting in the past work (Malladi et al., 2023; Zhang et al., 2023) and sample 512 MNLI
training examples per class. We adopt the same prompt template and start from a pre-trained RoBERTa-base model. We
randomly sample 100 training examples per class from SNLI (Bowman et al., 2015) as the OOD public data.

C.2. Experiment results

We present the detailed evaluation results on the four datasets in Table 1−4. We report the performance under multiple
privacy budgets (ε,δ=1/#train samples) as well as the non-private performance, which corresponds to the accuracies of
SGD and MeZO. All results are obtained under the same random seed 0. Entries with ‘−’ indicate failure to converge. The
best accuracies are in bold and the second places are underlined.

Implementation details. For each first-order methods with public data, we vectorize the per-sample gradient computation
and privatization using vmap. For the method with open-sourced code (GEP (Yu et al., 2021)), we adopt their provided
implementation and privacy accounting.

The experiment on MNLI utilizes the codebase from Malladi et al. (2023) and Zhang et al. (2023), including their dataset
processing and prompt tuning workflow. Following MeZO and DPZero, we sample the zeroth-order direction ut from the
Gaussian distribution N (0,Id) in the experiments since previous work verifies that it produces very similar performance
(Nasr et al., 2023; Zhang et al., 2024b; 2023) to sampling from

√
dSd−1. Similar to the first-order methods, we apply vmap

for speedup by vectoring the q forward calls. However, given that PAZO needs smaller q’s than the vanilla zeroth-order
methods, we do not need to employ this memory-inefficient implementation in most settings.

PAZO-P vs. PAZO-P′. Table 1−4 shows the performance of PAZO-P with orthonormalized public gradients (row
‘PAZO-P’) and with normalized public gradients (row ‘PAZO-P′’). PAZO-P and PAZO-P′ have similar performance, with
the deviation being 0.1%∼2.5%.

Runetime efficiency. Theoretically, we list the number of different types of operations involved in each algorithm in
Table 6. Since the first-order methods require per-sample gradient computation and clipping, its number of “gradient
backward”, the slowest operation, is dependent on the private batch-size. This is a discouraging feature since large batch-size
offers better utility/privacy tradeoffs (McMahan et al., 2017; Yu et al., 2023), creating an additional tradeoff between utility
and efficiency. In contrast, the number of gradient backward steps is either 1 or k(k≪b) in zeroth-order methods. Together
with the fact that the forward calls are more memory-efficient than the backward ones when vectorized, zeroth-order methods
are principally more scalable.

Empirically, we evaluate the runtime in each training iteration for all the settings (Table 5). We vectorize the three settings
other than the IMDB-LSTM experiment due to incompatibility between the model architecture and vmap. Although the

22



Private Zeroth-Order Optimization with Public Data

Table 1: Training NFResNet18 on CIFAR-10 from scratch.

Type Method ε=0.1 ε=0.5 ε=1 ε=2 ε=3 Non-private

FO DP-SGD 46.7 49.7 50.8 54.2 54.5 86.3

FO+PUB
DPMD 64.3 66.6 67.8 68.5 69.8
DOPE-SGD 64.8 69.3 70.9 73.0 72.9
GEP − 49.9 50.7 52.9 53.8

ZO DPZero 47.0 48.1 48.2 48.2 48.1 49.0

ZO+PUB
(ours)

PAZO-M 70.9 71.3 71.3 71.2 70.5
PAZO-P 69.5 69.6 69.0 68.7 68.1
PAZO-P′ 69.6 69.2 69.2 68.9 68.0
PAZO-S 70.3 70.3 70.2 69.8 69.7

Table 2: Fine-tuning Places365 pre-trained ViT-small on Tiny-ImageNet.

Type Method ε=0.1 ε=0.5 ε=1 ε=2 Non-private

FO DP-SGD 24.8 29.2 31.4 38.0 52.9

FO+PUB
DPMD 30.5 31.4 34.2 35.5
DOPE-SGD 30.7 31.8 32.5 34.4
GEP − 30.9 30.5 31.4

ZO DPZero 25.1 27.6 27.5 27.9 28.6

ZO+PUB
(ours)

PAZO-M 30.8 30.8 30.7 30.8
PAZO-P 30.9 31.0 31.0 31.2
PAZO-P′ 30.7 30.8 30.8 30.9
PAZO-S 30.6 30.6 30.6 30.7

Table 3: Training LSTM on IMDB from scratch.

Type Method ε=0.1 ε=0.5 ε=1 ε=2 ε=3 Non-private

FO DP-SGD 50.0 66.4 69.9 73.5 75.5 89.5

FO+PUB
DPMD 71.0 72.1 73.4 76.6 76.6
DOPE-SGD 70.2 73.2 75.0 75.9 77.9
GEP 60.0 71.0 74.0 77.2 78.6

ZO DPZero 59.0 62.4 62.6 63.2 63.8 63.8

ZO+PUB
(ours)

PAZO-M 73.4 73.2 74.5 73.2 73.6
PAZO-P 71.0 73.7 73.2 73.0 72.7
PAZO-P′ 69.4 69.8 70.7 70.0 70.5
PAZO-S 74.6 74.2 73.8 73.9 74.2
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Table 4: Prompt-tuning RoBERTa-base on MNLI.

Type Method ε=0.1 ε=0.5 ε=1 ε=2 ε=3 Non-private

FO DP-SGD 52.6 59.3 63.5 68.4 72.0 78.9

FO+PUB
DPMD 56.5 67.0 68.1 71.5 72.8
DOPE-SGD 59.7 67.2 68.0 70.1 72.5
GEP − − − − −

ZO DPZero − 55.2 58.2 60.4 62.6 68.4

ZO+PUB
(ours)

PAZO-M 67.1 67.3 67.8 67.7 67.5
PAZO-P 63.5 68.3 69.8 69.7 70.3
PAZO-P′ 61.0 68.1 68.8 69.0 69.4
PAZO-S 68.2 68.6 68.9 68.6 69.0

Table 5: Speed of each method on different datasets (in s/iter). It shows that PAZO offers up to 16× runtime speedup per
training iteration compared to the baselines. All numbers are averaged over 20 iterations.

CIFAR-10 Tiny-ImageNet IMDB MNLI

DP-SGD 0.420 0.366 0.173 1.697
DPMD 0.462 0.404 0.183 1.761
DOPE-SGD 0.424 0.365 0.172 2.187
GEP 0.830 0.548 0.252 −
DPZero 0.081 0.132 0.016 1.934
PAZO-M 0.051 0.073 0.019 0.852
PAZO-P 0.149 0.168 0.042 1.244
PAZO-S 0.102 0.142 0.019 1.118

Speedup 16× 7× 15× 2×

MNLI experiments enjoys only 2× of speedup by using PAZO, Malladi et al. (2023) shows that zeroth-order methods will
be significantly faster as the model scales up.

C.3. Hyperparameter tuning

This section presents our hyperparameter search grid and the results of our methods under different hyperparameter values.

Hyperparameter selection. For all the first-order methods and PAZO, we set the number of epochs to 100. Since the
vanilla zeroth-order methods benefit from training for more iterations (Zhang et al., 2023; Malladi et al., 2023), we try
training for 100, 200, and 300 epochs with their corresponding correct noise multiplier σ applied. Due to increased noise
added when more epochs are allowed, we observe that the epoch number of 200 produces the best performance across
settings. We thus train for 200 epochs in all DPZero experiments. The values of the smoothing parameter λ are presented in
Table 7.

Sensitivity to q. Table 8 shows that the performance of the vanilla private zeroth-order method relies on setting q>1,
which slows down the training and harms utility due to increased noise added for privatization. In contrast, PAZO is less
dependent on increased q due to the assistance from public data. This implies that PAZO has approximately the same
workload of hyperparameter tuning as DPZero: Under a reasonable or intuitive choice of the hyperparameters for public
data sampling, one only needs to find a good combination of clipping norm C and learning rate η.

Sensitivity to introduced hyperparameters. Apart from Figure 6, we also present the hyperparameter sensitivity study
on the other two datasets Tiny-ImageNet and IMDB in Figure 8. The conclusion is the same as in the main text: PAZO is
not sensitive to the values of the introduced hyperparameters.
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Table 6: The number of different operations per iteration of each method.

# Private
forward

# Public
for+backward

# Private
backward

DP-SGD b − b
DPMD b 1 b
DOPE-SGD b 1 b
GEP b b′ b

DPZero 2q − −
PAZO-M 2q 1 −
PAZO-P 2q k −
PAZO-S k+1 k −

Table 7: Values of the smoothing parameter λ in each experiment.

CIFAR-10 Tiny-ImageNet IMDB MNLI

MeZO 10−2 10−2 10−2 10−3

DPZero 10−2 10−2 10−2 10−3

PAZO-M 10−2 10−2 10−2 10−3

PAZO-P 10−2 10−2 10−1 10−2

Table 8: Performance vs. q in different settings. In each cell, the first row represents the accuracy under q=1 and the second
represents that under q=5. We observe that DPZero benefits from increased q by 1.0%, 2.4%, 4.8%, and 7.2% accuracy
points on four datasets. In contrast, PAZO has stable performance under different q.

q=1
q=5 CIFAR-10 Tiny-ImageNet IMDB MNLI

DPZero
47.1
48.1

25.5
27.9

59.0
63.8

55.4
62.6

PAZO-M
70.1
70.3

30.8
30.8

72.9
73.6

67.5
68.3

PAZO-P
68.1
68.6

31.2
31.0

72.7
72.7

68.6
70.9
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Figure 8: All PAZO methods are robust to different values of their introduced hyperparameters. Each number represents the
best accuracy after the standard hyperparameters for zeroth-order private optimization (C and η) are tuned. Blue cells are
for PAZO-S’s performance without having a noisy candidate.

Influence of ϵ in PAZO-S. Figure 6 and Figure 8 show that the performance of PAZO-S is robust to different ϵ values.
Since having no noisy candidate is equivalent to setting ϵ=0, we compare the best performance of having a noisy candidate
(purple cells) with none (blue cells). The conclusion is consistent: Having ϵ ̸=0 offers the opportunity to improve performance
in general, but it does not harm significantly to leave it less tuned.
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Table 9: The hyperparameter search grid for CIFAR-10 and Tiny-ImageNet.

Algorithm CIFAR-10 Tiny-ImageNet

SGD η {0.01, 0.02, 0.05, 0.1, 0.2, 0.5} {0.001, 0.005, 0.01, 0.05, 0.1}
b {8, 32, 64} {64}

DP-SGD b {0.01, 0.02, 0.05, 0.1, 0.2} {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0}
C {0.1, 0.5, 1.0, 2.0} {0.01, 0.1, 0.5, 1.0, 2.0}

DOPE-SGD
η {0.01, 0.02, 0.05, 0.1, 0.2} {0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2}
b′ {8, 32, 128} {8, 32, 128}
C {0.1, 0.5, 1.0, 2.0} {0.1, 0.5, 1.0, 2.0, 4.0}

DPMD
η {0.02, 0.05, 0.1, 0.2, 0.5} {0.005, 0.01, 0.02, 0.05, 0.1, 0.2}
b′ {8, 32, 128} {8, 32, 128}
C {0.1, 0.5, 1.0, 2.0} {0.01, 0.1, 0.5, 1.0, 2.0}

GEP
η {0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5} {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}
b′ {8, 32, 128} {8, 32, 128}
C1 {0.1, 0.5, 1.0, 2.0} {0.1, 0.5, 1.0, 1.5, 2.0}

MeZO η {0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1} {1e-4, 2e-4, 5e-4, 1e-3, 2e-3}
b {64} {64}

DPZero η {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0} {1e-4, 2e-4, 5e-4, 1e-3, 2e-3}
C {1.0} {1.0}

PAZO-M

η {0.1, 0.2, 0.5} {1e-5, 2e-5, 5e-5, 1e-4, 2e-4, 5e-4}
b′ {8, 32} {8, 32}
α {0.25, 0.5, 0.75} {0.25, 0.5, 0.75}
C {1.0} {1.0}

PAZO-P

η {0.2, 0.5, 1.0, 1.5, 2.0} {0.2, 0.5, 1.0, 1.5, 2.0}
b′ {8, 16, 32} {8, 16, 32}
k {3, 6, 10} {3, 6, 10}
C {0.5, 1.0, 2.0} {0.5, 1.0, 2.0}

PAZO-S

η {0.01, 0.02, 0.05, 0.1, 0.2} {0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2}
b′ {8, 16, 32} {8, 32, 128}
k {3} {3}
ϵ {0.01, 0.001} {0.001, 0.0001}
C {0.5, 1.0, 2.0, 4.0} {0.5, 1.0, 2.0, 4.0}
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Table 10: The hyperparameter search grid for IMDB and MNLI.

Algorithm IMDB MNLI

SGD η {0.1, 0.2, 0.5, 1.0, 1.5} {1e-6, 1e-5, 1e-4, 1e-3, 5e-3, 1e-2}
b {64} {8, 32, 64}

DP-SGD b {0.01, 0.02, 0.05, 0.1, 0.2, 0.1} {2e-6, 5e-6, 1e-5, 2e-5, 5e-5, 1e-4}
C {0.1, 0.5, 1.0, 2.0, 4.0} {10, 20, 50, 100, 150, 200, 250}

DOPE-SGD
η {0.005, 0.01, 0.02, 0.05, 0.1} {5e-6, 1e-5, 2e-5, 5e-5, 1e-4}
b′ {8, 32, 128} {8. 32}
C {0.1, 0.5, 1.0, 2.0, 4.0} {10, 20, 50, 100, 150, 200, 250}

DPMD
η {0.005, 0.01, 0.02, 0.05, 0.1} {2e-6, 5e-6, 1e-5, 2e-5, 5e-5, 1e-4, 2e-4}
b′ {8, 32, 128} {8, 32}
C {0.1, 0.5, 1.0, 2.0, 4.0} {10, 20, 50, 100, 150, 200, 250}

GEP
η {0.01, 0.02, 0.05, 0.1} {2e-6, 5e-6, 1e-5, 2e-5, 5e-5, 1e-4, 2e-4}
b′ {8, 32} {8, 32}
C1 {0.1, 0.5, 1.0, 2.0} {10, 20, 50, 100, 150, 200, 250}

MeZO η {0.002, 0.005, 0.01, 0.02, 0.05, 0.1} {1e-7, 1e-6, 2e-6, 5e-6, 1e-5, 1e-4}
b {64} {64}

DPZero η {0.002, 0.005, 0.01, 0.02, 0.05, 0.1} {1e-6, 2e-6, 5e-6, 1e-5, 2e-5, 5e-5}
C {0.1, 0.5, 1.0, 2.0} {10, 20, 50, 100, 150, 200, 250}

PAZO-M

η {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0} {1e-4, 2e-4, 5e-4, 1e-3, 2e-3}
b′ {8, 32} {8, 32}
α {0.25, 0.5, 0.75} {0.25, 0.5, 0.75}
C {0.1, 0.5, 1.0, 2.0, 4.0} {10, 20, 50, 100, 150, 200, 250}

PAZO-P

η {0.1, 0.2, 0.5, 1.0, 1.4, 2.0} {5e-5, 1e-4, 2e-4, 5e-4, 1e-3, 2e-3}
b′ {32, 64, 128} {8, 16, 32}
k {3, 6, 10} {3, 6, 10}
C {0.5, 1.0, 2.0, 4.0} {10, 20, 50, 100, 150, 200, 250}

PAZO-S

η {0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0} {1e-4, 2e-4, 5e-4, 1e-3, 2e-3, 5e-3}
b′ {8, 32, 128} {8, 32}
k {3} {3}
ϵ {0.01, 0.001} {0.01, 0.001}
C {0.1, 0.5, 1.0} {0.1, 0.5, 1.0}
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